
© 2026 The Author(s). Published by the Royal Society of Chemistry Mater. Adv.

Cite this: DOI: 10.1039/d5ma00896d

Short-time spreading dynamics of elastic drops

Surjyasish Mitra, a A-Reum Kim,b Boxin Zhao b and Sushanta K. Mitra *a

When a liquid drop makes first contact with any surface, the unbalanced surface tension force drives the

contact line, causing spreading. For Newtonian or weakly elastic, non-Newtonian liquids, either liquid

inertia or viscosity, or a combination of the two, resists spreading. In this work, we investigate how drop

elasticity influences spreading dynamics. We conduct dynamical experiments with polyacrylamide drops

of varying polymer concentrations to impart varying degrees of elasticity. Using high-speed imaging, we

focus on the very first moments of spreading on glass substrates. For moderate and high Young’s

modulus values, we observe that the early-time spreading dynamics obey a viscous-capillary regime

characterized by a power-law evolution of the spreading radius. However, the process transitions to a

different regime on a timescale comparable to the characteristic viscoelastic relaxation timescale.

We interpret this latter regime using a theoretical model invoking the standard linear model of

viscoelasticity. For viscoelastic inks with moderate print speeds, the dynamical behavior investigated in

this study can provide valuable insights into how to efficiently control such moving contact lines with

non-trivial elasticity.

1 Introduction

When a liquid drop is gently deposited on any rigid substrate, it
spreads spontaneously until equilibrium is reached.1,2 On the
same substrate, a rigid sphere sits as deposited with a finite,
small contact radius.3,4 These two extreme scenarios vis-a-vis
wetting and contact adhesion have been treated independently
using classical theories of Young5 and Hertz3/Johnson–Ken-
dall–Roberts (JKR),4 respectively. However, between these two
configurations lies a plethora of intermediate contact/wetting
morphologies, primarily modulated by the substrate wettability
and elasticity (Fig. 1). The effect of surface wettability is more
pronounced for wetting than for contact adhesion, whereas
modulating the surface’s elastic modulus causes profound
changes in both cases. For instance, making the substrate
sufficiently soft enables a configuration where a sessile liquid
drop exhibits deformation at the three-phase contact line,
generating a wetting ridge structure.6–9 Similarly, increased
indentation depths can be observed for contacts of rigid
spheres on soft substrates.10 Despite such insights, many
unanswered questions still remain. Primarily among them is
the effect of the elasticity of the top pair. In recent studies using

elastic hydrogel spheres, it was shown that configurations
intermediate between wetting and contact emerge upon mod-
ulating the elastic modulus of the hydrogels.11,12 Typically,
hydrogels consist of a solid network of crosslinked natural or
synthetic polymers swollen with water.13,14 The primary polymer
network imparts the desired elastic modulus of the hydrogel.13

By tuning the relative concentration of this primary polymer
network in our earlier work, we prepared polyacrylamide hydro-
gels with Young’s modulus varying from a few millipascals to
hundreds of kilopascals and demonstrated how one can trans-
late from a wetting-like morphology to a contact-like morphology
upon contact with any substrate.11 Essentially, for weakly elastic
hydrogels, a Newtonian-liquid-drop-like wetting morphology was
observed, whereas for highly elastic hydrogels, a non-wetting,
rigid-sphere-like contact morphology was observed.11 Further-
more, to interpret this transition from wetting to contact with
increasing elasticity, we employed density functional theory.15

Consequently, it was shown that a switch from attractive to
repulsive interaction potential between an elastic wedge and a
rigid substrate enables this transition from wetting to contact
with increasing Young’s modulus.15 However, for any contacting
system to reach equilibrium, it has to go through a finite
transient stage. Typically, this transient dynamics on rigid and
soft substrates16–19 is well studied for the wetting of liquids, i.e.,
spreading.

For spreading of Newtonian liquid drops with well-defined
liquid properties such as density, surface tension, and viscosity,
the dynamics can be well defined using phenomenological
scaling laws that account for the dominant driving and resistive
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forces.16–18,20 It is well understood that liquid surface tension
drives the spreading process, whereas liquid inertia16,17,21 or
viscosity18,20,22 opposes it. Consequently, we observe scaling
laws representing the evolution of the drop-substrate footprint
radius r as r B ta, where the power-law exponent a typically
assumes values of 1 (inertia-limited viscous,18,23,24 early), 0.5
(inertia,16,17,21 early), and 0.1 (contact line dissipation,25,26 late)
depending on the dominant resistive force and the relevant
stage of spreading. Furthermore, modulating the substrate
properties, such as making the substrate hydrophobic, causes
variation in the power-law exponent.17 In certain cases, devia-
tions from power-law spreading are also observed. For instance,
making the underlying substrate sufficiently soft causes the
spreading radius to transition from the early-time inertial
scaling law and follow a trajectory that can be best described
using an exponential relaxation function.27 However, despite
such extensive studies on the spreading dynamics with varying
liquid and substrate properties, outstanding questions still
remain. As mentioned previously, primarily among them is
what happens when we impart elasticity to the drop phase. This
dynamic elastowetting phenomenon is widely relevant for cell
spreading, where cells are often modeled as elastic membrane-
bound shells, whose early-time spreading behavior obeys
power-law scaling.28

It is worth noting that existing literature mostly reports the
spreading of viscoelastic liquids.29,30 These are either weakly
elastic polymeric solutions, such as polyethylene oxide (PEO)
and FLOPAM, or low concentrations of polyacrylamide (PAAm)
and polyvinyl alcohol (PVA) solutions.29–31 For such cases, the
shear storage modulus G0 is typically smaller than the shear
loss modulus G00,31,32 and hence the materials behave more like
viscous liquids rather than viscoelastic materials or even elastic
solids. They are typically characterized using their zero-shear-
rate or high-shear-rate viscosity obtained from shear-rate ramp
measurements.29,30 For instance, Bouillant et al.29 and Yada
et al.30 conducted spreading experiments with low concentra-
tions of PEO solutions where the zero-shear-rate viscosity varied
between 10 mPa s and 10 Pa s. Consequently, their early-time
spreading behavior was found to mirror that of Newtonian
liquids such as water. As a result, their spreading character-
istics were described similarly using liquid inertia or rate-
dependent viscosity (zero shear or high shear) since their elastic

(or shear) modulus, often on the order of a few pascals, is not
dominant. Consequently, the role of a non-trivial, finite elastic
modulus in this transient dynamics remains elusive. In this
work, we probe the spreading of elastic drops/spheres with
Young’s modulus varying between 0.1 kPa and 400 kPa on glass
substrates.

The choice of the Young’s modulus range is driven by the
following factors. First, our previous work on the static
morphologies of elastic drops/spheres indicated that such
materials exhibit significant morphological changes in the
aforementioned Young’s modulus range.11 When the material’s
Young’s modulus is on the order of tens of pascals or lower,
they exhibit complete wetting configurations on substrates like
glass, similar to a Newtonian liquid like DI water or weakly
elastic polymeric liquids such as PEO.33 Furthermore, with
increasing Young’s modulus, the elastic drops bead up like
glass spheres and beyond 500 kPa, they exhibit no discernible
contact radius change.11 Second, for optimal print efficiency in
many 3D printing applications using biomaterial inks, it is
desired that the material is neither too elastic nor too viscous.34

Hence, our choice of PAAm Young’s modulus perfectly fits that
requirement.

2 Materials and methods
2.1 Fabrication of elastic drops

To enable broad control of Young’s modulus E, we prepared
1 mm radius polyacrylamide (PAAm) drops/spheres, which
behave as polymeric liquid drops at low polymer concentra-
tions, exhibit intermediate morphologies at moderate concen-
trations, and behave as elastic spheres mimicking rigid beads
at high concentrations.11 Briefly, the elastic drops were pro-
duced using an in-house recipe consisting of acrylamide
(monomer), N,N0-methylene-bis-acrylamide (BIS) (crosslinker),
and 2,4,6-tri-methyl benzoyldiphenylphosphine oxide (TPO)
(initiator) (Fig. 2). The Young’s modulus of the polyacrylamide
drops was varied between 0.16 kPa and 366 kPa by varying the
monomer weight percentage from 6.5 to 30, whereas the
necessary spherical shapes of the drops were attained by
suspending them in n-octane and silicone oil utilizing their
density gradient (Fig. 2). Further details of the fabrication

Fig. 1 Schematic showing the different possible contact/wetting morphologies upon varying the elasticity of the top (Young’s modulus, E1) and bottom
(Young’s modulus, E2) pair. Representative E1 and E2 values are shown.
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process can be found in our previous works.11,15,35 As our
working substrates, we used microscope glass slides cleaned
using acetone, IPA, and DI water before use.

2.2 Rheology measurements

The elastic properties of the PAAm were characterized using a
rheometer. For rheology measurements, each PAAm formula-
tion was polymerized in a Petri dish with a thickness of 2 mm.
The shear storage (G0) and loss (G00) moduli of the materials
were measured by performing a frequency sweep test on a
dynamic shear rheometer (AR 2000, TA Instruments and
Kinexus Rotational Rheometer, Malvern Instruments) from
0.01 to 100 Hz at 1% strain and a normal force of 1 N. All
measurements were performed at 25 1C using a 25 mm

diameter plate as the test adapter. The measurements were
taken after waiting 10 min for the polymer to stabilize. From
the rheology measurements, it is evident that for PAAm with 6.5
wt% monomer, both G0 and G00 plateau to constant values at
low frequency, where G0 c G00, indicating solid-like behavior
(Fig. 3a). However, at high frequency, we observed that
G00 becomes equal to G0 and often exceeds it, indicating a
transition to liquid-like behavior. However, for the stiffest PAAm,
i.e., with 30 wt% monomer, we observed that G0 c G00 across the
entire frequency range (Fig. 3b). Note that due to limitations of
the rheometer, the shear modulus at higher frequencies cannot
be probed. Furthermore, note that additional rheology measure-
ments, i.e., shear strain amplitude measurements, are included
in the SI (see Fig. S1).

Constitutive spring–dashpot models are often used to mimic
the response of viscoelastic solids and liquids, where the spring
represents an elastic solid with modulus G0 (or E0) and the
dashpot represents a Newtonian fluid with viscosity m0 (ref. 36)
(Fig. 4a). The most common ones are the Maxwell model and the
Kelvin–Voigt model (Fig. 4a). However, most real soft materials
exhibit mechanical responses that can be best described using a
combination of these two models.36 The simplest combinations
are called the standard linear models.36–38 For instance, coupling
a Maxwell element in parallel with another dashpot provides the
well-known Oldroyd-B model, used extensively to model viscoe-
lastic liquids39 (Fig. 4a). Variations of the Oldroyd-B model, for

Fig. 2 Schematic showing the different steps of the preparation proce-
dure of polyacrylamide drops/spheres. AAm: acrylamide, TPO: 2,4,6-tri-
methyl benzoyldiphenylphosphine oxide, and Bis: N,N0-methylene-bis-
acrylamide.

Fig. 3 Variation of shear storage modulus G0, shear loss modulus G00, and loss tangent tan d with frequency f for (a) PAAm with 6.5 wt% monomer and (b)
PAAm with 30 wt% monomer. Variation of absolute shear modulus jGj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G02 þ G002
p

with frequency f for (c) PAAm with 6.5 wt% monomer and (d) PAAm
with 30 wt% monomer. The solid lines represent the fitting equation G0 + (GN � G0)e�1/ft, where G0 and GN represent the static shear modulus and the
high-frequency shear modulus, respectively. Here, t is the relaxation time scale. Note that in fitting the rheology data, b = GN/G0 values of 200 and 20
are used for PAAm 6.5% and PAAm 30%, respectively.
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instance, the Saramito model, have also been used to model the
flow and dynamical behavior of viscoelastic materials.40,41 These
models inherently decouple the solvent and the polymer viscos-
ities, mS and mP, respectively, using the two dashpots. However,
for the present PAAm composition, the solvent (water) viscosity is
significantly lower than the polymer viscosity, i.e., mS { mP.
Furthermore, due to the relatively higher elasticity of the materi-
als and the dynamical nature of contact, we realized that the
Oldroyd-B model is not suitable for our system. Hence, we used
the standard linear model with a Kelvin–Voigt element in series
with another spring. The rationale behind using this model is
that it accurately maps the dynamics of the moving contact line
as the elastic drops/spheres spread. Due to the finite velocity of
the contact line, it is modeled using a spring with high-frequency
modulus GN and the dashpot represents the viscosity m0,
whereas regions away from the contact line are modeled using
a spring with relaxed modulus G0 (Fig. 4b). Furthermore, the
high-frequency spring is either unrelaxed or in the process of

relaxing, depending on the magnitude of the contact line velocity
(Fig. 4b).

From existing literature,38 the relaxation function of the
standard linear model can be represented as G(t) = G0 +
(GN � G0)e�t/t, where t is the relaxation timescale and t is
the temporal variable. From the G0 and G00 values measured
from rheology, we first calculated the absolute shear modulus

jGj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G02 þ G002
p

. Consequently, we used a fitting equation of
the form G0 + (GN � G0)e�1/ft to obtain the static shear
modulus G0 and the relaxation timescale t (see Table 1). Here,
f = 1/t is the frequency. The elastic modulus of the materials was
consequently calculated using the relation E0 = 2G0(1 + n) = 3G0,
i.e., considering Poisson’s ratio n = 1/2 (ref. 11) (see Table 1).
The viscosity of the PAAm spheres was calculated using the
relation m0 = G0t. Furthermore, note that other rheology
models, such as the Chasset–Thirion relation,9,19 were found
to be inappropriate for fitting the present rheology since in that
model G00 decays following a power-law relation in f. In

Fig. 4 (a) Spring–dashpot representation of constitutive rheology models: Maxwell, Kelvin–Voigt, Oldroyd-B, and standard linear solid. G0 is the elastic
(shear) modulus and m0 is the dashpot viscosity. mS and mP represent the solvent and polymer viscosities. GN represents the high-frequency (or unrelaxed)
modulus. (b) Schematic of the spreading process of PAAm at high and low contact-line velocities vCL, and the corresponding rheology model mapping
the motion. r(t) and t represent the time-dependent spreading radius and the relaxation timescale, respectively.
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addition, due to the intermediate elasticity values of the pre-
pared PAAm, conventional shear rate ramp measurements
performed for non-Newtonian liquids or compression tests
performed for stiff solids cannot be used to characterize these
materials.

For all the PAAm drops, the surface tension of each pre-
polymer solution was measured using the pendant drop tech-
nique on a drop-shape analyzer (DSA30, KRÜSS) under ambient
conditions. To extract the surface tension, KRÜSS ADVANCE
software’s in-built Young-Laplace equation was used (see
Table 1). Each measurement was repeated three times.

2.3 Imaging experiments

For static or equilibrium measurements, the PAAm drops/
spheres were deposited on freshly cleaned glass substrates.
Subsequently, side-view images were recorded under proper
back-lit illumination using a camera (FASTCAM AX-200, Pho-
tron) coupled to a 4� objective lens and an adapter tube
providing a spatial resolution of 4 mm per pixel. Static
contact-angle measurements were performed using the sessile
drop technique using a tangent fit in ImageJ.

For spreading experiments, the spherical drops were held
at the tip of a hydrophobic PTFE-coated stainless steel needle
and gently lowered to make contact with the substrates posi-
tioned underneath on a stage. The lowering speed of the
needle was maintained at a few mm s�1 to ensure minimal
vibration upon contact. As the drop made contact with the
substrate, the growth of the drop–substrate footprint radius,
i.e., the spreading radius, was recorded using a high-speed
camera (FASTCAM S12, Photron) at an acquisition rate of
50 000 frames per second. The camera was equipped with a
10� long working-distance objective lens providing a spatial
resolution of 2 mm per pixel. Due to the field of view restric-
tions imposed by the high magnification lens and the camera
frame rate, the entire drop–substrate footprint radius is not
captured, and we tracked the growth of the spreading radius
on one side, specifically the right contact line. This is parti-
cularly true for the PAAm with 6.5 wt% where the spreading
radius is large. The experimental videography was analyzed
using a custom-built edge detection scheme on Python,
whereby the radial location of the moving contact line was
detected in each frame over the entire duration of the spread-
ing event. Furthermore, using the information of the radial
location, the dynamic contact angle in each frame was mea-
sured using either a tangent fit or a first-order polynomial
fit. Each measurement was repeated 3–5 times to ensure
consistency.

3 Results and discussion
3.1 Static morphology

In Fig. 5, we show the static or equilibrium configurations of
these PAAm spheres/drops with varying Young’s modulus. For
low monomer wt%, i.e., low Young’s modulus, the PAAm wets
the glass substrates in a manner similar to Newtonian liquid
drops such as water (Fig. 5, E0 = 5.7 Pa). Note that the
equilibrium contact angle yE is approximately 201 for this
liquid-like PAAm. With increasing Young’s modulus, they
exhibit intermediate wetting/contact morphologies with
decreasing contact radius and increasing contact angles. For
very stiff PAAm (Fig. 5, E0 = 366 kPa), the static configuration
mimics that of a similarly sized glass sphere with yE E 1641.
From their equilibrium configurations, it is evident that,
despite having similar surface tension values, they follow
different trajectories upon initial deposition to arrive at differ-
ent equilibrium contact radius/angle values. Consequently, we
aim to resolve their spreading characteristics using our
dynamic measurements. Note that the spreading of weakly
elastic, polymeric liquid-like PAAm, i.e., PAAm with 4 wt%
monomer, was reported in our previous work.33 Here, we focus
on the spreading of PAAm having moderate and high Young’s
modulus values.

3.2 Spreading dynamics

In Fig. 6, we show the experimental snapshots of the early
stages of contact of a moderately elastic PAAm (E0 = 0.16 kPa)
and a stiff PAAm (E0 = 366 kPa) on glass substrates. It is evident
that even when the Young’s modulus is moderately high, the
contact dynamics resemble spreading of liquids on partially
wetting substrates, whereas for the stiffer PAAm, the dynamics
remain in a JKR-type contact regime. Further, we observe that
even though the dynamic contact angle for the moderately
elastic PAAm gradually decreases during the course of spread-
ing, for the stiffer one, it consistently remains high. Here, we
will first elaborate on the dynamics of contact in terms of the
dynamic spreading radius r(t) and dynamic contact angle yD

(Fig. 6). In Fig. 7, we show the evolution of the PAAm–substrate
footprint radius, i.e., the spreading radius r and the dynamic
contact angle yD for PAAm 6.5 wt% (E0 = 0.16 kPa) on glass.
From the observed trajectory, the spreading behavior can be
categorized into two distinct regimes separated approximately
at t = 10 ms. For t r 10 ms, the growth of the spreading radius
appears to obey a power-law behavior, r B ta, where the
exponent a needs to be analyzed. For t Z 10 ms, the spreading
transitions to a different regime, which can be termed as
arrested spreading or contact. This transition becomes more
evident upon analyzing the evolution of the dynamic contact
angle yD. For t r 10 ms, we observe a monotonic decrease in
yD, whereas for t Z 10 ms, we observe significant oscillations in
yD. In the following sections, we will elaborate on these two
distinct regimes observed.

3.2.1 Viscous-capillary spreading regime. Since we con-
sider the initial regime to be analogous to the spreading of
liquids, we treat the dynamics in the light of spreading laws

Table 1 Physical properties of the prepared PAAm. E0, r, g, and t are the
elastic modulus, density, surface tension, and relaxation timescale,
respectively

Materials E0 (kPa) r (kg m�3) g (mN m�1) t (ms)

PAAm 6.5% 0.16 1003.3 65.6 12.2 � 1.6
PAAm 30.0% 366.6 1019.4 57.3 5.5 � 0.3

Materials Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 7
:4

7:
34

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ma00896d


Mater. Adv. © 2026 The Author(s). Published by the Royal Society of Chemistry

obeyed by liquids, either Newtonian or viscoelastic. From
existing literature,16–18,21 it is well understood that for the
spreading of low-viscosity Newtonian liquids such as water,
capillary-driven contact-line motion is resisted by liquid inertia,
yielding the inertial-capillary scaling law for the spreading
radius, r B (gR/r)1/4t1/2 (see the SI for a detailed derivation).
A similar power-law spreading is also observed for weakly
elastic, shear-thinning liquids, i.e., the viscous-capillary scaling

law r B (gR/m)1/2t1/2, where liquid viscosity is the dominant
dissipation mechanism33,42 (see the SI for a detailed deriva-
tion). Here, m is the high-shear-rate viscosity, typically obtained
from shear rate ramp measurements.33 We compare both these
power-law scalings with the observed spreading of the moder-
ately elastic PAAm in regime I. However, although rheology
measurements of high-shear-rate viscosity are straightforward

Fig. 5 Static configuration of (a) 1 mm radius water and PAAm with 4 wt% monomer drops on glass substrates, (b) 1 mm radius PAAm with 6.5 wt%
monomer and PAAm with 10 wt% monomer drops on glass substrate, and (c) 1 mm radius PAAm with 30 wt% monomer spheres and glass beads on glass
substrates. The elasticity E0 values are shown. Scale bars represent 1 mm. Certain sub-figures are reproduced from authors’ previous works with
permission from the Royal Society of Chemistry11 and the American Chemical Society, Copyright 2024.15,33

Fig. 6 High-speed imaging snapshots of the spreading of PAAm 6.5%
drops (E0 = 0.16 kPa, left column) and PAAm 30% spheres (E0 = 366 kPa,
right column) on glass substrates. r(t) and yD are the spreading radius and
dynamic contact angle, respectively. Scale bars represent 250 mm.

Fig. 7 Evolution of spreading radius r and dynamic contact angle yD for
the spreading of 1 mm radius PAAm 6.5% drops (E0 = 0.16 kPa) on glass
substrates. The error bars in r represent the standard deviation of multiple
experimental runs. The error bars in yD are omitted for clarity. The dashed
line approximately demarcates regime I and regime II.
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for weakly elastic, polymeric liquids, the same cannot be said
for the PAAm 6.5%. With a Young’s modulus of 0.16 kPa, i.e., 3
orders of magnitude higher than conventional polymeric
liquids, attempts to perform such measurements yielded anom-
alous flow curves and the samples often ruptured as well. Thus,
we rely on our rheology fitting (Fig. 3) to extract the character-
istic shear viscosity, i.e., m0 = G0t = 0.72 Pa s. Note that since GN

is unrelaxed at high contact-line velocity (Fig. 4b), the system
essentially behaves as a Maxwell fluid (m, G0) here. Further-
more, since the flow during regime I of the spreading is
primarily extensional, we consider the extensional viscosity,
m = 6m0 E 4 Pa s.43 Consequently, we use this value for
comparison with the viscous capillary scaling law. Note that a
Trouton ratio (m/m0) of 6 is a reasonable assumption, although
higher ratios are also observed, specifically during necking of
viscoelastic filaments at high strain rates.44,45

In Fig. 8, we show the comparison of the observed spreading
behavior in regime I with both the inertial-capillary and
viscous-capillary scaling laws. For comparison, we also show
the spreading of 1 mm radius DI water drops on glass sub-
strates. From Fig. 8, it is evident that for moderately elastic
PAAm, the spreading radius obey the scaling law r B (gR/m)1/2t1/2,
i.e., a regime where liquid capillarity is resisted primarily by
PAAm viscosity. Thus, the behavior is similar to the spreading
of a viscous liquid (Newtonian or shear-thinning). It may seem
counterintuitive that viscosity plays a dominant role in such an
elastic system, especially when the contact-line velocity is
relatively high. Consequently, we analyze the relaxation time-
scale of the material. For PAAm 6.5%, t = 12 ms, which is
approximately the same as the spreading timescale in regime I,
t0 E 10–20 ms, around which the transition to regime II is
observed. Thus, the characteristic Deborah number during
regime I of spreading is De = t/t0 E 0.6–1.2 E 1, and hence

the material response should ideally be viscoelastic rather than
purely viscous. To interpret the observed discrepancy, we high-
light that, phenomenologically, the polymer chains are unre-
laxed in this regime. Thus, they can neither resist deformation
nor store energy. From a constitutive model point of view, the
high-frequency spring GN is thus unrelaxed, and the system
behaves as a Maxwell fluid where the viscous dashpot only
contributes to the dissipation. At the same time, we note that
for a purely viscous response to be effective, the spring with
modulus G0 should not contribute to any form of dissipation
and can only store a small fraction of the capillary energy.
Furthermore, note that the characteristic viscous-capillary time-
scale tv = mR/g E 60 ms E 4t0, reinforcing our conclusions that
this regime is viscous-dominated. Alternatively, one can also
look at the characteristic Ohnesorge number of the system,
Oh ¼ m=

ffiffiffiffiffiffiffiffiffi
rgR
p

¼ 15:6� 1.
3.2.2 Elasto-capillary regime. From Fig. 7, it is evident that

the spreading transitions to regime II after t Z 10 ms, where
the rate of contact-line motion slows down significantly, accom-
panied by strong oscillations in the dynamic contact angle. To
compare the different spreading rates, we highlight that the
average contact-line velocity in regime I is vCL = dr/dt = 40 mm s�1,
which subsequently drops to vCL = dr/dt = 0.33 mm s�1 in regime
II. The prominent decay in the spreading rate can be partly due to
the decay in the capillary force driving the CL motion. However,
since t 4 t or conversely De o 1, the material response should
ideally be in a transition phase. However, the observations of the
oscillations in the dynamic contact angles indicate that a viscoe-
lastic material response is dominant here. To elaborate on this, we
recall that for fast capillary-inertial spreading of low-viscosity
liquids such as water, contact angle oscillations are observed

during regime I with a typical timescale dtin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rR3=g

p
� 4 ms.

Here, we do not observe such oscillations in regime I due to
viscous damping, reinforcing our previous assertion of a purely
viscous regime. However, in regime II, i.e., for t Z 10 ms, we
observe oscillations with a typical duration of 500 ms. Additionally,
the time periods of these oscillations are non-uniform and much

greater than
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rR3=g

p
. We thus note that as polymers accumulate

close to the moving contact line, they can be treated as a system of
effective springs undergoing compression and relaxation, causing
the observed oscillations in dynamic contact angles. Conse-
quently, the high-frequency spring is relaxing and can resist
deformation. Furthermore, GN can assume any value between
G0 and bG0. Phenomenologically, the polymer accumulation close
to the contact line is manifested by a distinct foot-like region that
retards motion. The foot-like region grows in size until equili-
brium is reached. Furthermore, the onset of the foot-like region
highlights that the spreading loses its extensional character and
shear effects need to be accounted for.

To model the effect of elasticity and interpret the evolution
of contact in this regime, we deviate from the conventional
fluid mechanics approach. Thus, we first formulate the stress–
strain relation relevant to this system: s = G0e + m0(de/dt0),
where sB gR/r02 is the Laplace pressure driving the contact line
motion, and e is the strain. It is important to note that since

Fig. 8 Evolution of spreading radius r for 1 mm radius PAAm 6.5% (E0 =
0.16 kPa) drops (red squares) and DI water drops (blue circles) on glass
substrates. The different scaling laws are shown for clarity. The error bars
represent the standard deviation of multiple experimental runs. Note that
the deviation of our experimental data from the fitted scaling law aids us in
identifying the duration of the initial regime.
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both the relaxed spring G0 and the high-frequency spring GN,
contribute in this regime, the effective viscosity of the dashpot
can be expressed as m0 = (GN � G0)t = b(G0 � 1)t E bG0t since
b c 1. Furthermore, note that, for the ease of analysis, we
consider a variable change: r0 = r � r0 and t0 = t � t0, where r0

and t0 are the spreading radius and time at the end of regime I
(see inset of Fig. 9). Thus, the strain can be expressed as e B r0/r0.
Consequently, the force balance per unit area of the CL can be
expressed as

gR
r02
� G0

r0

r0
þ bG0t

r0

dr0

dt 0

� �
: (1)

Eqn (1) is an approximate form of Bernoulli differential equation
whose solution, with the initial condition r0 = 0 at t0 = 0, can be
expressed as

r0 t 0ð Þ � gr0R
bG0

� �1=3

1� e
�3t

0
bt

� �1=3
; (2)

which can be expressed as

rðtÞ � r0 �
gr0R
bG0

� �1=3

1� e
�3 t�t0ð Þ

bt

� �1=3
: (3)

Note that in solving eqn (3), we use our experimentally
observed r0 and t0 as inputs. In Fig. 9, we show the comparison
of our theoretical model with experimental data. A reasonably
good agreement is observed for b = 50. Note that this b value
deviates from that obtained from our rheology fitting, i.e.,
b = 200. Furthermore, we observe that using b = 200 to fit our
experiments severely underestimates the data (see Fig. S3, SI).
The discrepancy is likely due to the different dynamics involved
in shear rheology and spreading. Furthermore, existing

literature has typically used b B 10–100 to model dynamic
contact-line problems,46 and thus b = 50 is a reasonable
assumption. Nevertheless, we highlight that our solution is
extremely sensitive to b since it effectively prevents the expo-
nential term in eqn (3) to go out of bounds. This also validates
our assumption of using the standard linear model to represent
the moving contact line, since for any other model, e.g.,
Maxwell (m, GN) or Kelvin–Voigt (m, G0), the b factor does not
appear within the exponential term of the final solution.
Furthermore, we point out that the spreading radius continues
to grow slowly beyond what is shown in Fig. 7 and 9, until
equilibrium is reached. However, due to the limited field of
view at the chosen frame rate and magnification, the entire
process cannot be captured.

3.3 Dynamics of spreading for highly elastic drops

For the much stiffer PAAm (E0 = 366 kPa) sphere, we observe
that the contact evolution is significantly slower with a much
smaller final radius (Fig. 10). Qualitatively, the inherent char-
acteristics remain the same: an initial regime obeying a power-
law growth in the spreading radius, i.e., r B t1/2, and a final
regime with an exponential decay with a transition point
around 7–8 ms (Fig. 10a and b). In other words, t0 = 7–8 ms,
yielding the characteristic Deborah number of regime I,
De = t/t0 = 1.2–1.4 E 1. Thus, similar to the softer PAAm, these
conditions also signify a transition to regime II. Furthermore,
note that, in comparing our experimental data in regime II with
our model (eqn (3)), a b value of 10 was used, which is on par
with the value obtained from rheology. Compared to the
spreading of moderately elastic PAAm with E0 = 0.16 kPa, here
the average contact-line velocity during regime I is vCL E 8 mm s�1,
which decays to approximately 0.1 mm s�1 during regime II.
Additionally, we observe that there are significant phenomenolo-
gical differences between the two cases. Notably, we observe uni-
form oscillations of the spreading radius in regime II, which were
previously not observed. Repeated measurements confirmed that
these oscillations are not artificially induced by image processing
and are an inherent part of the dynamics. Thus, despite reasonable
agreement between our theoretical model (eqn (3)) and the experi-
mental data (Fig. 10b), we highlight that our governing equation
does not contain a second-order derivative term to accurately
model such oscillations in r.47

Phenomenologically, the observed oscillations are likely due
to the high elasticity of the PAAm, rendering significant resis-
tance to the moving contact line. Note that, here also, the
deformation foot exists in regime II of spreading. However, due
to the large elasticity, the foot dimensions are very small and
are only evident during higher-magnification imaging. Addi-
tionally, oscillations of the dynamic contact angle yD are also
observed, which were previously observed during the spreading
of moderately elastic PAAm as well (Fig. 10c). However, com-
pared to the oscillations observed for the spreading of PAAm
6.5 wt%, here we observe that the oscillations are more uni-
form. Both the oscillations in dynamic contact radius and
dynamic contact angle have a uniform time period dt E
30 ms (Fig. 10b and c). Considering capillarity and elasticity

Fig. 9 Evolution of the spreading radius r for 1 mm radius PAAm 6.5%
drops (E0 = 0.16 kPa) on glass substrates in regime II. The symbols
represent experimental data, whereas the solid line represents the theo-
retical solution (eqn (3)). Here, the origin of the x-axis is at t = 10 ms. The
inset shows the schematic of the spreading process, highlighting the
different variables r, r0 and the radius at the end of regime I, r0. Error bars
are omitted for clarity.
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effects, the characteristic timescale of oscillations can be
expressed as g/G0vCL E 60 ms, which is in reasonable agree-
ment with our experimental data. Finally, we highlight that the
significant error bars in Fig. 10a are due to the use of side-view
imaging and a small contact radius involved at the early
moments of contact. This can be circumvented by the use of
bottom-view imaging.18,20

Combining eqn (3) with our experimental results has inter-
esting implications. As t - N and b - 1, r - (gr0R/G0)1/3 + r0.
This limit can provide us with predictions of the equilibrium
contact radius. For the spreading of PAAm 6.5 wt% (E0 = 0.16 kPa),
r0 E 0.4R (Fig. 7) and thus r - 0.7(gR2/G0)1/3 + 0.4R. However, for
the spreading of PAAm 30 wt% (E0 = 366 kPa), r0 E 0.06R (Fig. 10)
and thus the second term can be neglected. Consequently, we have
r - 0.4(gR2/G0)1/3 B (gR2/G0)1/3, i.e., it recovers the JKR theory4 at
equilibrium. Note that the small deviation from the JKR theory for
the moderately elastic PAAm is reasonable since the strain involved
at equilibrium is beyond the Hookean limit. Finally, we briefly
comment on any possible dehydration of the polymer network,
which can affect our experimental findings. Note that the PAAm
spheres contain significant quantities of water. However, the
characteristic diffusion coefficient, D B 10�9 m s�1, renders the
diffusion timescale to be around 1000 s.13 Since the characteristic
timescale of early regimes of spreading is around 1 s, dehydration
of the PAAm does not interfere with our experimental observations.

Here, we highlight the significance of these findings for 3D
printing applications.34,48,49 In particular, during the deposi-
tion of the initial layer, the viscoelastic properties of the ink or
resin are critical. Traditional materials research tends to
emphasize ink rheology,50 with oscillatory shear rheology being
a common tool. However, this method does not accurately
replicate the dynamic conditions of 3D printing. Extensional
rheology techniques, such as Capillary Breakup Extensional
Rheology (CaBER), also have limitations, notably the absence

of moving contact lines.51,52 Dynamic wetting studies, by con-
trast, offer a promising approach to simulate the interplay
between viscoelasticity and contact-line motion.33,41,53 Notably,
most commercial 3D printers, such as the Formlabs Form 4 and
Uniz Slash Plus UDP, operate at speeds ranging from 0.01 to
100 mm s�1, which aligns well with our experimental
conditions.54,55 Since both material viscoelasticity and printing
speed jointly influence final print resolution, our work provides
valuable insights for optimizing these parameters to achieve
high-resolution prints.

4 Conclusions

In conclusion, using experiments and theory, we show the
short-time spreading behavior of (visco)elastic drops across a
wide range of Young’s modulus, where both liquid-like wetting
and solid-bead-like contact configurations are possible. For
moderate to high Young’s modulus values, we observe that
the short-time spreading behavior is distinctly different from
that observed for Newtonian liquid drops, such as water, or
non-Newtonian, shear-thinning liquids, such as PEO and Car-
bopol. In particular, the dynamics exhibit two distinct regimes:
an early viscous regime followed by a viscoelastic regime, with a
crossover time dictated by the condition De E 1. While the
former shows a power-law evolution in the spreading radius,
the latter exhibits an exponential decay. We interpret the
former regime as a competition between the relevant capillary
and viscous forces. The latter regime is interpreted using the
standard linear model of viscoelasticity. Furthermore, our
theoretical formulation leads to the JKR theory in the equili-
brium limit and can, in principle, be used to construct a
dynamic JKR theory. Additionally, we highlight how the rheol-
ogy of the polymers validates our assumption of the standard

Fig. 10 (a) Evolution of spreading radius r and dynamic contact angle yD for 1 mm radius PAAm 30% drops (E0 = 366 kPa) on glass substrates. The r B t1/2

scaling law is shown for clarity. The error bars represent the standard deviation of multiple experimental runs. (b) Evolution of spreading radius r in regime
II. The symbols represent experimental data, whereas the solid line represents the theoretical solution (eqn (3)). Here, the origin of the x-axis is at
t = 7.5 ms. Error bars are omitted for clarity. (c) Evolution of the dynamic contact angle yD in regime II. dt represents the time period of oscillations. Here,
the origin of the x-axis is at t = 7.5 ms.
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linear model of viscoelasticity. Specifically, we observe that this
model is better suited to explain dynamical polymeric systems
like the present ones, compared to other constitutive models
such as Kelvin–Voigt, Maxwell, Oldroyd-B, or Saramito. A
similar model was used by de Gennes to describe the dynamics
of crack propagation in soft adhesives, also referred to as de
Gennes’ trumpet model.37

The findings presented here can be used to understand cell
spreading, which involves similar elastic properties.56 Further-
more, they can provide a guiding principle for material selec-
tion in 3D printing using hydrogels and biomaterial inks,57,58

where viscoelasticity plays a key role in indicating the final
achievable print resolution. Combined with the non-trivial
contact velocity at which such printing processes typically
operate, the present short-time spreading study offers routes
to control print speeds for viscoelastic inks.
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