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Pseudocapacitive enhancement of VACNTs with
SnO2 for next-generation supercapacitors

Chinaza E. Nwanno, a Arun Thapa,a John Watt, b Winson Kuob and Wenzhi Li *a

Developing high-performance supercapacitors requires electrode materials that combine high energy

density, rapid charge transport, and long-term stability. In this study, we report a binder-free hybrid SnO2/

vertically aligned carbon nanotubes (VACNTs) composite electrode by directly growing VACNTs on nickel

foam via a plasma-enhanced chemical vapor deposition (PECVD) technique, followed by uniform SnO2

nanoparticles coating through a wet-chemical method. The hierarchical structure integrates the electric

double-layer capacitance (EDLC) of VACNTs with the pseudocapacitance of SnO2, resulting in enhanced

electrochemical performance. The SnO2/VACNTs electrode exhibited a high specific capacitance (262.39 F

g−1 at 5 mV s−1) in 1 M KOH, significantly exceeding pristine VACNTs (24.02 F g−1). It delivered an energy

density of 22.79 W h kg−1 at a power density of 0.18 kW kg−1 and retained 93% of its initial capacitance after

2000 cycles, demonstrating excellent rate capability and stability. Electrochemical impedance spectroscopy

(EIS) revealed a low charge-transfer resistance (0.93 Ω) and small equivalent series resistance (1.65 Ω),

indicating efficient electron and ion transport through the conductive VACNT framework. These results

highlight the potential of SnO2/VACNTs composites as promising binder-free electrodes for next-

generation high-energy, high-power supercapacitors.

1. Introduction

The growing demand for efficient, sustainable, and high-
performance energy storage systems has driven intensive
research into materials that can deliver both high energy and
power densities. Among various technologies such as Zn-air
batteries,1,2 lithium-ion batteries,3,4 and others,
electrochemical supercapacitors have attracted particular
attention as promising alternatives that effectively bridge the
gap between conventional capacitors and batteries.5,6 They
offer higher energy density than traditional capacitors7 and
higher power density than batteries,8,9 making them ideal for
applications requiring rapid charge–discharge and long-term
stability. Supercapacitors store energy through two primary
mechanisms: (i) Electric double-layer capacitors (EDLCs),
where energy is stored via charge separation at the electrode–
electrolyte interface,10–13 and (ii) pseudocapacitors, which
utilize transition metal oxides and conducting polymers that
undergo reversible Faradaic redox reactions.14–18

Carbon-based materials such as activated carbon,19–23

xerogels,24–27 aerogels,28–32 mesoporous carbon,33–37 carbon
nanotubes (CNTs),38–42 and graphene (G)43–48 are widely used

in EDLCs due to their high conductivity, structural stability,49

and large surface area.50 Vertically aligned carbon nanotubes
(VACNTs) are particularly attractive due to their structural
and physical properties, including high electrical
conductivity, excellent mechanical strength, and well-
organized pores, which facilitate efficient charge transport
and rapid ion diffusion.51,52 Unlike randomly oriented CNTs,
VACNTs provide direct pathways for ion movement,
minimizing internal resistance and improving rate
capability.3 Despite these advantages, pristine VACNTs
exhibit relatively low specific capacitance, limiting their
energy storage potential. Previous studies on pristine VACNT-
based supercapacitors have reported low specific capacitance
values. For example, Ghai et al.53 reported low specific
capacitance of ∼3.01 F g−1 for VACNTs grown on aluminum
(Al) foil, while Moreno et al.54 observed a specific capacitance
of 44 F g−1 for untreated VACNTs synthesized on stainless
steel (SS), demonstrating the limited charge storage capability
of pure VACNTs as EDLC electrodes. This limitation arises
from the fact that energy storage in pristine carbon-based
materials like VACNTs is based solely on electrostatic charge
accumulation, lacking any faradaic contribution to increase
capacitance.

To overcome this drawback, researchers have explored
hybrid electrode architectures, incorporating
pseudocapacitive transition metal oxides such as manganese
oxide (MnO2), nickel oxide (NiO), cobalt oxide (Co3O4) and
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tin oxide (SnO2), etc., into carbon nanostructures like CNTs,
graphene, carbon (C), and carbon nanofibers (CNF), to
enhance electrochemical performance. These transition metal
oxides can directly store a large amount of energy due to
their ability to undergo rapid surface redox reactions
involving ion adsorption and desorption coupled with
electron transfer.55 Among various metal oxides, SnO2 has
been widely investigated due to its low cost, non-toxicity,
high theoretical capacitance, and ability to operate over a
broad potential window. In addition, SnO2 possesses a low
electron chemical potential, which facilitates fast redox
reactions, making it an ideal candidate for supercapacitor
electrode applications.56 Studies have demonstrated the
improved electrochemical performance of SnO2-based carbon
composites. For instance, Li et al.57 fabricated SnO2/SWCNTs
core–shell nanowires by the electrodeposition of the SnO2

nanoparticles on the single-walled carbon nanotubes
(SWCNTs), achieving a high specific capacitance of ∼320 F
g−1 at 6 mV s−1, which was significantly higher than that of
the pristine SWCNTs (∼135 F g−1). Similarly, Vinoth et al.58

reported a specific capacitance of 133.33 F g−1 for an SnO2-
decorated multiwalled carbon nanotubes (MWCNTs)
electrode fabricated using a sonochemical procedure. Kuok
et al.59 developed a screen-printed SnO2/CNT quasi-solid-state
supercapacitor that exhibited an areal capacitance of 5.61 mF
cm−2 when flat and 5.68 mF cm−2 under bending, with an
impressive 96% capacitance retention after 1000 charge–
discharge cycles.

Beyond CNT-based composites, researchers have also
explored other carbon–SnO2 hybrid electrodes, such as
SnO2/CNFs, SnO2/C, and SnO2/G composites. For example,
Samuel et al.60 fabricated core–shell SnO2/CNF composite
mats via a single-nozzle one-step electrospinning method,
achieving a high specific capacitance of 289 F g−1 at a scan
rate of 10 mV s−1 and capacitance retention of 88% after
5000 cycles. Rani et al.115 reported a high specific
capacitance of 432 F g−1 at a current density of 1 A g−1 and
capacitance retention of 95% after 2000 cycles for an
SnO2@C composite from porous polymer beads by
impregnation method. Additionally, Lim et al.61 synthesized
SnO2/graphene nanocomposites using a solvothermal
approach, achieving a significantly enhanced specific
capacitance of 363.3 F g−1, which was nearly five times
higher than that of pristine graphene (68.4 F g−1). The
superior electrochemical performance was attributed to the
synergistic effect between the highly conductive graphene
sheets and the pseudocapacitive SnO2 nanoparticles, which
improved charge storage and transport efficiency. Similarly,
Jin et al.116 fabricated a graphene–SnO2–polyaniline (GSP)
ternary composite via a one-pot method, reporting an
exceptional specific capacitance of 913.4 F g−1 at 5 mV s−1,
with a capacitance retention of 90.8% after 1000 cycles.
The remarkable performance of the GSP composite was
attributed to the combined advantages of graphene's
conductivity, the pseudocapacitive contribution of SnO2,
and polyaniline's additional faradaic reactions.

However, despite extensive studies on SnO2/CNT, SnO2/C,
and SnO2/G, no prior research has investigated the use of
SnO2/VACNTs composites as supercapacitor electrodes.
Unlike randomly oriented CNTs, VACNTs provide a vertically
aligned structure that enhances ion accessibility and electron
transport efficiency, potentially addressing the diffusion
limitations of metal-oxide-based electrodes. By leveraging the
synergistic combination of high conductivity of VACNTs and
the pseudocapacitive behavior of SnO2, a SnO2/VACNTs
composite electrode can deliver superior electrochemical
performance, including higher specific capacitance, improved
energy and power densities, and lower charge transfer
resistance.

In this study, VACNTs were synthesized directly on nickel
(Ni) foam substrates using the plasma-enhanced chemical
vapor deposition (PECVD) technique, providing a robust,
binder-free electrode structure with excellent electrical
connectivity. A wet chemical method62 was used to coat the
SnO2 nanoparticles onto the VACNT array, forming a
composite electrode that integrates EDLC and
pseudocapacitive charge storage mechanisms.
Electrochemical characterization revealed that the SnO2/
VACNTs composite exhibits high specific capacitance,
excellent rate capability, and impressive cycling stability. The
work represents the first systematic investigation of SnO2/
VACNTs as a supercapacitor electrode, offering new insights
into developing high-performance hybrid energy storage
materials.

2. Experimental methods
2.1. Electrodes preparation

2.1.1. VACNTs synthesis. VACNTs were directly grown on
Ni foams (99.99 wt%, Alfa Aesar) using a PECVD technique.
Before the growth process, the Ni foams were cut into 1 cm ×
1 cm squares and cleaned via ultrasonication in acetone and
isopropyl alcohol (IPA) for 10 minutes each, followed by air
drying. The cleaned Ni substrates were then loaded into the
PECVD system for VACNT synthesis. The reaction chamber
was initially evacuated to a base pressure of 0.01 Torr, and
ammonia (NH3) gas was introduced at a flow rate of 195
sccm, maintaining a chamber pressure of 7 Torr. The
temperature was ramped up to 700 °C at a rate of 50 °C
min−1 under NH3 atmosphere, where NH3 acted as an etchant
and reducing agent to remove surface oxides and
contaminants from the Ni foam. This treatment promoted
the formation of nanoscale Ni catalyst particles on the Ni
foam surface through controlled surface roughening and
reduction, thereby creating uniformly distributed active sites
for CNT nucleation. The in situ formed Ni catalyst particles
ensured good adhesion of the VACNTs to the Ni foam
substrate. Upon reaching the desired growth temperature, a
direct current (DC) plasma was initiated at 80 W, and
acetylene (C2H2) gas was introduced at a flow rate of 35 sccm
as the carbon precursor. Growth was conducted at a
controlled total pressure of 7 Torr, maintained and
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monitored using a throttle valve to ensure process stability
and uniform plasma conditions. The VACNT synthesis
proceeded for 15 minutes, after which the heating system,
the plasma, and the gas flow were turned off, and the system
was allowed to cool to room temperature at the base pressure
before retrieving the samples from the system. The Ni foams
were weighed before and after the growth procedure to
ascertain the mass of VACNT deposition.

2.1.2. SnO2/VACNTs composite fabrication. The as-
synthesized VACNTs on Ni foam were coated with a thin layer
of SnO2 nanoparticles using a wet-chemical method. Before
coating, the VACNTs were treated with nitric acid (HNO3, 20
vol%) for 20 minutes to remove residual impurities and
introduce oxygen-containing functional groups on the VACNT
surface.63 This functionalization step was essential for
enhancing the hydrophilicity of the VACNTs, thereby
promoting uniform SnO2 coating over the entire length of the
VACNTs.64 The precursor solution was prepared by dissolving
1 g of tin(II) chloride (SnCl2, 98%, anhydrous, Alfa Aesar) in
80 mL of deionized (DI) water, followed by the addition of 1.4
mL of hydrochloric acid (HCl, 38%) to prevent the formation
of tetratin hexhydroxide dichloride (Sn4(OH)6Cl2) colloidal
particles, which could otherwise lead to the unintended
formation of SnO instead of SnO2 nanoparticles.

65

Following the acid treatment, the VACNTs were thoroughly
rinsed five times with DI water until the rinse solution
reached a neutral PH (∼7), confirming the complete removal
of residual acidic species before immersion in the SnO2

precursor solution. The solution was stirred with a constant
and gentle air flow during the coating process to ensure
uniform coating. The reaction proceeded at room
temperature for a coating duration of 9 hours according to
eqn (1) below:66

2SnCl2·H2O + O2 → 2SnO2 + 4HCl (1)

After the coating duration, the coated sample was rinsed
thoroughly with DI water and dried at 95 °C for 12 hours.
The mass loading of the SnO2/VACNTs composite was ∼0.5
mg cm−2 after drying. This was determined gravimetrically
from the weight difference of the Ni foam before VACNT
growth and after SnO2 deposition, using a microbalance
with ±0.01 mg accuracy. The coating mechanism was
primarily governed by electrostatic interaction, where the
positively charged Sn2+ ions in the aqueous SnCl2 solution
were anchored onto the negatively charged functional
groups on the VACNT surface.67 This is followed by the in
situ oxidation of the Sn2+ cations to form SnO2

nanoparticles.
2.1.3. Structural and physical characterization.

Morphological analyses of the materials were conducted
using field emission scanning electron microscopy (FE-SEM,
JEOL JSM-6330F) and transmission electron microscopy
(TEM, JEOL JEM 2100) operated at 300 kV. The
nanostructure, elemental composition, and crystallinity of
the various electrodes were further investigated using a

Tecnai F30 transmission electron microscopy (TEM)
operated at 300 kV. To evaluate the thermal stability and
composition, thermogravimetric analysis (TGA) was
performed using a TG/DSC system (SDT Q600 V20.9, USA).
The TGA analysis was conducted in airflow up to 900 °C
at a heating rate of 10 °C min−1. Before TGA
measurements, SnO2/VACNTs were detached from the Ni
foam using an IPA ultrasonic bath for 10 min, followed by
Ni residue removal with a strong bar magnet and
overnight drying at 100 °C. The surface chemical
composition and elemental states of the electrodes were
analyzed using X-ray photoelectron spectroscopy (XPS,
Omicron Nanotechnology, Oxford Instruments, Germany),
equipped with a monochromatic Al-Kα (1486.6 eV) X-ray
source operated at 15 kV and 20 mA. Binding energy
calibration was performed using the C1s peak (284.6 eV).
XPS data were deconvoluted using Origin 8.0 software to
analyze chemical states and bonding configurations. The
crystal structure and defect analysis of the pristine
VACNTs and the SnO2–VACNTs composite were done using
X-ray diffraction (Siemens Diffractometer D5000) with Cu
Kα radiation (λ = 1.54 Å), a step size of 0.02°, a scanning
range of 20–80°, and a speed of 2° min−1. Additionally,
Raman spectroscopy was conducted using an Ar+ laser
with a wavelength of 632.8 nm. The presence of functional
groups in the VACNTs and SnO2/VACNTs composites was
further assessed using Fourier transform infrared
spectroscopy (FTIR, Jasco FTIR-4100).

2.1.4. Electrochemical characterization. The
electrochemical performance of pristine VACNTs, and SnO2/
VACNTs composite electrodes was evaluated using CHI660E
electrochemical workstation (CH Instruments Inc., Texas) in
a three-electrode setup with 1 M potassium hydroxide (KOH)
as the electrolyte at room temperature. An Ag/AgCl electrode
(1 M Na2SO4) was used as the reference electrode, while a
platinum wire was used as the counter electrode. The as-
synthesized materials grown on Ni foam were used as the
working electrodes. Cyclic voltammetry (CV) experiments
were carried out at various scan rates over a potential range
of −0.7 to 0.2 V to analyze the charge storage of each
electrode. Additionally, galvanostatic charge–discharge
(GCD) tests were performed at different current densities
within the same voltage range to assess the charge–
discharge characteristics and rate capability. To investigate
the cycling stability, each electrode was subjected to 2000
CV cycles at 10 mV s−1 and the capacitance retention was
observed. Electrochemical impedance spectroscopy (EIS)
measurements were conducted in the 0.01 Hz to 50 kHz
frequency range at a perturbation amplitude of 10 mV to
analyze charge transfer resistance (Rct) and ion diffusion
kinetics. Before conducting the electrochemical tests, at
least 20 preliminary CV cycles at 50 mV s−1 were run to
stabilize the electrodes. Standard electrochemical equations
were applied to determine and compare the specific
capacitance, energy density, and power density of the
different electrode materials.
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Fig. 1 SEM images of VACNTs before and after SnO2 coating. (a and b) Low and high-magnification SEM images of pristine VACNTs on Ni foam. (c
and d) Low and high magnification SEM images of SnO2-coated VACNTs.

Fig. 2 TEM images of pristine VACNT and SnO2/VACNT. (a) HRTEM image of a pristine VACNT with an inset showing a lattice of 0.34 nm, typical
of MWCNTs. (b and c) HRTEM images of an SnO2–VACNT, showing SnO2 nanoparticles uniformly distributed on the CNT surface and a lattice
fringe of 0.34 nm, which corresponds to the (110) plane of SnO2. The inset in (c) shows the SAED pattern, confirming the polycrystalline nature of
SnO2. (d) EDX spectrum of the SnO2/VACNTs composite.
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3. Results and discussion
3.1. Structural and physical properties

The SEM images in Fig. 1 show the morphological evolution
of the VACNTs before and after SnO2 coating. The low-
magnification image in Fig. 1(a) shows the pristine VACNTs
directly grown on Ni foam, forming a well-defined porous
network where the nanotubes maintain vertical alignment.
The direct attachment of VACNTs to the Ni foam substrate is
expected to provide a highly conductive pathway for electron
transfer between the active material and the substrate,
effectively reducing interfacial contact resistance, a crucial
factor for high-rate charge/discharge performance.
Additionally, the porous structure of the VACNT network
enhances the accessible surface area, facilitates electrolyte
penetration for efficient ion transport, and promotes uniform
nanoparticles deposition.68,69 When a poorly conductive
material like SnO2 is coated onto the VACNTs, the nanotubes
will ensure efficient electron transfer between the SnO2

nanoparticles and the Ni substrate, enhancing the overall
electrochemical performance of the resulting composite
electrode. The high-resolution image in Fig. 1(b) further
corroborates the porous structure and the alignment of the
VACNT array. Fig. 1(c) and (d) show the morphological
changes of the as-synthesized VACNTs after SnO2 coating. In
Fig. 1(c), the low-magnification image shows that the overall
porous network is maintained. However, noticeable bundling
of the VACNTs occurs likely due to surface tension forces at
the liquid-CNT interface during the SnO2 coating process,
leading to localized aggregation.70,71 This bundling enhances
mechanical stability,72,73 making the SnO2/VACNTs
composite a promising candidate for energy storage
applications. The high-magnification image of the SnO2/
VACNTs composite (Fig. 1(d)) provides a clearer view of the
SnO2 coating, confirming the bundled nature of the resulting
SnO2/VACNTs composite. The image also reveals a roughened
texture on the VACNTs surfaces, indicating successful SnO2

coating across the entire lengths of the VACNTs.
The TEM images in Fig. 2 provide insight into the

structural and crystallographic properties of the as-
synthesized VACNTs and SnO2/VACNTs composite. Fig. 2(a)
presents a high-resolution TEM (HRTEM) image of a pristine
VACNT with an inset at the top right corner showing a well-
defined lattice fringe with an interplanar spacing of 0.34 nm
which corresponds to the characteristic spacing of multi-
walled CNTs (MWCNTs).74 This confirms the graphitic nature
of the VACNTs before SnO2 coating.75 Fig. 2(b) shows SnO2

nanoparticles distributed along the CNT surface, forming a
conformal coating while maintaining the nanotube
framework. This uniform coating of SnO2 nanoparticles is
beneficial for electrochemical applications, ensuring good
interfacial contact for charge transfer.76 Fig. 2(c) is the
HRTEM image of the SnO2/VACNTs composite showing the
crystalline nature of the SnO2 nanoparticles, with a measured
lattice fringe spacing of 0.34 nm, corresponding to the (110)
plane of SnO2 crystal. The polygonal feature marked in

Fig. 2(c) represents a crystalline grain measuring
approximately 4.30 nm, indicating the nanostructured nature
of the SnO2 coating. The selected area electron diffraction
(SAED) pattern in the inset reveals distinct diffraction rings
indexed (110), (101), (210), and (211) planes, showing the
polycrystalline nature of the SnO2 nanoparticles. Fig. 2(d)
shows the energy dispersive X-ray spectroscopy (EDX)
spectrum of the SnO2/VACNTs, confirming the elemental
composition of the composite. The strong peaks
corresponding to Sn Lα and Sn Lβ at approximately 3.4–4.0
keV indicate the successful deposition of SnO2 nanoparticles
onto the VACNTs. The presence of prominent C Kα and O Kα

at low energy suggests the carbonaceous nature of the
VACNTs and the oxygen content from the SnO2. The Ni Lα is
from the Ni foam substrate. Additionally, the Cu Kα and Cu
Kβ Eat around 8 keV stem from the copper grid used for TEM
analysis.

The structural, compositional, and chemical
characteristics of the SnO2/VACNTs composites, including
X-ray diffraction (XRD), Raman spectroscopy, Fourier-
transform infrared spectroscopy (FTIR), thermogravimetric
analysis (TGA), and X-ray photoelectron spectroscopy (XPS)
have been comprehensively reported in our previous work62

(see Fig. S1 and S2). In brief, the XRD patterns (Fig. S1(a))
confirmed the presence of the tetragonal crystalline SnO2

phase, while the Raman spectra (Fig. S1(b)) showed a slight
increase in the ID/IG ratio (from 1.12 to 1.18) after SnO2

coating, indicating defect formation due to HNO3 treatment.
These defects play a significant role in enhancing
electrochemical performance. Surface defects such as
vacancies, dangling bonds, edge dislocations, and functional
groups can act as additional active sites for ion adsorption,
thereby contributing to increased charge storage capacity.77,78

Moreover, these defect sites can facilitate faster ion transport
by reducing the energy barriers for ion diffusion at the
electrode–electrolyte interface.79 Consequently, the presence
of such defects in the VACNTs network is expected to
enhance both the capacitive behavior and the overall
electrochemical performance of the SnO2/VACNTs electrode.
FTIR analysis (Fig. S1(c)) revealed the emergence of oxygen-
containing functional groups (CO, –OH, C–O) on VACNT
surfaces, which facilitated uniform SnO2 coating. TGA (Fig.
S1(d)) revealed that the composite retained approximately 40
wt% SnO2 and remained thermally stable up to 800 °C. XPS
wide-survey spectrum result (Fig. S2(a)) confirmed the
presence of Sn, O, and C elements, consistent with successful
SnO2 coating on the VACNT framework. The Sn 3d core-level
spectrum (Fig. S2(b)) exhibited two distinct peaks at
approximately 487.7 eV (Sn 3d5/2) and 496.2 eV (Sn 3d3/2),
characteristic of Sn4+ species in tetragonal SnO2, with no
evidence of lower oxidation states. The deconvoluted O 1s
spectrum (Fig. S2(c)) showed components at 531.3 eV, 532.0
eV, and 533.5 eV, corresponding to O–Sn, OC, and O–CO
functional groups.80,81 Meanwhile, the C 1s profile (Fig.
S2(d)) displayed peaks at 284.9 eV, 285.7 eV, 287.4 eV, and
290.2 eV, which correspond to C–C, O–C, CO, and OC–O
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functional groups, respectively.82,83 These results confirm
that the SnO2 layer is chemically well integrated with the
VACNT network, promoting strong interfacial coupling
beneficial for charge transfer in electrochemical processes.

3.2. Electrochemical performance studies

The electrochemical performance of the pristine VACNTs and
SnO2/VACNTs electrodes was evaluated using CV. Fig. 3(a)

Fig. 3 (a) CV curves of the pristine VACNTs and SnO2/VACNTs electrodes at a fixed scan rate of 5 mV s−1. (b) CV curves of the SnO2/VACNTs
composite electrode at different scan rates. (c) Variation of gravimetric and areal specific capacitances of the SnO2/VACNTs electrode. (d) Graph of
log of peak current (Ip) vs. log of scan rate (ν).

Table 1 Comparison of the electrochemical performance of the pristine VACNTs and the SnO2/VACNTs composite with results reported in the
literature using similar materials

Electrode
Synthesis
method

Scan rate/current
density

Potential
window (V)

Specific capacitance
(F g−1) Electrolyte

Capacitance
retention (%) Ref.

Aligned CNTs CVD 100 mV s−1 0–2.5 23.8 — — 100
CNT sheet CVD 0.1 A g−1 0–0.8 19.2 PVA — 101
VACNTs ICVD 1 A g−1 0.2–0.8 75 1 M H2SO4 84 after 1000 cycles 69
VACNTs TCVD 50 mV s−1 0–0.8 3.01 1 M Na2SO4 — 53
SnO2/C Chemical 5 mV s−1 0–1.0 37.8 1 M H2SO4 — 84
SnO2/C Chemical 2 A g−1 −0.4–0.6 150 4.5 M H2SO4 >90 after 2000 cycles 102
SnO2/carbon aerogel Sol–gel 10 mA g−1 −1.0–1.0 69.8 1 M H2SO4 — 103
SnO2/CNF Electrospinning 1 A g−1 0–1.0 118 1 M H2SO4 94.6 after 10 000 cycles 96
SnO2/CNFs Electrospinning 20 mVs−1 −0.2–0.9 187 1 M H2SO4 95 after 1000 cycles 81
SnO2/graphene Chemical 0.2 A g−1 −0.2–0.8 126 1 M H2SO4 98.2 after 2000 cycles 104
SnO2/graphene Chemical 1 A g−1 0–1.0 184 6 M KOH — 105
SnO2/MWCNT Sonochemical 0.5 mA cm−2 0–1.0 133.33 1 M Na2SO4 — 58
SnO2/SWCNTs Chemical 6 mV s−1 0–1.2 320 1 M Na2SO4 98 after 1000 cycles 57
VACNTs PECVD 5 mV s−1 −0.7–0.2 24.02 1 M KOH 96 after 2000 cycles This work
SnO2/VACNTs Chemical 5 mV s−1 −0.7–0.2 262.39 1 M KOH 93 after 2000 cycles This work
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compares the CV curves of pristine VACNTs and SnO2/
VACNTs at a constant scan rate of 5 mV s−1. The pristine
VACNTs exhibit a nearly rectangular shape indicative of EDLC
behavior, which is associated with carbon-based materials
like CNTs, delivering a gravimetric specific capacitance of
24.02 F g−1 (corresponding to an areal specific capacitance of
23.75 mF cm−2. On the other hand, the SnO2/VACNTs
electrode exhibited a much higher gravimetric specific
capacitance of 262.39 F g−1 and a corresponding areal
capacitance of 131.20 mF cm−2, showing distinct redox peaks,
confirming the presence of faradaic reactions and
pseudocapacitive charge storage arising from the redox
activity of the SnO2 nanoparticles on the surfaces of the
VACNTs.84,85 The enhanced charge storage capability of the
SnO2/VACNTs composite can be attributed to a synergistic
dual mechanism involving EDLC and pseudocapacitance.
The VACNTs contribute to EDLC by enabling the electrostatic
accumulation of electrolyte ions at the electrode–electrolyte
interface, while the incorporation of SnO2 introduces faradaic
reactions, wherein charge is stored through fast, reversible
redox reactions occurring at the electrode surface and near-
surface regions. This performance surpasses several reported
SnO2-based supercapacitor electrodes, including SnO2-
graphene composites and SnO2-coated carbon fiber (SnO2/C),
as shown in Table 1. Furthermore, the higher current density
observed for the SnO2/VACNTs electrode compared to pristine
VACNTs at the same scan rate indicates an enhanced charge
storage capability attributed to the synergistic contributions
from both the highly conductive VACNT framework and the
electroactive SnO2 nanoparticles. The faradaic reactions
responsible for the pseudocapacitive behavior of the SnO2

nanoparticles are given by the following equations:86

SnO2 + H2O + e− ↔ SnOOH + OH− (2)

SnOOH + e− ↔ SnO + OH− (3)

Fig. 3(b) shows the CV curves of the SnO2/VACNTs
electrode at different scan rates ranging from 5 to 100 mV
s−1. At lower scan rates, well-defined redox peaks are
observed, confirming the pseudocapacitive behavior of the
SnO2 nanoparticles.87 As the scan rate increases, the CV
curves maintain a quasi-rectangular shape with noticeable
redox peaks, indicating the presence of both EDLC and
pseudocapacitive charge storage mechanisms. The retention
of this shape across various scan rates is attributed to the
alignment and well-defined porous structures of the VACNT
array, which facilitates rapid ion transport and charge
distribution, ensuring efficient electrochemical
performance.88,89 Although minor peak broadening and
shifts occur at higher scan rates due to ion diffusion
limitations, the composite electrode continues to exhibit
stable capacitive behavior.

The specific capacitance as a function of scan rate is
presented in Fig. 3(c). The gravimetric specific capacitance
decreases from 262.39 F g−1 at 5 mV s−1 to 142.01 F g−1 at 100

mV s−1, while the corresponding areal specific capacitance
decreases from 131.20 mF cm−2 to 71 mF cm−2 over the same
range. This decline is attributed to the limited diffusion of
electrolyte ions into the inner active sites at higher scan
rates, which restricts full utilization of the electrochemically
accessible surface area.90,91 At lower scan rates, the ions have
sufficient time to penetrate the porous SnO2/VACNT network,
allowing both surface adsorption and redox reactions to
occur efficiently, thereby yielding higher capacitance values.
Nevertheless, despite the decrease, the SnO2/VACNT
composite retains a relatively high capacitance even at
elevated scan rates, demonstrating excellent rate capability
and efficient ion transport pathways within the VACNT
structure. The gravimetric specific capacitance (Cgrav) and
areal specific capacitance (Careal) at various scan rates were
calculated from the following equations:86

Cgrav ¼ 1
mνΔV

ð
I vð ÞdV (4a)

Careal ¼ 1
AνΔV

ð
I vð ÞdV (4b)

where m is the mass of the pristine VACNTs, and the SnO2/
VACNTs in grams (g), A is the geometric area of the
electrodes (cm2), ν is the scan rate, ΔV is the sweep potential
window and

R
I(v)dV is the integral area under the respective

CV curves.
To gain insight into the charge-storage mechanism, the

dependence of peak current (Ip) on scan rate (ν) was analyzed
using the power-law relation:

Ip = aνb (5a)

Taking logarithms gives.

log(Ip) = log(a) + b log(ν) (5b)

where a is a proportionality constant related to the intrinsic
electrochemical activity of the electrode, and b differentiates
between capacitive (b ≈ 1) and diffusion controlled (b ≈ 0.5)
processes.92 As shown in Fig. 3(d), the slope of the log(Ip) vs.
log(ν) plot yields b = 0.856 (R2 = 0.9906), indicating that
charge storage in the SnO2/VACNTs electrode is
predominantly surface-controlled with a minor diffusion
contribution.93

The electrochemical performance of the electrodes was
further evaluated from the charge–discharge profiles.
Fig. 4(a) compares the GCD curves of the pristine VACNTs
and SnO2/VACNTs at a constant current density of 0.5 A g−1.
The pristine VACNTs exhibit a nearly symmetrical triangular
charge–discharge profile, typical of an EDLC. In contrast, the
SnO2/VACNTs electrode shows a longer charge–discharge
duration and a deviation from the ideal triangular shape,
indicating the presence of faradaic reactions associated with
the pseudocapacitive behavior of SnO2. The specific
capacitance values calculated from the discharge curves,
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using eqn (6), are 18.5 F g−1 for pristine VACNTs and 202.56
F g−1 for SnO2/VACNTs, demonstrating a substantial increase
in charge storage due to the incorporation of SnO2. The
prolonged discharge time for the SnO2/VACNTs highlights
the contribution of redox reactions to the overall capacitance,
significantly enhancing its energy storage capability. The
gravimetric specific capacitance value of the pristine VACNTs
electrode was calculated from the discharge curve using the
equation below:94

Cgrav ¼ IΔt
mΔV

(6a)

where I (A) is the discharge current, m is the mass of the
active materials in grams (g), Δt is the discharge time in
seconds, and ΔV is the discharge potential window in volts.

The gravimetric specific capacitance of the SnO2/VACNTs
electrode at different current densities were calculated from
the nonlinear GCD curves using the following equation:95

Cgrav ¼ 2Im

Ð
Vdt

ΔVð Þ2 (6b)

where Im is the current density in A g−1,
R
Vdt is the current

integral area and, and ΔV is the discharge potential window
in volts.

The charge–discharge profiles of SnO2/VACNTs at different
current densities ranging from 0.5 A g−1 to 10 A g−1 are
shown in Fig. 4(b). At lower current densities, the charge–
discharge curves exhibit distinct voltage plateaus, further
confirming the pseudocapacitive nature of the material. As
the current density increases, the discharge time decreases
due to ion diffusion limitations, restricting the full utilization
of active sites. However, the SnO2/VACNTs electrode
maintains a stable charge–discharge profile across all current
densities, demonstrating excellent rate capability and
structural integrity.

Fig. 4(c) illustrates the variation of gravimetric specific
capacitance with current density. The gravimetric specific
capacitance decreases from 202.56 F g−1 at 0.5 A g−1 to 90.22
F g−1 at a high current density of 10 A g−1. The decline in
specific capacitance as the current density increases is due to
limited ion diffusion at higher charge–discharge rates.

Fig. 4 (a) GCD curves of the pristine VACNTs and the SnO2/VACNTs electrodes at a constant current density of 0.5 a g−1. (b) GCD curves of the
SnO2/VACNTs at different current densities. (c) Specific capacitance vs. current density graph of the SnO2/VACNTs electrode. (d) Ragone plot of
the SnO2/VACNTs electrode.
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Despite this, the SnO2/VACNTs composite retains a relatively
high capacitance even at elevated current densities,
indicating efficient ionic transport and excellent rate
capability.

The Ragone plot of the composite electrode at different
current densities is derived from the charge–discharge curves
using the following equations and is presented in Fig. 4(d).

E Wh kg−1
� � ¼ 1

2
Csp ΔVð Þ2

3:6
(7)

P kW kg−1
� � ¼ E × 3:6

Δt
(8)

where E, P, Csp, ΔV, and Δt denote the energy density (W h
kg−1), power density (kW kg−1), specific capacitance (F g−1),
discharge potential window (V), and discharge time
(seconds), respectively.

The SnO2/VACNTs electrode delivers a high energy density
of 22.79 W h kg−1 at a power density of 0.18 kW kg−1,
outperforming many SnO2-based hybrids, with reported
energy density values between 10–21 W h kg−1.80,96–99

However, as the power density increases to 3.26 kW kg−1, the
energy density decreases to 10.15 W h kg−1, a typical trend of
supercapacitors. At lower power densities, the electrode can
store more energy due to prolonged ion interaction times,
while at higher power densities, rapid charge–discharge
cycling reduces ion accessibility, limiting energy storage.
Despite this, the SnO2/VACNTs composite retains a
comparatively high energy density even at elevated power
density. This performance is attributed to the highly
conductive and porous VACNT framework, which supports
efficient electron transport and rapid ion diffusion, as well as
the SnO2 nanoparticles, which contribute additional
pseudocapacitive charge storage through reversible faradaic
reactions.

Table 1 below compares the electrochemical performance
obtained in this study with reported values from the
literature using similar materials. As seen in the table, typical
SnO2 composites such as SnO2/C, SnO2/graphene, and SnO2/
MWCNTs exhibit specific capacitances in the range of 37–184
F g−1, often limited by random carbon or CNTs orientations,
binder interfaces, and sluggish ion transport. In contrast, the

Fig. 5 (a) Nyquist plots of the pristine VACNTs and the SnO2/VACNTs electrodes (the inset shows the high-frequency region of the plots). (b)
Nyquist plot of the SnO2/VACNTs electrode with equivalent-circuit fitting (inset shows the circuit model). (c) Bode plot of the SnO2/VACNTs
electrode. (d) Cycling performance of the pristine VACNTs and the SnO2/VACNTs electrodes over 2000 cycles at a constant scan rate of 10 mV s−1.
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SnO2/VACNTs architecture developed in this work provides a
well-ordered, porous and interconnected framework that
promotes rapid ion diffusion and efficient electrolyte access
to the active sites. The vertical alignment of the CNTs ensures
direct, continuous electron pathways from the current
collector to the active surface, effectively reducing charge-
transfer resistance and enhancing rate capability.
Additionally, the direct growth of VACNTs on Ni foam
eliminates polymeric binders and ensures strong electrical
contact, while the conformal SnO2 coating maximizes redox-
active surface area and charge utilization. The combination
of these structural and interfacial advantages explains the
superior electrochemical performance observed in this study,
confirming the distinct advantage of the SnO2/VACNTs
composite over pristine VACNTs and other carbon-based
SnO2 composites reported in the literature (Table 1).

Fig. 5(a) shows the Nyquist plots of the pristine VACNTs
and the SnO2/VACNTs electrodes, showing the frequency
response of the electrode and electrolyte in terms of the real
(Z′) on the x-axis and imaginary (Z″) on the y-axis. The series
resistance (Rs), which accounts for the electrode, electrode
material, and contact resistance,106 is 1.41 Ω for pristine
VACNTs and 1.65 Ω for SnO2/VACNTs. The slight increase in
Rs for SnO2/VACNTs is attributed to incorporating SnO2

nanoparticles, which introduce additional resistance due to
their semiconducting nature.107 The charge transfer
resistance (Rct), which represents the resistance at the
electrode–electrolyte interface, is significantly lower for
pristine VACNTs (0.23 Ω) compared to SnO2/VACNTs (0.93
Ω). The increased Rct for SnO2/VACNTs suggests that
introducing SnO2 nanoparticles increases interfacial
resistance due to redox reactions involved in
pseudocapacitive charge storage. Nevertheless, the Rct value
obtained in this study remains significantly lower than those
reported by Samuel et al.60 for various SnO2/CNF composites,
where Rct values ranged from 2.97 Ω to 120.4 Ω. In this work,
the highly conductive VACNTs network in the hybrid
electrode helps to reduce the charge transfer resistance by
providing rapid electron transport pathways. The low-
frequency region of the Nyquist plot exhibits a nearly vertical
slope corresponding to the Warburg impedance (W).108 The
Warburg resistance arises from the interaction between
electrolyte ions and the electrode surface, where the slope of
the line represents how well ions penetrate the electrode
structure.109 The steep vertical nature of the slope in both
pristine VACNTs and SnO2/VACNTs suggests efficient
electrolyte ion transport and minimal ion-diffusion
limitations within both electrodes. This excellent behavior is
attributed to the well-aligned and porous VACNTs structure,
which facilitates rapid ion movement. The inset of Fig. 5(a)
focuses on the high-frequency region, where the semicircle
represents the Rct.

110 The noticeably larger semicircle for
SnO2/VACNTs confirms the increased Rct due to the faradaic
reactions introduced by SnO2. Fig. 5(b) shows the Nyquist
plot of the SnO2/VACNTs electrode together with the
corresponding equivalent-circuit fit. The impedance

spectrum displays a distinct semicircle in the high- to mid-
frequency region, followed by the characteristic inclined
line associated with diffusion processes at lower
frequencies. The excellent overlap between the measured
data and the fitted curve demonstrates that the chosen
circuit model (inset) accurately describes the electrode
behavior. As shown, the model consists of Rs, Rct, double-
layer capacitance (Cdl) and a constant phase element (CPE)
accounting for non-ideal capacitive behavior. A Warburg
element (W) captures ion diffusion within the porous
electrode, and a pseudocapacitive element (Cp) represents
reversible faradaic storage at the electrode surface. Fig. 5(c)
presents the corresponding Bode phase-angle plot. The
phase angle (α) reaches ≈ 83° at low frequency (0.01 Hz),
approaching the ideal 90° value expected for purely
capacitive behavior.111 This high phase angle confirms that
the SnO2/VACNTs electrode exhibits predominantly
capacitive behavior with negligible ion-diffusion limitations,
consistent with the nearly vertical low-frequency region
observed in the Nyquist plot.

Furthermore, Fig. 5(d) shows the capacitance of both
electrodes over 2000 cycles at a constant scan rate of 10 mV
s−1. Both electrodes demonstrate excellent electrochemical
stability, with the pristine VACNTs electrode retaining 96% of
its initial capacitance and the SnO2/VACNTs maintaining
93% after 2000 cycles. The high cycling stability of the SnO2/
VACNTs electrode can be primarily attributed to the
mechanically and electrically robust VACNT framework. The
vertically aligned structure provides strong structural support
that accommodates the strain and volume changes
associated with the redox activity of SnO2 during repeated
cycling.112 This buffering effect helps prevent nanoparticle
agglomeration, detachment, or pulverization; degradation
pathways commonly observed in metal oxide-based
electrodes.113 In addition, the continuous interconnected
network of VACNTs offers highly conductive pathways for
electron transport, ensuring consistent electrical connectivity
throughout the electrode even as structural stresses
accumulate during cycling.114

4. Conclusion

In this work, a hybrid SnO2/VACNTs electrode was
successfully synthesized, exhibiting excellent electrochemical
performance for supercapacitor applications. The aligned
and porous structure of the VACNTs ensured rapid ion
transport and enhanced charge transfer, while the
pseudocapacitive SnO2 nanoparticles significantly improved
energy storage capacity. The composite electrode delivered a
high gravimetric specific capacitance of 262.39 F g−1 at 5 mV
s−1, a high energy density of 22.79 W h kg−1 at 0.18 kW kg−1,
and excellent cycling stability with 93% capacitance retention
over 2000 cycles. The integration of VACNTs and SnO2

effectively combines electric double-layer capacitance (EDLC)
with pseudocapacitive charge storage, reducing charge
transfer resistance and improving rate performance. These
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results position SnO2/VACNTs composites as strong
candidates for next-generation energy storage devices and
provide a scalable solution for high-power and high-energy-
density supercapacitors.
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