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Deep learning-driven microfluidic chip architecture design for intelligent 

particle motion control

Hongxia Lia,*,#, Xuhui Chena,#, Du Qiaoa,#, Xue Zhanga, Jiang Zhanga, Jianan Zoua, Danyang 

Zhaoa, Xuhong Qianb, Honglin Lib,*

a State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of 

Technology, Dalian 116023, China

b Innovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal 

University, Shanghai 200062, China

# These authors contributed equally to this work.

Abstract Precise spatiotemporal manipulation of particles in complex microfluidic channel 

networks (MCNs) underlies numerous advanced applications, but remains constrained by the 

difficulty of rapidly translating prescribed trajectories into manufacturable device designs. In 

this work, we introduce a modular deep learning framework that overcomes these limitations 

by decomposing MCNs into standardized, reusable functional modules with well-characterized 

fluidic and structural properties. For each module, a dedicated neural network predicts the full 

spatiotemporal particle state—including position, velocity, and transit time—under diverse 

flow conditions. A multi-module reconfiguration algorithm (MMRA) assembles these local 

predictions into continuous, device-scale trajectories while rigorously preserving physical state 

continuity. This approach enables deterministic port routing and precise spatiotemporal 

scheduling on “DUT” and “grid” chips, with a mean absolute timing error below 0.031 s. 

Integrated into PathChip, our user-friendly end-to-end design platform, the proposed approach 

enables users to specify target particle behaviors and automatically generate optimized module 

sequences, geometries, and control parameters, producing fabrication-ready device blueprints. 

Using this reverse design workflow, the integration of 5,000 modules can be completed in as 

little as 18 s. This work establishes a structurally scalable pathway toward programmable, 
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device-level spatiotemporal particle manipulation in microfluidics, with broad implications for 

lab-on-a-chip automation, high-throughput screening, and adaptive microfluidic systems.

1 Introduction

Precise spatiotemporal manipulation of particles in microfluidic systems underlies 

transformative advances in biomedicine and chemical synthesis1-3. By exploiting microscale 

flow phenomena within microchannels, precise spatial control over the motion of diverse 

particles, including polymer monolayers4, colloidal particles5, vesicles6, single cells7, and even 

bacteria8, has been successfully achieved. However, in complex microfluidic channel networks 

(MCNs), particle trajectories encode not only spatial routing but also timing information that 

directly determines downstream functionality. From steering drug carriers through vascular-

like networks9,10, orchestrating single-cell sequencing workflows11,12, to executing time-

resolved reactions in droplet microreactors13,14, the ability to predict the position, velocity, and 

arrival time of micro/nanoparticles with high fidelity promises unprecedented control over 

biological and chemical processes at the microscale15. Yet, implementing complex, user-

defined control of particle spatiotemporal trajectories in MCNs and translating them into 

channel geometries remains a formidable challenge.

Conventional design utilizes numerical simulations, demonstrating its advantages in 

nonlinear flow analysis and facilitating iterative optimization of the equipment. However, when 

dealing with complex, large-scale channel networks and particle trajectories, traditional 

approaches are usually computationally intensive, as they rely on computationally intensive 

multiphysics simulations and empirical iterative tuning16-20. These approaches suffer from two 

limitations when targeting complex global behaviors. Firstly, the complex topological 

connections and coupling of local flow fields in MCNs lead to the highly nonlinear behavior of 

particle flow, which leads to expensive time cost and increased risk of non-convergence21-23. 

Additionally, translating a desired spatiotemporal particle behavior (e.g., a specific sequence of 

movements at defined times and locations24,25) into an optimal device geometry and operational 

protocol is an ill-posed, non-intuitive inverse problem. Consequently, the design of microfluidic 

systems for sophisticated particle choreography is often slow, empirical, and limited in scope. 

Deep learning (DL) has emerged as an emerging tool that provides efficient methods for 
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fast prediction, and assisting in automated design exploration26,27. Recent works demonstrate 

capability of DL in predicting the mapping relationship between complex flow fields and 

particle behavior28-30, or optimizing simple device components31,32. However, these approaches 

are typically confined to forward prediction, and struggle when confronted with the historical 

state-dependence and long-range correlations inherent to particle transport in complex 

MCNs33,34. On the other hand, the inability to explicitly embed the physical connection between 

paths makes it difficult to predict and control the movement of particles over long distances and 

long periods of time35. Therefore, there is currently a lack of a scalable framework for 

holistically prediction and control of complex, device-scale spatiotemporal particle trajectories. 

Furthermore, while certain DL models facilitate inverse design for rudimentary components36 

or discrete outputs e.g. droplet size37,38, prevailing methodologies typically lack the granularity 

and flexibility requisite for translating intricate spatiotemporal path requirements into 

actionable device specifications and operational protocols39.

Here, we introduce a novel modular modeling and trajectory prediction strategy as shown 

in Fig. 1. We decouple MCNs into a series of standardized, reusable single modules with 

different fluidic or structural driving characteristics. The specific flow paths of the particles 

within the channel obtained using sheath flow focusing are shown in Fig. 1a. A dedicated DL 

model predicts instantaneous spatiotemporal particle motion information within each module 

under varying actuation conditions. On this basis, a multi-module reconfiguration algorithm 

(MMRA) then assembles these module-level predictions into continuous, device-scale 

trajectories, ensuring physical state continuity across transitions (Fig. 1b). We experimentally 

validate the framework on a “DUT” chip, demonstrating deterministic routing to prescribed 

outlets and active spatiotemporal planning enabled by precise delay control. In a grid-based 

chip architecture, the framework achieves a mean absolute timing error below 0.031 s. These 

capabilities are integrated into PathChip, a user-friendly end-to-end platform, that enables users 

to specify desired behaviors and automatically generates optimized module sequences, 

geometries, and operating parameters, producing fabrication-ready blueprints (Fig. 1c). Using 

this reverse design workflow, the integration of 5,000 modules can be completed in as little as 

18 s. This work establishes a scalable and generalizable route toward programmable, high-

fidelity spatiotemporal particle control across complex microfluidic architectures.

Page 3 of 31 Lab on a Chip

La
b

on
a

C
hi

p
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

4/
20

26
 9

:2
4:

50
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5LC01185J

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5lc01185j


4

Fig. 1. Modular framework for precise particle trajectory prediction and trajectory-guided inverse 
structural design.
a Schematic illustration of particle motion along a prescribed trajectory within a microchannel network. b 
Schematic of prediction and reconstruction of particle trajectories in a modularized network. c Schematic of 
automated inverse design of channel structures based on target trajectories.

2 Results

2.1 Dataset generation

To enhance the generalization and predictive performance of the neural network, we 

constructed a well-annotated and feature-diverse dataset. A total of 20 input parameters were 

selected to form a high-dimensional feature space, encompassing microchannel geometry, flow 
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conditions, and particle properties (Fig. 2a). Detailed parameter definitions and constraints are 

provided in Supplementary Fig. 1, Supplementary Tab. 1 and Methods 4.4.  The selected 20 

parameters capture dominant behaviors under low-Reynolds-number microchannel transport. 

Particle diameter and density are treated as explicit input parameters, allowing the learned 

mapping to capture size-dependent migration and routing behavior within each module. Factors 

such as flow regime transitions, fluid rheology, and interfacial interactions were excluded in 

this initial study due to their negligible impact within our experimental domain. Using Latin 

hypercube sampling (LHS), we generated 500 uniformly distributed samples across the input 

space. The uniformity of the sample distribution was evaluated by computing the normalized 

minimum Euclidean distance between sample points40 (Eq. 1), as shown in Fig. 2bi.

       
2

2
1
( )

d

ij i j ik jk
k

D x x x x
=

= - = -å

       
min mini ijj i

d D


=

(1)

where Dij denotes the Euclidean distance between the i-th and j-th samples, min
id  is the 

minimum distance from the i-th sample to all others, xi represents the i-th sample, and d is the 

feature dimensionality. As shown in Fig. 2bi, the normalized minimum distances are centered 

around 0.5, indicating a uniformly distributed sampling across the parameter space. We further 

assessed the distribution of geometric and flow configurations. As shown in Fig. 2bii and Fig. 

2biii, the three representative channel types occur in approximately equal proportions, and the 

inlet (1), none (0), and outlet (-1) flow states across the three branches are evenly represented. 

This balanced sampling ensures comprehensive coverage of particle dynamics across diverse 

structural and flow conditions.
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Fig. 2. Rapid dataset construction workflow for particle trajectory modeling.
a Definition of input features, containing 20 parameters for geometry, flow conditions, and particle properties. 
b Evaluation of uniformity and diversity of parameter sampling. c Generation of simulation and experimental 
data.

A complete dataset was constructed using both numerical simulations and particle-

tracking experiments (Fig. 2c). We developed a coupled laminar flow-particle transport 

numerical model to simulate particle motion under 500 distinct parameter configurations. The 

validity of the numerical model is detailed in Supplementary Note 1. A subset of the simulation 

cases, matching the physical properties of polystyrene (PS) microparticles, was selected and 

perturbed to generate 100 additional configurations for experimental data collection. This 5:1 

ratio between simulated and experimental samples ensured a balanced design between model-
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driven inference and empirical observation. In total, we obtained 6000 independent particle 

trajectory samples, each with a unique combination of channel geometry, flow conditions, and 

particle properties. For each case, four output features were extracted: outlet label OL, particle 

position ratio OR at the outlet cross-section, particle instantaneous velocity 2 2
X YV V V=   at 

the outlet, and particle migration time T from inlet to outlet. Detailed definitions of these four 

features are provided in Supplementary Note 2. This dataset forms the foundation for neural 

network training, supporting robust spatiotemporal trajectory prediction of particles in complex 

microchannel environments.

2.2 Single-module for particle motion prediction

In branched networks, the local flow distribution, hydrodynamic resistances, and 

geometric variations collectively determine how particles migrate across the device41. Accurate, 

module-level trajectory prediction thus allows designers to rationally position reaction 

chambers42, sorting units43, or outlet collectors44 based on the expected particle pathway. For 

biological or chemical workflows that require controlled routing, such as size-based cell 

enrichment45, vesicle separation46, and sequential reagent exposure47, trajectory prediction can 

achieve precise control.

To accurately predict particle motion within single module, we designed, trained, and 

optimized four deep neural network models. These models map local flow field conditions, 

channel geometry, and particle properties into four outputs related to spatiotemporal control of 

particle trajectories (see Supplementary Note 3 for model specifications). They contain: (i) the 

downstream branch selected by the particle, defined as outlet label OL, (ii) its lateral position at 

the module exit, defined as the position of the particle at the outlet OR, (iii) its instantaneous 

velocity V, and (iv) the transit time through the module, defined as migration time T. These four 

neural networks are collectively referred to as the particle motion prediction model (PMPM), 

as illustrated in Fig. 3a. Leverage these deep learning models, we can obtain the exit descriptor 

of a single module to represent the movement state of particles in each module, while ignoring 

the movement information of particle trajectories inside the module. This simplification greatly 

reduces the global data volume requirements and prediction time, thus enabling the need for 
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accurate prediction of complex, long-distance particle trajectories to be met. In addition, the 

flexibility of module assembly also makes it possible to automate the inverse design of complex, 

large-scale microchannel networks.

Fig. 3. Efficient prediction of particle dynamics using the residual neural network.
a Schematic of the neural network infers particle behavior within a single module based on predefined input 
features. b Visualization of classification and regression performance on the test set, including the confusion 
matrix and parity plots. c Predicted probability distributions for three outlet labels; blue markers indicate 
misclassified samples. d Regression performance metrics on the test set, including R², RMSE, and MAE. e 
Experimental images of particle trajectories under various parameter configurations. f AE between model 
predictions and experimental measurements, used to assess prediction accuracy.

80% of the dataset was used for model training, and the remaining 20% was reserved for 

testing. The coincidence degree between the particle outlet OL prediction and the experimental 

data of the trained model on the test set was 96.9±0.5%, with standard deviation calculated over 

five independent train-test splits. The confusion matrix (Fig. 3bi) shows strong agreement 
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between predicted particle outlet choice and the experimental data, indicating high fidelity in 

outlet selection for particles. For OR, V and T prediction tasks, the parity plots exhibit a near-

diagonal trend (Fig. 3bii-iv), indicating that the OR, V and T of the particles at the outlet coincide 

well with the experimental data. To further evaluate the accuracy of particle motion state 

prediction, we visualized the classification probability, that is the probability of which 

downstream branch the particle chooses, distribution on the test set and marked the point at 

which the particle enters the wrong branching channel (Fig. 3c). For OR, V and T prediction 

tasks, we computed the coefficient of determination (R²), root-mean-square error (RMSE), and 

mean absolute error (MAE) (Fig. 3d; detailed values in Supplementary Tab. 3). The predicted 

probabilities exhibit clear separation among different outlets, with stable performance and no 

evident outlet bias. Misclassifications is often near adjacent channel boundaries or close to 

branching inlets where subtle flow variations can influence particle routing. In practice, the 

proximity of particles to these areas should be avoided as much as possible (misclassification 

examples show in Supplementary Fig. 4). For regression tasks, prediction errors of OR and T 

appear more scattered. The OR shows relatively high RMSE (0.114), reflecting higher 

variability, but had no significant effect on the prediction.

To evaluate the accuracy of model predictions, we performed particle focusing 

experiments, the experimental platform and method are shown in Fig. 3e, Supplementary 

Video 1 and Methods 4.3. Within the parameters of the experiment, the particles were 

successfully focused at the specified position. Particles located at the center of the cross section 

of the particle flow were selected as targets, and the corresponding position, velocity, and time 

measurements were extracted. Based on the configured experimental parameters, the PMPM 

model was employed to predict the corresponding OR, V, and T values, and the predictions were 

compared with the experimental results. The corresponding absolute errors (AE) are shown in 

Fig. 3f. In comparison, the prediction accuracy of V, and T is higher than OR, but overall it 

remains below 0.2, show the prediction effect is better. The MAEs for OR, V, and T were 0.098, 

0.006 m/s, and 0.008 s, respectively. The largest AE was observed in OR, reaching up to 0.16, 

and exhibiting sensitivity to both flow rate and channel type. Under low flow conditions and in 

type-1 channels (straight type channel), particle paths were more deterministic due to more 

accurate predictions. In contrast, type-3 channels (double curved type channel) showed frequent 
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nonlinear deviations, reducing spatial prediction precision. Specifically, the MAE of OR was 

0.065 for type-1 channels and 0.134 for type-3 channels, highlighting a significant performance 

gap. In practice, type-1 channels are recommended as primary structural templates or 

optimization targets for inverse design tasks requiring high trajectory fidelity.

Discrepancies in the predictions likely arise from nonlinear couplings among input 

features, such as channel asymmetry, local shear gradients, or particle-fluid interactions48. 

These nonlinear interactions are inherent to inertial microfluidics41, and hold well in the range 

of laminar flow (Re<10) considered in this work. The regions where errors arise are consistent 

with known to be prone to perturbations in inertial microfluidics, such as cross-sectional 

expansions, turning junctions, or sharp geometric perturbations. These errors belong to the 

inherent errors of model prediction, and should be minimized in the practical application of 

these vulnerable regions of prediction, or additional targeted modeling of these regions to 

narrow the error.

Finally, we investigated the effect of dataset size on model accuracy. Models were trained 

on incrementally larger subsets ranging from 100 to 6000 samples, with each configuration 

repeated five times. For evaluation the accuracy of model training, 20% of the original dataset 

was randomly selected as a consistent test set. The resulting performance curves are shown in 

Fig. 4. For OL, T, and V, model accuracy plateaued once the training set exceeded 1000 samples, 

reaching performance comparable to that of the full dataset. In contrast, prediction of OR 

exhibited a stronger dependence on dataset size, indicating that high-resolution spatial 

descriptors require a larger sample pool to enable precise trajectory reconstruction.
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Fig. 4. Effect of dataset size on model performance.
The effect of dataset size on prediction performance is evaluated based on four criteria, namely a 
classification accuracy, b R², c RMSE, and d MAE.

2.3 Multi-module reconstruction of particle trajectory

To extend trajectory inference to global microchannel networks and module-level 

prediction to device level microfluidic networks, we developed a multi-module reconfiguration 

algorithm (MMRA). The MCNs were decomposed into standardized functional discrete single-

module with well-defined geometric and hydrodynamic characteristics, each enabling accurate 

local prediction of particle motion. By concatenating each modular particle motion data 

predicted with high accuracy, the modular particle motion data can be reassembly into long 

trajectories in a complex MCNs. MMRA was implemented within the PathChip framework 

and applied to multi-branch channel networks, as illustrated in Fig. 5a. By abstracting and 

modularizing the network, MMRA enables efficient global trajectory inference across complex 

channel topologies.

In order to realize efficient transmission of particle motion data, we use mathematical 
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language to transplant MCNs to a computer for processing. The unified digital structure and 

equivalent circuit model of the MCNs architecture is constructed for global inference, as shown 

in Fig. 5b. Flow distribution across branches is estimated using a fluid-circuit analogy. Each 

module in the MCNs is assigned a unique identifier, and the entire network is encoded as an 

undirected, unweighted adjacency matrix. Leveraging the fluid-electrical analogy49, Hagen-

Poiseuille’s law (Eq. 2) is approximated by Ohm’s law (Eq. 3) to rapidly estimate pressure-

driven flow across the network (see Methods 2.8 for implementation details). Based on the 

adjacency matrix, an equivalent electrical circuit of MCN is established, where resistors and 

wires represent fluidic connections; resistance corresponds to hydrodynamic resistance, and 

circuit nodes represent fluidic junctions. The fluid inlet node is connected to the positive 

terminal of a voltage source, while outlets are grounded, emulating a boundary condition of 

zero pressure (0 MPa).

        Hp p p QR -D = - =        (2)

        EV V V IR -= - =       (3)

MMRA achieves progressive expansion of particle trajectories by iteratively propagating 

particle state predictions between connected modules. At each step, the predicted particle 

motion results outputs from the current module—including the outlet label OL, particle position 

OR at the outlet, instantaneous velocity V, and transit time T—are passed as the particle entry 

conditions for the downstream module. Among these, OL and OR are critical in determining the 

subsequent path selection, ensuring continuity of particle state across the MCN. As illustrated 

in Fig. 5ci, MMRA initiates from a specified inlet module, infers the next module index based 

on the adjacency matrix, the digital connection map of the modules, and OL, and maps the 

current OR to the inlet position IR of the subsequent module. This process iterates until the 

particle reaches a designated outlet, completing the cross-module spatiotemporal trajectory 

construction (Fig. 5cii). The reconstructed module sequence is then reassembled into the 

original network layout and rendered via PathChip for global trajectory visualization (Fig. 5ciii). 

MMRA does not interfere with intra-module predictions but functions as a coordination 

framework for information propagation and path logging, which are assembled into a 

continuous trajectory that ultimately outputs a particle state sequence across modules. By 
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preserving both spatial and temporal information, the method enables efficient evaluation of 

particle routing, cumulative transit time, and arrival location across complex microfluidic 

circuits. Experimental results indicate that a five-module trajectory prediction takes 

0.631±0.051 s on average (n=10), demonstrating the framework’s efficiency and scalability for 

rapid trajectory inference in MCNs.

To validate the effectiveness of multi-module trajectory inference, we fabricated a 

microfluidic chip based on the abstracted MCNs show in Fig. 5a, and conducted particle 

tracking experiments. Using sheath flow focusing, we focused a suspension of 1 μm PS particles 

at the center position IR=0.4 and injected them through a straight channel into MCNs. As shown 

in Fig. 5d and Supplementary Video 2, the trajectory of a representative particle followed the 

path Node 1 → 2 → 6 → 7 → 5, eventually flows out through outlet 2. This trajectory is 

consistent with the MMRA-based prediction in Fig. 5ciii, confirming the accuracy of MMRA. 

To further demonstrate trajectory controllability, we designed and fabricated a channel shaped 

as the letters “DUT”, composed of multiple non-standard modules. The inter-module 

connections were abstracted via geometric similarity and mapped to approximate canonical 

module types. Under the MMRA framework, iterative adjustment of inlet parameters enabled 

directional guidance of particle motion. As shown in Fig. 5e, particles were focused at IR=0.5 

and successfully guided through the letters “D”, “U”, and “T” under the prescribed flow 

conditions, exiting from the tail of the “T.” The experimental trajectory aligns with the MMRA 

prediction (see Supplementary Video 2), demonstrating the predictive capability of PMPM in 

non-standard structures and the effectiveness of MMRA in controlling particle motion within 

physical microfluidic chips.
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Fig. 5. Spatiotemporally accurate module-by-module particle trajectory prediction and reconstruction 
via MMRA.
a The MCN was abstracted and segmented into labeled modules. b Digitization and circuit-based modeling 
of the channel. c: i Iterative inference using the MMRA, iteratively predicted from inlet to outlet. ii Module-
level trajectory results. iii Global trajectory reconstruction and visualization. d Experimental validation of 
multi-module trajectories. e Controlled particle trajectories in “DUT”-shaped chip.

2.4 Particle trajectory and delay control

In chemical and biological assays, precise temporal coordination and spatial sequencing 

are critical, such as coordinating multi-step reactions50, staged reagent exposure51, or timed 
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delivery52, requiring tight control over the delivery path and transmission delay of reagents or 

stimuli53-55. To explore this potential, we leveraged the developed neural network model PMPM 

to simulate delay-based control strategies for intrachannel particles transport. PMPM predicts 

the transit time of particles in the module, and is extended to the complete long trajectory time 

in the overall channel by MMRA. Different particle trajectories correspond to different flow 

times. Therefore, by controlling the particle trajectory, it is possible to control the transit time 

of particles in the channel. As a proof of concept, a 5×5 microfluidic grid chip as shown in 

Fig. 6a was designed to achieve time-delay control of particles.

Fig. 6. Precise delay control of particle transport via trajectory prediction and residual correction.
a A 5×5 grid network for time-delay control proof of concept. b Cross-shaped channel modules in real 
experiments. c Comparison plots between predicted transit time Tp 

and measured ground truth Tt across 
varying flow conditions. d Predicted particle trajectories and cumulative transit time Tj under different inlet 
configurations. e Actual particle paths and measured cumulative time Tjtrue. f Comparison between corrected 
predictions Tjcorr. and measured values Tjtrue.

Ensuring that the predicted time of particles in the module is consistent with the transit 

time of particle in the actual experiment module is the basis for achieving accurate prediction 

of the complete trajectory time. Due to structural discrepancies between module junctions in 
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the grid microchannel and standard configurations in the training dataset, directly applying the 

original time-prediction model will introduce systematic errors. Thus, we performed residual 

correction on the module transit time prior to global trajectory prediction56. The true transit time 

Tt and the model-prediction time Tp under 50 uniform sampling flow conditions were used to 

train a lightweight neural network to model the nonlinear residual relationship between Tt and 

Tp. The sampling module in the actual experiment is shown in Fig. 6b, and the prediction time 

and real-time sampling are shown in Fig. 6c. This network takes the original prediction Tp as 

input and outputs the residual R=Tt-Tp, refine time prediction. 

To evaluate time-delay control accuracy based on trajectory prediction, we predicted both 

the particle paths and transit times in grid microchannel (Fig. 6d). The model first estimated the 

uncorrected transit time Ti for each module (where i denotes the module index), and computed 

the total uncorrected trajectory time 
1

jN

j i
i

T T
=

= å , where j indexes the trajectory and Nj is the 

number of modules in the j-th path. A trained neural network was then applied to correct each 

module-level time prediction, yielding corrected transit times Ticorr. and total corrected 

trajectory times corr. corr.
1

jN

j i
i

T T
=

= å . As shown in Fig. 6e, we experimentally replicated the 

predicted flow settings, recording the actual particle trajectories and their corresponding total 

transit times Tjtrue. Video documentation is provided in Supplementary Video 3. Comparison 

between Tjtrue and Tjcorr. yielded absolute residuals Acorr. true corr.j jR T T= - , shown in Fig. 6f. The 

MAE between predicted and the actual data decreased significantly from 0.932 s (uncorrected) 

to 0.031 s after correction, with the maximum RAcorr. limited to 0.0965 s. These results confirm 

the robustness of accurate delay control using residual correction and demonstrate the ability 

of the developed model to achieve high-precision delay control. By linking spatiotemporal 

trajectory prediction with physical execution, this framework opens new opportunities for 

precise temporal coordination in microfluidic systems.

2.5 Inverse design automation

Finally, we propose the automated inverse design (AID) approach (see Supplementary 
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Fig. 5 for workflows) rapidly produces initial structural layouts, offering a scalable and efficient 

solution particularly suited for early-stage development or applications lacking design priors. 

We extended the PathChip framework by incorporating an AID module with optimization 

capability. The assumptions underlying this inverse design process are detailed in 

Supplementary Note 4. Given a predefined flow condition and a target trajectory, the system 

autonomously generates a channel configuration that satisfies the design objectives. Two key 

components are required to support this functionality: an adjacency matrix module (Fig. 7a) and 

an equivalent circuit analysis module (see Supplementary Fig. 6 for circuit model 

configuration). The adjacency matrix ensures consistency in module indexing during trajectory 

propagation. The circuit module, based on fluid-circuit analogy, reformulates the microfluidic 

network as a solvable Kirchhoff current-voltage system. This allows the program to directly 

ingest flow-related parameters and compute global flow rates across branches internally. The 

Kirchhoff current and voltage formulations corresponding to the adjacency matrix in Fig. 7a 

are provided in Supplementary Tab. 4.

To enable automated path planning towards a target particle trajectory or specified outlet 

condition, we implemented a particle swarm optimization (PSO) algorithm to iteratively tune 

microchannel structural parameters. As illustrated in Fig. 7b, the optimization objective is 

defined by the discrepancy between the predicted path and the target trajectory, quantified as 

the difference between the total path length and the number of sequentially matched nodes (Eq. 

4). This objective reflects the alignment accuracy between the generated and desired trajectories.

        T MObjectiveFun t Nn Nc io = -        (4)

Here, NT denotes the total number of nodes in the predicted path, and NM is the number of 

sequentially matched nodes with the target trajectory. Based on the predefined adjacency matrix, 

structural nodes are grouped into odd-numbered nodes (1, 3, 5, 7, 9) and even-numbered nodes 

(2, 4, 6, 8, 10) for parameter optimization, with nodes 11-14 designated as outlet nodes and 

node 15 as the inlet. Optimization is performed jointly on the geometric deflection angles A1k 

and A3k at each node group, along with the global channel widths Wik of both groups (i=1,2,3,4, 

k=1,2,3...Nj), where i represents branch indices and k is the node index along the trajectory of 

length Nj. At each iteration, a breadth-first search (BFS) algorithm identifies the optimal path 

under given flow conditions, ensuring that the particle reaches the designated outlet from the 
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inlet. The final optimized channel layout is shown in Fig. 7c. To validate the design outcome, 

a photomask was generated using the optimized parameters, followed by chip fabrication and 

trajectory experiments. Results demonstrate that particles, when initialized at the designated IR, 

consistently enter the desired outlet, in agreement with the predicted path (Fig. 7d, 

Supplementary Video 4), confirming the effectiveness of the proposed inverse design 

framework in both structural synthesis and trajectory control.

Fig. 7. Automated inverse design of microfluidic structures to achieve target particle trajectories. 
a Adjacency matrix. b Flow chart of the algorithm for the optimization of channel structure parameters. c 
Fabrication-oriented structural design based on optimized parameters. Final layouts are adjusted for 
manufacturability before microfabrication. d Experimental verification of the transport of particles along a 
specified path. e The number of modules and the corresponding computation time of the automatic inverse 
design algorithm.

To demonstrate the design efficiency of AID, we integrated 10 to 5000 modules on the chip 
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without prior knowledge, and for each condition, the AID algorithm was run 10 times. The 

design time of the AID algorithm and the corresponding number of modules are shown in 

Fig. 7e. The design time of the AID algorithm increases roughly linearly with the increase of 

the number of modules. Detailed data are provided in Supplementary Tab. 5. In the case of 

running 5000 modules, the average computation time of AID algorithm is 18.821 s, which 

indicates that the algorithm has high design efficiency in the face of complex large-scale module 

integration.

3 Discussion

This study presents an integrated framework that combines DL with modular modeling to 

enable high-precision spatiotemporal prediction, control, and automated structural optimization 

of particle transport in MCNs. By decomposing complex channels into functional modules, and 

PMPM is constructed to accurately predict particle routing, outlet position, velocity, and transit 

time within MCNs. Subsequently, MMRA then assembles global trajectories from local 

predictions, supporting dynamic control across scales. Residual correction further improves 

time prediction accuracy, making the framework suitable for multi-step reactions and delivery 

scheduling. Finally, by integrating the trajectory prediction with optimization, we achieved 

automated inverse design of complex microchannel structures under target trajectory 

constraints. Using this reverse design workflow, the integration of 5,000 modules can be 

completed in as little as 18 s.

The DL framework developed in this study demonstrates architectural scalability and 

device-level adaptability within the microfluidic regimes evaluated. The scalability claimed in 

this work refers to structural scalability achieved through modular assembly rather than 

generalizability across all possible microfluidic conditions. While its current predictive scope 

is limited to laminar flow regimes, canonical module geometries, passive particle transport, and 

rigid particles, the modular framework is inherently extensible. Specifically, additional physical 

effects—including viscosity variations, surface interactions, multiparticle coupling, and 

complex channel geometries—can be systematically incorporated as new training data and 

corresponding module models become available. Moreover, the framework naturally supports 

extension to deformable objects through the integration of deformation-related descriptors. 
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Built upon particle-like dynamics, the framework extends beyond synthetic microparticles (e.g., 

drug carriers57) to other point-like entities such as droplets58, bioactive particles such as cells59, 

exosomes60, vesicles61 and bacteria8, and even micro/nanorobots39,62,63. The system’s modular 

design also facilitates integration with broader automation platforms, such as droplet generation 

systems for trajectory prediction under varying conditions37 or cell-sorting devices for 

automated routing and precise allocation64. These diverse applications demonstrate the 

approach’s adaptability and translational potential across microfluidic domains. 

4 Methods

4.1 Materials

Microfluidic channels were fabricated using polydimethylsiloxane (PDMS) due to its high 

optical transparency, making it suitable for real-time imaging. Quartz substrates were used as 

the chip base, and SU-8 2075 was employed as the negative photoresist. Polystyrene (PS) 

microspheres with diameters of 1 μm, 5 μm, and 10 μm and a density of 1.05 g/cm³ were used 

as model particles for both dataset generation and validation experiments. Anhydrous ethanol 

(density: 0.79 g/cm³) served as the carrier fluid. PS particles were prepared at a concentration 

of 50 mg/mL in ultrapure water, with a coefficient of variation (CV) below 3%. Prior to 

introduction into the chip, the PS suspension was diluted 1:10 (v/v) with ethanol. To minimize 

aggregation and prevent channel blockage, 10% (v/v) Tween-20 was added to the diluted 

solution and sonicated to ensure uniform dispersion. All microchannels were rendered 

hydrophobic to prevent particle adhesion to PDMS surfaces.

4.2 Mcirofluidic chips fabrication

Microdevices were fabricated using standard soft lithography techniques. A negative 

photoresist SU-8 mold was first patterned onto a quartz substrate via photolithography. PDMS 

prepolymer and curing agent were mixed at a 10:1 mass ratio, thoroughly degassed under 

vacuum, and cast onto the SU-8 mold. The mixture was cured at 110 °C for 90 minutes to form 

an elastic PDMS layer with embedded rectangular microchannel structures. Inlet and outlet 
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ports were punched into the cured PDMS at designated locations. The PDMS layer and a glass 

substrate were then surface-activated using an oxygen plasma treatment system (Plutovac, 

PLUTO-F) and irreversibly bonded to form sealed microchannels. The assembled chip was 

further cured at 85 °C for 90 minutes to enhance bonding strength and structural stability.

4.3 Particle trajectory experiment

A syringe pump (LongerPump, LSP02-1B) was used to inject the diluted PS microsphere 

suspension and anhydrous ethanol into designated inlets of the microfluidic chip to establish a 

stable flow field. A high-speed camera (Revealer, AE120M, 2000 fps) mounted on an inverted 

biological microscope (Murzider, MSD351) was employed to capture particle motion. Video 

recordings were acquired using the camera's dedicated image acquisition software for image 

processing and particle trajectory extraction. A schematic of the experimental setup is provided 

in Supplementary Fig. 7.

4.4 Input feature limitation

To account for external factors influencing particle trajectories and accommodate the 

geometric variability in conventional microfluidic chips, a total of 20 parameters were selected 

across three domains: flow conditions, channel geometry, and particle properties. These 

parameters include inlet velocity, inflow/outflow configurations, channel width, inter-channel 

angles, particle diameter, and particle density e.t.. The parameter space considered in this study 

corresponds to single-phase Newtonian microflows operating in the low-Reynolds-number 

laminar regime (Re<10). Under these conditions, fluid viscosity and flow type remain fixed and 

thus do not introduce independent variability in particle dynamics. The current PathChip 

framework is validated within a well-defined domain of laminar microflows, consistent with 

the operating range of the experimental platform. Certain parameter combinations may result 

in physical interference between channels or generate inconsistent flow states due to 

randomness of sampling. Therefore, we introduce constraint formulations to avoid infeasible 

configurations during randomized parameter sampling.
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       1}
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å (5)

Here, .{ }1,0,1 , 2,3,4iL i - =  Eq. 5 enforces physically valid flow conditions within each 

channel module by preventing nonphysical scenarios such as all branches exhibiting inflow or 

the complete absence of connected channels. Geometric constraints, summarized in Eq. 6, are 

applied to restrict incompatible channel configurations, ensuring that all designed structures are 

physically realizable and free of boundary interference.
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     (6)

4.5 Numerical simulation

Numerical simulations were employed to emulate structural variations in microfluidic 

channels and to investigate how changes in channel parameters influence particle trajectories. 

COMSOL Multiphysics was selected as the simulation platform. The numerical model 

integrates two coupled modules—Laminar Flow and Particle Tracing for Fluid Flow—to 

simulate particle trajectories within microchannels. The laminar flow module is governed by 

the incompressible Navier-Stokes equations (Eq. 7):

       

( ) [ ]
0

( )( )

p




 =   -  
  =

=   

u u I K F
u

K u u T

(7)

where ρ is the fluid density; u is the velocity field (with x and y components); p is the pressure; 

μ  is the dynamic viscosity; F is the body force per unit mass (gravity neglected); and K 

represents the viscous stress tensor arising from velocity gradients. The identity matrix I is used 

to express the pressure as a scalar tensor. 

The particle tracing module follows the Newtonian equations of motion (Eq. 8):
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where mp is the particle mass, v is the particle velocity vector, and t is time. FL denotes the lift 

force, computed based on fluid-particle interactions. Additional terms include parameters such 

as particle radius rp, characteristic length D (e.g., the distance to nearby walls or interfaces), 

and gradient-related coefficients β and γ. G1(s) and G2(s) are dimensionless functions dependent 

on wall-normalized distance, while L and P(n) describe the particle’s proximity and projection 

onto the wall-normal vector, respectively. Remaining coefficients in Eq. 8 are derived from 

auxiliary expressions provided in Eq. 9.
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The default fluid properties from the COMSOL materials library were used to define the 

flow domain. Channel geometries were constructed in external CAD software and directly 

imported into the simulation environment. Within the Laminar Flow module, inlet and outlet 

boundaries were specified; inlet flow velocities were assigned based on sampled flow 

parameters, while a pressure point constraint of 0 MPa was applied at the outlet. In the Particle 

Tracing for Fluid Flow module, Inlet 1 was defined as the particle injection boundary, with ten 

particles uniformly introduced per inlet. All simulations were performed under dilute particle 

conditions, where particle-particle interactions and particle-induced flow perturbations are 

negligible. The model is therefore applicable to passive, single-particle transport in laminar 

microfluidic flows. Particle-wall interactions were configured as adhesive, and particle 

properties—including size and density—were assigned based on sampled values. Drag and lift 

forces were included in the force model. A steady-state solution was first obtained for the flow 

field, followed by a transient simulation of particle trajectories. The resulting outputs included 
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particle paths, velocities, and transit times within the microfluidic domain.

4.6 Fluid-circuit analogy

In drawing an analogy between microfluidic channels and electrical circuits, the 

correspondence between hydraulic resistance and electrical resistance must be clarified with 

respect to their governing factors. The hydraulic resistance RH of a rectangular microchannel is 

given by Eq. 10:

       
3

5 5
1,3,5

H
12

192 11 tan
2n

LR
h n wwh h
w n h








=

=
   -       

å (10)

where η is the dynamic viscosity, L is the channel length, w and h denote the channel width and 

height, respectively, and n is an odd positive integer representing the harmonic order in the 

infinite series. In practice, the series converges rapidly, and only a limited number of terms are 

needed to achieve sufficient accuracy.

To simplify Eq. 10, a geometric coefficient Cg can be introduced, yielding Eq. 11:

       2H g
LR C
A

= (11)

where A is the cross-sectional area of the channel. 

Analogously, the electrical resistance RE of a circuit element is defined as in Eq. 12:

       EER
A
l= (12)

where ρE is the resistivity and l is the conductor length. Comparing Eq. 11 and Eq. 12 reveals 

that 2
H /R L A , E /R l A . Therefore, when mapping microfluidic flow resistance onto its 

electrical counterpart, both the channel length L and cross-sectional width w must be 

simultaneously considered. Based on the equivalent circuit, the current Ii in each branch can be 

computed and interpreted as the corresponding volumetric flow rate Qi in the fluidic channel 

(with i denoting the branch index), enabling the determination of inlet velocities at each junction.
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4.7 Design Aids

We developed a MATLAB-based application, PathChip, which integrates both particle 

trajectory prediction and reconstruction algorithms into a unified platform. The application 

provides a visual interface to explore predicted trajectories alongside their corresponding 

structural parameter sets, and enables interactive module reconfiguration by adjusting design 

parameters of individual channel units. A demonstration of the user interface is provided in 

Supplementary Fig. 10.

PathChip comprises the following core functionalities: initialization, parameter 

configuration, parameter generation, visualization window, trajectory output, visualization 

utilities, and data export. The Initialization module includes network retraining, transfer 

learning, data import, save path selection, and training execution, enabling either full retraining 

or fine-tuning of the embedded neural network models with additional data. The Parameter 

Configuration module provides schematic illustrations and configurable ranges for each 

structural parameter to support user comprehension and control. The Parameter Generation 

module allows both manual and automated parameter design, including batch generation, user-

defined constraints, and channel shape customization for automated design, as well as control 

of inlets and outlets. The Visualization Window renders the predicted particle trajectories within 

the corresponding channel geometries. The Trajectory Output module displays numerical 

results of the predictions and includes functionality for animation generation to support post-

analysis. Visualization Utilities facilitate the overlay and comparison of experimental and 

simulated trajectories, as well as integration of trajectories generated through manual or 

automated design, allowing for external data import and dynamic animation rendering. Finally, 

the Export module supports exporting parameter tables and visualization snapshots for 

downstream reporting or analysis.
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All data supporting the findings of this study are available within the paper and SI or 
upon reasonable request from the corresponding author.
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