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Abstract Precise spatiotemporal manipulation of particles in complex microfluidic channel
networks (MCNs) underlies numerous advanced applications, but remains constrained by the
difficulty of rapidly translating prescribed trajectories into manufacturable device designs. In

this work, we introduce a modular deep learning framework that overcomes these limitations

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

by decomposing MCNs into standardized, reusable functional modules with well-characterized

fluidic and structural properties. For each module, a dedicated neural network predicts the full

Open Access Article. Published on 14 January 2026. Downloaded on 1/14/2026 9:24:50 PM.

spatiotemporal particle state—including position, velocity, and transit time—under diverse

(cc)

flow conditions. A multi-module reconfiguration algorithm (MMRA) assembles these local
predictions into continuous, device-scale trajectories while rigorously preserving physical state
continuity. This approach enables deterministic port routing and precise spatiotemporal
scheduling on “DUT” and “grid” chips, with a mean absolute timing error below 0.031 s.
Integrated into PathChip, our user-friendly end-to-end design platform, the proposed approach
enables users to specify target particle behaviors and automatically generate optimized module
sequences, geometries, and control parameters, producing fabrication-ready device blueprints.
Using this reverse design workflow, the integration of 5,000 modules can be completed in as

little as 18 s. This work establishes a structurally scalable pathway toward programmable,
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device-level spatiotemporal particle manipulation in microfluidics, with broad implications forcoiisss

lab-on-a-chip automation, high-throughput screening, and adaptive microfluidic systems.

1 Introduction

Precise spatiotemporal manipulation of particles in microfluidic systems underlies
transformative advances in biomedicine and chemical synthesis'->. By exploiting microscale
flow phenomena within microchannels, precise spatial control over the motion of diverse
particles, including polymer monolayers*, colloidal particles®, vesicles®, single cells’, and even
bacteria®, has been successfully achieved. However, in complex microfluidic channel networks
(MCNs), particle trajectories encode not only spatial routing but also timing information that
directly determines downstream functionality. From steering drug carriers through vascular-
like networks®!?, orchestrating single-cell sequencing workflows!'!:12 to executing time-
resolved reactions in droplet microreactors'3!4, the ability to predict the position, velocity, and
arrival time of micro/nanoparticles with high fidelity promises unprecedented control over
biological and chemical processes at the microscale!>. Yet, implementing complex, user-
defined control of particle spatiotemporal trajectories in MCNs and translating them into
channel geometries remains a formidable challenge.

Conventional design utilizes numerical simulations, demonstrating its advantages in
nonlinear flow analysis and facilitating iterative optimization of the equipment. However, when
dealing with complex, large-scale channel networks and particle trajectories, traditional
approaches are usually computationally intensive, as they rely on computationally intensive
multiphysics simulations and empirical iterative tuning!'®-2°, These approaches suffer from two
limitations when targeting complex global behaviors. Firstly, the complex topological
connections and coupling of local flow fields in MCNss lead to the highly nonlinear behavior of
particle flow, which leads to expensive time cost and increased risk of non-convergence?!-23,
Additionally, translating a desired spatiotemporal particle behavior (e.g., a specific sequence of
movements at defined times and locations?*2%) into an optimal device geometry and operational
protocol is an ill-posed, non-intuitive inverse problem. Consequently, the design of microfluidic
systems for sophisticated particle choreography is often slow, empirical, and limited in scope.

Deep learning (DL) has emerged as an emerging tool that provides efficient methods for

2
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fast prediction, and assisting in automated design exploration?®?7. Recent works demonstratecoiisss
capability of DL in predicting the mapping relationship between complex flow fields and
particle behavior?8-3, or optimizing simple device components®'-32. However, these approaches
are typically confined to forward prediction, and struggle when confronted with the historical
state-dependence and long-range correlations inherent to particle transport in complex
MCNs?334, On the other hand, the inability to explicitly embed the physical connection between
paths makes it difficult to predict and control the movement of particles over long distances and
long periods of time®. Therefore, there is currently a lack of a scalable framework for
holistically prediction and control of complex, device-scale spatiotemporal particle trajectories.
Furthermore, while certain DL models facilitate inverse design for rudimentary components36
or discrete outputs e.g. droplet size3”-3%, prevailing methodologies typically lack the granularity
and flexibility requisite for translating intricate spatiotemporal path requirements into
actionable device specifications and operational protocols®.

Here, we introduce a novel modular modeling and trajectory prediction strategy as shown
in Fig. 1. We decouple MCNs into a series of standardized, reusable single modules with
different fluidic or structural driving characteristics. The specific flow paths of the particles

within the channel obtained using sheath flow focusing are shown in Fig. 1a. A dedicated DL

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

model predicts instantaneous spatiotemporal particle motion information within each module

under varying actuation conditions. On this basis, a multi-module reconfiguration algorithm

Open Access Article. Published on 14 January 2026. Downloaded on 1/14/2026 9:24:50 PM.

(MMRA) then assembles these module-level predictions into continuous, device-scale
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trajectories, ensuring physical state continuity across transitions (Fig. 1b). We experimentally
validate the framework on a “DUT” chip, demonstrating deterministic routing to prescribed
outlets and active spatiotemporal planning enabled by precise delay control. In a grid-based
chip architecture, the framework achieves a mean absolute timing error below 0.031 s. These
capabilities are integrated into PathChip, a user-friendly end-to-end platform, that enables users
to specify desired behaviors and automatically generates optimized module sequences,
geometries, and operating parameters, producing fabrication-ready blueprints (Fig. 1c). Using
this reverse design workflow, the integration of 5,000 modules can be completed in as little as
18 s. This work establishes a scalable and generalizable route toward programmable, high-

fidelity spatiotemporal particle control across complex microfluidic architectures.
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Fig. 1. Modular framework for precise particle trajectory prediction and trajectory-guided inverse
structural design.

a Schematic illustration of particle motion along a prescribed trajectory within a microchannel network. b
Schematic of prediction and reconstruction of particle trajectories in a modularized network. ¢ Schematic of
automated inverse design of channel structures based on target trajectories.

2 Results

2.1 Dataset generation

To enhance the generalization and predictive performance of the neural network, we
constructed a well-annotated and feature-diverse dataset. A total of 20 input parameters were

selected to form a high-dimensional feature space, encompassing microchannel geometry, flow
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conditions, and particle properties (Fig. 2a). Detailed parameter definitions and constraintsarecoi1ss)
provided in Supplementary Fig. 1, Supplementary Tab. 1 and Methods 4.4. The selected 20
parameters capture dominant behaviors under low-Reynolds-number microchannel transport.
Particle diameter and density are treated as explicit input parameters, allowing the learned
mapping to capture size-dependent migration and routing behavior within each module. Factors
such as flow regime transitions, fluid rheology, and interfacial interactions were excluded in
this initial study due to their negligible impact within our experimental domain. Using Latin
hypercube sampling (LHS), we generated 500 uniformly distributed samples across the input
space. The uniformity of the sample distribution was evaluated by computing the normalized

minimum Euclidean distance between sample points* (Eq. 1), as shown in Fig. 2bi.

D, =[x~ = \/Zd:(xfk_ X)’
= (D

d™=minD,

J#i
where D;; denotes the Euclidean distance between the i-th and j-th samples, d™ is the

minimum distance from the i-th sample to all others, x; represents the i-th sample, and d is the

feature dimensionality. As shown in Fig. 2bi, the normalized minimum distances are centered

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

around 0.5, indicating a uniformly distributed sampling across the parameter space. We further

assessed the distribution of geometric and flow configurations. As shown in Fig. 2bii and Fig.

Open Access Article. Published on 14 January 2026. Downloaded on 1/14/2026 9:24:50 PM.

2biii, the three representative channel types occur in approximately equal proportions, and the

(cc)

inlet (1), none (0), and outlet (-1) flow states across the three branches are evenly represented.
This balanced sampling ensures comprehensive coverage of particle dynamics across diverse

structural and flow conditions.
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Fig. 2. Rapid dataset construction workflow for particle trajectory modeling.

a Definition of input features, containing 20 parameters for geometry, flow conditions, and particle properties.

b Evaluation of uniformity and diversity of parameter sampling. ¢ Generation of simulation and experimental

data.

A complete dataset was constructed using both numerical simulations and particle-

tracking experiments (Fig. 2c¢). We developed a coupled laminar flow-particle transport

numerical model to simulate particle motion under 500 distinct parameter configurations. The

validity of the numerical model is detailed in Supplementary Note 1. A subset of the simulation

cases, matching the physical properties of polystyrene (PS) microparticles, was selected and

perturbed to generate 100 additional configurations for experimental data collection. This 5:1

ratio between simulated and experimental samples ensured a balanced design between model-
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driven inference and empirical observation. In total, we obtained 6000 independent:particlecoiiss)
trajectory samples, each with a unique combination of channel geometry, flow conditions, and

particle properties. For each case, four output features were extracted: outlet label O,, particle
position ratio O at the outlet cross-section, particle instantaneous velocity V =/V; +V; at

the outlet, and particle migration time 7 from inlet to outlet. Detailed definitions of these four
features are provided in Supplementary Note 2. This dataset forms the foundation for neural
network training, supporting robust spatiotemporal trajectory prediction of particles in complex

microchannel environments.
2.2 Single-module for particle motion prediction

In branched networks, the local flow distribution, hydrodynamic resistances, and
geometric variations collectively determine how particles migrate across the device*!. Accurate,
module-level trajectory prediction thus allows designers to rationally position reaction
chambers*?, sorting units®}, or outlet collectors** based on the expected particle pathway. For
biological or chemical workflows that require controlled routing, such as size-based cell

enrichment®, vesicle separation*, and sequential reagent exposure*’, trajectory prediction can

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

achieve precise control.

To accurately predict particle motion within single module, we designed, trained, and

Open Access Article. Published on 14 January 2026. Downloaded on 1/14/2026 9:24:50 PM.

optimized four deep neural network models. These models map local flow field conditions,

(cc)

channel geometry, and particle properties into four outputs related to spatiotemporal control of
particle trajectories (see Supplementary Note 3 for model specifications). They contain: (i) the
downstream branch selected by the particle, defined as outlet label Oy, (ii) its lateral position at
the module exit, defined as the position of the particle at the outlet O, (iii) its instantaneous
velocity ¥V, and (iv) the transit time through the module, defined as migration time 7. These four
neural networks are collectively referred to as the particle motion prediction model (PMPM),
as illustrated in Fig. 3a. Leverage these deep learning models, we can obtain the exit descriptor
of a single module to represent the movement state of particles in each module, while ignoring
the movement information of particle trajectories inside the module. This simplification greatly

reduces the global data volume requirements and prediction time, thus enabling the need for
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accurate prediction of complex, long-distance particle trajectories to be met. In additiomgotbrecoiisss

flexibility of module assembly also makes it possible to automate the inverse design of complex,

large-scale microchannel networks.
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Fig. 3. Efficient prediction of particle dynamics using the residual neural network.

a Schematic of the neural network infers particle behavior within a single module based on predefined input
features. b Visualization of classification and regression performance on the test set, including the confusion
matrix and parity plots. ¢ Predicted probability distributions for three outlet labels; blue markers indicate
misclassified samples. d Regression performance metrics on the test set, including R?2, RMSE, and MAE. e
Experimental images of particle trajectories under various parameter configurations. f AE between model

predictions and experimental measurements, used to assess prediction accuracy.

80% of the dataset was used for model training, and the remaining 20% was reserved for
testing. The coincidence degree between the particle outlet O, prediction and the experimental
data of the trained model on the test set was 96.9+0.5%, with standard deviation calculated over

five independent train-test splits. The confusion matrix (Fig.3bi) shows strong agreement


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5lc01185j

Page 9 of 31 Lab on a Chip

View Article Online

between predicted particle outlet choice and the experimental data, indicating highofidelitytmcoiiss)
outlet selection for particles. For O, V and T prediction tasks, the parity plots exhibit a near-
diagonal trend (Fig. 3bii-iv), indicating that the O, V" and T of the particles at the outlet coincide
well with the experimental data. To further evaluate the accuracy of particle motion state
prediction, we visualized the classification probability, that is the probability of which
downstream branch the particle chooses, distribution on the test set and marked the point at
which the particle enters the wrong branching channel (Fig. 3¢). For Og, V and T prediction
tasks, we computed the coefficient of determination (R?), root-mean-square error (RMSE), and
mean absolute error (MAE) (Fig. 3d; detailed values in Supplementary Tab. 3). The predicted
probabilities exhibit clear separation among different outlets, with stable performance and no
evident outlet bias. Misclassifications is often near adjacent channel boundaries or close to
branching inlets where subtle flow variations can influence particle routing. In practice, the
proximity of particles to these areas should be avoided as much as possible (misclassification
examples show in Supplementary Fig. 4). For regression tasks, prediction errors of Og and T
appear more scattered. The O shows relatively high RMSE (0.114), reflecting higher
variability, but had no significant effect on the prediction.

To evaluate the accuracy of model predictions, we performed particle focusing

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

experiments, the experimental platform and method are shown in Fig.3e, Supplementary

Video 1 and Methods 4.3. Within the parameters of the experiment, the particles were

Open Access Article. Published on 14 January 2026. Downloaded on 1/14/2026 9:24:50 PM.

successfully focused at the specified position. Particles located at the center of the cross section

(cc)

of the particle flow were selected as targets, and the corresponding position, velocity, and time
measurements were extracted. Based on the configured experimental parameters, the PMPM
model was employed to predict the corresponding Og, V, and T values, and the predictions were
compared with the experimental results. The corresponding absolute errors (AE) are shown in
Fig. 3f. In comparison, the prediction accuracy of V, and T is higher than O, but overall it
remains below 0.2, show the prediction effect is better. The MAEs for Og, V, and T were 0.098,
0.006 m/s, and 0.008 s, respectively. The largest AE was observed in Oy, reaching up to 0.16,
and exhibiting sensitivity to both flow rate and channel type. Under low flow conditions and in
type-1 channels (straight type channel), particle paths were more deterministic due to more

accurate predictions. In contrast, type-3 channels (double curved type channel) showed frequent

9
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nonlinear deviations, reducing spatial prediction precision. Specifically, the MAB @fiQgsanasco1iss)

0.065 for type-1 channels and 0.134 for type-3 channels, highlighting a significant performance
gap. In practice, type-1 channels are recommended as primary structural templates or
optimization targets for inverse design tasks requiring high trajectory fidelity.

Discrepancies in the predictions likely arise from nonlinear couplings among input
features, such as channel asymmetry, local shear gradients, or particle-fluid interactions*s.
These nonlinear interactions are inherent to inertial microfluidics*!, and hold well in the range
of laminar flow (Re<10) considered in this work. The regions where errors arise are consistent
with known to be prone to perturbations in inertial microfluidics, such as cross-sectional
expansions, turning junctions, or sharp geometric perturbations. These errors belong to the
inherent errors of model prediction, and should be minimized in the practical application of
these vulnerable regions of prediction, or additional targeted modeling of these regions to
narrow the error.

Finally, we investigated the effect of dataset size on model accuracy. Models were trained
on incrementally larger subsets ranging from 100 to 6000 samples, with each configuration
repeated five times. For evaluation the accuracy of model training, 20% of the original dataset
was randomly selected as a consistent test set. The resulting performance curves are shown in
Fig. 4. For O;, T, and V, model accuracy plateaued once the training set exceeded 1000 samples,
reaching performance comparable to that of the full dataset. In contrast, prediction of Og
exhibited a stronger dependence on dataset size, indicating that high-resolution spatial

descriptors require a larger sample pool to enable precise trajectory reconstruction.

10
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Fig. 4. Effect of dataset size on model performance.
The effect of dataset size on prediction performance is evaluated based on four criteria, namely a
classification accuracy, b R?, ¢ RMSE, and d MAE.

2.3 Multi-module reconstruction of particle trajectory

To extend trajectory inference to global microchannel networks and module-level
prediction to device level microfluidic networks, we developed a multi-module reconfiguration
algorithm (MMRA). The MCNs were decomposed into standardized functional discrete single-
module with well-defined geometric and hydrodynamic characteristics, each enabling accurate
local prediction of particle motion. By concatenating each modular particle motion data
predicted with high accuracy, the modular particle motion data can be reassembly into long
trajectories in a complex MCNs. MMRA was implemented within the PathChip framework
and applied to multi-branch channel networks, as illustrated in Fig. 5a. By abstracting and
modularizing the network, MMRA enables efficient global trajectory inference across complex
channel topologies.

In order to realize efficient transmission of particle motion data, we use mathematical

11
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language to transplant MCNs to a computer for processing. The unified digital structureandcoiisss

equivalent circuit model of the MCNss architecture is constructed for global inference, as shown
in Fig. 5b. Flow distribution across branches is estimated using a fluid-circuit analogy. Each
module in the MCNss is assigned a unique identifier, and the entire network is encoded as an
undirected, unweighted adjacency matrix. Leveraging the fluid-electrical analogy*’, Hagen-
Poiseuille’s law (Eq. 2) is approximated by Ohm’s law (Eq. 3) to rapidly estimate pressure-
driven flow across the network (see Methods 2.8 for implementation details). Based on the
adjacency matrix, an equivalent electrical circuit of MCN is established, where resistors and
wires represent fluidic connections; resistance corresponds to hydrodynamic resistance, and
circuit nodes represent fluidic junctions. The fluid inlet node is connected to the positive
terminal of a voltage source, while outlets are grounded, emulating a boundary condition of

zero pressure (0 MPa).
Ap=p. —p =0Ry ()
V=V, -V =IR, 3)

MMRA achieves progressive expansion of particle trajectories by iteratively propagating
particle state predictions between connected modules. At each step, the predicted particle
motion results outputs from the current module—including the outlet label O,, particle position
Or at the outlet, instantaneous velocity V, and transit time 7—are passed as the particle entry
conditions for the downstream module. Among these, O, and Oy are critical in determining the
subsequent path selection, ensuring continuity of particle state across the MCN. As illustrated
in Fig. 5ci, MMRA initiates from a specified inlet module, infers the next module index based
on the adjacency matrix, the digital connection map of the modules, and O;, and maps the
current Oy to the inlet position I of the subsequent module. This process iterates until the
particle reaches a designated outlet, completing the cross-module spatiotemporal trajectory

construction (Fig. 5cii). The reconstructed module sequence is then reassembled into the

original network layout and rendered via PathChip for global trajectory visualization (Fig. 5ciii).

MMRA does not interfere with intra-module predictions but functions as a coordination
framework for information propagation and path logging, which are assembled into a

continuous trajectory that ultimately outputs a particle state sequence across modules. By

12
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preserving both spatial and temporal information, the method enables efficient evaluationmofcoiiss)
particle routing, cumulative transit time, and arrival location across complex microfluidic
circuits. Experimental results indicate that a five-module trajectory prediction takes
0.631+0.051 s on average (n=10), demonstrating the framework’s efficiency and scalability for
rapid trajectory inference in MCNss.

To validate the effectiveness of multi-module trajectory inference, we fabricated a
microfluidic chip based on the abstracted MCNs show in Fig. 5a, and conducted particle
tracking experiments. Using sheath flow focusing, we focused a suspension of 1 um PS particles
at the center position /z=0.4 and injected them through a straight channel into MCNs. As shown
in Fig. 5d and Supplementary Video 2, the trajectory of a representative particle followed the
path Node 1 -2 —6—7— 5, eventually flows out through outlet 2. This trajectory is
consistent with the MMRA-based prediction in Fig. Sciii, confirming the accuracy of MMRA.
To further demonstrate trajectory controllability, we designed and fabricated a channel shaped
as the letters “DUT”, composed of multiple non-standard modules. The inter-module
connections were abstracted via geometric similarity and mapped to approximate canonical
module types. Under the MMRA framework, iterative adjustment of inlet parameters enabled

directional guidance of particle motion. As shown in Fig. Se, particles were focused at /z=0.5

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

and successfully guided through the letters “D”, “U”, and “T” under the prescribed flow

conditions, exiting from the tail of the “T.” The experimental trajectory aligns with the MMRA

Open Access Article. Published on 14 January 2026. Downloaded on 1/14/2026 9:24:50 PM.

prediction (see Supplementary Video 2), demonstrating the predictive capability of PMPM in

(cc)

non-standard structures and the effectiveness of MMRA in controlling particle motion within

physical microfluidic chips.
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Fig. 5. Spatiotemporally accurate module-by-module particle trajectory prediction and reconstruction
via MMRA.

a The MCN was abstracted and segmented into labeled modules. b Digitization and circuit-based modeling
of the channel. ¢: i Iterative inference using the MMRA, iteratively predicted from inlet to outlet. ii Module-
level trajectory results. iii Global trajectory reconstruction and visualization. d Experimental validation of
multi-module trajectories. e Controlled particle trajectories in “DUT”-shaped chip.

2.4 Particle trajectory and delay control

In chemical and biological assays, precise temporal coordination and spatial sequencing

are critical, such as coordinating multi-step reactions®’, staged reagent exposure’!, or timed
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delivery’?, requiring tight control over the delivery path and transmission delay oforeagemtsorcoiiss

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
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stimuli®3-3. To explore this potential, we leveraged the developed neural network model PMPM
to simulate delay-based control strategies for intrachannel particles transport. PMPM predicts
the transit time of particles in the module, and is extended to the complete long trajectory time
in the overall channel by MMRA. Different particle trajectories correspond to different flow
times. Therefore, by controlling the particle trajectory, it is possible to control the transit time
of particles in the channel. As a proof of concept, a 5 X 5 microfluidic grid chip as shown in

Fig. 6a was designed to achieve time-delay control of particles.
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Fig. 6. Precise delay control of particle transport via trajectory prediction and residual correction.

a A 5x5 grid network for time-delay control proof of concept. b Cross-shaped channel modules in real
experiments. ¢ Comparison plots between predicted transit time 7, and measured ground truth 7 across
varying flow conditions. d Predicted particle trajectories and cumulative transit time 7; under different inlet
configurations. e Actual particle paths and measured cumulative time Tjy.. f Comparison between corrected

predictions Tjeor. and measured values Tjiye.

Ensuring that the predicted time of particles in the module is consistent with the transit
time of particle in the actual experiment module is the basis for achieving accurate prediction
of the complete trajectory time. Due to structural discrepancies between module junctions in

15
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the grid microchannel and standard configurations in the training dataset, directly applying
original time-prediction model will introduce systematic errors. Thus, we performed residual
correction on the module transit time prior to global trajectory prediction®. The true transit time
T; and the model-prediction time 7}, under 50 uniform sampling flow conditions were used to
train a lightweight neural network to model the nonlinear residual relationship between 7; and
T,,. The sampling module in the actual experiment is shown in Fig. 6b, and the prediction time
and real-time sampling are shown in Fig. 6¢. This network takes the original prediction 7}, as
input and outputs the residual R=T:-T,, refine time prediction.

To evaluate time-delay control accuracy based on trajectory prediction, we predicted both
the particle paths and transit times in grid microchannel (Fig. 6d). The model first estimated the

uncorrected transit time 7; for each module (where i denotes the module index), and computed

N;
the total uncorrected trajectory time 7; = 27; , where j indexes the trajectory and N, is the

i=1
number of modules in the j-th path. A trained neural network was then applied to correct each
module-level time prediction, yielding corrected transit times T7j., and total corrected

J

trajectory times 7, = » T.. - As shown in Fig. 6e, we experimentally replicated the
=1

predicted flow settings, recording the actual particle trajectories and their corresponding total

transit times 7Tjy,.. Video documentation is provided in Supplementary Video 3. Comparison

T..-T

Acorr. — | jtrue jcorr.

between T and T,y yielded absolute residuals R

, shown in Fig. 6f. The

MAE between predicted and the actual data decreased significantly from 0.932 s (uncorrected)
to 0.031 s after correction, with the maximum R, limited to 0.0965 s. These results confirm
the robustness of accurate delay control using residual correction and demonstrate the ability
of the developed model to achieve high-precision delay control. By linking spatiotemporal
trajectory prediction with physical execution, this framework opens new opportunities for

precise temporal coordination in microfluidic systems.

2.5 Inverse design automation

Finally, we propose the automated inverse design (AID) approach (see Supplementary

16
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Fig. 5 for workflows) rapidly produces initial structural layouts, offering a scalable and effisdentcoiiss)
solution particularly suited for early-stage development or applications lacking design priors.
We extended the PathChip framework by incorporating an AID module with optimization
capability. The assumptions underlying this inverse design process are detailed in
Supplementary Note 4. Given a predefined flow condition and a target trajectory, the system
autonomously generates a channel configuration that satisfies the design objectives. Two key
components are required to support this functionality: an adjacency matrix module (Fig. 7a) and
an equivalent circuit analysis module (see Supplementary Fig.6 for circuit model
configuration). The adjacency matrix ensures consistency in module indexing during trajectory
propagation. The circuit module, based on fluid-circuit analogy, reformulates the microfluidic
network as a solvable Kirchhoff current-voltage system. This allows the program to directly
ingest flow-related parameters and compute global flow rates across branches internally. The
Kirchhoff current and voltage formulations corresponding to the adjacency matrix in Fig. 7a
are provided in Supplementary Tab. 4.

To enable automated path planning towards a target particle trajectory or specified outlet
condition, we implemented a particle swarm optimization (PSO) algorithm to iteratively tune

microchannel structural parameters. As illustrated in Fig. 7b, the optimization objective is

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

defined by the discrepancy between the predicted path and the target trajectory, quantified as

the difference between the total path length and the number of sequentially matched nodes (Eq.

Open Access Article. Published on 14 January 2026. Downloaded on 1/14/2026 9:24:50 PM.

4). This objective reflects the alignment accuracy between the generated and desired trajectories.

(cc)

ObjectiveFunction= Ny, — N,, (4)
Here, Nt denotes the total number of nodes in the predicted path, and Ny is the number of
sequentially matched nodes with the target trajectory. Based on the predefined adjacency matrix,
structural nodes are grouped into odd-numbered nodes (1, 3, 5, 7, 9) and even-numbered nodes
(2, 4, 6, 8, 10) for parameter optimization, with nodes 11-14 designated as outlet nodes and
node 15 as the inlet. Optimization is performed jointly on the geometric deflection angles A
and A43; at each node group, along with the global channel widths W;; of both groups (i=1,2,3,4,
k=1,2,3...N;), where i represents branch indices and £ is the node index along the trajectory of
length N,. At each iteration, a breadth-first search (BFS) algorithm identifies the optimal path

under given flow conditions, ensuring that the particle reaches the designated outlet from the

17
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inlet. The final optimized channel layout is shown in Fig. 7c. To validate the desigwioutoeme,co1185)
a photomask was generated using the optimized parameters, followed by chip fabrication and
trajectory experiments. Results demonstrate that particles, when initialized at the designated I,
consistently enter the desired outlet, in agreement with the predicted path (Fig.7d,
Supplementary Video 4), confirming the effectiveness of the proposed inverse design

framework in both structural synthesis and trajectory control.
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Fig. 7. Automated inverse design of microfluidic structures to achieve target particle trajectories.

a Adjacency matrix. b Flow chart of the algorithm for the optimization of channel structure parameters. ¢
Fabrication-oriented structural design based on optimized parameters. Final layouts are adjusted for
manufacturability before microfabrication. d Experimental verification of the transport of particles along a
specified path. e The number of modules and the corresponding computation time of the automatic inverse
design algorithm.

To demonstrate the design efficiency of AID, we integrated 10 to 5000 modules on the chip
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without prior knowledge, and for each condition, the AID algorithm was run 10btimesolibrecoiiss)
design time of the AID algorithm and the corresponding number of modules are shown in
Fig. 7e. The design time of the AID algorithm increases roughly linearly with the increase of
the number of modules. Detailed data are provided in Supplementary Tab. 5. In the case of
running 5000 modules, the average computation time of AID algorithm is 18.821 s, which
indicates that the algorithm has high design efficiency in the face of complex large-scale module

integration.

3 Discussion

This study presents an integrated framework that combines DL with modular modeling to
enable high-precision spatiotemporal prediction, control, and automated structural optimization
of particle transport in MCNs. By decomposing complex channels into functional modules, and
PMPM is constructed to accurately predict particle routing, outlet position, velocity, and transit
time within MCNs. Subsequently, MMRA then assembles global trajectories from local
predictions, supporting dynamic control across scales. Residual correction further improves
time prediction accuracy, making the framework suitable for multi-step reactions and delivery

scheduling. Finally, by integrating the trajectory prediction with optimization, we achieved

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

automated inverse design of complex microchannel structures under target trajectory

constraints. Using this reverse design workflow, the integration of 5,000 modules can be

Open Access Article. Published on 14 January 2026. Downloaded on 1/14/2026 9:24:50 PM.

completed in as little as 18 s.

(cc)

The DL framework developed in this study demonstrates architectural scalability and
device-level adaptability within the microfluidic regimes evaluated. The scalability claimed in
this work refers to structural scalability achieved through modular assembly rather than
generalizability across all possible microfluidic conditions. While its current predictive scope
is limited to laminar flow regimes, canonical module geometries, passive particle transport, and
rigid particles, the modular framework is inherently extensible. Specifically, additional physical
effects—including viscosity variations, surface interactions, multiparticle coupling, and
complex channel geometries—can be systematically incorporated as new training data and
corresponding module models become available. Moreover, the framework naturally supports
extension to deformable objects through the integration of deformation-related descriptors.
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Built upon particle-like dynamics, the framework extends beyond synthetic microparticless¢e/ga,co1185)

drug carriers®’) to other point-like entities such as droplets®®, bioactive particles such as cells®®,
exosomes®?, vesicles®! and bacteria®, and even micro/nanorobots3%¢263, The system’s modular
design also facilitates integration with broader automation platforms, such as droplet generation
systems for trajectory prediction under varying conditions®” or cell-sorting devices for
automated routing and precise allocation®. These diverse applications demonstrate the

approach’s adaptability and translational potential across microfluidic domains.

4 Methods

4.1 Materials

Microfluidic channels were fabricated using polydimethylsiloxane (PDMS) due to its high
optical transparency, making it suitable for real-time imaging. Quartz substrates were used as
the chip base, and SU-8 2075 was employed as the negative photoresist. Polystyrene (PS)
microspheres with diameters of 1 um, 5 pm, and 10 pm and a density of 1.05 g/cm? were used
as model particles for both dataset generation and validation experiments. Anhydrous ethanol
(density: 0.79 g/cm?) served as the carrier fluid. PS particles were prepared at a concentration
of 50 mg/mL in ultrapure water, with a coefficient of variation (CV) below 3%. Prior to
introduction into the chip, the PS suspension was diluted 1:10 (v/v) with ethanol. To minimize
aggregation and prevent channel blockage, 10% (v/v) Tween-20 was added to the diluted
solution and sonicated to ensure uniform dispersion. All microchannels were rendered

hydrophobic to prevent particle adhesion to PDMS surfaces.

4.2 Mcirofluidic chips fabrication

Microdevices were fabricated using standard soft lithography techniques. A negative
photoresist SU-8 mold was first patterned onto a quartz substrate via photolithography. PDMS
prepolymer and curing agent were mixed at a 10:1 mass ratio, thoroughly degassed under
vacuum, and cast onto the SU-8 mold. The mixture was cured at 110 °C for 90 minutes to form

an elastic PDMS layer with embedded rectangular microchannel structures. Inlet and outlet
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ports were punched into the cured PDMS at designated locations. The PDMS layemand aoglasscoiiss)
substrate were then surface-activated using an oxygen plasma treatment system (Plutovac,
PLUTO-F) and irreversibly bonded to form sealed microchannels. The assembled chip was

further cured at 85 °C for 90 minutes to enhance bonding strength and structural stability.

4.3 Particle trajectory experiment

A syringe pump (LongerPump, LSP02-1B) was used to inject the diluted PS microsphere
suspension and anhydrous ethanol into designated inlets of the microfluidic chip to establish a
stable flow field. A high-speed camera (Revealer, AE120M, 2000 fps) mounted on an inverted
biological microscope (Murzider, MSD351) was employed to capture particle motion. Video
recordings were acquired using the camera's dedicated image acquisition software for image
processing and particle trajectory extraction. A schematic of the experimental setup is provided

in Supplementary Fig. 7.

4.4 Input feature limitation

To account for external factors influencing particle trajectories and accommodate the

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

geometric variability in conventional microfluidic chips, a total of 20 parameters were selected

across three domains: flow conditions, channel geometry, and particle properties. These

Open Access Article. Published on 14 January 2026. Downloaded on 1/14/2026 9:24:50 PM.

parameters include inlet velocity, inflow/outflow configurations, channel width, inter-channel

(cc)

angles, particle diameter, and particle density e.t.. The parameter space considered in this study
corresponds to single-phase Newtonian microflows operating in the low-Reynolds-number
laminar regime (Re<10). Under these conditions, fluid viscosity and flow type remain fixed and
thus do not introduce independent variability in particle dynamics. The current PathChip
framework is validated within a well-defined domain of laminar microflows, consistent with
the operating range of the experimental platform. Certain parameter combinations may result
in physical interference between channels or generate inconsistent flow states due to
randomness of sampling. Therefore, we introduce constraint formulations to avoid infeasible

configurations during randomized parameter sampling.
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4
ZI{L[:—I} 21 (5)
=2

Here, Le{-1,0,1},i=2,3,4. Eq. 5 enforces physically valid flow conditions within each

channel module by preventing nonphysical scenarios such as all branches exhibiting inflow or
the complete absence of connected channels. Geometric constraints, summarized in Eq. 6, are
applied to restrict incompatible channel configurations, ensuring that all designed structures are

physically realizable and free of boundary interference.

K =1= min(W,,W,) <2R

(K =1A 4=90)v (K =2)]= R > (6)

4.5 Numerical simulation

Numerical simulations were employed to emulate structural variations in microfluidic
channels and to investigate how changes in channel parameters influence particle trajectories.
COMSOL Multiphysics was selected as the simulation platform. The numerical model
integrates two coupled modules—Laminar Flow and Particle Tracing for Fluid Flow—to
simulate particle trajectories within microchannels. The laminar flow module is governed by
the incompressible Navier-Stokes equations (Eq. 7):

pu-Vu=V:[-pl+K]+F
pV-u=0 (7)
K= /J(Vll + (Vu)T)
where p is the fluid density; u is the velocity field (with x and y components); p is the pressure;
4 1is the dynamic viscosity; F is the body force per unit mass (gravity neglected); and K
represents the viscous stress tensor arising from velocity gradients. The identity matrix I is used
to express the pressure as a scalar tensor.

The particle tracing module follows the Newtonian equations of motion (Eq. 8):
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d(m v) DOI: 10.1036/D5LC011859
—L ~=F +F,
A
F, = p== B(BG,(5)+ /Gy(s)n ®)

F, :meM(u—v)
T

P

where m,, is the particle mass, v is the particle velocity vector, and 7 is time. F; denotes the lift
force, computed based on fluid-particle interactions. Additional terms include parameters such
as particle radius r,, characteristic length D (e.g., the distance to nearby walls or interfaces),
and gradient-related coefficients f and y. G,(s) and G,(s) are dimensionless functions dependent
on wall-normalized distance, while L and P(n) describe the particle’s proximity and projection
onto the wall-normal vector, respectively. Remaining coefficients in Eq. 8 are derived from

auxiliary expressions provided in Eq. 9.

2
. P
P 18u
M= ! (1-P(n))+ ! P(n)
B B 9 1 5 9
-2 gt - B e Ly 1-2g+ie ©)
16 8 256 16 8
a=
L

The default fluid properties from the COMSOL materials library were used to define the

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

flow domain. Channel geometries were constructed in external CAD software and directly

imported into the simulation environment. Within the Laminar Flow module, inlet and outlet

Open Access Article. Published on 14 January 2026. Downloaded on 1/14/2026 9:24:50 PM.

boundaries were specified; inlet flow velocities were assigned based on sampled flow

(cc)

parameters, while a pressure point constraint of 0 MPa was applied at the outlet. In the Particle
Tracing for Fluid Flow module, Inlet 1 was defined as the particle injection boundary, with ten
particles uniformly introduced per inlet. All simulations were performed under dilute particle
conditions, where particle-particle interactions and particle-induced flow perturbations are
negligible. The model is therefore applicable to passive, single-particle transport in laminar
microfluidic flows. Particle-wall interactions were configured as adhesive, and particle
properties—including size and density—were assigned based on sampled values. Drag and lift
forces were included in the force model. A steady-state solution was first obtained for the flow

field, followed by a transient simulation of particle trajectories. The resulting outputs included
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particle paths, velocities, and transit times within the microfluidic domain. DOI: 10.1039/D5LC01185]

4.6 Fluid-circuit analogy

In drawing an analogy between microfluidic channels and electrical circuits, the
correspondence between hydraulic resistance and electrical resistance must be clarified with
respect to their governing factors. The hydraulic resistance Ry of a rectangular microchannel is

given by Eq. 10:

RH
h(192 & 1 nTw (10)
ll-—= = —tanh
o (12 3 (5]

where 7 is the dynamic viscosity, L is the channel length, w and /4 denote the channel width and
height, respectively, and # is an odd positive integer representing the harmonic order in the
infinite series. In practice, the series converges rapidly, and only a limited number of terms are
needed to achieve sufficient accuracy.

To simplify Eq. 10, a geometric coefficient C, can be introduced, yielding Eq. 11:

L

RH = an?

(1)

where 4 is the cross-sectional area of the channel.

Analogously, the electrical resistance Rg of a circuit element is defined as in Eq. 12:

R = pp (12)

/
A
where pg is the resistivity and / is the conductor length. Comparing Eq. 11 and Eq. 12 reveals
that R, oc L/ A*, R, ocl/A. Therefore, when mapping microfluidic flow resistance onto its
electrical counterpart, both the channel length L and cross-sectional width w must be
simultaneously considered. Based on the equivalent circuit, the current /; in each branch can be

computed and interpreted as the corresponding volumetric flow rate Q; in the fluidic channel

(with i denoting the branch index), enabling the determination of inlet velocities at each junction.
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4.7 Design Aids DOI: 10.1039/D5LCO1185J

We developed a MATLAB-based application, PathChip, which integrates both particle
trajectory prediction and reconstruction algorithms into a unified platform. The application
provides a visual interface to explore predicted trajectories alongside their corresponding
structural parameter sets, and enables interactive module reconfiguration by adjusting design
parameters of individual channel units. A demonstration of the user interface is provided in
Supplementary Fig. 10.

PathChip comprises the following core functionalities: initialization, parameter
configuration, parameter generation, visualization window, trajectory output, visualization
utilities, and data export. The /Initialization module includes network retraining, transfer
learning, data import, save path selection, and training execution, enabling either full retraining
or fine-tuning of the embedded neural network models with additional data. The Parameter
Configuration module provides schematic illustrations and configurable ranges for each
structural parameter to support user comprehension and control. The Parameter Generation
module allows both manual and automated parameter design, including batch generation, user-

defined constraints, and channel shape customization for automated design, as well as control

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

of inlets and outlets. The Visualization Window renders the predicted particle trajectories within

the corresponding channel geometries. The Trajectory Output module displays numerical

Open Access Article. Published on 14 January 2026. Downloaded on 1/14/2026 9:24:50 PM.

results of the predictions and includes functionality for animation generation to support post-

(cc)

analysis. Visualization Utilities facilitate the overlay and comparison of experimental and
simulated trajectories, as well as integration of trajectories generated through manual or
automated design, allowing for external data import and dynamic animation rendering. Finally,
the Export module supports exporting parameter tables and visualization snapshots for

downstream reporting or analysis.
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