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Journal Name

Real-time high-throughput characterisation of the sur-
face elasticity of suspended cells†

Ziyu Guo, Yi Sui∗, and Wen Wang

The intrinsic elasticity of the cell membrane cortex complex, i.e., cell surface, is a promising biomarker
for cell status and disease, and has widespread biological and biomedical applications. However,
measuring cell surface elasticity in real-time with high throughput has not been achieved so far. Here
we develop a system and demonstrate that it can characterise the intrinsic surface elasticity of up to
411 cells per second, with a low latency of less than 1 millisecond per cell from an image to predicted
elasticity. Our key innovation is to integrate a multi-layer perception (MLP) based machine learning
algorithm, which infers the surface elasticity of cells from their camera-recorded steady-deformation
profiles in a microchannel, with a high-fidelity mechanistic model, which resolves the cell surface,
cytoplasm and nucleus and can accurately predict the flow-induced cell deformation. Applied to
human prostate cancer PC-3 and leukaemia K-562 cell lines, the system enables measuring tens of
thousands of cells within minutes, to explore the cell mechano-heterogeneity, the relation between
surface elasticity and cell size, and the possibility of using surface elasticity and cell size for cell
classification. We show that the measured cell surface elasticity is little affected by flow condition,
when doubling the flow speed or suspension fluid viscosity. The system is also sensitive enough to
detect a reduction of cell surface elasticity as a result of the cytochalasin D-induced actin disassembly.
By enabling real-time high-throughput characterisation of the surface elasticity of cells, the present
method may inspire new applications.

1 Introduction

The cell membrane-cortex complex (MCC), i.e., the cell surface, is
composed of the cell plasma membrane and the underlying cor-
tical cytoskeleton. It is one of the most important structures of
cells which provides the cell’s mechanical strength, regulates the
cross-membrane mass transport, and interacts with the extracel-
lular environment1–3. The mechanical properties of the cell sur-
face, such as the elasticity and viscosity, influence a wide range
of biological processes of cells, including differentiation, growth,
migration, endocytosis and exocytosis2,4–6. They are also promis-
ing biomarkers for the diagnosis and prognosis of diseases, such
as the sickle cell anaemia, malaria, and cancers7–11.

Measuring the mechanical properties of the cell surface is ex-
tremely time-consuming and labour-intensive, due to cells’ small
size, fragility, and often the huge quantity (e.g. thousands to mil-
lions required for blood-related applications). Classical charac-
terisation methods, such as the atomic force microscopy12,13, mi-
cropipette aspiration14–16, or magnetic twisting cytometry17–19,
often measure cell deformation under a well-defined force and

School of Engineering and Material Science, Queen Mary University of London, London,
E1 4NS, United Kingdom. E-mail: y.sui@qmul.ac.uk

then fit the deformation-force relation to a theoretical model to
inversely infer the cell mechanical properties. Due to the lack
of automation, those methods often suffer from low throughput
rates that are limited to 10-1000 cells per hour20.

To address the need for faster measurement, in the recent
decade, microfluidic-based deformability cytometry (DC) has
emerged as a transformative technology for high-throughput cell
mechanical phenotyping21–35. The DC technologies can flow
thousands of suspended cells through a microfluidic channel in a
second and deform the cells with precisely controlled fluid forces.
The state-of-the-art systems can measure, in real time, the defor-
mation parameters of the cells by integrating high-speed imag-
ing, data streaming and online image processing25,34. However,
intrinsic mechanical properties of the cells still need to be ob-
tained through post-processing of the experimental data36, as
the inverse-fitting process to infer mechanical properties from
cell deformation is very time-consuming. It should be noted
that as a mechanical biomarker, intrinsic mechanical properties
of cells have significant advantages over cell deformation param-
eters such as the length-to-width ratio and non-circularity. Cell
deformation parameters strongly depend on the DC flow geom-
etry and operational flow conditions such as the suspension vis-
cosity and flow speed, leading to difficulties in comparing cell
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deformability measured by different DC systems.

In addition, current DC systems consider cells as a homoge-
neous object and measure the deformability of the whole cell.
Characterising the mechanical properties of the cell surface has
not been achieved so far. A major problem is the lack of a high-
fidelity cell mechanical model, which takes into account the sub-
cellular structures including the cell surface and can accurately
predict the flow-induced deformation of suspended cells in mi-
crochannels.

In recent years, machine learning in particular artificial neu-
ral networks (ANNs) has rapidly emerged as a powerful tool in a
wide range of engineering applications, including data-driven re-
construction of flow fields37,38, inverse design of material struc-
tures for targeted mechanical performance39,40, and prediction
of cell or tissue mechanics from images41–43. In DC systems,
ANNs have been employed to analyse cell images or deformation
features for cell classification and sorting44–46. However, real-
time inference of intrinsic cell mechanical properties has yet to be
achieved for the challenges mentioned above.

To address those challenges, recently the present authors devel-
oped a three-dimensional (3D) computational model to simulate
the transient flow-induced deformation of suspended cancer cells
in microchannels of different geometries47–49. The model con-
siders cells as a three-layer compound structure, including a vis-
coelastic surface representing the MCC, a viscous cytoplasm, and
a nucleus modelled as a smaller stiffer microcapsule. The compu-
tational approach can accurately recover the transient deforma-
tion of human leukaemia (e.g., HL-60, K-562) and prostate cancer

PC-3 cells47,49 in shear and extensional flows, proving evidence
that it could serve as a general modelling framework for can-
cer and more broadly eukaryotic cells in suspensions. Although
simpler mechanical models for suspended cells exist, for example
those considering cells as liquid droplets50,51 or deformable mi-
crocapsules52–54, the models often cannot quantitatively predict
the flow-induced cell deformation profiles or consider the effect
of the cell nucleus. For inverse inference of cell mechanical prop-
erties from cell deformation, it is crucial to fit the experimentally
measured cell profile to a quantitative cell mechanical model.

The present authors also developed a number of machine learn-
ing approaches, based on a deep convolutional neural network
(DCNN)55,56, a DCNN coupled with a long short-term memory
network (LSTM)57, and a multi-layer perceptron (MLP)54, to in-
versely infer, in real time, the intrinsic surface elasticity of bioar-
tificial microcapsules through their flow-induced deformation in
microchannels. Those microcapsules could serve as a qualitative
mechanical model for suspended cells.

In this study, we build a system integrating our recent devel-
opments in high-fidelity cell mechanical modelling47,49, machine
learning-based real-time mechanical characterisation54, with an
established microchannel platform by Guck’s group25 to generate
high-throughput flow-induced cell deformation. We demonstrate
that the system can characterise the intrinsic surface elasticity of
cells at a throughput rate of up to 411 cells per second, with an
image-to-surface-elasticity latency of less than 1 millisecond on a
personal computer without using parallel computing. Measuring
tens of thousands of leukaemia K-562 and prostate cancer PC-3

Fig. 1 Schematic of the system for real-time high-throughput characterisation of the intrinsic surface elasticity of suspended cells. The system consists
of four modules, including a microfluidic platform to flow through and deform hundreds of cells per second, a high-speed streaming camera which
captures the cell deformation and feeds the images in real time to a computer, an MLP-based algorithm in the computer that predicts the intrinsic
surface elasticity of the cell from its deformation image, and finally a high-fidelity cell mechanical model which generates cell-deformation data to train
the MLP algorithm.
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cells, our results indicate a high level of mechanical heterogeneity
of both cell lines, where the surface elasticity spans more than two
orders of magnitude, considerably greater than previous studies
that measured tens to hundreds of cells. The surface elasticity
of K-562 cells increases with cell size, while the opposite trend is
observed for PC-3 cells. We also find that the measured results
are little affected by the flow condition, when doubling the flow
speed or the suspension fluid viscosity. In addition, the present
system can detect a reduction of the cell surface elasticity, fol-
lowing disassembly of cell actin filaments using Cytochalasin D
(Cyto-D).

2 Results and discussion

2.1 Design of the system

Our system consists of four major modules, as illustrated in Fig.
1. The first module is a microfluidic platform to flow through
and deform hundreds of suspended cells per second under pre-
cisely controlled flow conditions. The microchannel geometry
follows the classical design of Otto et al.25, is illustrated in Fig.
8, and is detailed in §4.1 of Materials and Methods. Human
prostate cancer PC-3 and leukaemia K-562 cells are suspended
in a phosphate saline buffer (PBS, Sigma-Aldrich) added with 2-
4% (w/w) methylcellulose (15 cP, Sigma-Aldrich) to a concentra-
tion of around 107 cells per ml. At room temperature, the cell
suspension is driven through a straight microchannel that has a

square cross section with a width of 20 µm, at an average speed
of 7-14 cm/s, by syringe pumps (PHD ULTRA, Harvard Appara-
tus). Hydrodynamic focusing using sheath flow is employed to
centre the cells horizontally, and wall lift forces acting on the
deformable cells help to position them vertically to the channel
centreline. Shortly after entering the straight channel, cells de-
form into steady bullet shapes under the effect of fluid shear. The
cell steady profile is captured by a high-speed streaming camera
(EXO174MU3, SVS-Vistek), which is the second module of the
system. The camera feeds the images in real time to a personal
computer for online prediction of the intrinsic cell surface elastic-
ity. This challenging prediction task is conducted by an MLP-based
machine learning algorithm, the third module and the core of the
present system.

Details of the MLP-based prediction algorithm are covered in
§4.4 in the Materials and Methods, and here we only provide a
brief introduction. The MLP is one of the most widely used neural
networks in supervised learning54,58. It’s a fully-connected feed-
forward network, which means a neuron of a layer is connected
to all neurons of the next layer, and the information only flows
from one layer to the next. Due to the MLP’s simplicity, universal
approximation property for nonlinear relations between data and
their corresponding measurements, as well as the feature that its
training is conducted offline and its prediction process only in-
volves a limited number of algebraic calculations, the MLP is a

Fig. 2 (a)-(b) The present computational model can accurately recover the steady deformation of (a) K-562 and (b) PC-3 cells with a wide range
of sizes and surface elasticity. The dashed lines represent simulation results. The corresponding best-fit cell mechanical parameters in numerical
simulations are listed in Table S1 of the supplementary information (SI). (c)-(d) Comparisons of the steady deformation profiles of (c) a K-562 and
(d) a PC-3 cell with numerical simulations using three combinations of cell surface Gs and Ks. The three combinations all lead to almost identical
deformation index, 0.06 and 0.05, respectively, for the K-562 and PC-3 cell, however, only one combination of Gs and Ks results in an excellent
agreement with the experiment in terms of the cell shape (indicated by the minimum MHD). Scalebars in figures represent 10 µm. In the experiments,
the K-562 and PC-3 cells are respectively suspended in PBS with 2% and 3% methylcellulose (w/w); the average flow speed in the microchannel is
0.07 m/s.
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promising tool for fast inverse analysis of cell mechanical proper-
ties.

The fourth module of the system is a high-fidelity mechanistic
model which can simulate the flow-induced deformation of cells
in a microchannel. The model generates labelled data to train the
MLP algorithm. We consider the deformation of biological cells
with a wide range of size and surface elasticity in the straight
square channel of Fig. 8. The cell is modelled as a three-layer vis-
coelastic structure consisting of the membrane-cortex complex,
cytoplasm and cell nucleus (detailed in §4.5). The cell defor-
mation and its interaction with the surrounding fluid is solved
with a well-tested immersed-boundary lattice Boltzmann method
(see §4.6 for details). The steady cell deformation profiles, to-
gether with the corresponding cell parameters, are used to train
the MLP-based prediction algorithm.

2.2 Performance of the cell mechanical model

The present system uses an MLP-based algorithm trained with
simulation data generated by a cell mechanical model, to infer
the surface elasticity of cells from their steady deformation in a
microchannel. Therefore, the capability of the cell mechanical
model to accurately predict the flow-induced cell deformation is
essential to the accuracy of the system. We conduct extensive
comparisons of the cell steady profiles obtained from the present
numerical simulations and experiments for both K-562 and PC-3
cells, and have two main observations.

Firstly, we find that the cell mechanical model can accurately
recover the steady deformation of both cell lines, for cells in a
wide range of sizes and surface elasticity. Some examples for the
K-562 and PC-3 cells are shown in Figs. 2a & b, respectively.
Our simulation setup, as detailed in §4.5, matches the experi-
mental conditions that are described in §4.1. In brief, the straight
square part of the microchannel has a cross-sectional dimension
of W =H = 20 µm. No-slip boundary conditions are applied at the
channel walls. The suspension medium in the simulations follow
the same rheological properties of the PBS with methylcellulose
used in the experiments (see §4.1) and the average flow speed is
also identical to that of the experiments (i.e., U = 7 cm/s). As dis-
cussed in §4.1, the steady cell deformation is mainly determined
by the capillary number Ca= µU/Gs, which measures the relative
importance of the fluid shear and cell elastic forces, as well as the
confinement ratio β = 2a/W , which compares the cell diameter
with the channel dimension.

For each cell shown in Figs. 2a & b, the cell size, and thus
the confinement ratio, in the simulation is extracted directly from
the corresponding experimental image, by matching the footprint
area. For the cell surface elasticity, we have set the surface hard-
ness parameter at C = 10 (so that the cell surface area-dilatational
elasticity Ks can be calculated from the shear elasticity Gs by
Ks = (2C+1)Gs, justification is provided later). Under fixed flow
conditions matching experiments, we vary the cell surface elastic-
ity Gs in a wide range, covering 0.01 ≤ Ca ≤ 3, with increments
of δCa = 0.01 for Ca ≤ 0.1 and δCa = 0.05 for larger Ca. We ob-
tain the steady-deformed cell profiles from numerical simulations
and quantify their differences with the profile recorded in experi-

ment using the mean Hausdorff distance (MHD)59. To explain
the MHD, consider two sets of points, R = r1,r2,r3, . . . ,rm and
S = s1,s2,s3, . . . ,sn, representing the steady cell profiles obtained
from numerical simulation and experiment, respectively. Assum-
ing that the two sets of points have the same centre of mass, the
MHD h(R,S) of the two profiles is defined as:

h(R,S) =
1
m ∑

r∈R
min
s∈S

d(r,s) (1)

where d(r,s) is the distance from any point r ∈R to any point s∈ S.
The cell surface elasticity Gs that leads to the minimum h(R,S) is
taken as the best-fit. We present the best-fit parameters for all the
cases of Figs. 2a & b in Table S1 of the SI. Note that in the present
cell mechanical model the cell surface shear and area-dilatation
elastic moduli Gs and Ks in the SK law are two-dimensional sur-
face mechanical properties with a unit of N/m. They quantify
the resistance to in-plane shear and area-dilatation deformation
of the thin cell surface, respectively. The three-dimensional bulk
shear elastic modulus of the cell MCC, which has a unit of Pa, can
be estimated by G = Gs/h where h represents the thickness of the
cell MCC60.

In general, for both cell lines, larger cells with lower surface
elasticity tend to deform into bullet shapes, with a larger curva-
ture at the front region, in order to balance the pressure drop
outside the cell along the flow direction. With the cell size de-
creasing, or surface elasticity increasing, the cells become more
rounded.

Secondly, we find that by fitting the steady cell deformation
profile recorded in an experiment to those predicted by numeri-
cal simulations using the present model, one can uniquely deter-
mine the cell surface shear and dilatational elastic moduli Gs and
Ks. Examples for a K-562 and a PC-3 cell are shown in Figs. 2c
& d, respectively, where the experimental results are compared
with simulations with three combinations of Gs and Ks. Note that
the three combinations have all result in almost identical defor-
mation index (DI), 0.06 and 0.05, respectively, for the K-562 and
PC-3 cells. The cell deformation index DI = 1− 2

√
πA/P, where

A and P are the area and perimeter of the cell’s projection on the
mid-depth plane of the channel. However, only one combination
of parameters leads to excellent agreement with the experiment
in terms of the cell shape, indicated by the minimum MHD. In our
fitting, the parametric space of the numerical simulations covers
1 ≤C ≤ 50 and 0.01 ≤Ca ≤ 3. The MHD between the cell steady
profiles obtained from simulations and experiments is shown in
Fig. S1 of the SI. For both cells of Figs. 2c & d, at the best
fit, we find that the membrane hardness parameter C in the SK
law is close to 10. This is consistent with our earlier studies of
the transient deformation of HL-60 cells flowing through a con-
stricted channel47, and of PC-3 and K-562 cells flowing through
constricted and cross-slot microchannels49, where we found that
using the SK law with C = 10 is necessary for good agreements
between simulations and experiments. Based on those observa-
tions, in Figs. 2a & b and the rest of this paper, we have set
C = 10 to save computational effort. We discuss the limitations of
this simplification in §3.
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2.3 Performance of the MLP algorithm

We test the prediction accuracy and latency of the MLP-based al-
gorithm using data generated from our numerical simulations,
where the ground truth information, such as the cell surface elas-
ticity and size, is exactly known. To train the MLP, we have used
∼600 sets of steady deformation profiles of cells with a wide
range of dimensionless size, i.e., 0.4 ≤ 2a/W ≤ 0.9, and capillary
number, i.e., 0.001 ≤ Ca ≤ 3.0. Here a and W respectively repre-
sent the cell radius and channel width. The capillary number Ca
is a key dimensionless parameter governing the cell deformation
and is defined in §4.5. The cell surface elasticity Gs is related to
the capillary number by Gs = µU/Ca, where µ is the suspension
fluid viscosity and U is the average flow speed in the channel.
The parameter space considered has largely covered the range of
cell deformation observed in the present experiments. Our test-
ing samples, consisting of 120 cases in the same parameter space,
have not been used during the training of the MLP. We compare
the MLP predicted Ca of the testing samples with the correspond-
ing ground truth in Fig. 3a. The insets show the extents of cell de-
formation in the low and high Ca regimes. In general, very good
agreement has been observed. The mean absolute percentage er-
ror (MAPE) of the predicted Ca from the corresponding ground
truth calculated from the entire testing samples is 5.8%, which
suggests excellent prediction accuracy. The MAPE of a parameter
y is defined as:

MAPE(y) =
1
M

M

∑
i=1

∣∣∣∣∣ytrue,i − ypredict,i

ytrue,i

∣∣∣∣∣ , (2)

where M is the total number of the testing samples, ypredict,i and
ytrue,i are the predicted and ground-truth values of the ith testing
sample.

In wet experiments, cells are often not perfectly aligned to the
channel centreline, even after using a sheath flow to focus the
cells. We test the influence of a small initial offset, doc, defined
as the distance between the cell mass centre and the centreline
of the square straight channel, on the prediction accuracy of the
present MLP. Note that the MLP has been trained by samples of
perfectly aligned cells. Figures 3b-d show the comparisons of
the MLP predicted Ca with the corresponding ground truth, for
cells with 2a/W = 0.7 and different offset distances along the z-
direction (i.e., dz

oc), y-direction (i.e., dy
oc) and both directions, re-

spectively. The coordinate system is defined in Fig. 10b, with
the flow along the x-axis, the channel depth along the y-axis, and
the channel width along the z-axis. Interestingly, from figures 3b-
d we find that the MLP can still reach reasonably high accuracy,
even for slightly off-centred cells. The MAPEs for the cells of Figs.
3b-d are shown in Fig. 3e. With doc increasing from 0 to 0.05W ,
the MAPE only grows moderately, from about 6% to 8%. In the
present experiments, which we will show results later, we mainly
focus on cells with doc ≤ 0.05W (i.e., 1 µm).

We also consider the effect of the number of cell membrane
nodes, which is, to some extent, equivalent to the resolution of
the input of the MLP, on the prediction accuracy and time (or la-
tency) of the MLP. The same training and testing samples of Fig.
3a have been used here. As can be seen from Fig. 4, the predic-
tion accuracy, indicated by the MAPE of the predicted Ca, gener-
ally increases with the number of membrane nodes and reaches a

Fig. 3 Comparisons of predicted cell capillary number Ca with the corresponding ground truth for (a) centred cells, and (b)-(d) cells with small offsets
respectively along the z-direction (channel width), y-direction (channel depth), and both directions. The cell surface shear elasticity Gs is related to
the capillary number by Gs = µU/Ca. The dashed lines are used as guides for the eyes, representing perfect agreement. Insets in (a) show steady
deformation profiles of two cells with 2a/W = 0.6, Ca = 0.01 and 3, respectively, indicating the extents of cell deformation in the low and high Ca
regimes. (e) Effect of the offset distance along different directions on the prediction accuracy, indicated by MAPEs of the predicted Ca (the lower the
MAPE, the higher the prediction accuracy).
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plateau when there are 60 membrane nodes. It is encouraging to
find that even with 10 membrane nodes, the MLP can achieve a
MAPE of 10.2%. With the number of membrane nodes increasing
from 20 to 80, the prediction time only moderately grows from
0.2 to 0.24 ms.

Fig. 4 Effect of the number of cell membrane nodes representing a cell’s
steady profile on prediction accuracy (square) and latency (circle) of the
present MLP.

Due to the lack of quantitative experimental data of the surface
elasticity of suspended cells, in particular for K-562 and PC-3 cells
considered in the present study, it is not possible to rigorously test
the accuracy of the present prediction algorithm. However, in a
relevant recent study on mechanical characterisation of bioartifi-
cial microcapsules, we demonstrated that a similar MLP-based al-
gorithm can accurately predict the capsules’ membrane dilational
modulus from its steady deformation in tube flow54. Specifically,
with 60 membrane nodes representing the capsule profile, ex-
tracted from an experimental image that has 42 pixels covering
the capsule’s diameter, the MLP reached a MAPE of 13% from the
experimental measurements. In the present study, we have used
comparable resolutions for the cell image and the membrane pro-
file. Therefore we expect a similar level of prediction accuracy for
the cell surface elasticity.

We test the prediction latency of the MLP-based algorithm for
processing experimental cell images. The prediction latency is
defined as the time it takes for the algorithm to predict the cell
surface elasticity from a single camera-recorded image, without
using any parallel computing. It consists of two parts: the image
processing time and the network prediction time. The results are
presented in Table 1. With 60 membrane nodes to represent the
cell steady deformation profile, the present MLP-based algorithm
can achieve a total latency of 0.64 ms, consisting of 0.42 ms in
image processing and 0.22 ms in MLP prediction, using a laptop
with an Intel i7-10850H, 2.7GHz CPU. If we tolerate a higher
MAPE of 7.4% by reducing the cell membrane resolution to 20
nodes, the total latency can be down to 0.48 ms.

Image processing
time (ms)

Prediction
time (ms)

20 membrane nodes 0.28 0.2
60 membrane nodes 0.42 0.22

Table 1 Image processing time and network prediction time of the present
MLP-based algorithm using experimental images.

Regarding the throughput rate of the present system for charac-
terisation of the surface elasticity of cells, based on a total latency
of 0.64 ms per cell, the system can reach a theoretical throughput
rate of 1562 cells per second. However, in our experiments, due
to the limitation that the cell suspension cannot be too dense for
avoiding the formation of cell clusters, we have recorded a peak
throughput rate of 411 cells per second.

2.4 Surface mechanical heterogeneity of K-562 and PC-3
cells

We use the system to characterise the surface elasticity of hu-
man leukaemia K-562 and prostate cancer PC-3 cells. The scatter
plots of the cell surface shear elastic modulus Gs versus cell size,
i.e., the diameter of a cell assuming an initially spherical shape,
measured from 71,414 K-562 and 96,998 PC-3 cells, are shown in
Figs. 5a & b, respectively. The experimental conditions are identi-
cal to those of Figs. 2a & b, for K-562 and PC-3 cells, respectively.
Interestingly, for both cell lines, we find that the cell surface Gs

spans more than two orders of magnitude. Such high levels of
cell mechanical heterogeneity have not been reported previously
for K-562 or PC-3 cells. In previous experiments of mechanical
characterisation of the two cell lines, often the apparent Young’s
modulus of tens of cells was measured, and the variations are
within one order of magnitude61,62. The data in Figs. 5a & b are
captured within 10 minutes of the flow experiments. The results
collected at the beginning and end of the experiments, presented
in Fig. S2 in the SI, show little difference, suggesting that the
observed cell mechanical heterogeneity is not due to cytoskeletal
remodelling of the cells during the experiments.

The surface Gs and size of the K-562 and PC-3 cells of Figs. 5a
& b are compared in Fig. 5c. In general, PC-3 cells are larger
and have a stiffer membrane, compared with K-562 cells. The
average diameters of the K-562 and PC-3 cells in suspensions are
12.7 ± 1.9 µm (average ± standard deviation) and 16.2 ± 2.0
µm, respectively. The average surface Gs of the two cell lines
are respectively 2.4 ± 9.6 mN/m and 8.6 ± 19.2 mN/m. The
high standard deviation of Gs is due to the huge mechanical het-
erogeneity of the cells, as well as the log-normal distribution of
the cell surface Gs, which we discuss later. Assuming a cell MCC
thickness of h = 200 nm3, we can estimate the bulk shear modu-
lus G of the MCC through G = Gs/h60. For K-562 and PC-3 cells,
the average bulk shear modulus of the MCC is 12 ± 45 kPa and
43 ± 95 kPa, respectively. These are considerably higher than the
apparent Young’s modulus of the same cell lines characterised us-
ing AFM, which were reported to be 0.42 ± 0.38 kPa measured
from 25 K-562 cells61, and 2.9 ± 1.2 kPa measured from 40 PC-3
cells62. The discrepancy is not surprising. The present system
considers the cell surface as a thin material layer and measures
its in-plane shear elasticity, while the AFM experiments had both
used the Hertz contact model61,62, simplified cells as semi-infinite
homogeneous elastic solids, and probed the out-of-plane indenta-
tion response of the whole cell. With an advanced mechanical
model accounting for the thin cell cortex layer, Cartagena-Rivera
et al. reported AFM measurement of the cortical elasticity of pri-
mary human foreskin fibroblast cells of the order of 10 kPa63,
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Fig. 5 Characterisation of the intrinsic surface elasticity of K-562 and PC-3 cells. (a-b) Scatter plots of the surface shear elasticity Gs versus cell size
of (a) 71,414 K-562 cells and (b) 96,998 PC-3 cells. Colour indicates a linear density scale; the black and red lines respectively show the 50% and
10%-density contours. (c) Comparisons of the surface Gs and size of K-562 and PC-3 cells. In the box plots, the upper and lower whiskers represent
95th and 5th percentiles, respectively. The squares represent the average values, and the horizontal lines are the first to third quartiles. (d-e) Histograms
of the (d) cell surface Gs and (e) cell size. The curves in (d) and (e) are respectively normal and log-normal fittings from the histograms. (f) Decision
boundary (black line) of a DT algorithm which classifies K-562 (red dots) and PC-3 (blue dots) cells based on their size and surface Gs. Points below
the boundary are classified as K-562 cells, while above are considered as PC-3 cells.

which is comparable to the present estimation.
Interestingly, from Fig. 5a one can find that larger K-562 cells

tend to have a higher surface Gs. The two variables are pos-
itively correlated, with Spearman’s rank correlation coefficient
ρ = 0.128. In contrast, as can be seen from Fig. 5b, larger PC-
3 cells tend to have a lower Gs, with the correlation coefficient
of ρ = −0.552, indicating a negative correlation between the cell
size and surface Gs. The relations between cell size and surface
Gs for the two cell lines are first reported in the present study.
Although the underlying biophysical mechanisms are beyond the
scope of the present study, several factors including the cytoskele-
tal organization, membrane-cortex coupling could contribute to
the observation. Study of adherent cells has reported that larger
cells can exhibit a thinner and/or less cross-linked actin cortex64,
which would be expected to reduce the cell surface elasticity. Fur-
ther studies combining cell surface Gs measurement with direct
assays of the cell cortical organisation for cells of different sizes
and types will be an interesting direction of future work.

Figures 5d & e present the histograms of the size and surface
Gs of K-562 and PC-3 cells, respectively. It can be seen that for
both cell lines, the cell size follows a normal distribution, and

the cell surface Gs distribution seems to be consistent with a log-
normal curve. Due to the heavy-tailed nature of the log-normal
distribution, a small fraction of cells with very high surface Gs

has substantially increased the average and standard deviation of
Gs of both K-562 and PC-3 cells. When restricting the analyses
to cells within the 10% density contour of Gs vs size plots (i.e.,
data enclosed by the red curves in Figs. 5 a & b), the variations
of Gs become much smaller, with Gs = 1.4±1.2 mN/m for K-562
and 5.3± 4.5 mN/m for PC-3 cells. The heavy-tailed log-normal
distribution of the cell surface Gs also explains the fact that the
average Gs is much higher than the median, which is 1.0 mN/m
for K-562 cells and 3.9 mN/m for PC-3 cells. The peak of the Gs

distribution is located closer to the median, than the average.
We also test the possibility of classifying the two cell lines en-

tirely based on their surface Gs and size, using the data of Figs.
5a & b. With a simple decision tree (DT) model65, as detailed in
§4.7, we can reach an overall classification accuracy of 90.4%. As-
suming PC-3 is the positive group, the sensitivity and specificity of
the present DT is 0.89 and 0.93, respectively. The decision bound-
ary in the cell size - surface Gs domain is shown in Fig. 5f. Despite
the overlap of the cell size and surface Gs of the two cell lines, the
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Fig. 6 Effects of the flow speed and suspension fluid viscosity on the inferred surface Gs of PC-3 cells. Scatter plots of Gs versus size of (a) 88,281
PC-3 cells suspended in PBS added with 3% methylcellulose flowing at a speed of 0.14 m/s, and (b) 60,863 PC-3 cells suspended in PBS added with
4% methylcellulose flowing at 0.07 m/s. The result of the baseline experiment using the same batch of PC-3 cells has been shown in Fig. 5b. (c)
Box plots of the surface Gs and size of PC-3 cells measured at three different flow conditions.

decision boundary of the DT is clear and no fragments of classes
appear, indicating a good probabilistic basis for classification of
the two types of cells based on the two physical parameters.

2.5 Effects of flow parameters on measured cell surface elas-
ticity

We examine the effects of flow conditions, such as the flow speed
and suspension fluid viscosity, on the measured surface Gs. The
results for PC-3 cells of the same batch of Fig. 5b are presented
in Fig. 6. We first increase the flow speed in experiments from
0.07 to 0.14 m/s, while using the same suspension medium. This
leads to stronger fluid force applied to the cells and noticeable
larger cell deformation. The scatter plot of cell surface shear elas-
tic modulus Gs versus cell size, characterised from 88,281 PC-3
cells at 0.14 m/s, is shown in Fig. 6a. Similar to the result of
the baseline experiment (Fig. 5b), the cell size and surface Gs

are negatively correlated, with Spearman’s rank correlation coef-
ficient of ρ =−0.581. Figure 6c compares the surface Gs and size
of the PC-3 cells measured at the two different flow speeds. At
the higher speed, the average cell surface Gs is 8.9 ± 16.4 mN/m,
with a median of 4 mN/m. These are very close to the baseline
results.

Next, we test the effect of the suspension fluid viscosity, by
flowing cells in a more viscous medium consisting of PBS added
with 4% (w/w) methylcellulose, at the same flow speed as the
baseline case, i.e., 0.07 m/s. The average fluid viscosity for the
fully developed flow in the narrow straight channel is 58 mPa · s.
Compared with the baseline results, a higher fluid medium vis-
cosity results in an increase in the cell steady deformation. The
scatter plot of the cell surface Gs versus cell size, characterised
from 60,863 PC-3 cells, is shown in Fig. 6b, and the box plots
are presented in Fig. 6c. The average cell surface Gs is 8.6 ±
14.1 mN/m, with a median of 3.9 mN/m. Both are comparable
to those of the baseline case, where cells are measured in a less
viscous suspension medium.

Similar tests have also been conducted on K-562 cells, and the
results are presented in Fig. S3 in the SI. For both cell lines, we
find that the measured cell surface Gs is little affected by doubling

the flow speed or suspension medium viscosity.

It is worth to mention that biological cells have been found to
exhibit strain-hardening behaviour, where the apparent stiffness
of a cell increases with the cell deformation66,67. In the present
cell mechanical model, the SK law has already taken into account
the strain-hardening effect of the cell surface, therefore it is not
surprising that the inferred cell surface Gs has changed little with
flow conditions.

2.6 Effect of cytochalasin D on cell surface Gs

To test the sensitivity of the present system in detecting changes of
cell surface elasticity, we characterise PC-3 cells treated with a cy-
toskeletal drug, cytochalasin D (CytoD). CytoD disassembles the
actin network of cells, including the actin cortex beneath the cell
plasma membrane, and therefore reduces the cell stiffness31,68.
We treat PC-3 cells with CytoD at a concentration of 5 µM for
2 hours and measure their surface Gs using the present platform
under a flow condition identical to that of Fig. 5b. Since the Cy-
toD is dissolved in a DMSO solvent before being added to the cell
culture medium, we also characterise PC-3 cells treated with the
same concentration of DMSO as an extra control group to con-
sider its possible effects on the cell surface Gs.

The scatter plots of the cell surface Gs versus cell size of 30,141
CytoD-treated and 26,355 DMSO-treated PC-3 cells are shown
in Figs. 7a & b, respectively. Both experiments show a negative
correlation between cell size and surface Gs, similar to Fig. 5b
that serves as a baseline. As shown in Fig. 7c, compared with
the baseline result, DMSO added into the cell culture media at
0.05% (v/v) does not affect the cells’ surface Gs. However, after
the CytoD treatment, the cell surface Gs drops significantly to an
average of 5.1 ± 18.8 mN/m, and the median decreases almost
by half to 2.1 mN/m. In Fig. 7a there is a small peak in the size
distribution around 2a ∼ 8 µm. Likely these are large cell-derived
particles, including vesicles and apoptotic bodies, following the
CytoD treatment that has strongly disrupted a small fraction of
cells69–71.
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Fig. 7 Effect of CytoD on the surface Gs of PC-3 cells. Scatter plots of Gs versus size of (a) 30,141 PC-3 cells treated with a 5 µM CytoD solution
for 2 hours, and (b) 26,355 PC-3 cells treated with a 0.05% (v/v) DMSO solution for 2 hours. The result of the baseline experiment using PC-3 cells
of the same batch without any chemical treatment is shown in Fig. 5b. (c) Box plots of the surface Gs and size of PC-3 cells treated with CytoD,
DMSO, and not treated with any chemical.

3 Conclusions

The present study aims to develop a system for real-time high-
throughput mechanical characterisation of the intrinsic surface
elasticity of suspended cells. To achieve this goal, we build
an automatic processing pipeline, which seamlessly integrates
a microfluidic device for controlled flow-induced cell deforma-
tion, a high-speed streaming camera which records the steady-
deformation profiles of the cells in the microfluidic and passes
the data to a personal computer, an MLP-based machine learning
algorithm on the computer predicting the intrinsic cell surface
elasticity from the steady cell deformation image, and finally a
high-fidelity mechanistic model which simulates cell deformation
in the microfluidic in wide parametric space and provides training
data to the MLP algorithm.

A major merit of the present system is that it can measure the
surface elasticity of large-population suspended cells. This is en-
abled by the integration of the MLP, as a method for fast inverse
analysis, and the cell mechanistic model, which resolves the cell
surface, cytoplasm and nucleus. Compared with cell deforma-
tion parameters, which are primary outcomes of previous high-
throughput DC systems, intrinsic cell surface elasticity is less af-
fected by the flow geometry49, and therefore may facilitate com-
parisons of cell mechanical properties measured by different sys-
tems.

The present system also features an unprecedented sub-
millisecond per cell image-to-property latency, and can measure
the surface elasticity of up to 411 cells per second. This is sev-
eral orders of magnitude faster than the current state-of-the-art
systems that can measure intrinsic mechanical properties of cells,
such as the AFM or micropipette. It will enable researchers to
thoroughly investigate the mechanical heterogeneity of the cell
surface, a fundamental property that might correlate to molecu-
lar differences in the cell membrane-cortex complex72. By mea-
suring tens of thousands of K-562 and PC-3 cells, we have found
high levels of heterogeneity of the cell surface elasticity for both
cell lines, which are one order of magnitude greater than previ-
ously reported cell apparent elasticity. We also find that the sur-

face elasticity of K-562 cells increases with the cell size, while the
PC-3 cells show the opposite trend.

It has been well established that the mechanics of the cell
membrane-cortex complex plays a crucial role in controlling cell
division, growth and migration5. The present system may there-
fore benefit research along those lines, by enabling screening the
surface elasticity of large population heterogeneous cells in short
time. Some cancer drugs specifically target the cell surface. For
example, 4-hydroxyacetophenone could reduce cancer metastasis
by increasing the cell cortex stiffness73. The present system may
be useful in monitoring the efficacy of such drugs. Indeed we
have demonstrated that the system is sensitive enough to detect
the reduction of the cell surface elasticity as a result of the Cyto-D
induced actin disassembly.

In the context of label-free cell classification and sorting, our
results suggest that the cell surface elasticity, together with the
cell size, could provide a good probabilistic basis for classifica-
tion of cell types. Using them to build a decision tree, we show
that one can classify K-562 and PC-3 cells with an accuracy of
90.4%. Together with the sub-millisecond prediction latency of
the present MLP algorithm, the system could be supplemented by
a sorting module to achieve high-throughput cell sorting based on
cell surface elasticity and size.

One limitation of the present study is that we have fixed the re-
lation between the cell surface shear and area-dilatation moduli
in the SK law in our computational model, following our previous
and the present tests on several cancer cells lines including the
HL-60, PC-3 and K-562 cells in different flow setups47,49. While
this simplifies the inverse problem, biological cells exhibit signifi-
cant heterogeneity. This assumption should be released in future
work. The training sample will need to be significantly expanded.
Previous studies including ours56,74 have shown that it is possi-
ble to simultaneously infer the surface shear and area-dilatational
elastic moduli of microcapsules, by fitting the steady deformation
profiles obtained from experiments and model predictions.

Besides, although we have separately tested the accuracy of the
cell mechanical model and the MLP algorithm, the two key com-
ponents of the present system, rigorous cross-validation of the
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present measurements against a different well-established system
has not been achieved. The main reason is for the lack of quanti-
tative data for the surface elasticity of suspended cells. Encourag-
ingly, the present results of the surface elasticity of both K-562 and
PC-3 cells are largely consistent with our recent measurements49.
There we flowed the same cell lines through both constricted and
cross-slot microchannel geometries and fit the cell surface elastic-
ity by minimising the mean Hausdorff distance between model-
predicted and experimentally measured cell deformation profiles.
From tens of cells of the two cell lines, we found that the surface
Gs of K-562 and PC-3 cells are respectively in the ranges of 3.6-
5.2 and 5.8-20.7 mN/m49. These fall into the parametric space
measured in the present study on much larger samples.

In principle the present system could be validated against mea-
surements of micropipette aspiration of the cell surface. However,
in the latter approach cells are often considerably larger than the
micropipette, leading to physical contact and strong mechanical
interaction between the cell and the glass capillary wall that affect
cell deformation. These are currently not included in our mechan-
ical model. Another possibility is to measure well-characterised
synthetic bioartificial microparticles such as hydrogel microcap-
sules. We had demonstrated in a recent study that an MLP-based
method, similar to the present algorithm, can accurately charac-
terise the surface area-dilatational modulus of bio-artificial cap-
sules with a human serum albumin-alginate membrane, from the
capsule’s steady deformation in tube flow54. The MAPE of the
MLP-predictions from the experimental measurements using a
parallel plate compression method reached 13%. However, those
microcapsules often follow mechanical constitutive laws that are
different from the present cell model75. They are also much
larger than biological cells, with a diameter of above 100 µm.

4 Materials and Methods

4.1 Experimental setup

The geometry of the microchannel which we use to flow through
and deform human prostate cancer PC-3 and leukaemia K-562
cells is shown in Fig. 8. It mainly consists of a hydrodynamic
sheath flow module with a 45°constriction, connected by a long
straight square channel. Filter posts are placed before the channel
inlets to remove any cell clusters or debris. The cell suspension
and sheath flow are driven by two syringe pumps (PHD ULTRA,
Harvard Apparatus), with a flow rate ratio of 1: 2, and the av-
erage flow speed in the straight channel is 0.07-0.14 m/s. As
illustrated in the photo inset of the lower panel of Fig. 8, When
approaching the narrow straight channel, a cell is elongated and
reaches the maximum extension at the entrance. Inside the nar-
row straight channel, the cell gradually deforms into a steady bul-
let shape, under the effect of fluid shear. The cell steady profile in
the region of interest (RoI), is illuminated by an LED lamp (LA-
HDF-7010, HAYASHI) and recorded with a high-speed streaming
camera (EXO174MU3, SVS-Vistek). The camera is equipped with
a Mitutoyo 20x long working distance objective, and works at a
frame rate of 1400 frames per second, with a shutter speed of
19 µs. The channel width is covered by 68 pixels. As shown in
Fig. 8, we have observed that cell boundaries in our images are

clear and there are no halos, indicating that when reaching the
RoI cells are largely flowing along the channel centreline, which
is in the focal plane of imaging.

Fig. 8 Schematic diagram of the microchannel geometry. The photo
inset illustrates the transient deformation of a cell. The yellow box rep-
resents the region of interest (RoI) for image acquisition where the cell
has reached steady deformation.

The long straight square channel of the present system has a
cross-sectional dimension of W = H = 20 µm. This is due to the
average diameter of the K-562 and PC-3 cells considered in the
present study, which is 2a ∼ 13 and 16 µm, respectively. We find
that an ideal confinement ratio 2a/W should be in the range of
0.5-0.9. A channel that is too wide results in weaker confine-
ment, leading to smaller cell deformation under the same average
flow speed. It has been well established that accurately inferring
the mechanical properties of microcapsules and cells undergoing
small deformation is very challenging56,76. It is also more diffi-
cult to hydrodynamically focus cells to the centreline of a wider
channel. On the other hand, if the channel is too narrow, there
is higher chance that the large cells in a suspension contact the
channel wall, requiring additional wall-cell interaction to be ac-
counted for in the mechanical model, and some large cells would
even block the channel. A narrow channel also needs a high pres-
sure drop to maintain a specific flow speed, which is essential to
the processing throughput rate.

The cell suspension buffer is made of PBS added with 2-4%
(w/w) methylcellulose (15 cP, Sigma-Aldrich) to control its vis-
cosity. We measure the viscosity using a cone-plate rheometre
(AR2000, TA Instruments) at room temperature, and find the
buffer is weakly shear-thinning, following a power law:

µ = K(
γ̇

γ̇0
)α−1, (3)

where K and α are the flow consistency index and flow behavior
index, respectively. γ̇ is the local shear rate and γ̇0 = 1 s−1. At
methylcellulose concentrations of 2%, 3%, and 4%, the values of
K are 0.016, 0.059 and 0.442 Pa·s, respectively, and α = 0.99,0.94
and 0.78.

4.2 Device fabrication

The microchannels are fabricated using a standard soft lithog-
raphy method with polymethylsiloxane (PDMS)77. To produce
a master mould, a negative photoresist (SU8-2025, Kayaku) is
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spread at 500 rpm for 5 s and spin-coated on a 4-inch silicon
wafer (Test Grade, PI-KEM, UK) at 4000 rpm for 30 s using a spin
coater (SPIN150i, SPS-POLOS) to generate a 20 µm photoresist
film, which is the height of the microchannel. After spinning,
the wafer is soft-baked at 95 °C for 5 minutes to evaporate the
photoresist solvent. The chip design, depicted on a film mask,
is transferred on the coated substrate via UV exposure at 160
mJ/cm2 (UV-KUB 9, Kloe), followed by post-exposure baking at
95 °C for another 5 minutes and development in SU8 developer
(Kayaku) for 4 minutes. The master that carries microchannel
design is inspected using a profilometer (Profilm 3D, Filmmet-
rics). After master fabrication, PDMS (base to curing agent ratio
of 10:1 w/w, Slygard 184, Dow) is degassed, poured over the
master, and cured at 60 °C for 2 hours. Following the cutting
of the chips and the punching of 0.7 mm inlet and outlet holes,
the PDMS replica is cleaned with isopropanol and treated using
oxygen plasma (Zepto, Diener) and then bonded together. The
bonded device is incubated at 60 °C for 12h to strengthen the
bonding, and finally, PTFE tubings are connected to the inlets and
outlet for flow experiments.

4.3 Cell culture

PC-3 and K-562 cells are provided by the Barts Cancer Institute
(London, UK) and cultured at 37 °C with 5% CO2 according to
standard mammalian tissue culture protocols78. PC-3 cells are
cultured in RPMI-1640 medium (Sigma-Aldrich, Cat. no. R8758)
with 10% (v/v) of fetal bovine serum (FBS, Sigma-Aldrich, Cat.
no. F7524) and 1% (v/v) penicillin-streptomycin (Sigma-Aldrich,
Cat. no. P4333). The cells are passaged every third day and
harvested for experiments at a confluency of around 80% when
cells are growing at the log phase. During harvesting, PC-3 cells
are washed once with PBS, detached using Trypsin-EDTA (Sigma-
Aldrich, Cat. no. T4049), centrifuged at 300g for 3 minutes,
and finally resuspended into the PBS with methylcellulose at a
concentration of around 107 cells per ml for flow experiments.

K-562 cells are cultured in the same medium of the PC-3 cells
with extra 1% (v/v) of L-Glutamine (Sigma-Aldrich, Cat. no.
G7513). The cells are split every third day and resuspended into
the same new medium at a concentration of around 0.2 million
per ml. When the cells are growing at the log phase to a concen-
tration of around 0.7 million per ml, they are centrifuged at 150g
for 5 minutes and then resuspended into the PBS solution with
2% (w/w) methylcellulose at a concentration of around 107 cells
per ml for experiments.

To test the sensitivity of the present system, we consider PC-
3 cells treated with cytochalasin D (CytoD, 5 mg/ml in DMSO,
Sigma-Aldrich, Cat. no. C2618). Before harvesting, PC-3 cells
are cultured with CytoD stock solution added to the cell culture
medium at 0.05% (v/v), equivalent to 5 µM, for 2 hours. To test
the effect of the DMSO solvent on cell surface elasticity, we also
measure PC-3 cells from the same batch that are cultured with
DMSO added to the cell culture medium at 0.05% (v/v) for 2
hours.

4.4 MLP-based prediction algorithm

The MLP-based prediction algorithm follows the method we de-
veloped recently54, where more details can be found. The net-
work consists of one input, two hidden and one output layers,
with each hidden layer having 256 perceptrons, which are the ba-
sic network elements. The perceptrons conduct nonlinear input-
output mapping defined by the regression problem. Each percep-
tron receives weighted inputs from all perceptrons of the previous
layer, and its output is calculated by passing the sum of weighted
input signal through a nonlinear activation function. The output
of the jth perceptron in the nth layer can be obtained from:

xn
j = σ(∑

k
wn

jkxn−1
k +bn

j), (4)

where wn
jk is the weight of the connection from kth perceptron of

the (n− 1)th layer to the jth perceptron of the nth layer, and bn
j is

the bias term. We have used the rectified linear unit (ReLU) as
the non-linear activation function σ(·) due to its simplicity and
superior ability to train the network faster79:

σ(xn
j) = max(0,xn

j). (5)

The samples for training of the MLP have been obtained from
numerical simulations resolving the mechanical interaction be-
tween the cell and suspension fluid using an immersed-boundary
lattice Boltzmann method as described in §4.5 and 4.6. A sample
consists of a steady deformation profile of a cell in the channel
flow, and its labels in the forms of the corresponding surface elas-
ticity and cell size. We discretize the cell profile into membrane
nodes that have equal arc-length distance and assemble their co-
ordinates into a 1D vector. During training, internal parameters
of the MLP, such as the weight and bias, are adjusted to minimize
a mean square root (MSE) loss function, which describes how
close the prediction is to the corresponding ground truth. The
MSE function is defined as:

L =
∣∣∣ylabel − y2

∣∣∣ , (6)

where y is the predicted value of a variable such as the cell surface
elasticity Gs, and ylabel is the corresponding ground truth.

To optimize the trainable parameters in the MLP, we obtain
the gradients of the loss functions with respect to the trainable
parameters and then update the values of the parameters with
an optimizer based on a stochastic gradient descent algorithm
called ADAM80 with an initial learning rate of 0.001. Mini-batch
mode training with a batch size of 128 is applied, and exposing
all training samples to the MLP once is called an epoch. At the
end of each epoch, the MLP is validated using a small portion
(10% in the present study) of training samples that have not been
actually used in training. With the process iterating, the losses
decrease and converge to small values, indicating network pre-
dictions are approaching their corresponding ground truth. To
avoid overfitting, batch-normalization81 and dropout regulariza-
tion82 at dropout rate of 0.3 have been applied. The training is
terminated when the values of loss functions no longer decrease
over several iterations even after reducing the learning rate.
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Fig. 9 Illustration of the present image processing procedure which converts the experimental image of a cell in a channel flow into a 1D cell boundary
coordinates vector that can be processed by the MLP.

After training, the MLP can predict the cell surface elasticity
and size from the steady profile of a cell in a channel flow. We
build an image processing pipeline, as illustrated in Fig. 9, to
convert a cell image into a 1D coordinates vector that can be
processed by the MLP. Firstly, the camera-recorded image is sub-
tracted from its background to remove the channel and static
noise to strengthen the cell features. The image is then binarized,
and holes on the binarized image within the cell are filled. A cell
is detected from the binarized image by finding any connected
region above a threshold area, that is set to 50 µm2, consider-
ing the sizes of cells characterised in the present study. Next,
the boundary of the detected cell is extracted from the binarized
image with a border following algorithm83, and the boundary
nodes are sorted counter-clockwisely. As can be seen in Fig. 9,
the cell boundary directly extracted from the binary image is not
smooth, which can significantly reduce the prediction accuracy of
the present method. To solve the problem, we use a piecewise
second-order polynomial function to approximate the cell bound-
ary smoothly, and boundary nodes with equal arc-length distance
from the fitted curve. Finally, the coordinates of those boundary
nodes are built into a 1D vector, in the same format of the training
data, that can be processed by the MLP.

4.5 Cell mechanical model

We simulate the flow-induced deformation of an initially spherical
cell with radius a in a square channel with width W , as illustrated
in Fig. 10. A three-dimensional Cartesian coordinate system is
defined with the x−axis along the flow direction, the y and z−axes
along the depth and width of the channel, and the origin at the
centre of the channel inlet plane. Following the model of Wang
et al.47, we consider a cell as a compound three-layer structure
including a viscoelastic MCC, a viscous cytoplasm, and a nucleus
that is smaller and stiffer than the cell.

The elasticity of the MCC follows the strain-hardening Skalak’s
(SK) law66, with a strain energy function:

Ws =
1
4

Gs

(
I2
1 +2I1 −2I2

)
+

1
4

CGsI2
2 , (7)

where Ws is the strain energy density per unit undeformed surface
area, Gs is the surface shear elasticity modulus, and I1, I2 are
two strain invariants with I1 = λ 2

1 + λ 2
2 − 2 and I2 = (λ1λ2)

2 − 1.
Here λ1 and λ2 are the principle extension ratios. The membrane
area dilatation modulus, Ks = (1+2C)Gs, where C is the hardness

parameter. We find in the present and previous studies47,49 that
C = 10 gives the best agreements with experiments (see Fig. 2).

Since the MCC is assumed to be infinitely thin in the model,
we take into account a small bending resistance using Helfrich’s
bending energy formulation84,

Eb =
kc

2

∫
A0

(2H − c0)
2dA0, (8)

where kc is the bending modulus, A0 is the surface area, H is the
mean curvature, and c0 is the spontaneous curvature that is set
to be zero. The bending modulus of the cell membrane cortex
complex is on the order of 10−19 J85, leading to kc ∼ 10−6Gsa2.
In the present study, we set kc = 0.001Gsa2 to prevent the forma-
tion of membrane wrinkles which would destabilise the numerical
simulations. The influence of bending at this level on cell global
deformation is negligible, as shown in Fig. S4 of the SI.

The cell cytoplasm is modelled as a Newtonian liquid. The cell
nucleus is represented by a small capsule with radius an, which
consists of a viscous fluid core enclosed by a hyperelastic nucleus
membrane that follows the SK law. Its membrane elastic moduli
are assumed to be twice those of the cell membrane, to represent
the fact that a cell nucleus is generally stiffer than the whole cell.

We are mainly interested in the steady deformation of cells in
the channel flow. At the steady state, the cell profile is not chang-
ing and the cytoplasm is largely in solid translation, therefore,
viscous effects of the cell subcellular components has little effect
on the cell steady profile.

In the present study, inertial effect is negligible, the steady de-
formation of the cells is mainly determined by the following two
dimensionless parameters:

• The capillary number Ca = µU/Gs, which compares the vis-
cous fluid force acting on the cell and the membrane elastic
force. The terms µ and U respectively are the average vis-
cosity and flow speed of the fluid in the straight channel. At
a higher Ca, a cell will undergo larger deformation.

• The confinement ratio β = 2a/W , which compares the size
of the cell to the width of the channel.

In the range of small to moderate cell deformation, which has
been the focus of the present study, we find that a cell nucleus
with nucleus-to-cell size ratio an/a ≤ 0.7 will not significantly af-
fect the cell steady profile. One example is shown in Fig. 11,
for a cell with β = 0.75, 0.5 ≤ an/a ≤ 0.7 at Ca = 3.0, where the
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Fig. 10 Illustrations of (a) the cell mechanical model, which accounts for the cell surface, cytoplasm, and nucleus, and (b) an initially spherical cell
flowing through a straight square channel.

cell is undergoing moderate deformation. This is again due to the
solid translational motion of the cell interior. In experiments we
measure the an/a of both the K-562 and PC-3 cell lines. The cell
nuclei are stained with DAPI and visualised using a fluoresce mi-
croscope (Axioscope, ZEISS), while the cells are visualised with
bright field imaging. Measured from ∼ 100 cells of each of the cell
lines, we find that the average an/a for K-562 and PC-3 cells are
0.62 and 0.59, respectively, with 76% K-562 and 75% PC-3 cells
having an/a ≤ 0.7. To save computational efforts, in the present
simulations, we have assumed an/a = 0.6.

Fig. 11 Cell nucleus with an/a ≤ 0.7 has little effect on steady cell defor-
mation profile in the moderate deformation regime at Ca = 3.0, β = 0.75.

4.6 Computational method
The present computational framework is based on a well-tested
immersed boundary lattice Boltzmann method47–49,86–91. Briefly,
the fluid flow is governed by the three-dimensional Navier-Stokes
equations, which are solved using a 3D nineteen-velocity lattice
Boltzmann model. For the viscosity of the channel fluid, a trun-
cated power-law model is used92. At the walls of the square chan-
nel, the non-slip boundary condition is applied using a second-
order bounce back scheme93. A second-order non-equilibrium
extrapolation method94 has been employed to impose the pres-
sure boundary conditions at the inlet and outlet, and the pres-
sure drop is adjusted to match the flow conditions in the exper-
iments. The fluid-cell interaction is solved using an immersed
boundary method95,96. The membrane of the cell is discretised
into flat triangular elements following Ramanujan97. A finite el-
ement method is used to calculate the membrane elastic forces
from the membrane deformation and its strain energy function.

We conduct a mesh convergence test, the fluid grid size that is
finally chosen is ∆x = 0.01W , and the MCC of the cell has been
discretised into 32768 flat triangular elements connecting 16386
nodes.

4.7 Decision tree for cell classification

The decision tree (DT) is a supervised machine learning algorithm
that is widely used for classification tasks. Compared with other
machine learning methods, DTs are not black-box models, can be
easily expressed by rules, and therefore have been used in a vast
range of applications such as drug discovery98, emotion recogni-
tion99 and disease treatment100.

A DT consists of root, internal and leaf nodes connected in a
hierarchical tree structure. Each decision node carries a rule that
helps split the data set reaching the node into several subsets.
In this study, the data set consists of the cell size, surface shear
elastic modulus Gs, and the associated cell type, which are shown
in Figs. 5 a & b. The rule on a decision node is a threshold of
either the cell size or surface Gs, that can be used to split the
cells into K-562 and PC-3 groups. The quality of the data split is
measured by the Gini index, defined as:

GiniA(D) =
n1

n
Gini(D1)+

n2

n
Gini(D2). (9)

The dataset D with n samples is split into two subsets, D1 with n1

samples and D2 with n2 samples, respectively. The Gini value of a
given dataset R is

Gini(R) = 1−
k

∑
i=1

p2
i , (10)

where the pi is the relative frequency of class i in R. A lower Gini
index indicates better data separation. The thresholds on deci-
sion nodes to divide data sets are identified using an induction
algorithm that can reach the minimum Gini index. As the data
going through the decision nodes, the splitting process repeats,
until a leaf node is encountered, where a class label is assigned.
The longest path from a root to a leaf node is called the depth of
a DT. In the present study, we develop a simple DT with a depth
of 4. We randomly choose 80% of the data of Figs. 5 a & b as
the training set to induct the DT, and evaluate the accuracy of the
trained DT using the remaining 20% of data.
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