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extraterrestrial remote analysis. However useful, its primary limitation is its sensitivity to measure-

ment conditions, making direct data transfer (DT) between LIBS systems with different analytical

systems impractical. Addressing this challenge directly would require costly studies, extensive sample
analysis or simulations of plasma formation in different atmospheres, moreover this approach would
demand extensive calibration across various LIBS systems. Previous studies have demonstrated that
machine learning models can facilitate DT across different instruments and conditions. However,

existing approaches either rely on one-to-one spectral pairs or are limited to predefined condition

pairs. We propose an alternative solution: a single machine learning model capable of many-to-

many transfer across multiple conditions without requiring both one-to-one spectral representations

and huge amounts of data. Our model has been trained on regolith LIBS spectra, measured in-house

across two simulated atmospheres (Earth, Moon/vacuum) and with two laser energies (30 and 15
mJ). The model evaluation focuses on the Root Mean Square Error (RMSE) of predicted elemental
concentrations from transformed spectra, serving as the primary metric for the transfer quality. The

proposed model for which task outperforms Piecewise Direct Standardization (PDS) based baseline

approaches by around 10% in terms of RMSE.

1 Introduction

Laser-Induced Breakdown Spectroscopy (LIBS) is a versatile an-
alytical technique used to determine the elemental qualitative
and semi-quantitative composition of a sample in various phases.
Due to its capability for in situ analysis, it is commonly used for
remote sensing applications, namely on Mars rovers such as Cu-
riosity with its ChemCam2 LIBS instrument or SuperCam® on the
Perseverance rover. Additionally, LIBS can quantify a wide range
of major and minor elements“-©, it allows for real-time and stand-
off sensing, multielemental detection with only a single measure-
ment and producing high-resolution spectral images.

One of the main limitations of LIBS is its limited repeatabil-
ity and a relatively high sensitivity to the sample matrix, surface
topography and changes in experimental conditionsZ"2, This is
largely due to the nature of the laser-induced plasma, which is
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a rapidly evolving, in both space and time, non-equilibrium sys-
tem. In essence, LIBS is highly sensitive to atmospheric changes,
and the consistent calibration is critical for quantitative analysis
under a given atmosphere and sample matrix (besides other fac-
tors), as even slight variations in experimental parameters can
lead to significant differences in the spectra. To overcome these
limitations and to enable the effective reuse of LIBS data across
varying conditions, various strategies have been developed to ad-
dress instrumental and environmental variability.

In LIBS, data transferi® (DT) involves transforming or aligning
spectral data acquired under varying conditions or from different
instruments, so that it can be effectively used in different settings.
This allows for the reuse of existing datasets and reduces the need
for repeated calibration.

Calibration transfer 114 (CT), in contrast, refers to the process
of adapting a calibration model developed on one (source) spec-
trometer for use on another (target) spectrometer, ensuring the
consistent performance despite the differences in instrument re-
sponse or experimental setup. This is crucial for extending model
applicability across systems and reusing the knowledge learned
under varying conditions.

While both DT and CT aim to address instrumental and con-
ditional variability, they differ in approach and complexity.12DT
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typically places higher demands on the model, as it involves align-
ing or modifying entire datasets, which may include irrelevant
or noisy information not essential to the target task. CT, on the
other hand, focuses on transferring the predictive model itself,
which may internally rely on simpler spectral transformations to
account for variability between instruments. A classical approach
in this context is Direct Standardization (DS), which is a DT tech-
nique that maps spectra from the source instrument to the target
domain using a single global transformation. While conceptually
simple, DS often fails when the spectral differences are highly
nonlinear or vary across the wavelength range.

To overcome this limitation, Piecewise Direct Standardization
(PDS) was proposed 11617, ppgilZ s a nonlinear technique that
aims to transform a given spectrum to match a target spectrum.
This is achieved by segmenting the data into smaller intervals
and applying linear transformations within each segment. Al-
though locally linear, the method is globally nonlinear due to its
segmented approach.

One of the possible applications of DT is the process of transfer-
ring data from one instrument or setting to another allowing us
to use a calibration curve measured in one condition for samples
measured in another. This problem commonly arises when com-
paring spectra acquired in extraterrestrial environments, such as
those measured by space rovers, with spectral libraries developed
under Earth’s atmospheric conditions1®18119 Beyond extraterres-
trial applications, DT is also necessary to address the gradual in-
strument deterioration, replacement of components, and variabil-
ity between nominally identical instruments, such as lasers, which
may introduce systematic differences despite being designed to
the same specifications®?, Addressing this challenge is crucial for
enabling robust data and calibration transfer across laboratories,
creating the possibility of shared spectral databases, and enabling
remote missions where models must incorporate standards or ref-
erence materials not present during initial training#.

Therefore, our main evaluation metric is the root mean square
error (RMSE) of regolith oxide content predictions based on
transferred spectra. This choice reflects how well the transferred
spectra can support downstream quantitative analysis tasks.

A DT model we propose is based on an auxiliary classifier vari-
ational autoencoder?!! (ACVAE), which maps spectra into a latent
representation and then reconstructs them for a specified condi-
tion, the auxiliary classifier enforces reconstruction to be condi-
tion dependent, as illustrated in Fig.

We demonstrate that our methodology can transform spectra
across many-to-many conditions, meaning that a single model is
trained to handle transfers between multiple experimental set-
tings in both directions, rather than being restricted to a fixed pair
of source and target domains. The performance is evaluated on
samples excluded from training, and the proposed model is com-
pared against baselines such as piecewise direct standardization
(PDS) and piecewise direct standardization—partial least squares
(PDS-PLS), consistently outperforming them across all studied
conditions.
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Fig. 1 Model architecture overview.

Our contributions in this paper are threefold. First, we in-
troduce a single machine learning model that enables many-to-
many transfer across multiple conditions. Second, unlike earlier
works (e.g., Vrabel et al.1%), our method does not rely on one-
to-one spectral correspondences between samples from different
conditions, allowing it to be applied to independently collected
datasets. Finally, we demonstrate that our approach not only out-
performs conventional PDS-based and other baseline methods but
also maintains computational efficiency through its fully convolu-
tional architecture.

2 Related work

DT in the context of LIBS was studied by Vrabel et al. 14 where
the transfer relied on simultaneously measured spectra of the
same samples under different systems. This approach provided
a one-to-one correspondence between source and target spec-
tra but required specialized synchronized acquisition setups and
paired datasets. In contrast, our method trains on LIBS spectra
library collected independently under different conditions, en-
abling many-to-many transfer without paired samples.

Concretely, one-directional transfer methods such as PDS are
designed for a fixed mapping (e.g., from a spectrometer oper-
ating at 30 mJ in Earth atmosphere to another operating at 15
mJ). Many-to-many transfer, by contrast, enables a single model
to handle several conditions simultaneously and in both direc-
tions—for instance, transferring between Earth-atmosphere and
vacuum spectra without training a separate model for each case.

Earlier works on DT1922/ mainly focus on using simple previ-
ously mentioned techniques like PDS or PDS-PLS that offer results
allowing for a reliable sample quantification (see Table ). How-
ever, as already mentioned, they only allow for a one-way transfer
between two predefined conditions. A more recent DT method
proposed by Ding et al. %3 projects the source and target spectra
from their original feature spaces into a new, shared feature space
where the two domains become more similar.

Zhang et al.?4 have also presented a generative adversar-
ial network (GAN)-based?® solution for DT. It aimed at trans-
forming spectra taken from low-resolution instruments into high-
resolution spectra, effectively reconstructing full-spectrum infor-
mation from sparse multi-spectral measurements. This approach
also significantly differs from our proposed method, as we fo-
cus primarily on the aforementioned many-to-many condition
transfer. Although GAN-based methods often require very large
datasets to train effectively, our approach is designed to perform
well even without massive data volumes—though, as with most
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deep learning models, additional data could further improve per-
formance.

3 Methodology

In this section, we define the key components of our approach,
including the data setup, model architecture, and training proce-
dure. We then describe our customized model and the modified
loss function developed to improve spectral transfer performance.

The proposed approach focuses on developing a primary-and-
secondary-condition-agnostic model, capable of transferring spec-
tra bidirectionally between any two conditions denoted as c:

ey i je{(i))]i#j} )

In our case we consider a total of three conditions: Earth atmo-
sphere (atm) with the laser energy set to 30mJ, Earth atm with
15 mJ laser energy and Moon/vacuum atm with 30mJ laser en-
ergy. Given the clear physical differences between these condi-
tions, the resulting spectra vary substantially in the total emissiv-
ity, line width, and profile, as well as in the presence and relative
intensities of spectral features Fig.

Our method is based on a modified Auxiliary Classifier Varia-
tional Autoencoder (ACVAE) which maps spectra into a condition-
dependent latent space and transforms them according to a de-
sired secondary system. Unlike PDS-based approaches, it does
not require predefined primary and secondary conditions and op-
erates in a non-parallel manner, enabling the model to capture
complex, non-local and non-linear correlations across widely sep-
arated spectral regions. Furthermore, the approach does not re-
quire one-to-one correspondence between spectra.

The model we draw inspiration from was originally designed
for voice conversion (VC). However, the problem formulation in
both VC and spectral transfer is similar; both involve transforming
data from one condition to another, such as converting a man’s
voice to a woman’s voice or transforming LIBS spectra from Earth
to Moon atmospheric conditions. The ACVAE itself is based on
the Conditional Variational Autoencoder?® (CVAE). CVAE for a
given dataset 2 = (x;, "i)i'vzl learns to encode the input data x; and
condition denoted as ¢; into a normally distributed latent space z
via fene : (xi5¢;) — z;, and decode the latent representation and
condition back into the reconstructed data via fge. : (zi5¢i) — %,
where #; indicates reconstructed data. This approach allows the
model to encode and decode information while taking the given
condition into account. However, standard CVAEs impose no re-
striction on how the encoder and decoder utilize the attribute
class and are free to ignore it by learning a mapping, such that
Jene(Xi3¢i) = fenc(xi) and decoding as fuec(zii¢i) = faec(2i), thereby
reducing the model to a vanilla Variational Autoencoder?2? (VAE).
In contrast to a standard CVAE, our method explicitly encourages
the model to learn and apply the characteristics of each condition
during transfer. Without this constraint, the model could opti-
mize only for reconstruction accuracy while neglecting the target
condition. To address this, we use a modified ACVAE model that
originally satisfies the following criterion

L(9,0,y)= _7(9,0)+ 1y - ZL(9,0,y)+A-1(y) 2
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With ¢ denoting the variational lower bound for CVAE, where
¢ are the encoder network parameters, 0 decoder network pa-
rameters, and y auxiliary classifier network parameters. .# rep-
resents the regularization term with respect to ¢, 6 and y, and
I represents cross entropy between the predicted and true condi-
tions, which captures the dependence of the latent variable z on
the condition ¢ through the auxiliary classifier parameters, A; and
A; being regularization parameters. For clarity, we omit the data
dependence in the loss expression. This objective can be consid-
erably simplified to

L= (= 10gp(x | Haec: Tec) + Dra0(2) [ P(2))) +
(3)

+ Ay ZLas(c| fo(2) + A 1(w;c)

which consists of the negative Gaussian log likelihood'%® between
the input x and its reconstruction from the decoder, parameter-
ized by Ugec and oﬁe > the Kullback-Teibler divergence 22 Dy,
between parametrized g¢(z) and the assumed Gaussian prior
p(z) = A4 (z]0,I), classification loss .Zcls, which encourages accu-
rate prediction of the condition ¢ from the decoder output f6(z),
mapping the latent representation z to its reconstruction £, and
the cross-entropy term /(y;¢) serving as the objective for the aux-
iliary classifier.

We then extend this with additional physics-informed regular-
ization terms

L(g,0,y)= _7(9,0)+ 1y - ZL(9,0,y)+ A - 1(y)+

T MY 2
e (1_1 F(x,c,c)) N

17!
) 4)
P\
(1 p)
1T min(0,F (x,c,c')) ?
+’IN< 1T [ F(x,c,c) | )

That extends the original one with physics-based objectives={,

The model is defined as a composition F = fencoder © fdecoder With
transfer denoted as ' = F(x,c,c’), where x is the input spectrum,
c its associated condition and x’ is the corresponding spectrum of
the same sample under a different condition ¢’. We use P to de-
note the achieved peak coverage, with P representing the desired
peak coverage within the optimization objectives. Peak cover-
age is computed by first identifying significant peaks in the target
spectra and based on them creating a mask. This mask is then ap-
plied to both the transferred spectra and target spectra, and the
summed peak intensities are compared. This approach focuses
specifically on reproducing key spectral features rather than on
full-spectrum reconstruction, ensuring that the optimization em-
phasizes physically meaningful peaks.

The proposed changes account for three key physical prop-
erties of spectra—total emissivity, peak structure, and non-
negativity—respectively regularized by Ar, Ap, and Ay. Total
emissivity reflects the material’s overall energy emission and must
remain within realistic bounds. Spectral peaks encode elemental

Journal Name, [year], [vol.], 1 |3
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and molecular signatures; distorting them hinders reliable identi-
fication or quantification. Negative values are physically mean-
ingless in this context, as spectral intensity represents emitted
energy. Incorporating such physics-informed constraints in neu-
ral network training has been shown to improve model general-
ization and maintain scientific plausibility without compromising
performance®32 Enforcing these constraints helps ensure that
the model produces outputs that are both accurate and physi-
cally plausible. Additionally, we expand the model architecture by
including more layers, skip connections, and learnable attribute
class embeddings.

3.1 Baseline

We assess the model based on how well the transferred spectra
can be used for regression tasks, using PDS and PDS-PLS mod-
els as baselines. Convolutional Neural Networks=2 (CNNs) are
trained on the known sample compositions 2, = (x;, yi)é\i \for each
condition ¢, where x; denotes the spectra of sample i under con-
dition ¢ and y; denotes the corresponding target property or com-
position. A separate CNN is trained for each condition, but for
convenience we omit the condition-specific notation in the fol-
lowing. Predictions on the transferred spectra obtained with the
CNNs are compared against the ground-truth labels y as well as
against predictions made directly from the original spectra. Let
Yiranst = fONN, (F (x,¢,¢’)) where x denotes the original spectra and
F is the transfer model. We then define: n. denotes the total
number of conditions, and N, denotes the number of samples for
a given condition.

N. (i.0) 2
o 1 i i Zk:1 (yk 7yufa{1sf.k) (5)
e = ——
rue n(r(n(' _ 1) far} Aj:l ];ﬁl NL.
" i) 2
1 ne o n Y (fCNN (k) _ytransf.k)
Egelta = ne(ne—1) DY N, ©

i=1j=1 j#i

We propose the latter evaluation function as there are noticeable
spectral differences between individual measurements. This ap-
proach helps reduce the number of factors that affect the evalua-
tion, making the results more consistent and easier to interpret.

Further details regarding the CNN and its training procedure
are provided in the Appendix in the SI.

3.2 Experiments and Data
3.2.1 Samples

A set of commercially available simulant samples from Exolith lab
(Mars samples: Jez-1, MGS-1C, MGS-1S, MGS-1; Moon samples:
LHS-1D, LHS-1E, LHS-1, LMS-1D, LMS-1, Dusty)24 were mixed
to create additional samples for robustness. Each new sample was
created by mixing two original samples for the respective type
(Mars and Moon). Their resulting composition is listed in the SI.
The original samples were weighed with 0.001 g precision, and
based on the weight ratio, the composition of the mixed samples
was calculated. As a result of this process, a total of 42 samples

4] Journal Name, [year], [vol.], 1
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were analyzed for both Martian (21 samples) and Lunar (21 sam-
ples) regolith simulants. All the samples were compressed into
pellets of 5 g, 30 mm diameter, 15 ton pressure for 1 minute. The
average grain size was 70 um.

The 42 synthetic Lunar and Martian regolith samples were
measured under Earth and simulated Lunar (Earth-based vac-
uum) atmosphere using two laser energies (30 mJ and 15 mJ),
with 100 spectra collected for each configuration. This resulted
in four measurement conditions. However, due to the low spec-
tral information content in the simulated lunar atmosphere with
15 mJ laser energy, that condition was excluded, leaving three
conditions in total. All data were collected on the same instru-
ment, the CEITEC Discovery=23¢ equipped with an atmospheric
chamber.

3.2.2 Measurement parameters

LIBS Discovery vacuum chamber was used for the measurements
to ensure controlled experimental conditions. The setup included
an ablation laser operating at 1064 nm with a pulse energy of
30/15 mJ and a pulse duration of 8 ns. An Echelle spectrometer
with an EMCCD detector, covering a spectral range of 200-1000
nm with a resolution of 0.035 nm, was used in combination with
wide-range collection optics and a 400 um optical fiber. The spec-
trometer was configured with a gate delay of 0.15 us after the
ablation and a gate width of 50 us for all examined conditions.
The vacuum chamber was equipped with a rotary pump to sim-
ulate the required experimental conditions: Earth’s atmosphere
and low vacuum (0.1 mbar). Each condition experiment con-
sisted of 100 laser pulses per sample.

3.3 Spectral differences

There are significant spectral differences between measurements
performed under given experimental conditions. As mentioned in
Section[1] these differences arise from variations in plasma evolu-
tion, emission intensities, and line broadening effects associated
with pressure and composition of the given atmospheres.

To illustrate these effects, Fig. shows example spectra ac-
quired under all conditions for the same sample, highlighting
shifts in peak intensities and the presence or absence of specific
emission lines. The main difference lies in the enormous inten-
sity disparity between low-vacuum and Earth spectra, whereas
spectra acquired at 15 mJ and 30 mJ energy under Earth’s at-
mospheric conditions exhibit significantly different variance with
only subtle differences in peak intensity.

4 Results and discussion

In this section, we present the performance of the proposed
method compared to the baseline PDS-based approaches. The
evaluation results are summarized in Tables [1| and |2} as well as
visualized in Fig.[4} We achieved noticeably better results in terms
of metrics and spectra fidelity, as visualized in Fig[5|{8] in compar-
ison to the baseline models in our Table |1] and similar work by
Lepore et al. %2 Table

Our method provides a substantial improvement over the base-
line in terms of sample quantification. While PDS-based meth-
ods generally reproduce the overall spectral shape, they often
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Fig. 2 Comparison of LIBS spectra acquired under different conditions
for the same sample. The solid line indicates the mean spectrum across
repeated measurements for the respective condition, while the shaded
region represents its standard deviation. The visualized sample is a syn-
thetic lunar material rich in aluminum and aluminum oxide

distort peak profiles and introduce considerable variation within
the transferred spectra. In contrast, the ACVAE-based model pre-
serves key spectral features more consistently and, likely owing
to its convolutional architecture, generates smoother and more
believable spectra.

Across all transfer directions, the proposed method consistently
yields lower RMSE values compared to the baselines. The mag-
nitude of the improvement varies with the transfer scenario, but
the trend remains stable across repeated runs, indicating that the
proposed model is not overly sensitive to initialization or random
sampling effects.

While the results consistently favor our approach, it should be
noted that no standardized benchmarks for LIBS data transfer
currently exist, which complicates direct comparisons with pre-
viously published work. Nevertheless, within our experimental
setup, the proposed method demonstrates a clear and consistent
advantage over both PDS and PDS-PLS.

5 Conclusion

Our research presents a method for accurate and computation-
ally efficient transfer of LIBS spectra across many-to-many exper-
imental conditions. The approach enables direct comparison and
transformation of spectra collected under different configurations
with minimal need for system recalibration or physical synchro-
nization.

The methodology involves acquiring multiple measurements
of the same set of samples under each condition and train-
ing a model to learn the mapping between them. The model
is trained and validated using an in-house, multi-sample and
multi-condition dataset comprised of synthetic Lunar and Mar-
tian regolith spectra, acquired on the same LIBS instrument Sec-
tion The results show that the proposed method can suc-
cessfully transfer spectra between conditions while preserving
quantitative accuracy, achieving better performance than base-
line PDS-based approaches. This makes it potentially relevant
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Fig. 3 Comparison of LIBS spectra for 380-400 nm spectral range, ac-
quired under different conditions for the same sample. The solid line
indicates the mean spectrum across repeated measurements for the re-
spective condition, while the shaded region represents its standard devia-
tion. The visualized sample is a synthetic lunar material rich in aluminum
and aluminum oxide

Table 1 Performance of models under different test spectra. The first
column indicates the source spectra used for model training, while the
second column shows the target spectra to which the data were trans-
ferred and on which the models were evaluated. The results are reported
as average RMSE, with their respective standard deviation values, across
samples when comparing ground truth concentration labels y and pre-
dicted concentrations of transferred spectra yyanst = fonn, (F(x,¢,¢’)) (see
Section .

Test on Earth 30 mJ Spectra

Ave. RMSE Std. Dew.
Earth 15 mJirue 2.72 0.05
Earth 15 mJgejia 2.32 0.12
Vacuum 30 mJirye 2.68 0.04
Vacuum 30 mJgea 1.76 0.03

Test on Earth 15 mJ Spectra

Ave. RMSE Std. Dew.
Earth 30 mJrye 3.30 0.07
Earth 30 mJgeja 2.69 0.10
Vacuum 30 mJirye 3.27 0.01
Vacuum 30 mJgejra 1.68 0.02

Test on Vacuum 30 mJ Spectra

Ave. RMSE Std. Dev.
Earth 15 mJirue 3.09 0.10
Earth 15 mJgejea 1.97 0.20
Earth 30 mJirue 3.17 0.10
Earth 30 mJgejea 2.53 0.10

Each spectra was transformed to the condition it was tested on

for scenarios such as planetary exploration, where measurement
conditions are inherently variable and direct recalibration is im-
practical.
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Fig. 4 Heatmaps illustrating spectral transfer performance across all pairs
of measurement conditions. Panel (a) shows Eyye (Eq. , representing
the absolute prediction error obtained after transferring spectra from each
Source Condition (rows) to each Target Condition (columns). Lower
values correspond to more accurate transfer. Panel (b) displays Egelra
(Eq.@. Here lower values correspond to a more accurate transfer, as well.
Together, the heatmaps provide a comprehensive overview of the transfer
quality for every source—target combination. Panel (c) shows the baseline
Eiwe values computed without performing any spectral transfer. In this
case, spectra from each Source Condition (rows) are directly compared to
each Target Condition (columns). This panel illustrates the magnitude of
the prediction error when no transfer is applied and serves as a reference
against which the improvements from Panels (a), (b) and Table [1] can
be assessed.

Table 2 Comparison of models in terms of performance metrics across
multiple seeds. Results are reported as the mean value + standard de-
viation to reflect variability across different random initializations of pa-
rameters.

heightMetric ~ACVAE [ours] PDS PDS-PLS

Etre (€q.]5 3.08+0.04 3.53+0.01 5.62+0.03
Edelta (eq%} 2.244+0.07  2.44+0.01 2.4440.01
R? 0.93+0.01 0.90+0.01 0.7240.01

5.1 Future work

The dataset used in this study is modest in size and spans only a
limited set of measurement conditions. Expanding it with more
spectra and a broader range of conditions would improve the
method’s robustness and allow us to validate whether the model
remains a viable approach across a wider set of conditions.

Computational resources

All experiments were conducted on a desktop with the following
specifications:

* CPU: AMD Ryzen 5 7500F
* GPU: NVIDIA RTX 4060 Ti 16 GiB

* RAM: 32 GiB DDR5

The code was executed using PyTorch 2.4.1 with CUDA 12.4 sup-
port where applicable.

6| Journal Name, [year], [vol.], 1

Page 6 of 9
View Article Online
DOI: 10.1039/D5JA00401B

Table 3 Performance of PDS-PLS models under different test spectra

from Lepore et al.22

Test on Earth Spectra

Train on all atmospheres
Mars cal trans.* to Earth train
Vac cal trans. to Earth train

Ave. RMSE-P  Std. Dev. Ave. R?
1.49 1.10 0.83
3.32 2.11 0.77
2.56 2.41 0.75

Test on Mars Spectra

Ave. RMSE-P  Std. Dev. Ave. R?
Train on all atmospheres 1.27 0.92 0.87
Earth cal trans. to Mars train 2.96 1.83 0.80
Vac cal trans. to Mars train 2.43 2.02 0.80

Test on Vacuum Spectra

Ave. RMSE-P  Std. Dev. Ave. R?
Train on all atmospheres 1.26 0.94 0.81
Earth cal trans. to Vac train 6.87 5.56 0.51
Mars cal trans. to Vac train 2.88 2.35 0.74

*“cal trans.” indicates use of the PDS-PLS calibration transfer
algorithm.
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Fig. 5 Visualization of our approach, illustrating average transfer quality
and effectiveness. Spectra are transferred from low-vacuum to Earth
conditions at 30 mJ laser energy. The plot shows the mean transferred
spectra alongside the target atmospheric spectra, with shaded regions
indicating their respective standard deviations.
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Fig. 6 Visualization of PDS approach, illustrating average to best trans-
fer quality and effectiveness. Spectra are transferred from low-vacuum
to Earth conditions at 30 mJ laser energy. The plot shows the mean
transferred spectra alongside the target atmospheric spectra, with shaded
regions indicating their respective standard deviations.
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Fig. 7 Visualization of our approach, illustrating worst case transfer
quality and effectiveness. Spectra are transferred from Earth at 15 mJ
laser energy to low-vacuum. The plot shows the mean transferred spectra
alongside the target atmospheric spectra, with shaded regions indicating
their respective standard deviations.
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Fig. 8 Visualization of PDS approach, illustrating below-average to
worst-case transfer quality and effectiveness. Spectra are transferred from
Earth at 15 mJ laser energy to low-vacuum. The plot shows the mean
transferred spectra alongside the target atmospheric spectra, with shaded
regions indicating their respective standard deviations.
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