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Abstract

Triple-negative breast cancer (TNBC) stands out as one of the most aggressive and therapeutically
challenging subtypes of breast cancer, mainly due to the absence of estrogen, progesterone, and
HER2 receptors. This review aims to consolidate current knowledge into the molecular and
metabolic heterogeneity of TNBC, focusing on critical mutations in BRCA1/2 and TP53, which
are pivotal in driving tumor progression and contributing to treatment resistance. The manuscript
highlights the transformative potential of recent advancements in nanoscale strategies for diagnosis
and therapy in the management of TNBC. Notably, multifunctional nanoparticles have shown
promise in overcoming the limitations of conventional chemotherapy by facilitating targeted drug
delivery, enabling image-guided therapy, allowing for controlled drug release, and minimizing
systemic toxicity. The use of nanotechnology in precision oncology presents innovative strategies
for the early detection of TNBC, effective treatment measures, and the personalization of
therapeutic regimens. This review bridges the gap between molecular understanding and
technological advancement, offering a comprehensive roadmap for the future clinical application
of theragnostic approaches in the battle against TNBC. By fostering the understanding of
pathophysiology of TNBC and advancing treatment methodologies, we aim to contribute to the

state of the art knowledge towards improving therapeutic efficacy and better patient outcomes.

Keywords: Triple-negative breast cancer; BRCA1/2 and TP53 mutations; Theragnostics;

Targeted drug delivery; Tumor microenvironment; Nanoparticles.
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1. Introduction

Breast cancer is the second leading cause of cancer-related mortality among women worldwide
[1]. Emerging evidence suggests that genetic and environmental factors, using hormone-
mimicking chemicals in cosmetic products (notably parabens and phthalates), obesity,
uncontrolled junk food intake, and carcinogen exposure can synergistically drive to breast cancer
[2] [3] [4] [5]. Breast cancer arises in milk ducts (ductal carcinoma), milk-producing lobules
(lobular carcinoma), and other supporting stromal or epithelial cells. Its progression is a
multifactorial and multistep process involving intricate interactions among cellular components
and signaling cascades, where, most importantly, molecular markers, such as HER2, p53,
BRCA1/2, Ki-67, Cyclin D1, and CXCR4 play crucial regulatory roles, thereby complicating its
prevention and therapeutic management worldwide [6].

Triple-negative breast cancer (TNBC) represents one of the most aggressive subtypes of breast
cancer, primarily due to its distinct biological characteristics, extensive genetic heterogeneity, and
capacity to modulate the surrounding tumor microenvironment. Unlike other breast cancer types,
TNBC is devoid of estrogen, progesterone, and HER2 receptors, rendering it unresponsive to
conventional hormone or HER2-targeted therapies [7]. Although TNBC has long been recognized
for its aggressiveness, recent research has elucidated the specific molecular and cellular
mechanisms underlying its malignancy. These insights are now paving the way for the
development of novel and more precisely targeted therapeutic strategies [8].

A major factor contributing to the high mortality of breast cancer, particularly in aggressive
subtypes like TNBC, is its ability to metastasize. Metastasis is the process by which cancer cells
spread from the primary tumor site to distant organs, forming secondary tumors [9]. This
phenomenon not only complicates treatment but also significantly worsens prognosis. The
transition from a localized disease to a systemic one marks a critical turning point in cancer
progression and is responsible for the majority of breast cancer-related deaths. Understanding the
underlying mechanisms of metastasis is therefore vital for developing more effective therapeutic
interventions aimed at limiting cancer spread and improving patient survival. The process of
metastasis begins with the formation of a primary tumor, where abnormal cells proliferate within

the breast tissue (Figure 1).
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193 Figure 1. Metastatic spread of tumors. It begins with the formation of a primary tumor from malignant cell
194  growth. Tumor cells invade local tissues, enter the bloodstream as circulating tumor cells, and migrate to
195  distant organs. After extravasation, they create a supportive pre-metastatic niche, which leads to micro-
196  metastases that can develop into full-blown metastatic tumors. Various molecular and environmental factors
197  regulate the process (Authors’ own artwork).

(cc)

198

199  The tumor cells eventually invade the surrounding extracellular matrix, breaching the basement
200 membrane and entering nearby vasculature in a step known as vascular invasion. These cancerous
201  cells are known as tumor cells in circulation once they are in the bloodstream. Through the
202  bloodstream, they are able to withstand physical stress and immunological surveillance and
203  eventually undergo extravasation, exiting the blood vessels at distant sites. Following

204  extravasation, tumor cells establish themselves in a favorable microenvironment known as the pre-
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metastatic niche [10]. This niche is shaped by interactions between malignant cells, immune cells,
stromal components, and extracellular matrix molecules, facilitating the survival and colonization
of the disseminated cells [10]. The next stage involves the formation of micro-metastases, small
clusters of tumor cells that begin to grow in the distant tissue. Over time, these micro-metastases
develop into overt metastatic tumors, completing the cascade of metastatic progression. This
colonization at distant sites marks a paramount advance with an often-fatal stage of breast
carcinoma. Understanding this cascade is essential for identifying therapeutic targets and
developing strategies to intercept the metastatic process, ultimately improving survival outcomes
in breast cancer patients [11].

The absence of estrogen, progesterone receptors, and HER2 receptors plays a critical role in the
proliferation and survival of breast cancer cells that are lacking in TNBC. The major cause
underlying most TNBCs is the dysfunction or mutation of the BRCA1 gene, which is strongly
associated with the basal-like molecular subtype. A significant proportion of both hereditary and
sporadic TNBC cases exhibit BRCA1 abnormalities that disrupt deoxyribonucleic acid (DNA)
repair mechanisms, leading to genomic instability and aggressive tumor behavior. These cancers
typically express basal cytokeratin (CKS5, CK14, CK17), P-cadherin, and Epidermal Growth Factor
Receptor (EGFR), reflecting their origin from basal/myoepithelial cells of the mammary gland,
which modulate the tumor microenvironment. Consequently, BRCA1 dysfunction not only
contributes to tumor initiation and rapid progression but also explains the poor response of TNBCs
to hormone or HER2-targeted therapies, emphasizing the need for BRCA1-based diagnostic and
therapeutic strategies [12].

Approximately 15% to 20% of all breast cancers are TNBC [13]. Following their initial diagnosis,
over half of the patients undergo a recurrence within 3 to 5 years. Therapy for women bearing
TNBC is still an enormous therapeutic challenge, marked by aggressive, accelerated tumor growth,
elevated metastatic potential, and low survival rates. Conventional chemotherapy regimens, such
as taxanes or anthracyclines, have the best response. These drugs freeze the mitotic spindle,
causing cell cycle arrest at the G2/M phase, intercalating into DNA, inhibiting topoisomerase II,
and producing reactive oxygen species (ROS), leading to extensive DNA damage and ultimately
resulting in apoptosis [14],[15]. Additionally, this kind of drugs acts as a double agent; short-term
taxanes commonly induce peripheral neuropathy, myelosuppression, and hypersensitivity

reactions, while anthracyclines lead to dose-dependent cardiotoxicity, myelosuppression, and
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236  mucositis due to ROS-mediated cellular injury. These toxic effects significantly limit therapeutic
237  dosing and long-term use [16], [17], [18].

238  Inrecent decades, nanotechnology has gained popularity in medicine, namely in developing safer
239  and more effective diagnostic tools, and in site-specific tumor targeting by means of surface-
240  modified nanoparticles (NPs). NPs offer benefits in cancer therapeutics, such as improved
241  pharmacokinetics, targeted cytotoxicity, decreased adverse reactions, and resistance to drugs[19]
242 [20]. NPs are tiny particles, whose sizes range from 1 to 1000 nm. They have unique
243 characteristics, such as increased systemic exposure, enhanced tumor cell uptake, tissue-selective
244  targeting, metastasis-suppressing effects, and the capacity to evade multi-drug resistance.
245  Nanotechnology offers a viable technique for overcoming many disadvantages of conventional
246  medicines, including non-specific biodistribution and systemic adverse effects [21]. Targeted
247  delivery with NPs can extend drug circulation, boost targeted payload deposition, enable ligand-
248  directed transport and stimuli-responsive release Kkinetics, greatly improve anticancer
249  immunological activity, and change the immune-evasive niche [22]. Nanoparticles (NPs) are
250 effective targeted drug and gene delivery systems because their nanoscale size, engineerable
251  surface properties, and stimuli-responsive behavior enable precise control over biodistribution and

252 cellular uptake[23]. Size-dependent accumulation through the enhanced permeability and retention

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

253 (EPR) effect allows passive tumor targeting, while surface functionalization with ligands such as

254 antibodies, peptides, or folic acid promotes receptor-mediated endocytosis. NPs protect drugs and

Open Access Article. Published on 10 January 2026. Downloaded on 1/11/2026 8:17:24 AM.

255  nucleic acids from premature degradation, enhance intracellular trafficking and endosomal escape,

(cc)

256 and enable site-specific release in response to tumor-specific cues (e.g., acidic pH, redox
257  imbalance). Additionally, nanoparticle-mediated delivery can bypass efflux pumps, helping to
258  overcome multidrug resistance and improve therapeutic efficacy[22]. A diversity of NPs made of
259  different materials, such as phospholipids, metals, or amphiphilic block copolymers combining
260  hydrophobic poly(lactic-co-glycolic acid)(PLGA) with hydrophilic polyethylene glycol (PEG),
261  show promising TNBC therapy by enhancing drug delivery and radiosensitization. Studies in
262  MDA-MB-231 cells and murine xenografts demonstrate selective cytotoxicity, controlled release,
263  and tumor targeting. These NPs exhibit high biocompatibility, prolonged circulation, and minimal
264  systemic toxicity, making them promising candidates for safe and effective TNBC treatment [24].
265  This review elucidates TNBC’s genetic complexity, molecular subtypes, and treatment challenges

266  while emphasizing emerging NPs for site specific targeting of chemotherapeutics, as well as
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theragnostic approaches for precise diagnosis and therapy with the ultimate aim to improve patient

outcomes.

2. TNBC Mutations affecting Metabolic Pathways

The onset and advancement of malignancies, including TNBC, are influenced by mutations. The
unchecked expansion of cancer cells can result from mutations in genes related to cell division,
growth, and repair. The aggressiveness of the disease can be influenced by the alteration of
multiple genes. Figure 2 shows a detailed overview of metabolic adaptations in primary tumor

cells.
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Figure 2. Metabolic reprogramming linking glycolysis and mitochondrial metabolism in cancer cells. The
schematic illustrates enhanced glucose uptake by glucose transporter (GLUT) and its conversion through
glycolysis, generating intermediates that feed anabolic pathways, including the pentose phosphate pathway
(PPP), hexosamine biosynthetic pathway, and serine-glycine—one-carbon metabolism. Glucose is
phosphorylated to glucose-6-phosphate (Glucose-6P), converted to fructose-6-phosphate (Fructose-6P) and
fructose-1,6-bisphosphate (Fructose-1,6-biP), yielding 3-phosphoglycerate (3-PG) and ultimately pyruvate.
Pyruvate enters mitochondria via the (mitochondrial pyruvate carrier (MPC) and is converted by pyruvate
dehydrogenase (PDH) to acetyl-CoA, fueling the tricarboxylic acid cycle (TCA). Key intermediates include
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285 citrate, isocitrate, a-ketoglutarate, succinyl-CoA, succinate, fumarate, malate, and oxaloacetate, coupled to
286  redox cycling of nicotinamide adenine dinucleotide (NAD*/NADH) and flavin adenine dinucleotide
287  (FAD/FADH,;), and adenosine triphosphate/diphosphate (ATP/ADP) generation. Succinate dehydrogenase
288  complex subunit C (SDHC) links the TCA cycle and electron transport. Citrate export supports lipid
289  Dbiosynthesis via ATP-citrate lyase (ACLY) and acetyl-CoA carboxylase (ACC), producing sterols and fatty
290  acids, while amino acid metabolism (glutamine, glutamate, proline, aspartate, arginine) replenishes TCA
291  intermediates. Excess lactate is exported by monocarboxylate transporter (MCT). Signaling through mTOR
292  (mechanistic target of rapamycin) integrates nutrient availability with growth and biosynthesis (Authors’
293  own art work).

294

295 A significant gene linked to TNBC i1s BRCA1/2. The BRCA1 and BRCA2 gene products play a
296  critical role in initiating and regulating the transcriptional processes involved in the DNA damage
297  response, cell cycle regulation, and the control of cell growth and differentiation. The BRCA1 and
298  BRCA2 proteins are crucial for repairing DNA double-strand breaks through the homologous
299  recombination repair (HRR) pathway; hence, they maintain genomic integrity. Breast tumors
300 associated with BRCA1 mutations often display basal-like molecular characteristics,
301  corresponding to the BL1 (Basal-Like 1) subtype. Owing to their unique molecular characteristics,
302  these tumors frequently exhibit increased susceptibility to neoadjuvant chemotherapy protocols,
303  especially those incorporating anthracyclines and taxanes [25].

304  Apart from BRCA1/2, other gene mutations have also been studied for TNBC. TNBC commonly

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

305  has somatic mutations in TP53, a critical component that stops cells from executing the DNA

306  repair mechanism. In TNBC, there are limited frequently observed mutations, such as changes in

Open Access Article. Published on 10 January 2026. Downloaded on 1/11/2026 8:17:24 AM.

307  TP53 and PI3KCA, alongside a substantial array of unique, infrequent mutations. The combined

(cc)

308  impact of genetic changes causes TNBC development [26]. TNBC possesses a distinctive genetic
309  profile, marked by recurrent TP53 mutations (about 80% of cases) and a comparatively low
310  occurrence of PIK3CA mutations (around 9%) [27]. Mutations in the TP53 gene may cause
311  genomic instability and a reduction in heterozygosity. The level of p53 protein expression is
312  influenced by the specific type of mutation present. Many studies have explored how TP53
313  mutations affect the prognosis of TNBC. Nonetheless, the variability in p53 expression has made
314 it difficult to determine the definitive role of TP53 status as a reliable prognostic marker. Since
315  TP53 is commonly altered in most TNBC cases, it represents a promising target for the design of
316 anticancer treatments. Recently, chemicals have been developed that target mutant TP53,
317  previously considered non-druggable [28]. The anti-apoptotic protein BCL2 is significantly

318  overexpressed in numerous cancers relative to normal cells, positioning it as a valuable target for

11
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cancer treatment strategies. Approximately 41% of TNBCs and 19% of basal-like tumors exhibit
increased expression of BCL2 [29]. Previous studies indicate that BCL2 could function as a
successful predictive biomarker, particularly in HR-positive breast cancer [30]. Patients with
BCL2-positive breast cancer have a better prognosis in terms of overall survival and relapse-free
survival [31]. Positive BCL2 expression correlates with improved prognosis in both metastatic and
early-stage breast cancer patients undergoing hormone therapy or chemotherapy.

The underlying cause of the variations in outcome predictions is still uncertain; however, since
BCL2 expression is influenced by estrogen receptor status, its differing roles seem to be

determined by the specific molecular subtype of breast cancer [30].

2.1. Metabolic Pathways in TNBC

The need for energy and biosynthesis of cancer cells is met by enhancing the metabolism of
glucose and glutamine [32]. TNBC follows this trend, displaying increased glucose uptake and a
gene expression profile characteristic of enhanced glycolysis [33]. Additionally, TNBCs exhibit
greater sensitivity to glutamine deprivation and consume more glutamine compared to other breast
cancer subtypes, indicating an upregulation of glutaminolysis [34]. The transcriptional
mechanisms underlying elevated glucose metabolism in TNBC are not fully understood, but the
MYC oncoprotein (also referred to as c-Myc) is believed to be a key contributor. TNBCs
commonly exhibit Myc overexpression and Myc-associated gene signatures; Myc is recognized
for promoting the expression of glycolytic genes, enhancing glucose uptake, and driving aerobic
glycolysis [35]. Additionally, transporters, including glucose transporter (GLUT) and
monocarboxylate transporter (MCT), as well as vital glycolytic enzymes like lactate
dehydrogenase (LDH), are also overexpressed in TNBC. When GLUT4 is silenced, glucose uptake
and lactate generation are decreased, and glycolytic activity is shifted toward oxidative
phosphorylation (OXPHOS), which decreases cell survival and proliferation in low-oxygen

environments [36].
2.1.1. Mitochondrial Oxidative Metabolism

According to the Warburg effect, when oxygen and nutrients are few, cancer cells transition from
OXPHOS to glycolysis. However, in TNBC cells, both increased and decreased OXPHOS activity

have been observed. Reduced OXPHOS function may be attributed to mutations in mitochondrial
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349  DNA (mtDNA) or a lower amount of mtDNA, which encodes subunits of the OXPHOS protein
350  complexes I through V [37]. OXPHOS produces ROS, and TNBC cells are notable for having
351  higher ROS levels than other forms of breast carcinoma [38]. As elevated concentrations of
352 mitochondrial ROS may trigger apoptotic, moderate ROS concentrations can serve as potent
353  signaling molecules that aid cells in adjusting to the harsh circumstances of the tumor

354  microenvironment [39].

355  2.1.2. Amino Acid Metabolism

356  To survive in nutrient-deficient conditions, cancer cells require an abundant supply of amino acids
357  [40]. An example is glutamine, an amino acid that becomes essential under certain conditions, but
358  this amino acid is not needed in healthy cells. Tumor cells consume it more quickly than any other
359  amino acid, making it the most common amino acid in plasma [41]. Firstly, glutamine serves as a
360 carbon donor by generating 2-oxoglutarate, an intermediate that feeds into the tricarboxylic acid
361  cycle (TCA) cycle. Secondly, it supplies nitrogen necessary for the production of non-essential
362  amino acids and nucleotides. Thirdly, glutamate produced through glutaminolysis acts as a
363  precursor for glutathione, which is crucial in preserving cellular redox balance[35]. Furthermore,

364  glutamine can be internally produced by tumor cells through the conversion of glutamate to

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

365 ammonia. To maintain their rapid proliferation, cancer cells have a substantial upregulation of
366  glutamine synthetase. It is intriguing to note that glutamine synthetase can promote cell
367  proliferation by interacting with nuclear pore proteins alone, regardless of its enzymatic activity

368 [41].
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369  2.1.3. Fatty Acid Metabolism

370  Lipid metabolism is one such metabolic pathway, encompassing lipid synthesis, lipid breakdown,
371  and catabolism, as well as fatty acid oxidation [42], [43]. Besides glucose and amino acids, tumor
372  cells utilize fatty acids as an alternative fuel via fatty acid oxidation, a highly efficient energy-
373  producing process, which can be either generated inside the cell or taken up from the extracellular
374  matrix. Carnitine palmitoyl transferase (CPT) initiates fatty acid oxidation by converting fatty
375 acids into acyl-CoA, which is subsequently carried into the mitochondria, marking the first
376 ~ committed step of the pathway. Targeted metabolomic studies reveal that TNBC cells with Myc

377  overexpression exhibit elevated CPT activity and a greater reliance on the oxidation of fatty acids
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to provide energy [44], [45]. Peroxisomes can also undergo fatty acid oxidation. The pace-setting
enzyme that causes the B-oxidation of branched, long-chain fatty acids in this organelle is called
acyl-CoA oxidase 2 (ACOX2). It has been demonstrated that estrogens control the production and
translation of an alternative transcript, ACOX2-19, in mammary carcinoma cell models exhibiting

estrogen receptor expression. Silencing this enzyme leads to a reduction in cell viability [46], [47].
2.2. Altered Metabolism Pathway Due to Mutations

The limited number of approved molecularly targeted therapies for TNBC corresponds to the
absence of frequently altered genomic targets. Chemotherapeutics are primarily used for the
treatment of TNBC. However, TNBC features have been associated with several distinct molecular
pathways; the Ras-Raf-Mek-Erk (Ras/MAPK) signaling cascade is known to be carcinogenic and
leads to the development of several cancers [48]. Multiple intracellular energy-generating
pathways are closely associated with TNBC. Increased expression of glycolytic transporters and
enzymes in malignancies greatly accelerate glycolysis and the metabolic pathways that follow.
Furthermore, the hexosamine biosynthesis pathway (HBP) leads to increased protein
glycosylation, while the serine synthesis pathway and the pentose phosphate pathway (PPP) boost
the generation of NADPH [49].

Compared to individuals with HER2-positive tumors, TNBC patients had altered glutamine
metabolism in addition to alterations in glycolytic and mitochondrial oxidative metabolism.
Increased glutamine absorption and utilization in TNBC cell line models results in epigenetic
changes that trigger the expression of genes linked to tumor growth [50]. While these pathways
involve metabolic reprogramming and cellular energy, the Ras/MAPK signaling pathway is
activated through active mutations in KRAS, NRAS, HRAS, or BRAF, which are frequently seen
in malignancies but are uncommon in primary breast tumors. Ras/MAPK signaling supports the
development of stem cell-like properties in tumor cells, immunological evasion, metabolic
changes, and progression/metastasis [48].

The PI3K/AKT/mTOR pathway helps manage metabolism, growth, and cell death in healthy
breast cells by activating receptor tyrosine kinases (RTKs) and G-protein-coupled receptors. One
of the PI3K pathway's major effectors, AKT, is essential for mTOR activation. During cancer
development, however, alterations such as PIK3CA and AKT mutations, RTK overexpression,

and PTEN loss disrupt the normal functioning of this pathway [49]. In most human breast cancers,
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408 tumor cells express more KLF4 than the neighboring, uninvolved epithelium. KLF4 is a
409  transcriptional regulator that is linked with tumor progression and proliferation. Therefore,
410  increased expression of this protein, or demethylation of the KLF4 promoter, is indicative of a
411  negative prognosis [51].

412 A marked reduction of the cell cycle protein CDC14B was identified in breast cancer tissues,
413  whereas its levels remained consistent in normal breast tissues. This decreased expression of
414 CDCl14B was associated with a poorer prognosis in patients with TNBC. When analyzing
415 CDCI14B alterations across various histological subtypes of breast cancer, it was found that
416  amplification, deep deletions, and mutations composing the most common types of genetic
417  changes observed in patients [52]. Hence, it is evident that this metabolic heterogeneity is
418  responsible for the variability of TNBC, and it can be utilized as a pharmacological sensitivity for

419  treating patients [50].

420 3. TNBC Diagnosis
421  Early detection of breast cancer plays a pivotal role in improving survival rates and treatment
422 outcomes. According to Coleman et al. (2017) [53], serial screening through quality digital

423  mammography remains the most reliable and effective approach for identifying small, non-

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

424  palpable tumors, which are associated with significantly reduced mortality. Mammography, when
425  performed by trained professionals using certified equipment, can achieve an accuracy rate of 85—

426  90%, contributing to a 30—50% reduction in mortality among screened women. Complementary

Open Access Article. Published on 10 January 2026. Downloaded on 1/11/2026 8:17:24 AM.

427  methods, such as clinical breast examination and breast self-examination continue to serve

(cc)

428  essential roles, particularly in low-resource or underserved settings where access to mammography
429  is limited. Furthermore, emerging imaging technologies, like digital breast tomosynthesis (3D
430 mammography) and breast magnetic resonance imaging (MRI), have enhanced diagnostic
431  precision and detection rates [53]. Building upon these early detection strategies, recent
432  advancements in cancer research have introduced the use of targeted NPs for both diagnosing and
433 treating aggressive subtypes, such as TNBC. These targeted NPs hold immense potential for
434  improving detection sensitivity and therapeutic precision. However, challenges related to the
435  development of efficient and safe delivery mechanisms must be addressed to ensure their
436  successful translation into clinical applications.

437  Ongoing developments in cancer studies have resulted in the creation of site-specific NPs for

438  detecting, as well as treating TNBC. By employing fourth-generation (G4) polyamidoamine
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(PAMAM) dendrimers functionalized with gadolinium 1,4,7,10-tetraazacyclododecane-
N,N',N” N"-tetraacetic acid (Gd-DOTA), a clinically approved MRI contrast agent, and a
fluorescent dye, researchers have engineered multifunctional NPs capable of real-time tracking of
tumour accumulation, targeting the tumour microenvironment, and inhibiting tumour growth.
These NPs demonstrate promise for combined therapeutic delivery and imaging, while exhibiting
minimal toxicity to healthy tissues and organs [54].

By combining NPs with specific drugs for site-specific targeting, researchers have improved
TNBC chemotherapy while minimizing adverse effects. Studies have identified promising
molecular markers for treating TNBC, such as the transmembrane tumor necrosis factor (TNF) a
(tmTNF-a) expression. Most TNBC patients express tmTNFa, making it an appealing target for
therapy. Paclitaxel (PTX) NPs coupled with anti-TNF-a monoclonal antibodies (mAbs) have been
developed to actively target TNBC, effectively reducing the viability of TNBC cells and improving
therapeutic effectiveness [55]. Additionally, photodynamic therapy (PDT) is a promising and
effective cancer treatment that uses photosensitizing agents and light to selectively target and
destroy cancer cells. The developed cyclic arginine-glycine-aspartic acid (cRGD) peptide-
decorated conjugated polymeric NPs with poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-
phenylenevinylene] (MEH-PPV) NPs have shown significant potential for imaging-assisted
photodynamic treatment of TNBC by selectively targeting and destroying cancer cells when
exposed to light, with no toxicity in the absence of light. This approach could lead to new and

improved treatment approaches for TNBC [56].
3.1. Application of nanoparticles in TNBC diagnosis

Medical imaging techniques, such as MRI, fluorescence imaging, photoacoustic imaging (PAI),
computed tomography (CT), ultrasound (US), single-photon emission CT, and positron emission
tomography (PET), and single-photon emission computed tomography (SPECT) are commonly
used for a non-invasive approach to evaluate anatomical, functional, and molecular data for
supporting the detection of abnormalities [57]. These techniques have been frequently combined

with NPs for improved cancer diagnosis.

3.1.1. Computed Tomography

16


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ma00866b

Page 17 of 65 Materials Advances

View Article Online
DOI: 10.1039/D5MA00866B

467  Ongoing improvements in medical imaging have supported the design of innovative contrast
468  enhancers for CT imaging, such as barium or iodine compounds and targeted NPs. For CT imaging,
469  low-density lipoprotein (LDL)-based iodinated NPs targeting specific receptors have been
470  explored. These innovations hold promises for improving the visualization of anatomical
471  structures and organs while also minimizing toxicity to normal cells during radiotherapy.
472 Additionally, TNBC is linked to a heightened immune response due to overexpression of the mucin
473 1 (MUCI1) gene, which is a marker of malignancy in various cancers. Therapeutic strategies
474  targeting MUCI include immunoglobulins, immunization treatments, and nucleic acid-based
475  aptamers, which are synthetic oligonucleotides with high affinity and specificity to their
476  targets[58]. This study demonstrated that nano-radiopharmaceuticals incorporating the anti-MUC1
477  aptamer have the potential to function as imaging agents for TNBC[58]. The potential of utilizing
478  these innovations to target specific molecules, such as MUC1 in TNBC, opens new doors for

479  improving imaging approaches and developing effective therapeutic strategies.
480  3.1.2. Positron Emission and Single Photon Emission Computed Tomography

481  Advancements in nuclear imaging methods, specifically PET and SPECT, have paved the way for

482  extensive research in medical applications involving NPs. The combination of these imaging

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

483  methods with NPs has shown the potential to significantly enhance image contrast by labeling NPs
484  with multiple radionuclides. Additionally, NPs linked with unstable radioisotopes for PET and

Open Access Article. Published on 10 January 2026. Downloaded on 1/11/2026 8:17:24 AM.

485  SPECT imaging exhibit high sensitivity, suggesting their efficacy for successful imaging [58]. The

(cc)

486  relevant results from PET/CT images, revealing characteristics such as prolonged circulation in
487  the bloodstream, minimal kidney excretion, increased accumulation in tumors, and decreased liver

488  load, highlight the promising role of NPs as novel agents for PET imaging (Figure 3) [59].
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490  Figure 3. Schematic diagram illustrating tumor-targeted imaging with radiolabeled nanoparticles.
491  Following intravenous injection, the nanoparticles accumulate at the tumor site, bind to cancer cells, and
492  enable non-invasive imaging via Positron Emission Tomography (PET) and Computed Tomography (CT).
493  This approach integrates targeted delivery with diagnostic imaging, enhancing early detection and treatment
494  monitoring in breast cancer and other solid tumors (authors' own artwork).

495  3.1.3. Magnetic Resonance Imaging

496  MRI technology has rapidly evolved, becoming a pivotal tool in both preclinical research and
497  clinical practice for visualizing physiological processes and anatomical structures. In this context,
498  various advanced techniques, including functional MRI (fMRI), dynamic contrast-enhanced MRI
499  (DCE-MRI), and diffusion-sensitive MRI (DW-MRI), have been instrumental in enhancing
500  contrast and providing detailed images [59]. Tumor-homing peptides, like the LyP-1 peptide, have
501  been identified for their specific localization to tumors and are being used in advanced imaging
502  technologies for the noninvasive quantification of tumor biomarkers. Magnetic iron-oxide NPs are
503  also being used in medical imaging due to their detectability using standard MRI techniques[60].
504  These NPs can be conjugated with tumor-specific biomolecules for targeted imaging of TNBC.
505  Molecular imaging techniques are being developed to diagnose TNBC at early stages and monitor
506 the effectiveness of treatments, ultimately improving the prognosis for TNBC patients [61].
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507  Efforts are being made to develop NPs, such as antibody-conjugated gadolinium-doxorubicin-
508 loaded poly(ethylene glycol)-poly(e-caprolactone) copolymers (PEG-PCL) (anti-Gd-
509 DOX@PEG/PCL) NPs, to enhance treatment effectiveness while minimizing the overall toxicity
510  of chemotherapeutic drugs, like DOX[62]. Furthermore, ICAMI, a cell adhesion molecule, is
511  being explored as a prospective indicator for selective imaging and therapeutic applications for
512 TNBC. Studies have shown that biocompatible NPs targeting ICAM]1 have enhanced diagnostic
513  and therapeutic efficacy for TNBC without causing significant damage to major organs, indicating

514  the potential for effective TNBC management[62]
515 4. TNBC Theragnostics

516  Engineered NPs with the dual function of therapy and diagnosis leads to a new, powerful tool in
517  TNBC treatments. Theco-delivery of imaging agents, chemotherapeutics, siRNA/miRNA, and
518  immune-stimulatory agents is expected to achieve synergistic cytotoxic and immunomodulatory
519 effects in preclinical TNBC models [63]. By remodeling the immunosuppressive tumor
520  microenvironment and promoting immunogenic cell death, NPs can sensitize TNBC to immune
521  checkpoint blockade and other immunotherapies [64]. Biomimetic and ligand-targeted NPs (e.g.,

522 hyaluronic acid natural targeting ability to bind to overexpressed CD44 receptors on cancer cells,

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

523  and peptide conjugates on the NPs’ surface that identify cancer cell receptors) increase uptake by
524  TNBC cells and tumor stromal targets, improving therapeutic index and reducing off-target effects

525 [65].

Open Access Article. Published on 10 January 2026. Downloaded on 1/11/2026 8:17:24 AM.
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526  Various types of NPs, including lipid, inorganic, polymeric, and carbonaceous, have been studied
527  for their theragnostic use in TNBC. Lipid NPs offer biocompatibility due to their composition in
528 e.g., phospholipids, fatty acids, and cholesterol. Inorganic NPs, like gold, iron oxide, and quantum
529  dots, serve as multifunctional agents for diagnostic and therapeutic purposes because of their
530  exceptional opto-magnetic characteristics. Polymeric NPs enable controlled drug release and
531 immune evasion by tuning their physical and chemical properties. The anti-cancer agent is
532  protected within the NPs and is released at a target site, avoiding systemic clearance and reducing
533 side effects [66]. Polymeric nanoparticles such as micelles, dendrimers, and polymersomes enable
534  controlled drug release through their tunable architectures and stimulus-responsive polymer
535  matrices that release payloads in response to pH, enzymes, or redox conditions[67]. Their surfaces

536  can be modified (e.g., PEGylation), which minimizes protein adsorption and immune recognition,
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thereby prolonging circulation time and enhancing tumor-selective delivery[66]. Carbon-based
nanomaterials, such as graphene and carbon nanotubes, contribute to enhanced drug loading,
membrane penetration, and imaging sensitivity. Beyond composition, the surface electrical charge
(zeta potential) of NPs plays a pivotal role in their performance, influencing cellular uptake, tumor
targeting, colloidal stability, and cytotoxicity. By carefully tuning both the type and surface charge,
these nanocarriers can maximize therapeutic delivery, improve imaging sensitivity, and achieve
integrated diagnosis and treatment strategies in TNBC [68], [69], [70].

4.1. Organic Nanoparticles in Cancer Theragnostics

Fattahi et al. (2024) [71] developed poly-e-caprolactone (PCL) NPs incorporated with DOX and
5-fluorouracil (5-FU), which induced the reduction of Bcl2 and Bax expression levels in NPs’
treated cells [71]. Liposomes are undoubtedly the most recognized and versatile lipid NPs
accessible today, owing to their distinct features. They consist of phospholipid bilayers
surrounding an aqueous core and provide several benefits, such as excellent biological
compatibility, biological degradation, simple fabrication, controlled drug release, minimal
toxicity, and the capacity to carry both water-soluble and fat-soluble anticancer agents.
Furthermore, their exterior can be tailored for site-specific delivery in oncology treatment [72].
Liposomes are among the few NPs that are thought to be suited for a variety of drug delivery
applications, including the transfer of functional compounds into cellular systems [73], [74].
Liposomes that can gather in malignant tissues via two mechanisms: passive uptake mediated by
the enhanced permeability and retention (EPR) effect and selective binding to malignant cells or
an angiogenic signal. Liposomes are a valuable platform for delivering anti-tumor medicines in
vivo, such as PTX, DOX, oligonucleotides, and other cytotoxic agents. DOX-loaded liposomes
(Doxil) were described to be more effective and absorbable in breast cancer patients compared to
free DOX [75]. Doxil is an FDA-approved nanomedicine, and more than twelve nanomedicine
formulations utilizing polymeric micelles are undergoing therapeutic trials[76]. Tahmasbi Rad et
al. (2019)[77] described that spherical nanomedicines with a diameter of 20-100 nm are more
effective for tumor progression due to their EPR effect. Although distinct EPR effects were proven
due to nonspherical nanostructures (i.e., nanorods) [78], [79].

Bahrami Parsa et al. (2023)[80] developed a co-delivery liposomal system encapsulating cisplatin
and DOX (Figure 4A) to enhance treatment efficacy and reduce toxicity in ovarian cancer therapy.

Cytotoxicity studies showed that the dual-drug liposomes were more biocompatible with normal
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568 cells and significantly more cytotoxic to ovarian cancer cells (A2780) than free or combined drugs.
569  Additionally, the formulation promoted apoptosis and cell cycle arrest in cancer cells[80]

570  Vari et al. (2023) [81] compared traditional CREKA-modified liposomes with newly designed
571  SREKA-liposomes, where the N-terminal cysteine was replaced with serine to enhance
572  conjugation efficiency and stability (Figure 4B). Both peptides target tumor-associated
573  extracellular matrix present in primary and metastatic sites. The results showed that SREKA-
574  liposomes exhibited comparable tumor targeting ability to CREKA-liposomes but offered higher
575  production yield, improved conjugation stability, stronger inhibition of tumor growth and
576  metastasis, and enhanced survival in tumor-bearing mice [81].

577  While a large range of polymers and lipids is accessible for the creation of theragnostic platforms,
578  proteins also offer great promise as carrier material because of their enhanced biological
579  compatibility, biodegradability, and low risk of inducing adverse effects [82]. Unlike synthetic
580 polymers, they possess natural targeting ability through proteins, such as albumin, ferritin, and
581 transferrin, enabling selective tumor delivery and co-loading of drugs and imaging agents [83].
582  Their abundant reactive groups allow easy surface modification for precise targeting and
583  multimodal imaging[82]. Moreover, their mild synthesis conditions preserve biomolecule activity

584  while reducing toxicity and immune responses [83].

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

585  Proteins are naturally amphipathic, allowing the hydrophobic domains of the NPs to bind to a

586  variety of non-polar anti-cancer medicines, which increases their drug loading capacity. Certain

Open Access Article. Published on 10 January 2026. Downloaded on 1/11/2026 8:17:24 AM.

587  proteins inherently tend to target cancer cells, and specific ligands can be modified on the protein-

(cc)

588 NP surface to enhance tumor targeting[84][85]. Because of their low toxicity and efficient
589 therapeutic loading ability, protein NPs employed for loading drug molecules can achieve
590 increased intratumoral drug levels [86]. Protein NPs break down into amino acids during
591  metabolism, which are harmless and safe for human use [82]. Albumin-associated NPs (~130 nm)
592  represent a protein-derived technology used in cancer therapy. Albumin has shown high tumor
593  uptake [87] establishing it as a possible vehicle for targeted anticancer medicines. The clinical
594  adoption of Abraxane (albumin-PTX) for progressive breast cancer by the FDA points to the
595 translational potential of albumin-mediated nanomedicine.

596 Maetal. (2021)[88] developed a tLyP-1-functionalized ferritin nanocarrier (tLyP-1-HFtn) (Figure
597  4C) for targeted delivery of PTX to tumor cells[88]. The tumor-penetrating peptide tLyP-1 was

598  fused to the N-terminal of human ferritin, and PTX was encapsulated via a pH-mediated assembly
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method. The resulting NPs showed enhanced cellular uptake, cytotoxicity, and anti-migration
effects in MDA-MB-231 and SMMC-7721 cells compared to non-targeted ferritin-PTX. N-
terminal tLyP-1 modification effectively enhanced ferritin-based targeted PTX delivery and
antitumor performance[88].

Bioengineering techniques can be used to manufacture proteins without using chemical synthesis
or harmful substances[85][89] Because proteins have various epitopes and microstructures on their
surfaces, modifying and producing NPs to improve their functionality is possible. Advanced
bioengineering technology could be employed in antigenic epitopes or surface groups on protein

NPs for anticancer applications [90], [91], [92], [93].
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Figure 4. (A) Field emission scanning electron microscopy (FE-SEM) and Transmission electron
microscopy (TEM) photograph of cisplatin and doxorubicin-loaded liposomes [Lipo (CIS + DOX)] [80]
reproduced under open access Creative Common CC BY NC ND license). (B) (i) TEM images of liposomes
(ii)) TEM image of liposomes Lipo-100C. (iii) Hydrodynamic mean diameter and (iv) zeta potential of
liposomes composed of different amounts of DSPE-PEG-CREKA and DSPE-PEG-SREKA[81]
(reproduced under open access Creative Common CC BY license). (C) TEM micrographs of HFtn, tLyP-
1-HFtn, and PTX-loaded NPs [87]. (Reproduced under open access Creative Common CC BY license).
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616 Inrecent decades, Metal-Organic Frameworks (MOFs) have garnered a great deal of attention for
617  cancer theragnostics[87]. MOFs have variable structures with a broad spectrum of morphologies,
618  chemical characteristics, sizes, and compositions, making them ideal as multifunctional moieties
619  for triggered drug release. MOF-based materials maintain predictable size, homogeneity, and
620  shape [87]. Their enhanced pore density and broad surface areas provide MOFs a maximum
621  payload capacity; besides, their labile bonds make MOFs biodegradable [94].

622  Despite these inherent advantages, MOFs are especially promising for breast cancer treatment
623  because their tunable three-dimensional architecture allows for precise customization of pore size,
624  surface chemistry, and metal-ligand composition to suit the specific demands of tumor
625  microenvironments. These properties allow them to be tailored to the acidic, redox-imbalanced,
626  enzyme-rich breast tumor microenvironment, enabling precise drug delivery, controlled release,
627 active targeting, and multimodal therapy, features that are difficult to achieve simultaneously with
628  conventional NPs [95]. Their exceptionally high porosity and surface area enable high loading and
629 efficient delivery of chemotherapeutic agents, imaging moieties, and immunomodulators, thereby
630 integrating therapy with diagnostics [96]. Furthermore, the stimuli-responsive degradability of
631  MOFs triggered by tumor-specific conditions, such as low pH or elevated glutathione, ensures

632  controlled release inside tumor sites and rapid clearance from the body, reducing systemic toxicity

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

633  and improving biocompatibility [97].
634  Large quantities of drugs with various chemical and physical characteristics can be encapsulated

635 in MOFs-based NPs [98], [99]. The most widely utilized subtype of MOFs, zeolitic imidazolate
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636  framework-8 (ZIF-8), is consistent with 2-methylimidazole and zinc ions. Remarkably, ZIF-8 has
637  strong biodegradability and pH-sensitive degradation characteristics, enabling the release of
638  encapsulated medications in the endosomal and/or lysosomal environment of tumor cells and high
639  stability in circulation[100]

640  Wu et. al. (2024) [99] designed self-targeted MOF-based NPs to form methotrexate-PEG
641  conjugates (MTX-PEG@TPL@ZIF-8) for metastatic TNBC therapy by synergistically enhancing
642  chemotherapy efficacy and tumor microenvironment modulation. The NPs exhibited an average
643  size of 132.0+4.3 nm and surface electrical charge of 11.9+2.5mV. The encapsulation
644  efficiency reached values above 75%, and a loading capacity was around 10%. The NPs’ pH-
645  triggered release enabled efficient tumor accumulation and deep tissue penetration through MTX-

646  mediated self-targeting [99].
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Kulkarni et.al. (2025) [101]developed transferrin-functionalized, PEGylated DOX-loaded Zn-
MOF-74 NPs to overcome the limitations of conventional chemotherapy. The highly porous MOF
structure (~1680 m?/g) enabled exceptional high encapsulation efficiency (>90%) while
maintaining nanoscale dimensions (<100 nm) and structural integrity. The PEGylated DOX-
loaded Zn-MOF-74 NPs exhibited pH-responsive degradation, endorsing selective drug release in
acidic tumor microenvironments and minimizing systemic toxicity. Extensive hemocompatibility
and chorioallantoic membrane (CAM) assays demonstrated excellent biocompatibility. In vitro
studies using 4T1 cells, along with in vivo pharmacokinetic, pharmacodynamic, and
biodistribution analyses, revealed enhanced tumor targeting, prolonged circulation, and superior
therapeutic efficacy, highlighting strong translational potential for breast cancer treatment [101].

Carbon nanomaterials have significantly enhanced the diagnosis and treatment of cancer [102].
Carbon nanomaterials possess remarkable characteristics, including extensive surface coverage
with adaptable pore dimensions and chemically inert yet easily functionalizable surfaces,
rendering them highly suitable for biomedical applications, especially in cancer detection. These
features pave the way for enhanced therapeutic approaches. Carbon nanomaterials include
fullerene (0-D), carbon nanotubes (1-D), and graphene (2-D) [103]. These nanomaterials possess
proper dimensions, electrical properties, surface characteristics, molecular makeup, tendency to
cluster together, and solubility, which can have a significant impact on their interactions with
biomolecules and cells, making them ideal candidates for establishing new antineoplastic systems

[57], [104], [105].
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667
668  Figure 5. (A)(i) Scanning electron microscopy (SEM) of carbon NPs formed at 900°C; (ii) Transmission

669  electron microscopy (TEM) of Multi-Walled Carbon Nanotubes (MWCNTs); (iii) Raman spectrum
670  showing graphitic carbon [106] (reproduced under open access Creative Common CC BY license). (B) (i)
671  TEM and (ii) High-resolution TEM (HR-TEM) images of the passivated manganese ferrite magnetic NPs;
672  (iii) X-ray diffraction pattern confirming crystallinity [107] (reproduced under open access Creative
673  Common CC BY license). (C)(i) TEM image of AgNPs; (ii) SEM image showing aggregated AgNPs; (iii)
674  Zeta potential of AgNPs [108]. (D) (i) SEM image of triangular AgNPs (tAgNPs) clusters; (ii) average
675  diameter of tAgNPs; (iii) UV-Vis absorbance spectrum of tAgNPs [109] (reproduced under open access
676  Creative Common CC BY license).

677
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Carbon nanotubes (CNTs) are innovative synthetic nanomaterials characterized by their tubular
shape. Graphene scroll formation produces CNTs. CNTs have exceptional chemical, electrical,
and structural properties. Modifying CNTs with biological components enhances their potential
for biocompatible drug delivery strategies aimed at selectively targeting and destroying cancer
cells [110][111]. The n—= interactions and functionalizable surface groups in multiwalled carbon
nanotubes (MWCNTs) facilitate covalent or non-covalent attachment of drugs, targeting ligands,
and biomolecules, enhancing tumor specificity and minimizing systemic toxicity [112]. Komane
et al. (2018)[106] synthesized vertically aligned MWCNTs for delivering dexamethasone to
ischemic brain tissue (Figure SA). CNTs were PEGylated and loaded with dexamethasone after
optimizing conditions for high yield. The developed CNTs showed strong potential for controlled
dexamethasone delivery to improve ischemic stroke treatment, with ongoing studies aimed at
targeted delivery using atrial natriuretic peptide antibodies in stroke models [106]. Asadipour et
al. (2024)[113] investigated the therapeutic potential of carboxylated MWCNTSs as a novel
nanotherapeutic strategy for TNBC. Using MDA-MB-231 cells, CNTs revealed dose-dependent
cytotoxicity, significantly reduced spheroid formation, and inhibited epithelial-mesenchymal
transition—associated tumorigenic behavior in vitro. In vivo evaluation in TNBC xenograft mouse
models revealed a marked reduction in tumor volume following intratumoral CNT administration,
confirming antitumor efficacy. The findings highlighted CNTs as promising nanomaterials for
TNBC treatment, while emphasizing the need for mechanistic, pharmacokinetic, and long-term
safety studies to support clinical translation [113]. Similarly, in one of the most recent studies done
by Nabawi et.al. (2025)[114], A folic acid—targeted, sorafenib-PEGylated CNT was developed for
TNBC, demonstrating threefold higher cytotoxicity, enhanced apoptosis, and superior molecular
inhibition compared with the free drug. In vivo, the formulation achieved eightfold increased
bioavailability and prolonged half-life, highlighting improved pharmacodynamic and
pharmacokinetic performance for targeted TNBC therapy[114].

Carbon quantum dots are promising nanomaterials with broad application potential in cancer
treatment. Carbon quantum dots exhibit lower cytotoxicity compared to conventional quantum dot
counterparts, primarily because the former lack heavy metals in their composition. Their extensive
surface area enables interaction with a wide range of chemical substances, making them
particularly advantageous in drug delivery systems (DDS), especially for carrying multiple
anticancer agents. [57], [115]. Azizi et.al. (2024) [116] reported the development of a carbon dot—
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709  based theragnostic nanoplatform conjugated with anti-PD-L1 antibodies (anti-PD-L1-CD) for
710  targeted immunotherapy and bioimaging of TNBC. Ethylene glycol-stabilized carbon dots aided
711  efficient antibody conjugation, cellular internalization, and fluorescence-based imaging in PD-L1-
712 overexpressing MDA-MB-231 cells. The anti-PD-L1-CD bioconjugate showed significantly
713 improved cytotoxicity, reduced colony formation, and augmented apoptosis compared with free
714 anti-PD-L1 antibody, while maintaining high biocompatibility in normal fibroblasts. The findings
715  advocated carbon dot—antibody conjugates as promising immuno-theragnostics for precision
716 ~ TNBC treatment[116]. Similarly, Kumar et.al. (2024) [117] designed luminous blue carbon
717  quantum dots using Anisomeles indica (Catmint) with imaging and therapeutic effects on MDA-
718  MB-231 cells. The carbon quantum dots generated from catmint showed excitation-dependent
719  emission, near-spherical shape with size ranging between 5 and 15 nm. The carbon quantum dots
720  induced cytotoxicity with a lethal concentration (LC50) of 3.22 +0.64 pg/ml in MDA-MB-231
721  cells. Additionally, the carbon quantum dots promoted apoptosis by increasing ROS and
722 decreasing mitochondrial membrane potential. Moreover, the carbon quantum dots remarkably up-
723 regulated pro-apoptotic gene expression levels such as caspases-8/9/3. The results demonstrated
724 catmint-derived carbon quantum dots as prospective theragnostics to improve cancer targeting and

725  imaging [117].

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

726  Graphene is defined as a 2-D nanoscale sheet composed of a monolayer of carbon atoms organized

727  in a six-sided lattice structure, representing a finite fragment of graphite placed at the vertices of a

Open Access Article. Published on 10 January 2026. Downloaded on 1/11/2026 8:17:24 AM.

728  hexagonal network[118] [120]. The 2-D configuration of graphene and the delocalized n-electrons

(cc)

729  distributed across the surface promote effective drug attachment through hydrophobic forces and
730  m-m stacking. Additionally, the extensive surface area of graphene enables high-capacity
731  biofunctionalization through both covalent and non-covalent surface alteration methods. Several
732 investigations on graphene's in vivo performance and therapeutic activity demonstrate that NPs
733  engage with cellular membranes and are internalized through endocytic pathways [121][122],
734 [123].

735  The graphene-modified NPs have been seen as promising materials for the theragnostics of TNBC.
736  The study done by Itoo et.al. (2023) [119] reported multifunctional graphene oxide-based poly-L-
737  lactic acid (PLA) NPs loaded with DOX (DOX@GO(mPEG-PLA) NPs) for synergistic chemo-
738  photothermal therapy of TNBC. The optimized NPs showed a particle size of approximately 161

739  nm, a zeta potential of —28 mV, a drug loading of 6.3%, and an encapsulation efficiency of 70%.
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Under 808 nm NIR irradiation, the NPs enhanced ROS production, caused mitochondrial
depolarization, induced G2/M cell-cycle arrest, and triggered apoptosis in MDA-MB-231 and 4T1
cells, surpassing the effects of free DOX. In 4T1-Luc tumor-bearing mice, laser-activated
DOX@GO(mPEG-PLA) NPs significantly suppressed tumor growth and lung metastasis,
demonstrating strong potential for translational application in combined TNBC therapy[119].
Another study done by Basu et.al. (2024)[120] demonstrated that folic acid-functionalized
PEGylated graphene oxide (FA-PEG-GO) efficiently suppresses MDA-MB-231 cell migration
through targeted delivery. FA-PEG-GO disrupts actin dynamics and lamellipodia formation by
inhibiting NF-kB-mediated miR-21, thereby upregulating PTEN gene and downregulating pFAK,
pAkt, and pERK1/2. Ex ovo chick embryo assays confirmed its strong antimigratory potential,
highlighting FA-PEG-GO as a promising anti-metastatic nanotherapeutic strategy [120].

4.2. Inorganic Nanoparticles in Cancer Theragnostics

Inorganic NPs feature a metallic or metal oxide center enclosed within an organic outer layer,
which stabilizes the core in the biological milieu and allows functionalization sites to incorporate
biomolecules for targeted drug delivery[121]. Inorganic NPs exhibit unique physicochemical
characteristics, like easy synthesis, extensive surface compared to their volume, and customizable
surfaces to improve their binding ability and specificity towards target molecules [122], [123].
Inorganic NPs offer greater drug-loading potential, enhanced stability, and adjustable degradation
rates when compared to their organic counterparts [124], [125], [126], [127], [128]. Because of
their unusual physicochemical properties, inorganic NPs such as gold, silver, silica, rare earth
oxides, iron oxides, and zinc oxide, have been widely utilized in numerous biomedical fields,
including cancer theragnostics, biosensing, bioimaging, and the transport of therapeutic agents and
genetic material [129], [130].

Oliveira et al. (2023) [107] developed PTX-loaded lipid-coated manganese ferrite magnetic NPs
as synthetic magnetosome analogs for combined chemotherapy and magnetic hyperthermia
treatment (Figure 5B). This approach drastically reduced the drug’s half-Maximal Inhibitory
Concentration (ICsj), demonstrating high therapeutic efficiency with minimized systemic toxicity
[107].

Green chemistry biosynthesis of inorganic NPs is attracting significant interest owing to several

benefits over traditional chemical synthesis methods [131]. Biosynthesis is usually fast and simple,
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770  offering an environmentally friendly alternative by eliminating the use of harmful chemicals; it
771  utilizes a wide range of readily available biological reducing agents (e.g., algae, plants, and
772 bacteria) and employs water as a generally accepted solvent. Montazersaheb et al. (2024) [108]
773  explored the use of green-synthesized AgNPs as radiosensitizers for TNBC[108]. AgNPs were
774  synthesized using pumpkin peel extract, offering a low-toxicity and eco-friendly approach (Figure
775  5C). The research aimed to assess how these green Ag-NPs enhance the sensitivity of MDA-MB-
776 231 cells to radiation therapy, potentially improving treatment outcomes while minimizing side
777  effects [108]. Krishnaraj et al. (2014)[109] investigated the cytotoxic effects of biologically
778  synthesized AuNPs on MDA-MB-231 cells. NPs were successfully synthesized as confirmed by
779  ultraviolet-visible (UV—Vis) spectroscopy, field emission scanning electron microscopy (FE-
780  SEM), transmission electron microscopy (TEM), and x-ray diffraction (XRD) analyses (Figure
781  SD). At 100 pg/ml, the NPs showed strong anticancer activity, inducing apoptosis via caspase-3
782  activation and DNA fragmentation. These findings suggest that plant-derived AuNPs have

783  potential as breast cancer therapeutics, pending further clinical validation [109].
784  4.2. Nanoparticles as Drug Delivery System

785 Controlled DDS alleviate the impact of drugs on healthy tissues and reduce side effects by

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

786  transporting them directly to the site of action (Figure 6), via EPR effect. DDS shields the drug

787  from rapid degradation, leading to increased concentration in target tissues. By regulating drug

Open Access Article. Published on 10 January 2026. Downloaded on 1/11/2026 8:17:24 AM.

788  delivery, NPs may improve site specific drug delivery and reduce off-target effects. Properties and

(cc)

789  Dbiological effects of different types of NPs in the delivery of standard chemotherapeutic drugs are

790  summarized in Table 1.
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Figure 6. Schematic representation of drug delivery to breast tumor: After administration, NPs accumulate
at tumor sites through the enhanced permeability and retention (EPR) effect. They enter tumor cells via
endocytosis, escape endosomes, and release their therapeutic payload, causing DNA damage and apoptosis.

This process enhances the efficacy of treatment in breast cancer (authors’ own artwork).
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NPs (viral NPs)

to the protein envelopes or
capsids of viruses.

trastuzumab monoclonal antibody

of signals.

797  Table 1. Properties and biological effects of different types of nanoparticles loaded with chemotherapeutic drugs
. . Therapeutic . . .
Nanoparticles Properties drug Drug loading Biological effects References
Spherical, branched, or core-
Polymeric NPs shell in nature., biodegradable, 5_Fluorouracil The drug is .ence.lpsulated during It increases.th.e amount of time [132]
and possess diameters between the polymerization process. drugs remain in the bloodstream.
10 and 100 nm
Artificially derived
biodegradable spherical vesicles,
. with a hydrophilic core and a .. It is encapsulated in the inner core | The drug's distribution to the heart
Liposomes L Doxorubicin . . [133]
hydrophobic bilayer for of liposomes. and renal system is reduced.
encapsulating therapeutic
agents.
The delivery of the drug to the
Carbon s . s .
Cylindrical carbon structures The drug is encapsulated within cells protects it from breakdown,
nanotubes . Dexamethasone . [134]
(CNTs) made up of benzene rings. the carbon nanotube. and its release occurs only under
specific conditions.
The d b jugated
thrz rggccc)a;eztcl;)irrlljcliliia © Improved uptake by the target
. . u \4 , . . :
Magnetic NPs Core-shell structure Paclitaxel g .. . g tissue results in efficient therapy [132]
electrostatic interaction, .
. . at ideal dosage levels.
adsorption, or encapsulation.
Biocompatible and
i le, lacki i NPs inhibit th liferation of
Protein-based biodegradable, a.c 1ng a-vm-l.s NPs are conjugated with the s inhibit the prolifera lon.o .
genome and bearing similarities | Trastuzumab cells and obstruct the transmission [133]
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Figure 7. (A) TNF-a is localized in the nuclei of MCF-7, MDA-MB-453, and MDA-MB-231 cells;
enhanced PTX uptake is observed with PTX-loaded IgG@NPs. (i) Confocal microscopy images illustrate
the expression of tmTNF-a (indicated in red) alongside 4',6-diamidino-2-phenylindole (DAPI) nuclear
staining (shown in blue) in the MCF-10A, MDA-MB-453, and MDA-MB-231 cell lines. Notably, MDA-
MB-231 cells display the highest levels of tmTNF-a expression when compared to the other cell lines. The
scale bar represents 50 um; (ii) ELISA analysis quantitatively assesses the levels of PTX, tmTNF-a, and
the complexes formed between PTX and tmTNF-a across the cell lines. The results indicate that MDA-
MB-231 cells have significantly higher expression levels relative to both MCF-10A and MDA-MB-453
cell lines (***p < 0.001) [148] (reproduced under open access Creative Common CC BY license). (B)
DANCR silencing reduces migration and invasion in breast cancer cells [135] (reproduced under open
access Creative Common CC-BY-NC-ND license).
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811  Liu et al. (2022) [136] developed targeted NPs to enhance PTX delivery for TNBC treatment by
812  exploiting the transmembrane TNF-a (tmTNF) biomarker (Figure 7A). PTX-loaded NPs were
813  conjugated with tmTNF-o monoclonal antibodies (tmTNF-o mAb-PTX NPs) using an
814  emulsification-evaporation method. The proliferation of tumors in human MDA-MB-231
815  xenograft mice was markedly inhibited by tmTNF-a mAb-PTX NPs, which showed anti-tumor
816  effects by enhancing apoptosis and modulating MAPK, PI3K - AKT - mTOR cascade, alongside
817 the AMPK and NF-kB pathways. Nicolescu et al. (2023) [135] developed dual-targeted
818 ECO/siDANCR NPs designed to silence DANCR by delivering siRNA using ionizable lipids
819  (Figure 7B). These NPs were engineered to target both extradomain B fibronectin (EDB-FN) in
820  the tumor extracellular matrix and integrins on cancer cells, enhancing delivery specificity. In vitro
821  treatment of Hs578T and MCF-7 cells led to marked downregulation of DANCR and EDB-FN,
822  reducing cell invasion and 3D spheroid growth [135]. Mehta et al. (2024) [137]presented a novel
823  targeted therapy for TNBC using lipid NPs loaded with siXBP1 and conjugated with an EGFR
824  antibody (Figure 8A). The NPs aimed to silence the XBP1 gene, which supports TNBC cell
825  survival under hypoxic conditions. The EGFR-targeted siXBP1 NPs demonstrated strong potential
826  for precise and effective TNBC therapy, laying the groundwork for future preclinical and clinical
827  studies [137].

828  Liu et al. (2022) [138] found that coating liposomes with PEG and dibenzocyclooctyne (DBCO)

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

829  (Figure 8B) significantly enhanced their internalization both in vitro and in vivo. Liposomes

Open Access Article. Published on 10 January 2026. Downloaded on 1/11/2026 8:17:24 AM.

830  decorated with DBCO achieved about 50% tumor uptake, compared to ~20% for unmodified
831  liposomes. Using 4T1, MDA-MB-231, and MDA-MB-436 breast cancer models, the DBCO-

(cc)

832  coated liposomes (L-PEG2000-DBCO) showed greater accumulation in tumors, regardless of size,
833  type, location, or receptor expression.

834  Dey et al. (2022)[139] investigated the therapeutic potential of AgNPs against MCF-7 cells. The
835 AgNPs were found to localize within mitochondria, causing mitochondrial membrane
836  depolarization (Figure 8C), ROS generation (Figure 8C), and loss of mitochondrial stability.
837  They also induced endoplasmic reticulum stress, which was closely linked to disrupted
838  mitochondrial dynamics. Together, these effects triggered apoptosis in MCF-7 cells. The findings
839 reveal that AgNPs can induce cancer cell death by modulating mitochondrial-endoplasmic
840  reticulum interactions, highlighting their promise as a novel chemotherapeutic agent for breast

841 cancer.
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Surapaneni et al. (2018) [140] explored how the surface charge of AuNPs influences their
cytotoxic effects in TNBC cells (Figure 8D). Both negatively charged (citrate-capped) and
positively charged (cysteamine-capped) AuNPs induced dose-dependent cell death in MDA-MB-
231 and MDA-MB-468 cells through oxidative stress—mediated disruption of the Wnt signaling
pathway. This study reveals that the surface charge of AuNPs critically determines their

mechanism of cytotoxicity and potential for combination cancer therapy [140]
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Figure 8. (A) PEGylated liposomes _show improved uptake and co-localization with endocytic markers in
MDA-MB-231 cells. (B) Confocal microscopy showed L-PEG;y0-DBCO and L-PEG,(pNPs distribution
in tumor spheroids, indicating 3D penetration and potential therapeutic benefits [138] (reproduced under
open access Creative Common CC BY license). (C) AgNPs increase mitochondrial ROS and decrease
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853  membrane potential in MDA-MB-231 cells. (i) Representative confocal microscopy images illustrate the
854  staining of mitochondrial ROS using MitoSOX Red (shown in red) and nuclei marked with DAPI (shown
855  inblue). Cells treated with AgNPs exhibit significantly elevated red fluorescence, indicating an increase in
856  mitochondrial ROS production compared to the control group; (ii) Flow cytometric analysis assessed the
857  mitochondrial membrane potential (A%¥'m) through the use of JC-1 dye. The treatment with AgNPs led to a
858  reduction in the red/green fluorescence ratio, which indicates mitochondrial depolarization. The
859  accompanying quantitative bar graph clearly shows a significant decrease in the JC-1 ratio among the
860  AgNPs-treated cells; (iii) The time-dependent accumulation of mitochondrial ROS levels was evaluated
861  using MitoSOX Red fluorescence at 1, 3, and 6 hours following AgNPs exposure. The results displayed a
862  steady increase in fluorescence intensity with prolonged exposure duration, thereby affirming the buildup
863  of ROS in the mitochondria[ 139](reproduced under open access Creative Common CC BY license). (D)
864  Negative charged AuNPs induce dose-dependent cell death and reduce viability in MDA-MB-231 cells. (i)
865  Fluorescence imaging of live and dead MDA-MB-231 cells treated with AuNPs at concentrations of 0 to
866 500 pg/mL shows reduced green fluorescence at higher concentrations, indicating decreased cell viability;
867  (ii) (3-[5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) demonstrates a dose-dependent
868  decline in cell survival, with significant cytotoxicity noted at 500 pg/mL and above [140] (reproduced under
869  open access Creative Common CC BY license).

870

871  Studies have emphasized the modification of NPs to enhance their biocompatibility (Table 2 and
872  Table 3). A study used special pH-responsive linkages to fabricate DOX-conjugated PEG NPs on
873  a B-L-malic acid. The pH-sensitive conjugates remained stable at physiological pH and released
874  the encapsulated drug. The effective hindered growth of the MDA-MB-468 and MDA-MB-231

875  cancer cell lines was observed in vitro, as shown in Figure 8D[140] Lectin-conjugated pH-

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

876  responsive mesoporous silica NPs loaded with DOX showed targeted uptake and controlled release

877  in vivo. In osteosarcoma models, these NPs achieved high tumor inhibition with minimal toxicity

Open Access Article. Published on 10 January 2026. Downloaded on 1/11/2026 8:17:24 AM.

878  to healthy tissues, confirming excellent biocompatibility and therapeutic efficiency [141].

(cc)

879  Researchers developed gold-DOX nano-conjugates (Au-PEG-SS-DOX) for cancer therapy. These
880  particles demonstrated efficient tumor targeting and drug delivery, and exhibited acceptable
881 toxicity profiles in HepG2 cells, supporting their biocompatibility [142]. DOX-loaded solid lipid
882  nanoparticles (DOX—SLNs) were designed to overcome multidrug resistance in cancer by co-
883  delivering DOX and GG918 (Elacridar), a P-gp inhibitor. In MCF-7/ADR breast cancer cells, the
884  NPs enhanced intracellular drug retention, apoptosis, and cytotoxicity compared to free drugs. In
885  xenograft mouse models, they significantly inhibited tumor growth and metastasis with minimal
886  toxicity. Histological analysis confirmed their biocompatibility and safety, highlighting the
887  developed polymer-lipid hybrid NPs as a promising nanomedicine for MDR cancer therapy [143].
888  HER2-positive breast cancer cell lines (BT474 and SK-BR-3) showed efficient binding,

889 internalization, and photothermal ablation when treated with a nanocomplex made up of gold
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nanorods, porphyrin, and trastuzumab plus near-infrared (NIR) laser irradiation, while normal
mammary epithelial cells (MCF10A) exhibited minimal toxicity[144]. In in vivo studies using
nude mice bearing BT474 (HER2-positive) xenograft tumours, systemic injection of the developed
nanocomplex followed by NIR laser irradiation led to significant tumour growth inhibition
compared to control groups. Biodistribution and toxicity analyses demonstrated that the
nanocomplex accumulated preferentially in tumor tissue and organs, such as liver, kidney, heart,
spleen, revealed no significant alterations in biochemical markers (e.g., alanine aminotransferase,
aspartate aminotransferase, blood urea nitrogen and creatinine) or histopathological changes,
supporting favorable biocompatibility of the nanoplatform [144].

Zuo et al. (2021) [145] reported a self-assembled nanodrugs made from PTX and curcumin for
improved TNBC chemotherapy (Figure 9A). Prepared via a simple reprecipitation method, these

nanodrugs showed good water solubility, biosafety and pH-responsive drug release.
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Figure 9. (A) (i) TEM image of PTX-curcumin conjugate nanodrugs with a core-shell structure; (ii)) SEM
image of agglomerated PTX-curcumin conjugate nanodrugs on a rough surface; (iii) emission spectra of
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905  drug-loaded NPs indicating encapsulation [145] (reproduced under open access Creative Common CC BY
906 license). (B) (i) SEM image of lipid vesicles; (ii-iii)) Mean diameter showing a narrow size distribution
907  around 200-240 nm of PTX-NPs [146] (reproduced under open access Creative Commons CC-BY-NC-
908  ND license).

909

910

911  Anusha et al. (2023)[146] explored the anticancer potential of ginger-derived exosome-like NPs
912  against TNBC cells (Figure 9B). Ginger-derived exosome-like NPs were found to significantly
913  reduce the viability of MDA-MB-231 cells in a concentration-dependent manner while sparing
914  normal cells. They induced apoptosis through mitochondrial damage, ROS generation, nuclear
915 fragmentation, membrane disruption, and activation of apoptotic proteins and caspases. The study
916 revealed a novel anticancer role of ginger-derived exosome-like NPs and highlights their promise
917  as natural, low-toxicity therapeutics for TNBC [146].

918  Although NPs offer targeted delivery advantages, they can still cause off-target toxicity, harm
919  normal cells when targeting precision is poor. Instability or premature drug release from NPs can
920 lead to systemic toxicity, while physicochemical factors, such as particle size, charge, and surface
921  coating significantly affect biodistribution and cytotoxicity [147].

922  Lipid NPs can cause liver accumulation and hepatotoxicity, along with immune and inflammatory

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

923  reactions such as cytokine release. Lipid peroxidation may lead to lipid byproducts that can trigger
924  oxidative stress and membrane damage, while mild cardiotoxicity can occur with drug-loaded
925  forms, like liposomal DOX. Long-term exposure may also disturb lipid metabolism and burden

926  the liver and spleen [148].

Open Access Article. Published on 10 January 2026. Downloaded on 1/11/2026 8:17:24 AM.
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927  Some study shows non-specific cytotoxicity of AgNPs. MDA-MB-231 cells were damaged by
928  oxidative stress and DNA damage in a dose-dependent manner. While they showed stronger
929  toxicity toward cancer cells than normal ones, the same ROS-mediated pathways could also harm

930 healthy tissues if exposure is high [149].
931 5. Multifunctional Nanoparticles for Cancer Therapies

932 Current cancer therapeutics mainly target multiple tumor sites to deliver effective cancer detection
933  and treatment. Multifunctional NPs have been found to be more effective than single-function NPs
934  [150]. For greater precision, the synergistic NPs arise from their stimuli-responsive release

935  behavior, where NPs respond to tumor-specific cues such as pH, temperature, or redox gradients,
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enabling controlled and localized drug release at the tumor site. Furthermore, NPs can serve as
multifunctional theragnostics that combine chemotherapy, photothermal, and photodynamic
therapies, and imaging capabilities, thereby allowing simultaneous treatment and real-time
monitoring of therapeutic outcomes [151]. Additionally, Temperature and pH play pivotal roles in
enhancing the efficacy of nanoparticle-based nanomedicine for cancer therapy by enabling site-
specific and stimuli-responsive drug release. The mildly acidic tumor microenvironment (pH ~6.5)
and more acidic endo/lysosomal compartments (pH ~5.0-5.5) trigger pH-sensitive nanoparticle
destabilization or bond cleavage, ensuring selective drug release within tumors while minimizing
systemic toxicity. Similarly, localized hyperthermia (40-45 °C), induced by external stimuli such
as near-infrared light or magnetic fields, increases tumor vascular permeability, enhances
nanoparticle penetration and cellular uptake, and activates thermoresponsive drug release.
TNBC, being the most malignant type of breast cancer, has a heterogeneous tumor
microenvironment due to the presence of M2-tumor-associated macrophages (M2-TAM).
Multifunctional LyP-SA/AgNP@Dox NPs have been synthesized for site specific targeting of p32
receptor, also referred to as gClqR, that is located on the surface of breast cancer cells and
macrophages associated with tumors [152]. tLyP-1-HA NPs with dual receptor have also been
proposed for the targeting of highly metastatic TNBC[153]. Clinical research has shown that high
expression of CD44 and neuropilins is positively correlated with cancer carcinogenesis, metastasis,
and angiogenesis. The tLyP-1-HT NPs containing docetaxel were much more effective at stopping
tumor growth and preventing it from spreading; the NPs reduced the size of primary tumors and
lung metastases by 79.6%. Against post-pulmonary metastatic mice, the treatment demonstrated a
metastasis suppression rate of 85.1% and a life extension rate of up to 62.5% [153].

Liu et.al. (2024) [152] designed multifunctional LyP-SA/AgNP@Dox NPs to target TNBC cells
and tumor-associated macrophages simultaneously. DOX was combined with AgNPs, which were
coated with sialic acid and functionalized with the LyP-1 peptide for p32-mediated tumor and
tumor-associated macrophages targeting. /n vitro studies done with 4T1 cells and M2 macrophages
demonstrated enhanced cellular uptake, mitochondrial damage, elevated ROS generation, and
apoptosis, while efficiently overcoming multidrug resistance. In orthotopic TNBC mouse models,
the NPs showed greater tumor accumulation, significant tumor growth inhibition, and efficient

biosafety[152].
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966  Elbialy et al. (2020) [154] created ALG-CasNFS-DOXI1, in which tyrosine NPs were surface-
967 modified to encapsulate DOX (CasNFS-DOX) with natural polysaccharide alginate (ALG). By
968 facilitating the directed transport of DOX specifically to the tumor location, the NPs reduced the
969  drug's toxicity to critical organs (i.e., liver, spleen, kidney, and heart) and enhanced its anti-cancer
970  efficacy [154].

971  Site-specific treatments are extensively performed to enhance the destruction of tumor tissues.
972  Biocompatible, multifunctional lipid-coated calcium phosphate NPs were designed as an efficient
973  delivery platform for combined gene and photothermal therapy, aimed at suppressing the growth
974  of MDA-MB-468 both in laboratory settings and animal models [155]. Under 808 nm NIR laser
975  illumination, MDA-MB-468 cells efficiently absorbed lipid-coated calcium phosphate NPs
976  functionalized with a bispecific antibody NPs loaded with siRNA and indocyanine green, which
977  dramatically induced programmed cell death and inhibited cell growth[155]. Among other
978  combinational therapy modalities, combining gene therapy and photothermal therapy has
979  demonstrated enhanced therapeutic effectiveness through a synergistic approach in vivo [155].
980  Moreover, the conjugation of bispecific antibody to lipid-coated calcium phosphate NPs led to a
981  significant enhancement in the accumulation of the therapeutic agents and penetration into the

982  tumor tissues[156].

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

983  In another study, block copolymer nanoflower capsules [(L-GluA-5-BE)-b-(L-AspA-4-BE)] were

984  engineered to exploit TNBC’s tumor microenvironment. Their thermosensitive (elevated

Open Access Article. Published on 10 January 2026. Downloaded on 1/11/2026 8:17:24 AM.

985  temperatures commonly found in tumor tissues) and pH-responsive (slightly acidic conditions)

(cc)

986  drug release enables dual-triggered delivery, releasing drugs preferentially at tumor sites to
987  enhance cytotoxicity while sparing healthy tissue. The nanoflower structure also allows high drug
988 loading, stable circulation, and improved cellular uptake, collectively maximizing therapeutic
989  efficacy and minimizing systemic toxicity [157]. The study designed self-assembled block
990  copolymer [(BenzA)-b-(PCL)] micelles to arrange AuNPs into a hollow core—shell structure. This
991  configuration enhanced drug loading, photothermal efficiency, and cellular uptake, improving
992  targeted cancer therapy with excellent biocompatibility and stability, making it a promising
993  platform for future theragnostic use [158].

994 A successful and improved therapeutic strategy for cancer treatment that blocks the tumor cells'

995  ability to spread is to target many miRNAs. Devulapally et al. (2015)[159] created PLGA-b-PEG
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NPs for the encapsulation of antisense miR-21 and miR-10b. The dual loading inhibited growth of
breast cancer cells in vitro and in living tumor models.

Researchers designed gold-decorated chitosan—L-arginine ([(CS)-b-(L-Arg)]) NPs capable of co-
delivering gefitinib, a tyrosine kinase inhibitor, and miR-125b, a tumor-suppressor microRNA.
This dual-delivery system enhanced tumor suppression by combining gene regulation and drug
action, showing superior synergistic efficacy, stability, and biocompatibility compared to single
treatments [160]. This approach can enhance chemotherapy outcomes with lower drug doses.
Ongoing research is exploring the combination of therapeutic drugs with miRNA-loaded NPs in

breast tumors [160] .

6. Regulatory issues and FDA-approved nanoparticles for TNBC

Developing a new drug is a long, expensive, and complex process that can take over a decade.
Every new medicine must prove that its benefits clearly outweigh its risks before reaching patients.
This strict regulation ensures safety and scientific accuracy from early lab research to large human
trials. In the U.S., the Food and Drug Administration (FDA) oversees this entire process [161].
FDA drug approval pathway involves preclinical testing, Investigational New Drug (IND)
Application submission, three phases of clinical trials, and final FDA review. Through rigorous
evaluation of safety, efficacy, and manufacturing data, FDA ensures only drugs with proven
therapeutic benefits and acceptable risk profiles reach the market [162]. Among 207 oncology
drugs approved by the FDA, 39 are indicated for breast cancer, the highest number for any cancer
type. Most were initially approved for metastatic disease, with approximately 31% later granted
adjuvant approval. From 2016 to 2021, the FDA approved 19 additional breast cancer therapies,
primarily for advanced treatment lines [163], [164]. FDA-approved liposomal formulations
Lipodox, Evaset, Doxil/Caelyx, and Myocet are commercially available and widely used in breast
cancer treatment [165], [166]. Studies by Wissner and Mansour et. al. (2008)[167] reported
Doxorubicin Hydrochloride (Rubex) Phase II clinical evaluations of FDA-approved formulations,
demonstrating their therapeutic efficacy and safety in patients. These trials provided essential
clinical evidence supporting the optimized dosing, pharmacokinetic stability, and manageable
toxicity profiles necessary for subsequent regulatory approval and clinical use. In combination
with cyclophosphamide, vinorelbine has been shown to activate stem-like CD8" T cells and
enhance anti-PD-1 therapy effectiveness in TNBC. It is marketed in both injectable and oral forms.

Although novel formulations, such as liposomes [159] have been explored, the injectable form
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remains the only one commercially available. Abraxane (Nab-PTX), an albumin NPs formulation
for injectable suspension, has been evaluated as a first-line treatment for TNBC in Phase II clinical
trials (NCT00251472). Data from Lan et al. (2018) [168] and from ClinicalTrials.gov confirmed
its safety and efficacy, providing pivotal evidence that supported FDA approval for this indication.
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Table 2: Comparative summary of nanoparticle-based therapeutic systems targeting drug-resistant cancers.

NP Type Drug payload Size Cell/animal Key Outcomes Limitations Referen
Model ces
PEG-coated gold | None 4.8,12.1, | Cancer cell lines | Enhanced radiation Potential liver [142].
NPs (radiosensitizer) | 27.3, and tumor- therapy efficacy; size- | toxicity at higher
46.6 bearing mice dependent radio- concentrations
sensitization
Lectin-conjugated | Doxorubicin ~100 Human Selective targeting Potential [141]
mesoporous silica osteosarcoma cell | and internalization in | immunogenicity of
NPs line (HOS) and cancer cells; higher lectin-conjugated
preosteoblast cells | cytotoxicity in tumor | NPs; challenges in
(MC3T3-E1) cells large-scale
synthesis
Gold-doxorubicin | Doxorubicin ~20 Multidrug- Enhanced intracellular | Limited in vivo
nano-conjugates resistant cancer drug delivery; validation; [169]
cell lines significant reduction | potential
in cell viability in cytotoxicity in non-
resistant cell lines target cells
Branched Paclitaxel + Akt | 100-150 | MFC (mouse Significant tumor Limited number of
poly(LAEMA) inhibitor nm gastric tumor) in | growth inhibition vs in vivo models; [
pro-drug self- vivo + in vitro single agents; longer-term 1
assembled + suppression of toxicity/survival 4
encapsulated Akt PI3K/Akt pathway; not deeply explored | 2
inhibitor enzyme-responsive ]
(capivasertib) and release in tumor
paclitaxel microenvironment
Various nano- Many Various cancer Demonstrated Many are [142].
carrier types combinations: 50-200 cell lines/animal | improved intracellular | preclinical,
(liposomes, chemotherapy + | nm models (breast, delivery, bypassing heterogeneity in
polymeric NPs, MDR-reversal ovarian, lung, efflux pumps, models and NP
inorganic/hybrid | agents etc. glioblastoma) improved targeting, design; translation
NPs)
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enhanced efficacy in

to clinic still

resistant models limited
Mitochondrial- Doxorubicin ~150 nm | MCF-7/ADR Tumor inhibition rate | Specific to DOX-
targeting lipid- (DOX) (doxorubicin- (TIR) ~84.9%; resistant model; [169]
polymer hybrid resistant breast improved lysosomal potential scale-up
NPs (PLGA/CPT cancer) in vitro + | escape & and safety in
plus DOX) with in vivo mitochondrial humans unknown
pH-responsive targeting; overcame
shell DOX-resistance
Porous gelatin Gefitinib (TKI) - H23 KRAS Knocked down KRAS | No in vivo tumor [170]
nanocore + siRNA for mutant non-small | pathway, disrupted model reported;
functionalized KRAS cell lung cancer survival signaling translational
with cetuximab- | downstream (NSCLC) cellsin | (GABI-SHP2), hurdles (siRNA
siRNA + gefitinib vitro sensitized to TKI; delivery, stability)

minimal toxicity
without TKI

remain
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% g 1034  Table 3: Comparative overview of nanoparticle-based delivery systems and their mechanistic roles in TNBC therapy.
52 1035
S g o e .
§ § NP Mechanism of action Advantages Limitations Toxicity Clinical Translational References
< 3 hurdles
i 5 Liposomes | Lipid vesicles High biocompatibility, | Exhibit limited Generally low Ensuring stable [171], [172],
S o accumulate in TNBC capable of carrying capacity for large immunogenicity; formulations, precise [173]
§ E via the EPR effect, hydrophilic and biomolecules, face PEGylated targeting in TNBC, and
s B entering tumor cells to | hydrophobic drugs. drug leakage and liposomes are well | managing high
E E release their therapeutic | Easily modified for stability issues, and tolerated. manufacturing costs
g é playloads. targeted delivery to are cleared rapidly by with strict regulatory
PR TNBC, minimizing the reticuloendothelial requirements.
é é off-target toxicity. system (RES) without
@ PEGylation, along
g with notable batch-to-
g batch variability.
© & Protein NPs | These carriers utilize Excellent Limited payload Low protein High manufacturing [83], [174]
& natural uptake biocompatibility and | capacity, risk of breakdown costs; challenges in
pathways, like biodegradability with | protein denaturation, produces non-toxic | protein stability; need
albumin’s prolonged circulation. | sourcing variability, amino acids. for rigorous safety and
gp60/SPARC receptor- | Intrinsic tumor and potential Albumin-based immunogenicity
mediated endocytosis, | targeting enhances immunogenicity with | NPs have minimal | testing; limited
to enhance TNBC uptake and non-human or toxicity, but approved protein-based
internalization into allows easy co- modified proteins. contaminants and | nanodrugs for TNBC.
TNBC cells. delivery and ligand surface
conjugation. modifications need
testing.
MOFs Porous metal-organic High surface area and | Instability and Endogenous metal | Challenges include
frameworks release tunable pores allow complex synthesis MOFs (Fe, Zn, Ca) | biodegradability, safe [175], [176]
drugs in TNBC and ultra-high drug challenge MOFs, are biocompatible; | clearance, in-vivo
combine therapies. loading and combined | leading to toxicity stems stability, and regulatory
imaging and therapy uncontrolled drug from harmful ions | safety.
or linkers, but
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proper design can
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3§
S 2
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§ 2 metals. about uniformity. reduce risks.
< :
5 S
o >
& ¥ Carbon CNTs, graphene, and CNTs/graphene Aggregation and Unmodified Safety concerns over [177]
g 9 based carbon dots are provide effective solubility issues occur | CNTs/graphene long-term toxicity
53 effective for photothermal therapy, | without can be toxic; hinder large-scale
= % photothermal therapy and carbon dots offer | functionalization; PEGylation synthesis and clinical
3 9 and imaging, and can bright fluorescence for | challenges include reduces this. translation.
% 9 target TNBC. TNBC tumor imaging. | drug loading, release, | Carbon dots are
£ 3 All are easily and purification. low in toxicity, but
é . functionalized. their long-term
< H effects are still
g being studied.
% Inorganic Gold NPs convert NIR | Au enables NIR Limited Au cores are Key challenges are [176], [178],
o} to heat and act as CT absorption; Fez0, is biodegradability; mostly non-toxic; | organ retention, NP [179]
o contrast/drug carriers; | biodegradable and aggregation risk. Au is | however, small Au | synthesis, and human
= Fe;O,4 NPs provide MRI-active, costly; Fe3O4 may NPs or coatings safety. Few inorganic
MRI contrast and heat | supporting multimodal | oxidize. Drug loading | may trigger nanodrugs are in TNBC
in TNBC. imaging and drug is surface-dependent. | immune responses, | trials.
conjugation. and high doses of
iron oxide can
induce oxidative
stress.

Polymeric Biodegradable Biocompatible and Lower drug loading Polymers are often | Key challenges are [180], [181],
polymers like PLGA biodegradable, with than inorganic/MOF FDA-approved scale-up and stability, | [182], [183]
and PEG-PLA create targeted surfaces that | carriers; may show and safer than free | with few polymeric
NPs that release enhance drug burst release and drugs, while theragnostic NPs for
encapsulated solubility and efficacy | create acidic cationic polymers | TNBC in clinical trials.
chemotherapeutics in through sustained microenvironments, like PEI are
TNBC, triggered by pH | release. needing extra cytotoxic and
Or enzymes. surfactants. avoided.
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7. Conclusion and Future Perspectives

TNBC, being an extremely invasive type of breast cancer, has received an unusual amount of
attention. This aggressiveness is attributed to alterations in multiple genes, with BRCA1/2 and
TP53 being notable genes linked to TNBC. Patients with TNBC experience a greater likelihood of
distant metastasis and face a worse overall outlook than those with other breast cancer subtypes.
The TNBC tumor microenvironment is highly heterogeneous, presenting significant treatment
challenges. Multifunctional NPs with theragnostic features show promise in precise cancer
diagnosis, targeted treatment, and drug delivery for TNBC. Various treatment methods, including
immunotherapy, chemotherapy, and NPs-assisted drug delivery, have been used, and there is
potential for studying plant-based antioxidants combined with photosensitizers for TNBC
treatment. Greater focus should be placed on customized treatments designed to address the
specific needs of every individual patient.

The path forward in managing TNBC is rooted in comprehensive and personalized cancer care,
combining molecular profiling, artificial intelligence (Al), and nanotechnology to tailor treatments
for individual patients. Emerging tools such as single-cell sequencing, multi-omics integration,
and spatial transcriptomics can unravel intratumoral heterogeneity and identify novel therapeutic
targets. The advancement of stimuli-responsive NPs capable of drug release in response to pH,
temperature, or enzymatic activity, will enhance selective tumor targeting. Al-driven predictive
models are expected to optimize treatment strategies by analyzing patient-specific datasets and
predicting therapeutic responses. Innovations in nanotechnology have given rise to
immunotheragnostics, which combine aspects of nanomedicine and cancer immunotherapy to
tackle challenges, such as immune evasion and the “cold” tumor microenvironment seen in TNBC
[184]. Designed NPs systems are now being employed to directly deliver immune checkpoint
inhibitors, including anti-PD-1, anti-PD-L1, and anti-CTLA-4, to tumor sites. This method
enhances the accuracy of treatment while reducing systemic toxicity. These advanced nanocarriers
also facilitate the co-delivery of immunostimulants, such as CpG oligodeoxynucleotides and
STING agonists, as well as tumor antigens to promote dendritic cell activation and support
effective antigen presentation [185]. Furthermore, liposomal and polymeric NPs are engineered to
respond to the specific acidic or redox conditions of the tumor microenvironment, enabling
localized release of immune agonists and decreasing systemic inflammation [186]. In addition,

these NPs can shift the immune landscape by reprogramming tumor-associated macrophages from
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1068 an M2 immunosuppressive phenotype to an M1 pro-inflammatory state, thereby increasing
1069  cytotoxic T-cell infiltration and enhancing anti-tumor immunity [187]. This comprehensive
1070  strategy, which combines tumor imaging, immune modulation, and drug delivery, emphasizes the
1071  vital role of immuno-theragnostic in converting “cold” TNBC tumors into “hot” immune-
1072 responsive forms, potentially leading to better clinical outcomes.

1073  Simultaneously, Al and machine learning (ML) tools are transforming the field of TNBC
1074  nanomedicine by streamlining the design, characterization, and optimization of NPs. Contrary to
1075  traditional empirical methods, Al-driven approaches can predict optimal NP characteristics, such
1076  as size, surface charge, and composition, to maximize tumor uptake and biocompatibility [188].
1077  Advanced algorithms, including random forests, support vector machines, and deep learning
1078  models, are utilized to simulate interactions between NPs and biological systems, forecast
1079  biodistribution, and predict therapeutic outcomes through in silico methods. These computational
1080  strategies are reshaping biomarker discovery within oncology by merging multi-omics datasets to
1081  uncover molecular signatures related to TNBC progression, metastasis, and treatment response.
1082  For instance, deep learning models have effectively identified pyroptosis-related gene networks
1083  that predict TNBC prognosis, thus opening avenues for selecting NPs payloads and therapeutic
1084  targets [189]. The combination of Al-enhanced biomarker discovery with NPs mediated targeted

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

1085  therapy signifies a major advancement toward the development of intelligent, adaptive, and

1086  responsive nanomedicine.
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1087  Moreover, the genomic diversity inherent in TNBC presents opportunities for personalized

(cc)

1088  nanotherapeutic approaches. By merging high-throughput genomic and proteomic analysis with
1089  NPs-based treatments, therapies can be customized according to specific molecular signatures
1090  [190]. NPs can be tailored to deliver small interfering RNAs (siRNAs), microRNAs (miRNAs),
1091  or CRISPR/Cas gene-editing technologies aimed at targeting specific TNBC-related mutations,
1092  such as TP53, PIK3CA, and BRCA1/2. Additionally, researchers are investigating lipid or
1093  polymeric NPs for mRNA vaccines that encode patient-specific neoantigens to activate strong and
1094  precise anti-tumor immune responses. Moreover, biomarkers derived from liquid biopsies, such as
1095  circulating tumor DNA (ctDNA) and exosomal RNA, are being explored as noninvasive methods
1096  for monitoring treatment responses and dynamically adjusting nanotherapeutic strategies in real
1097  time [191]. These approaches reflect the principles of precision oncology, which emphasize

1098  adaptive, feedback-informed, and personalized nanomedicine for TNBC.
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Tumor organoid models and patient-derived xenografts will further refine preclinical drug testing
and bridge translational gaps. There is a growing interest in combining checkpoint inhibitors with
anti-cancer-loaded NPs to enhance immunotherapeutic efficacy. Moreover, using plant-based
materials for the green synthesis of NPs holds promise for safer and sustainable cancer therapies.
The incorporation of circulating tumor DNA (ctDNA) and liquid biopsies into routine monitoring
will offer real-time insights into treatment efficacy and resistance. Moving forward, a multi-
pronged, patient-centered approach that integrates cutting-edge diagnostics and personalized

therapeutics will be crucial in overcoming the therapeutic challenges posed by TNBC.
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