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d mineral identification for future
space mining applications employing LIBS and
machine learning

Homa Saeidfirozeh, *a Ashwin Kumar Myakalwar, b Pavĺına Šeborová, a

Ján Žabka,a Bernd Abel, ac Petr Kubeĺıka and Martin Ferus a

The growing interest in sustainable space exploration has brought in situ resource utilization (ISRU) to the

forefront of planetary science. This study presents an integrated approach to autonomous mineral

identification for space mining by combining Laser-Induced Breakdown Spectroscopy (LIBS) with

supervised machine learning (ML). A dataset of over 400 high-resolution LIBS spectra representing 25

mineral classes was collected under simulated low-pressure conditions to replicate extraterrestrial

environments. The raw spectra were preprocessed using wavelet-based denoising to reduce random

noise, baseline correction to remove the background continuum, and spectral normalization to account

for intensity variations. To simplify the data and enhance classification performance, three feature

selection methods were applied: Principal Component Analysis (PCA), which identifies directions of

maximum variance to reduce data dimensionality; variance thresholding, which removes spectral

features with negligible variability across samples; and random forest-based feature selection (RF-FS),

which ranks wavelengths by their importance for classification. Several classification algorithms were

evaluated, with test accuracies reaching up to 89.3%. The best results were achieved using random

forest and logistic regression models trained on features selected by RF-FS, showing strong

generalization to previously unseen samples. This work demonstrates the potential of LIBS-ML

integration for fast, robust, and accurate mineral classification, including reliable identification of

dominant phases in mineral mixtures in planetary environments. The approach also provides

interpretability and classifier confidence estimation, supporting adaptive autonomous mineral

identification for future robotic exploration missions.
1 Introduction

Human relationship with celestial treasures dates back to the
dawn of civilization. Ancient societies integrated the night sky
into their myths, rituals, and material culture, oen attributing
divine signicance to meteoritic materials. A striking example is
Pharaoh Tutankhamun's iron dagger, forged from meteoritic
metal.1 In a broader sense, the Sun has served as the earliest and
most enduring extraterrestrial resource, providing light,
warmth, and the foundation of agriculture. In modern times,
this natural inheritance has evolved into the strategic use of
solar energy in space missions.2 These historical layers illustrate
how our engagement with the cosmos has gradually
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transformed from symbolic reverence to the practical pursuit of
off-Earth resources.

By the late 19th century, the idea of utilizing resources from
beyond Earth began to appear in speculative literature. One
notable early example is Garrett P. Serviss's Edison's Conquest
of Mars (1898), which describes the extraction of gold from
asteroids, foreshadowing modern concepts of asteroid mining.
By the 20th century, forward thinkers began imagining how we
might utilize resources from beyond our planet. Konstantin
Tsiolkovsky, a pioneering rocket scientist, set the groundwork
for space travel and dreamed of humans expanding into space,
supported by materials found on other worlds.3 Aerwards, in
the mid-1900s, innovators like Arthur C. Clarke played a key role
in popularizing these concepts by introducing them to the
public through science ction and futuristic ideas, inspiring
many to imagine mining the Moon and asteroids,4 and laying
the foundation for today's serious discussions about space
resource utilization (SRU).5 These concepts evolved into insti-
tutional strategies emphasizing the importance of in situ
resource utilization (ISRU), reducing reliance on Earth-supplied
materials, and enabling affordable long-term space missions.6
J. Anal. At. Spectrom.

http://crossmark.crossref.org/dialog/?doi=10.1039/d5ja00377f&domain=pdf&date_stamp=2025-12-12
http://orcid.org/0000-0002-6687-1496
http://orcid.org/0000-0002-5794-0605
http://orcid.org/0009-0002-3374-7971
http://orcid.org/0000-0001-6032-1680
http://orcid.org/0000-0003-4008-2920
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ja00377f
https://pubs.rsc.org/en/journals/journal/JA


JAAS Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 9
:5

2:
23

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Dening “space resources” has become increasingly critical:
a material qualies if it is present in a useful concentration,
extractable with foreseeable technology, and serves practical
space operations or markets. Recent efforts are underway to
adapt terrestrial mineral classication standards, such as the
Lunar Ore Reserves Standard (LORS-101),7 explicitly designed to
categorize extraterrestrial deposits by feasibility and utility.
Over recent decades, space resource mapping through remote
sensing and sample analysis has progressed signicantly.5

Agencies have identied promising concentrations of elements
such as Fe, Ti, and Si, and extensive deposits of water ice in the
Moon's polar regions, considered to be important for future
propellant production.8–10Despite promising orbital and remote
sensing data, the actual composition, spatial distribution, and
accessibility of these extraterrestrial resources remain uncer-
tain. Reliable in situ measurements are therefore crucial for
validating resource models and developing effective extraction
strategies.11 Laser-Induced Breakdown Spectroscopy (LIBS) has
emerged as a powerful tool for real-time geochemical analysis in
space exploration.12 LIBS enables direct analysis of unprepro-
cessed, unpolished surfaces with almost any geometry, making
it highly suitable for elemental characterization in extraterres-
trial environments. While not directly involved in material
extraction, LIBS plays a critical role in resource prospecting and
compositional mapping, foundational steps toward the reali-
zation of extraterrestrial mining. Unlike traditional methods,
LIBS operates effectively in low gravity and vacuum, providing
real-time elemental composition analysis without the need for
extensive sample preparation or complex instrumentation,
making it a suitable analytical technique for different planetary
missions.13–15 Despite these advantages, interpreting LIBS
spectra under eld conditions is challenging due to spectral
complexity. Here, recent advances in Machine Learning (ML)
offer a transformative approach. ML algorithms trained on
known spectral signatures enable efficient classication of
minerals from noisy or novel spectra, signicantly improving
speed and accuracy in situ. On Earth, LIBS has proven its
versatility in analyzing diverse mineral and ore samples,
including pyrite (FeS2), hematite (Fe2O3), molybdenite (MoS2),
and chalcopyrite (CuFeS2), many containing economically
valuable metals like copper, iron, zinc, and tungsten. This study
features a mineral campaign including copper ores (azurite and
malachite), iron ores (hematite and magnetite), and rarer
materials like bauxite (aluminum ore) and wolframite (tungsten
ore), simulating the diversity expected in extraterrestrial mining
environments.

However, LIBS alone cannot efficiently handle the vast and
complex spectral datasets generated during extraterrestrial
mining. This challenge aligns with the broader scientic
priorities highlighted by the Mars Sample Return initiative,
which emphasizes the necessity for precise, rapid, and robust
analytical techniques to exploit returned planetary samples6,16

fully. In this study, we focus on the ultraviolet (UV) spectral
region under atmospheres of 10 and 10−2 mbar, closely simu-
lating the low-pressure conditions encountered in space. ML
provides a transformative solution, enabling the accurate clas-
sication and analysis of diverse mineral samples in real-time.
J. Anal. At. Spectrom.
Unlike deep learning methods that require large datasets, ML
algorithms such as Random Forest (RF), Support Vector
Machines (SVM), K-Nearest Neighbors (KNN), and Logistic
Regression (LR) excel in small-data environments typical of
space missions. These approaches effectively manage sparse,
imbalanced data and noisy spectra, making them invaluable for
on-the-y decision-making in space resource extraction. More-
over, ML approaches are not limited to mineral classication;
recent studies have successfully applied neural networks to
predict plasma parameters directly from LIBS spectra, such as
plasma temperature estimation using synthetic ChemCam-
based simulations,17 and rapid detection of trace elements
like xenon in complex plasma mixtures relevant for geochem-
ical and planetary analyses.18

This study presents a robust LIBS-ML integration method-
ology that bridges Earth-based experiments with extraterrestrial
resource exploration, addressing challenges like matrix effects,
spectral noise, and small dataset variability. A key di-
stinguishing feature of this work is its focus on mineral iden-
tication using LIBS spectra collected under planetary-like low-
pressure conditions, as well as a careful evaluation of perfor-
mance on complex mineral mixtures, which closely reects the
real-world scenarios of future space resource utilisation.

The paper is organized as follows. Sect. Materials and
Methods, details the experimental methods and describes data
processing and ML; sect. Results and Discussion presents the
results and discussion; the next section discusses strategies to
handle novel data and improve autonomous decisionmaking in
remote applications, and the last section concludes with key
ndings and future outlook.
2 Materials and methods
2.1 Experimental

2.1.1 Materials. Certied reference mineral samples used
in this study were purchased from a well-established Czech
mineral supplier.29 Table 1 lists the ores and rock-forming
minerals, featuring economically important materials such as
hematite, magnetite, bauxite, and cassiterite, which are key
resources for industrial and space mining. Additionally, rock-
forming minerals, including olivine, feldspar, gypsum, serpen-
tinite, and dolomite, were included due to their known occur-
rence in Martian geology,21 emphasizing their relevance to
Martian in situ resource utilization (ISRU). We carefully selected
samples to cover a wide variety of minerals, like silicates, oxides,
suldes, carbonates, and native elements, mirroring the kind of
mineral diversity typically found on planetary surfaces.

Fig. 1 shows the surface of the bauxite sample as an example.
The experiment was performed on this surface to enhance laser
absorption, improve plasma formation, and reduce reectivity
and matrix effects.30 The dark lines visible in the marked area
indicate the effect of laser ablation, where material removal and
surface modication have occurred due to the interaction of the
laser with the sample. To capture a representative analysis,
multiple laser spots were applied across a broader area,
capturing different microstructures within the sample matrix.
This journal is © The Royal Society of Chemistry 2025
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Table 1 Ores and rock-forming minerals were analyzed in this study for LIBS-based classification, focusing on Martian resource utilization

Material
name

Metal/Material
mined Chemical formula

Mineral
classication Geological occurrence Spectroscopic signatures Ref.

Ores
Azurite Copper Cu3(CO3)2(OH)2 Carbonate Oxidized zones of copper

deposits
Distinct Cu peaks at
324.8 nm and 327.4 nm

—

Bauxite Aluminum Al(OH)3 Hydroxide Lateritic soils in tropical
regions

Broad Al peaks around
394.4 nm and 396.1 nm

—

Bismuth Bismuth Bi Native element Hydrothermal veins Bi spectral line at 306.7 nm —
Cassiterite Tin SnO2 Oxide Igneous and metamorphic

rocks
Sn lines at 189.9 nm and
317.5 nm

—

Chalcopyrite Copper CuFeS2 Sulde Hydrothermal veins,
igneous rocks

Cu peaks at 324.8 nm and
327.4 nm

19

Chalcocite Copper Cu2S Sulde Supergene enrichment
zones

Cu peak at 324.8 nm —

Chromite Chromium FeCr2O4 Oxide Ultramac rocks Cr peaks around 425.4 nm 20
Kyanite Aluminum Al2SiO5 Silicate Metamorphic rocks Al peak at 396.1 nm —
Galena Lead PbS Sulde Hydrothermal veins Pb peak at 220.3 nm —
Goethite Iron FeO(OH) Hydroxide Secondary mineral in iron

deposits
Fe peaks at 259.9 nm and
271.9 nm

21

Grossular Aluminum Ca3Al2(SiO4)3 Silicate Metamorphic rocks Al peaks at 394.4 nm and
396.1 nm

—

Hematite Iron Fe2O3 Oxide Sedimentary and
metamorphic rocks

Fe peaks at 259.9 nm and
372.0 nm

21

Magnetite Iron Fe3O4 Oxide Igneous and metamorphic
rocks

Fe peak at 516.7 nm 22

Malachite Copper Cu2CO3(OH)2 Carbonate Oxidized zones of copper
deposits

Cu peaks at 324.8 nm and
327.4 nm

23

Molybdenite Molybdenum MoS2 Sulde Hydrothermal veins Mo peaks at 390.3 nm and
386.4 nm

—

Pyrite Sulfur FeS2 Sulde Sedimentary and
hydrothermal deposits

Fe peaks at 259.9 nm and
371.9 nm

24

Sphalerite Zinc ZnS Sulde Hydrothermal veins Zn peak at 213.8 nm —
Stibnite Antimony Sb2S3 Sulde Hydrothermal veins Strong Sb lines in the UV

range
—

Wolframite Tungsten (Fe,Mn)WO4 Tungstate Hydrothermal veins W peaks at 207.9 nm and
255.2 nm

—

Zircon Zirconium ZrSiO4 Silicate Igneous and metamorphic
rocks

Zr peaks at 343.8 nm and
349.6 nm

25

Rock-forming minerals
Olivine Magnesium, iron (Mg,Fe)2SiO4 Silicate Ultramac rocks

(peridotites, basalts)
Fe peaks at 516.7 nm, Mg
lines in UV.

26

Gypsum Calcium CaSO4$2H2O Sulfate Sedimentary deposits,
evaporites

Ca peaks at 393.3 nm, 396.8
nm

27

Feldspar Aluminum, K,
Na

(K,Na,Ca)AlSi3O8 Silicate Igneous/metamorphic
rocks

Al peaks at 394.4 nm, 396.1
nm

21

Serpentine Magnesium (Mg,Fe)3Si2O5(OH)4 Silicate Metamorphic rocks
(alteration of peridotite)

Mg peaks in UV, Fe peaks at
259.9 nm

21

Dolomite Magnesium,
calcium

CaMg(CO3)2 Carbonate Sedimentary rocks,
hydrothermal veins

Ca peaks at 393.3 nm, Mg
peaks in UV.
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2.1.2 Data acquisition and initial conditions. The samples
were ablated using a Nd : YAG laser (Nd-doped yttrium-
aluminum garnet laser), which provides a pulse with a wave-
length of 1064 nm, a duration of 6 ns, and an energy of 450 mJ.
The repetition rate was set to 10 Hz. A CaF2 lens with a focal
length of 10 cmwas used to focus the laser beam on the samples
attached to a moving stage located inside a vacuum chamber.
The measurements were carried out under two different pres-
sure conditions: 10 mbar and 10−2 mbar.
This journal is © The Royal Society of Chemistry 2025
Emission spectra of the laser ablation-induced plasma were
recorded using the high-resolution Buttery Echelle spectro-
graph, equipped with an Andor ICCD camera. The spectrograph
operates in the UV (192–433 nm) region, offering spectral
resolutions of 13–31 pm (with a resolving power of 14 000). The
Echelle spectrograph was set to trigger 50 ns aer the laser
pulse and collect the signal for 1 ms. The nal spectra were
obtained by accumulating 20 laser shots. Before data collection,
the Buttery spectrograph was calibrated using a Hg lamp.
J. Anal. At. Spectrom.
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Fig. 1 Top view of a bauxite sample as an example of a mineral used in
LIBS analysis. The white rectangular boxmarks the areawhere the laser
spots were applied during measurements.
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2.2 Computational method

2.2.1 Data processing of LIBS spectra. Twenty-ve different
ore and mineral families were examined to design our dataset,
maximizing the mineral diversity essential for utilizing space
resources by including many mineral families, each character-
ized by a smaller number of carefully selected high-quality
spectra. This approach aligns with previous studies that
emphasize broad coverage of composition through representa-
tion of diverse classes.31

As the rst step, careful ltering criteria were applied to
improve LIBS data quality. These criteria focused on analyzing
the standard deviation and noise distribution to exclude spectra
with excessive noise or poorly dened peaks, which ensured
that only high-quality spectra were included in the dataset. Of
the 437 spectra across 25 ore and mineral families, 417 spectra
fullled these criteria, resulting in a retention rate of 95.5%,
which conrms that most of the data were preserved for anal-
ysis. A ltering efficiency of 4.5% represents the proportion of
Fig. 2 The histogram shows the noise level distribution across spectra,
while the grey dashed line represents the fitted normal distribution.

J. Anal. At. Spectrom.
spectra removed due to low quality, demonstrating the effec-
tiveness of the ltering process. Additional details on the pre-
processing steps, including examples of excluded spectra with
high noise or anomalously intense peaks, are provided in the SI.

Then, we analyzed the noise distribution across all spectra by
calculating the standard deviation of the rst 50 intensity points
for each spectrum. As shown in Fig. 2, the normalized histo-
gram of noise levels follows a Gaussian distribution, with most
spectra exhibiting noise levels ranging between 1.1 and 2.3. The
noise levels were normalized to a density, ensuring compara-
bility across datasets and enabling a tted normal distribution
overlay. Themean noise level was calculated to be m= 1.64, with
a standard deviation of s = 0.17, indicating that the noise
distribution is tightly clustered around the mean. Spectra with
noise levels below 1.06 or above 2.32 were rare, demonstrating
the uniform quality of the dataset. A threshold of 1.49, derived
as the 20th percentile of the noise levels, was used to identify
spectra with low noise for subsequent analysis, ensuring robust
preprocessing and consistent data quality.

As the next step aer noise analysis, we implemented wavelet
denoising to improve spectral data quality by reducing noise
while maintaining important signal features.32 This process
involves three key steps. First, the signal x(t) is decomposed into
wavelet coefficients ci,j and wavelet basis functions ji,j(t) using
the Daubechies-4 (db4) wavelet:

xðtÞ ¼
XN
i¼1

X2i
j¼1

ci;jji;jðtÞ (1)

Next, a so thresholding function is applied to the wavelet
coefficients to suppress noise while maintaining the signicant
components of the signal. The so thresholding function used
is dened as:33

ĉi;j ¼
(
sign

�
ci;j
����ci;j��� l

�
; if

��ci;j��. l

0; if
��ci;j��# l

(2)

Here, l represents the threshold value, derived from the noise
analysis results. Finally, the denoised signal x̂(t) is recon-
structed by applying the inverse wavelet transform to the
thresholded coefficients:

x̂ðtÞ ¼
XN
i¼1

X2i
j¼1

ĉi;jji;jðtÞ (3)

This denoising approach was implemented using the
PyWavelets library,34 with so thresholding explicitly applied
through the pywt.threshold function. The Daubechies-4 wavelet
was selected for its optimal balance between resolution and
smoothness, making it well-suited for LIBS spectral data.32 This
process enhanced spectral quality by approximately 1.5 times,
underscoring its effectiveness in improving data reliability and
enabling more accurate downstream analyses (see the example
in the SI).

For baseline correction, the process uses wavelet decompo-
sition to separate the spectrum y(l) into a low-frequency
This journal is © The Royal Society of Chemistry 2025
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baseline Aj(l) and high-frequency details Di(l), isolating the
baseline by setting Di(l) = 0. The baseline is adjusted to ensure
Aj(l) # y(l), preventing overcorrection. The corrected spectrum
is then calculated as ycorrected(l) = y(l) − Aj(l). This approach
effectively removes the baseline while preserving the spectral
peaks, ensuring no negative values or articial elevation in the
corrected spectrum.

Then, each spectrum xi was normalized using:

x
0
i;j ¼

xi;j � mj

sj

(4)

where xi,j is the intensity at wavelength j for sample i,

mj ¼
1
N

XN
i¼1

xi;j is the mean, and sj is the standard deviation for

feature j across all samples.
It is worth noting that across all tested minerals, the spectra

collected at different pressures showed strong correlations, with
only minor intensity variations and no signicant peak shis or
formation of new lines. Therefore, standard normalization and
preprocessing are sufficient to combine or compare data at both
pressures for mineral classication.

2.2.2 Machine learning approach. Aerwards, the dataset
was randomly divided into training and test sets using a strati-
ed sampling approach.35 This process ensures that each class
is represented in the training and test sets in the same
proportions as in the original data. In other words, for a dataset
D ¼ fðxi; yiÞgNi¼1 with K classes, stratied sampling aims to
maintain the same probability distribution p(y = k) in both the
training and test groups.

For hyperparameter optimization and model selection, we
further applied k-fold cross-validation within each training set.
Fig. 3 The heatmap illustrates how our dataset was split for model
evaluation across 10 different random iterations. Each row represents
a different split, and each column is a sample from the dataset. The
blue cells mark which samples were selected as part of the test set for
that particular iteration. By repeating this process 10 times, we ensured
that every sample had a chance to be tested, providing a fair and
thorough assessment of our models while minimising sampling bias.

This journal is © The Royal Society of Chemistry 2025
In this procedure, the training data are partitioned into k
equally sized folds; each fold serves as a temporary validation
set while the remaining k − 1 folds are used for training. This
process is repeated k times, allowing every sample to be used for
validation exactly once. The model's performance is then aver-
aged across all k folds, yielding a robust and unbiased estimate
of generalization accuracy. In this study, we used k = 5.

Fig. 3 shows the results of repeated random stratied splits:
each row is an iteration, each column a sample, and blue cells
mark test set assignments. This demonstrates that every sample
is included in the test set throughout the cross-validation
process.

To address the issue of class imbalance in our dataset, we
applied the Synthetic Minority Oversampling Technique
(SMOTE),36 which generates synthetic minority class samples by
interpolating between existing minority instances:

xnew = xi + d × (xnn − xi), (5)

where xi is a minority class sample, xnn is one of its nearest
neighbors, and d˛ [0, 1] is a random scalar. SMOTE was applied
to the training set before feature selection and classier
training, so that all models benet from a balanced class
distribution during tting.

To improve robustness, we performed repeated random
splits and implemented k-fold cross-validation, which provides
a more reliable estimate of model performance. In k-fold cross-
validation, the data are partitioned into k equal-sized subsets
ðD1;.;DkÞ. For each fold j, the model is trained on D=Dj and
tested on Dj, cycling through all k folds. The average perfor-
mance is calculated as:

CVscore ¼ 1

k

Xk
j¼1

scorej (6)

where k is the number of folds, and scorej is the evaluation
metric on the j-th fold.37 Before training the classiers, we
explored three different feature selection and dimensionality
reduction approaches, which are described in the next section.

2.2.3 Feature selection and dimensionality reduction
methods

2.2.3.1 Principal component analysis. Principal Compo-
nent Analysis (PCA) is a widely used unsupervised dimension-
ality reduction technique in LIBS data analysis. By projecting
the original data onto a new set of orthogonal axes (principal
components), PCA captures the directions of maximum vari-
ance. Mathematically, PCA solves the eigenvalue problem for
the covariance matrix of the data:

C ¼ 1

n
XTX (7)

where X is the mean-centered data matrix, and C is the covari-
ance matrix. The principal components are dened by the
eigenvectors wk of C, and the projection onto each component is
calculated as follows:

zk = Xwk (8)
J. Anal. At. Spectrom.
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Fig. 4 (A) Number of principal components (x-axis) vs. contribution rate (left y-axis, green bars) and accumulated contribution rate (right y-axis,
red curve) for the full LIBS dataset. The grey dashed line marks the largest individual contribution rate, where the first principal component alone
explains about 8.5% of the total variance. This figure illustrates that most variance is captured by the first few components, supporting the
dimensionality reduction in our analysis. (B) Projection of sample spectra from five selected mineral classes onto the first two principal
components (PC1 and PC2). Ellipses indicate 95% confidence intervals for each class, illustrating how PCA captures class-specific variance and
enables partial separation of mineral families in the reduced-dimensional space.
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Fig. 4A shows the distribution of explained variance across the
principal components extracted from the LIBS data. The bars on
the le axis indicate the individual contribution rate, that is, the
fraction of total variance explained by each principal component,
corresponding to the eigenvalues introduced above. The red
curve displays the accumulated contribution rate as more
components are included. As observed, the cumulative explained
variance increases steeply, with the curve approaching 1.0 (100%)
aer relatively few components. This demonstrates that most of
the spectral information in the LIBS data can be efficiently
captured with a limited number of principal components. Rather
than retaining all components, we focus on those that collectively
account for at least 95% of the total variance, as this threshold
effectively preserves the essential structure and chemical infor-
mation present in LIBS spectra.31 To highlight the class differ-
entiation achieved by these principal components, Fig. 4B
projects LIBS spectra from ve representative mineral classes
onto the rst two components (PC1 and PC2). The 95% con-
dence ellipses highlight distinct clustering, indicating that the
variance captured in Fig. 4A translates into meaningful spectral
separation. While the ellipses represent the main class clusters,
the presence of points outside these boundaries is consistent
with expected measurement variability and spectral complexity.
Together, these panels conrm that PCA not only efficiently
reduces dimensionality but also preserves class-specic infor-
mation critical for accurate classication.

2.2.3.2 Variance threshold. Variance Threshold (VT) is an
unsupervised feature selection technique that removes features
exhibiting low variance across all samples, assuming that
features with very little variation are unlikely to be informative.
Given a data matrix X, each feature j is retained if its variance
satises
J. Anal. At. Spectrom.
Var
�
Xj

� ¼ 1

n

Xn
i¼1

�
xij � xj

�2
. q (9)

where q is a predened threshold, this approach efficiently
reduces dimensionality by discarding nearly-constant features
without reference to any class labels.

2.2.3.3 Random forest feature selection. Random Forest
feature selection (RF-FS) is a supervised approach that leverages
the strengths of random forests to identify which features in the
data are most effective in distinguishing between classes. As the
model learns, it scores each feature by measuring how much it
helps reduce uncertainty (or impurity) in the classication
process, averaged over all the trees in the forest:

IðjÞ ¼ 1

T

XT
t¼1

X
s˛St;j

Ns

N
$DiðsÞ (10)

where Ij is the importance of feature j, T is the number of trees,
and DImpurityj,t is the decrease in impurity caused by feature j
in tree t. In the end, we keep the features with the highest
scores, focusing the next steps of our analysis on the parts of the
data that matter most for predicting the sample's class.

A signicant advantage of our RF-FS approach is the inter-
pretability it offers, as it identies the most important spectral
features used for classication. Fig. 5 provides a detailed vali-
dation of the RF-FS method used to identify the most infor-
mative wavelengths in LIBS spectral data. Fig. 5A illustrates the
excellent match between the wavelengths selected by RF-FS and
the known atomic emission lines from the NIST database,38

demonstrating that the model prioritises physically meaningful
spectral features.

Fig. 5B shows the selected wavelengths overlaid on the
average LIBS spectrum from all samples and mineral families.
This journal is © The Royal Society of Chemistry 2025
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Fig. 5 Random forest feature selection results: (A) selected wavelengths versus NIST emission lines, (B) averaged spectrum with selected
features, and (C–E) zoomed spectral regions for bauxite, gypsum, and magnetite, highlighting key model-selected emission lines.
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This illustrates how the RF-FS method effectively focuses on the
prominent spectral peaks, which help distinguish between
different minerals. Fig. 5C presents a zoomed spectrum of the
averaged bauxite sample; as indicated in Table 1, bauxite is rich
in Al, and the wavelength selected by the model at 394.40 nm
corresponds to one of the most prominent Al emission lines.
Meanwhile, the second line at 396.15 nm is also visible; both
lines are key spectral markers widely used for aluminum
detection in spectroscopic analysis.39 Moreover, panel D zooms
in on gypsum, highlighting the important 396.83 nm Ca emis-
sion line identied by the model, which has been shown to
reliably correlate with calcium concentration variations under
different experimental conditions in remote LIBS analysis.40

Panel E showcases magnetite with the key Fe line at
358.11 nm.38 Moreover, as our spectral window is limited to the
UV region, some of the most intense sodium (Na) and potas-
sium (K) emission lines, such as the prominent Na doublet at
589 nm, fall outside the measured range. Nevertheless, the RF-
FS method consistently selected alternative Na emission
features present within the UV window, as detailed in the SI.
The RF-FS method, applied across all tested classiers, iden-
ties the most important spectral features aligned with known
elemental lines, thereby improving classication accuracy while
making the models more interpretable.
This journal is © The Royal Society of Chemistry 2025
2.2.4 Classication models. The features obtained from
the previous dimensionality reduction and selection steps were
then used as input for four supervised classication models, as
described below. These models were selected for their
complementary strengths in handling multiclass, high-
dimensional LIBS data and for their well-established use in
spectroscopy-based classication tasks.41

2.2.4.1 Random forest. This model is an ensemble of
decision trees, where the nal prediction is based on majority
voting:

ŷ = mode({T1(x), T2(x),.,Tm(x)}) (11)

where Ti(x) is the prediction of the i-th tree.42 The main hyper-
parameters tuned for RF are the number of trees in the
ensemble (nestimators) and the proportion of features considered
at each split (maxfeatures), both of which control the model's
complexity and diversity.

2.2.4.2 Support vector machine. This model nds the
hyperplane maximizing class separation. The decision function
is calculated as follows:

f ðxÞ ¼ sign

 Xn
i¼1

aiyiKðxi; xÞ þ b

!
(12)
J. Anal. At. Spectrom.

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ja00377f


JAAS Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 9
:5

2:
23

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
where K(xi, x) is the kernel function, and ai and b are model
parameters.43 Themain hyperparameters for SVM are the choice
of the kernel (linear, polynomial, RBF, or sigmoid) and the
regularization parameter (C), which controls the trade-off
between maximizing margin and minimizing classication
error.

2.2.4.3 K-nearest neighbors. This model classies a sample
based on the majority class of its k nearest neighbors:

ŷ = mode({y(1), y(2),.,y(k)}) (13)

where y(i) is the class of the i-th nearest neighbor.44 The main
hyperparameter is the number of neighbors (k) used for voting.
In this study, we also varied the number of principal compo-
nents retained aer PCA as an additional parameter during the
grid search.

2.2.4.4 Logistic regression. This models class probabilities
using the sigmoid function as follows:

Pðy ¼ 1rxÞ ¼ 1

1þ e�ðwTxþbÞ (14)

where w and b are the weights and bias, respectively.45 LR was
tuned for the regularization penalty type (L1 or L2) and regula-
rization strength (C), both of which help prevent overtting by
shrinking model coefficients.

These methods were chosen for their effectiveness and
diversity in handling classication tasks. A detailed analysis
and comparison of classier performance are presented in the
following section.

2.2.5 Classier performance evaluation. For all classiers,
sample labels were assigned according to the class with the
highest predicted probability (argmax rule), so that each sample
was always classied. No xed probability cutoff was used to
abstain or ag uncertain predictions. However, classier
condence (predicted probability or entropy) was calculated for
each prediction, and ROC curves were generated by varying the
decision threshold over the full probability range. We measured
classier performance using the following standard metrics.

2.2.5.1 Accuracy (Acc). The proportion of correctly classi-
ed samples is calculated as follows:

Acc ¼ 1

N

XN
i¼1

Iðŷi ¼ yiÞ (15)

where N is the total number of samples, yi is the true label, ŷi is
the predicted label, and I is the indicator function.

2.2.5.2 F1 score (F1). The harmonic mean of precision and
recall (reported as a weighted average for multiclass) is repre-
sented as follows:

F1 ¼ 2$
Precision$Recall

PrecisionþRecall
(16)

See the SI for details.
2.3.5.3 Balanced accuracy (BAcc). The average recall across

all classes is calculated as follows:
J. Anal. At. Spectrom.
BAcc ¼ 1

K

XK
k¼1

TPk

TPk þ FNk

(17)

where K is the number of classes, and TPk, FNk are true positives
and false negatives for class k.

2.3.5.4 Matthews correlation coefficient (MCC).

MCC ¼ TP$TN� FP$FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp (18)

where TP, TN, FP, FN are total true/false positives/negatives. For
multiclass problems, MCC is generalised as described in ref. 46.

2.2.5.5 Cross-validation variance (sCV
2). The variance of

validation accuracy across k folds is calculated as follows:

sCV
2 ¼ 1

k

Xk
j¼1

�
aj � a

�2
(19)

where aj is accuracy in fold j, and �a is the mean accuracy across
folds.

These metrics were computed for each classier and feature
selection combination to provide a robust and multi-faceted
evaluation of model performance. The results of these anal-
yses, including detailed grid search optimization, classier
comparisons, and performance summaries, are presented in
the following section.
3 Results and discussion

Aer applying the preprocessing steps to the raw data described
in Sec. 2.2.1, the spectral data were ready for ML. Each spectrum
was modeled as a high-dimensional feature vector made up of
intensity values measured over a consistent range of wave-
lengths. These intensity values reect the presence and relative
abundance of specic elements in the sample, as revealed by
the characteristic emission lines in the LIBS spectra. The
consistent wavelength grid ensured that the intensity values
across all spectra were dimensionally aligned, enabling direct
comparison and analysis. The high-resolution Buttery Echelle
spectrograph used in this study produces over 47 000 variables
per spectrum, corresponding to data points across the wave-
length range of 187.19 to 425.85 nm. The dataset consists of 417
spectra across 25 different classes, forming a large data matrix
of 417 rows (one for each spectrum) and 47 693 columns (each
representing intensity at a specic wavelength). Handling such
high-dimensional data can be computationally challenging.
That's why efficient dimensionality reduction, along with care-
ful preprocessing and noise reduction, is crucial for removing
redundant information and enhancing the effectiveness of the
analysis. In this matrix, each row captures the intensity prole
of a single spectrum, while each column corresponds to the
intensity at a particular wavelength. This organized format was
then used as input for ML classiers, which learned to recog-
nize patterns and differences between the classes. By using
intensity values as features, the models could directly extract
meaningful insights from the LIBS spectral data, leading to
reliable and accurate classication. As mentioned earlier, to
address class imbalance, we employed the SMOTE technique.
This journal is © The Royal Society of Chemistry 2025
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Fig. 6 (A) Principal component importance before SMOTE; (B) importance after SMOTE. (C) Violin plots of the first principal component values
for each sample before and after SMOTE; each dot represents a sample's score on PC1, and the width of the violin at any value reflects the density
of samples (wider regions=more samples). This highlights reduced skewness and fewer extreme values after balancing. (D) Summary of classifier
metrics, demonstrating improved accuracy, F1, balanced accuracy, and MCC with SMOTE.
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Fig. 6 shows how SMOTE affects the RF model when using
PCA for feature selection. Fig. 6A and B show the importance of
principal components before and aer applying SMOTE, high-
lighting how balancing the dataset shis the relevance of
different components. This indicates that SMOTE changes the
underlying data structure, inuencing which features are most
informative for classication. Fig. 6C compares the distribution
of the rst principal component before and aer applying
SMOTE. Each dot in the violin plot represents the PC1 value for
a single sample; the width of the violin at any point reects how
many samples have similar PC1 values (i.e., wider areas indicate
higher sample density). In this context, skewness refers to the
asymmetry of the distribution, with longer tails indicating more
samples with extreme values. Before SMOTE, the distribution is
wider with noticeable extreme values, or long tails, on both
sides, indicating that the data are more spread out and skewed.
This skewness reects the imbalance and variability in the
original dataset. Aer SMOTE, the distribution becomes nar-
rower and more symmetric, with fewer extreme values and
reduced skewness. This change suggests that SMOTE has
effectively balanced the dataset by mitigating extreme variability
and bias toward outlying values, leading to a more representa-
tive and stable feature distribution. Although the Kolmogorov–
Smirnov test47 showed a non-signicant statistical difference
This journal is © The Royal Society of Chemistry 2025
(p = 0.150), the observational evidence supports the positive
impact of SMOTE on data balance. Finally, D presents
a comparison of performance metrics, demonstrating clear
improvements aer applying SMOTE. The next step was to ne-
tune the hyperparameters of each classier to achieve the best
possible predictive performance. This was done using
a comprehensive grid search, a well-established method that
systematically tests different model settings. The results are
shown in Fig. 7, which displays grid search heatmaps for all four
classiers paired with PCA-based feature selection. Similar grid
searches were performed for RF-based and VT feature selection;
however, only the PCA results are presented here for clarity.

Fig. 7A shows how RF accuracy varies depending on the
number of trees used in the ensemble (n_estimators) and the
fraction of features considered at each decision point (max_-
features). The model performs best, oen with test accuracy
above 0.95, when both the number of trees and the feature
proportion are set high, suggesting that a larger, more diverse
ensemble leads to stronger and more reliable classication.
This nding is in agreement with Sheng et al., who reported
near-perfect classication accuracy for iron ore samples by
optimizing these parameters in their RF models.48 Moreover,
this improvement can be explained by the theoretical general-
ization error bound of RF introduced by Breiman:42
J. Anal. At. Spectrom.
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Fig. 7 Grid search hyperparameter optimization results for four
classifiers applied to LIBS-based mineral identification: (A) RF (n_esti-
mators and max_features), (B) SVM (kernel and C), (C) KNN
(n_neighbors and PCA components), and (D) LR (regularization
strength C and penalty type). Values indicate mean test accuracy
across parameter grids.
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PE# r
1� s2

s2
(20)

where PE is the prediction error, s is the strength of individual
trees, and r is the average correlation between trees. Increasing
nestimators stabilizes the ensemble by averaging many trees,
while increasingmaxfeatures reduces correlation r by introducing
randomness. Together, these reduce the overall error,
improving classication accuracy.

Fig. 7B shows the classication accuracy of SVM models
across different kernels and regularisation parameters (C). The
linear kernel consistently achieves the highest accuracy around
0.96, across all tested C values, indicating that the LIBS spectral
data are largely linearly separable in the original feature space.
This is expected since LIBS spectra oen contain prominent,
distinctive peaks corresponding to elemental signatures, which
can be effectively separated using linear decision boundaries.
The RBF kernel yields moderately high accuracy (up to 0.91) but
exhibits more variability, depending on parameter settings,
suggesting a limited non-linear structure. The sigmoid kernel
exhibits intermediate performance, while the polynomial kernel
performs the worst, especially at lower C values, likely due to
overtting or a mismatch in model complexity with the data
characteristics. Additional hyperparameter tuning results
across different kernels and parameter grids are available in
the SI.

Fig. 7C highlights the dependence of KNN classication
accuracy on the number of neighbors (k) and the number of
principal components retained aer PCA. The best accuracy
(z0.94) is achieved with three neighbors and 100 principal
components, suggesting that an optimal balance between
dimensionality reduction and neighborhood size improves
performance. The KNN classier predicts the class of a sample
based on majority voting among its k nearest neighbors in the
PCA-transformed feature space:

ŷ ¼ arg max
c˛C

X
i˛N kðxÞ

1ðyi ¼ cÞ; (21)

where x is the PCA-transformed feature vector of the sample to
be classied, ŷ is the predicted class label, C is the set of all
possible classes, andN kðxÞ represents the set of indices of the k
nearest neighbors of x in the PCA-transformed space. The
indicator function 1(yi = c) equals 1 if the i-th neighbor's class
label yi matches class c, and 0 otherwise.

Finally, Fig. 7D reports LR accuracy as a function of penalty
type (L1 or L2) and regularization strength (C). Both penalty
types achieve high accuracies, exceeding 0.96 for moderate
values of C (0.1 to 1.0), demonstrating the effectiveness of these
regularization strategies in mitigating overtting in high-
dimensional spectral data. Following hyperparameter tuning,
the models were evaluated using various feature selection
methods to assess their classication performance
systematically.

Table 2, summarizes classication performance metrics for
all four models and three feature selection methods, totaling
twelve combinations. For each, results are reported separately
for the test and training sets, along with the mean and standard
This journal is © The Royal Society of Chemistry 2025
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Table 2 Classification performance metrics for multiple models and feature selection methodsa

Model Feature selection method Parameter Accuracy Precision Recall F1

RF PCA Testing 0.842 � 0.041 0.891 � 0.039 0.831 � 0.051 0.834 � 0.044
Training 1.00 1.00 1.00 1.00

RF-FS Testing 0.886 � 0.048 0.912 � 0.039 0.867 � 0.59 0.879 � 0.050
Training 1.00 1.00 1.00 1.00

VT Testing 0.886 � 0.031 0.89 � 0.031 0.86 � 0.041 0.878 � 0.032
Training 1.00 1.00 1.00 1.00

SVM PCA Testing 0.854 � 0.032 0.872 � 0.025 0.837 � 0.0573 0.849 � 0.036
Training 1.00 1.00 1.00 1.00

RF-FS Testing 0.893 � 0.039 0.871 � 0.023 0.861 � 0.048 0.883 � 0.046
Training 1.00 1.00 1.00 1.00

VT Testing 0.833 � 0.019 0.814 � 0.032 0.804 � 0.0405 0.819 � 0.022
Training 1.00 1.00 1.00 1.00

KNN PCA Testing 0.724 � 0.053 0.762 � 0.044 0.731 � 0.040 0.707 � 0.059
Training 1.00 1.00 1.00 1.00

RF-FS Testing 0.862 � 0.033 0.854 � 0.0424 0.8323 � 0.0479 0.851 � 0.035
Training 1.00 1.00 1.00 1.00

VT Testing 0.614 � 0.060 0.72 � 0.034 0.67 � 0.052 0.607 � 0.061
Training 1.00 1.00 1.00 1.00

LR PCA Testing 0.850 � 0.030 0.878 � 0.016 0.846 � 0.048 0.841 � 0.032
Training 1.00 1.00 1.00 1.00

RF-FS Testing 0.891 � 0.046 0.91 � 0.033 0.874 � 0.060 0.884 � 0.051
Training 1.00 1.00 1.00 1.00

VT Testing 0.857 � 0.025 0.841 � 0.015 0.83 � 0.036 0.847 � 0.028
Training 1.00 1.00 1.00 1.00

a Note: PCA: Principal Component Analysis; RF-FS: RF Feature Selection; VT: Variance Threshold.
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deviation across the cross-validation folds. Among all methods,
RF and LR combined with RF-based feature selection yielded
the highest test accuracy, precision, recall, and F1 scores, all of
which approached or exceeded 0.88. These results indicate that
thesemodels effectively classify mineral spectra, balancing false
positives and false negatives well, and demonstrate robust
generalization, as seen in the perfect training accuracy
(reecting model capacity) and slightly lower but reliable test
performance. This pattern of near-perfect training accuracy
coupled with slightly lower test accuracy, which reects strong
model capacity and reliable generalization, has also been
observed in a spectroscopic classication study.49

SVM also performed well, especially with RF-FS (test accuracy
0.893 ± 0.039), although it was slightly lower than RF. SVM with
PCA also maintained strong, balanced metrics, demonstrating
the utility of PCA for dimensionality reduction. KNN showed
lower test accuracy and F1 scores when using PCA or VT
(reaching 0.724 ± 0.053 and 0.614 ± 0.060, respectively). Still,
performance improved substantially with RF-FS (accuracy 0.862
± 0.033), suggesting that KNN benets signicantly from
supervised feature selection in this context. VT as a feature
selector generally gave lower scores across all models compared
to PCA or RF-FS. This illustrates the importance of utilising
methods that either leverage label information, such as RF-FS,
or preserve the overall variance structure, like PCA, for this
type of data. Also, precision, recall, and F1 generally follow the
same pattern as accuracy: when a model has higher accuracy, it
usually means it's also good at minimizing both false positives
and false negatives. This leads to high F1 scores and shows that
the models aren't favoring any one class over others.
This journal is © The Royal Society of Chemistry 2025
The results in Table 2 are supported by Fig. 8, which
compares balanced accuracy across models and feature selec-
tion methods. Balanced accuracy is signicant for this multi-
class, imbalanced LIBS dataset, as it reects the average recall
across all mineral classes and prevents performance from being
dominated by the largest class. As shown in Fig. 8, RF and LR
combined with RF-based feature selection consistently achieve
the highest and most stable balanced accuracy, with median
values at or above 0.90 and very low variability, aligning with
their strong performance in accuracy, precision, recall, and F1
scores reported in Table 2. SVM, especially when combined with
RF-FS or PCA, also performs well, although it typically yields
results below those of RF and LR. By contrast, KNN shows lower
and more variable balanced accuracy with unsupervised selec-
tion (VT), but improves substantially when paired with RF-FS,
highlighting the importance of label-informed feature selec-
tion. Models using VT alone tend to underperform, indicating
that relying solely on global variance is insufficient for identi-
fying informative spectral features. These ndings underscore
the value of supervised feature selection, especially RF-FS, for
maximizing the generalizability and robustness of classication
models in challenging, imbalanced mineral datasets.Fig. 9
displays the normalized confusion matrices for each classier
using RF-based feature selection, providing a granular view of
class-level prediction performance. In these matrices, each row
corresponds to the true mineral class, and each column to the
predicted class. The values along the main diagonal (from top
le to bottom right) represent the proportion of samples that
were correctly classied for each mineral class; higher diagonal
values indicate stronger model performance for those classes.
J. Anal. At. Spectrom.
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Fig. 8 Balanced accuracy distributions for each model and feature selection method.
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Off-diagonal values, by contrast, indicate misclassications
where samples are incorrectly assigned to another class. Ideally,
a perfect classier would produce a matrix with all values on the
diagonal and zeros elsewhere, while off-diagonal entries signal
which minerals are most frequently confused. Fig. 9A conrms
that RF achieves the most consistent and accurate mineral
identication, with nearly all samples assigned to their correct
class, reected in minimal off-diagonal errors. Fig. 9B shows
SVM, which retains a dominant diagonal but exhibits more
class confusion than RF, especially for spectrally similar
minerals, revealing specic class pairs that remain challenging
to separate. Fig. 9C, for KNN, highlights more frequent
misclassications, particularly among classes with overlapping
features, illustrating KNN's sensitivity to local variations and
validating its comparatively lower balanced accuracy. Fig. 9D,
LR, demonstrates performance close to RF, with most predic-
tions along the diagonal and only occasional confusion between
certain classes. Together, these confusion matrices not only
validate the high overall accuracy of RF and LR with supervised
feature selection but also pinpoint specic mineral classes
where misclassication persists, providing actionable insight
for rening future models and experimental design.

Fig. 10 shows the average Receiver Operating Characteristic
(ROC) curves for each classier and feature selection method,
computed by averaging results over 10 random stratied splits.
In these plots, the true positive rate (sensitivity) is plotted
against the false positive rate (1-specicity) for varying classi-
cation thresholds. The proximity of the curve to the upper-le
corner indicates stronger overall performance.

Each row of panels corresponds to a different classier:
Fig. 10A presents RF, Fig. 10B SVM, Fig. 10C KNN, and Fig. 10D
LR. For RF, the ROC curves are consistently closest to the ideal
point, with high area under the curve (AUC) values across all
feature selectionmethods, reaffirming its robust discrimination
ability observed in previous metrics and confusion matrices.
J. Anal. At. Spectrom.
SVM shows strong performance, particularly with RF-based
feature selection, though with slightly more variability than
that of RF. KNN exhibits noticeably atter ROC curves, indi-
cating weaker class separation and lower overall sensitivity,
which aligns with its lower test accuracy and increased off-
diagonal confusion. LR performs comparably to RF, especially
when paired with supervised feature selection, demonstrating
a high AUC and reliable classication boundaries.

These results provide consistent evidence of classier
performance across multiple evaluation criteria. Accuracy and
F1 score, previously dened, measure overall correctness and
balance between precision and recall, respectively.

The confusion matrix visually complements these metrics,
with a strong diagonal indicating high true positive rates and
minimal misclassications. To further generalize classier
evaluation, ROC curves plot the true positive rate (TPR) against
the false positive rate (FPR) across thresholds, where:

TPR ¼ TP

TPþ FN
and FPR ¼ FP

FPþ TN
(22)

The area under the ROC curve (AUC) summarizes perfor-
mance independent of threshold choice. As seen in Table 2, RF
and LR with RF-based feature selection achieve the highest test
accuracy, F1 score, and recall, as reected in the confusion
matrices, where nearly all predictions are on the diagonal, and
the ROC curves approach an AUC of 1.0, indicating excellent
discrimination. In contrast, models with lower accuracy and F1
scores, such as KNN with unsupervised feature selection,
exhibit increased confusion and atter ROC curves, indicating
higher misclassication rates.

Overall, the agreement across accuracy, F1, confusion matrices,
and ROC/AUC, grounded in their mathematical denitions,
robustly validates the superior performance of RF and LR for
multiclass LIBS mineral classication. The goal of supervised
This journal is © The Royal Society of Chemistry 2025
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Fig. 9 Normalized confusion matrices for each classifier using RF-
based feature selection: (A) RF, (B) SVM, (C) KNN, (D) LR. Strong
diagonal values indicate high accuracy, while off-diagonal values
highlight misclassifications between mineral classes.

This journal is © The Royal Society of Chemistry 2025
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pattern recognition is to use samples with known classes as
a training set to build a model that can accurately predict the class
of unknown samples. To achieve this, we rst trained and vali-
dated our classiers to achieve high performance on known data.
To further evaluate their robustness and generalization, we then
tested the best-performing models on 12 completely unseen
spectra, which were randomly selected using a stratied sampling
approach from the entire set of measured spectra. These new
samples were processed with the same preprocessing steps as the
training and testing data to maintain consistency. The models
correctly classied 10 to 11 out of 12 samples, achieving an accu-
racy of approximately 83% to 92%, demonstrating strong predic-
tive capability beyond the original dataset. Fig. 11 shows
a comparison between the spectrum of an unseen bismuth sample
and the mean spectrum of the predicted bismuth family, as clas-
sied by the LR model with RF-based feature selection. The close
alignment of key spectral peaks between the individual sample and
the family mean spectrum highlights the model's ability to
generalize and classify new, unseen spectra accurately. This visual
conrmation supports the quantitative classication results,
demonstrating the robustness of this approach for real-world
mineral identication.This strong performance on previously
unseen pure mineral samples demonstrates the practical potential
of our approach for autonomous mineral identication. However,
planetary materials and terrestrial soils are rarely pure phases and
are oen complex mixtures of several minerals. Therefore, to
further test the robustness and interpretability of our models
under realistic conditions, we systematically evaluated classier
performance on synthetic binary mixtures, as described below.
3.1 Classication of synthetic mineral mixtures

To address the robustness of our classier on challenging, real-
world samples that are mixtures of minerals (as present in soils
and rocks), we generated synthetic mixture spectra by linearly
combining measured spectra of hematite and gypsum in
varying proportions. Specically, for two minerals with
normalized spectra S1(l) and S2(l), a mixture spectrum was
computed as follows:

Smix(l) = w1S1(l) + w2S2(l) (23)

where w1 and w2 = 1 − w1 denote the fractions of hematite and
gypsum, respectively. This procedure was repeated for w1 from
0.1 to 0.9 in increments of 0.1.

Synthetic mixture spectra, together with pure hematite and
gypsum spectra measured at 10 mbar, are shown in Fig. 12.
Progressive changes in spectral features with varying composi-
tion indicate compositional sensitivity and experimental rele-
vance of the mixtures. For the mixture classication analysis, we
report results using the LR-FS model, identied as one of the
best-performing models in this study (see Table 2). Each
synthetic mixture was classied with this model, and the
probability assigned to hematite, P(Hematite), was recorded. To
quantitatively analyze the classier's response to these
mixtures, the following metrics were evaluated.
J. Anal. At. Spectrom.
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Fig. 10 Average ROC curves for each classifier (A) RF, (B) SVM, (C) KNN, and (D) LR, and feature selection method, computed across 10 random
splits. Green lines show the mean ROC, grey bands represent ± 1 standard deviation, and the red dashed line indicates the chance level. Curves
closer to the top-left demonstrate stronger classification performance.
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First, the relationship between the predicted probability
PHematite and its fraction in the mixture fHematite was described
using a sigmoid function:

PHematiteðfHematiteÞ ¼ aþ ð1� aÞ$ 1

1þ expð �k$ðfHematite � f0ÞÞ
(24)
J. Anal. At. Spectrom.
where f0 is the inection (“switch”) point indicating the mixture
ratio at which the predicted class transitions, k controls the
steepness of this transition, and a allows for a nonzero baseline
probability.
This journal is © The Royal Society of Chemistry 2025
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Fig. 11 Comparison of an unseen bismuth sample spectrum (green) with the mean predicted family spectrum (grey) classified by LR + RF-FS,
shown here as an example of model performance on new data.
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Then, to evaluate prediction condence, the entropy H of the
predicted probability distribution across all mineral classes was
computed for each mixture:

H ¼ �
X
i

Pilog Pi (25)

where Pi is the assigned probability for class i. Higher entropy
values show greater uncertainty in the classication.
Fig. 12 Example of synthetic mixture spectra generated by linearly com
a pressure of 10mbar. (A) 70% hematite + 30% gypsum, (B) 50% hematite +
gypsum spectra at 10 mbar are also shown for reference in each panel.
sitional sensitivity of the mixture and validates the approach for simulating

This journal is © The Royal Society of Chemistry 2025
Finally, the ability to identify the dominant mineral in each
mixture was assessed by constructing an ROC curve, using the
probability assigned to hematite (PHematite) as the score and the
dominant mineral as ground truth. The AUC provides
a summary measure of discriminative performance for mixed
samples.

Fig. 13 shows how our best classier (LR + RF-FS) performs
on synthetic mixtures of hematite and gypsum, with clear
evidence of both accuracy and reliability in mixed-mineral
bining normalized spectra of hematite and gypsum, all measured at
50% gypsum, and (C) 30% hematite + 70% gypsum. Pure hematite and
The gradual transition of spectral features demonstrates the compo-
realistic mixed mineral samples under controlled pressure conditions.

J. Anal. At. Spectrom.
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Fig. 13 Classifier performance and prediction confidence on synthetic hematite–gypsum mixtures. (A) Predicted probability for hematite as
a function of its fraction in the mixture, with a sigmoid fit (red dashed line). (B) Probability vs. hematite fraction, colored by prediction entropy. (C)
ROC curve for dominant mineral identification (AUC = 0.98). Results are shown for the LR + RF-FS classifier.
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samples. Panel A shows the relationship between the predicted
probability for hematite and its actual fraction in the mixture.
Each dot is a single synthetic mixture (created by mixing
hematite and gypsum spectra in different amounts), and the red
dashed line is a sigmoid curve tted to the data. The “switch
point” of the curve is at about 0.75, meaning that the model
begins to call the mixture “hematite” when hematite is roughly
75% of the sample. This curve conrms that the model
responds in a logical and gradual way to changing mineral
composition, rather than making random or abrupt jumps.
Panel B shows the same probability values, but now the color of
each point represents the prediction entropy, which measures
the classier's condence. When the mixture is nearly all
hematite or all gypsum (far le or right on the x-axis), the
classier is very condent (entropy is low, brown/yellow points).
The highest uncertainty (blue points) is found near the middle,
where hematite and gypsum are in similar amounts, making the
classication harder. Panel C displays the ROC curve, which
evaluates how well the classier can identify the dominant
mineral in each mixture using the predicted probability for
hematite. The curve is very close to the top le corner, and the
AUC is 0.98, indicating overall high accuracy, particularly when
one mineral dominates. However, as seen in Fig. 13A, the
classier's predictions are less reliable for intermediate
mixtures where the proportions of hematite and gypsum are
similar. The model also provides interpretable condence
estimates. This capability is especially important for real-world
applications in soils, rocks, and planetary materials, where
mixtures are common and condent decisions are required.

However, true deployment in planetary missions brings
further challenges, such as the need to recognize minerals not
present in the training library and to support autonomous,
onboard decision-making. These aspects are addressed in the
following section.
3.2 Addressing unknown spectra and onboard decision-
making

To identify minerals from LIBS data, machine learning models
typically require supervised training using extensive libraries of
knownmineral spectra. However, when exploring other planets,
J. Anal. At. Spectrom.
scientists oen encounter minerals that are not included in
these existing datasets. To address this, our method employs
a learning approach that enables the model to recognise unfa-
miliar spectra and suggest potential matches. At the same time,
it can update and grow the spectral library by adding new data
as it becomes available. This highlights the importance of
continually expanding and diversifying spectral databases,
particularly for space mining. Another signicant advantage
arises from the establishment of a feedback loop between the
LIBS instrument and the classication system. If the model is
not condent in its classication or cannot assign a spectrum,
the system can automatically trigger additional scans or
measurements. This back-and-forth process helps improve
accuracy and allows faster, more reliable decisions to be made
directly on the spacecra. Such real-time feedback is especially
crucial in space missions, where communication delays with
Earth prevent immediate human input. Furthermore, robust
and understandable mineral classication is made possible by
the interpretability offered by random forest-based feature
selection (RF-FS), which identies particular elemental emis-
sion lines rather than abstract features. Onboard decision-
making in extraterrestrial environments requires autonomous
systems to handle unseen mineral spectra, dynamically adjust
measurement strategies, and make accurate, real-time resource
assessments. Finally, although computing power on a space-
cra is more limited than on Earth, current models are
designed to be compact and efficient enough to run on small or
embedded computers onboard. Thanks to improvements in
lightweight computing hardware, it is possible to quickly
identify minerals and assess resources right there on the
spacecra. This capability is vital to enable autonomous deci-
sions during future robotic and crewed missions. However,
there are challenges ahead in handling large spectral libraries
and updating models during missions, which will be important
areas of ongoing work.
4 Conclusion

This study evaluated multiple ML models combined with
various feature selection methods for LIBS mineral
This journal is © The Royal Society of Chemistry 2025
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classication. The RF and LR models combined with RF-FS
achieved the highest test accuracies of approximately 88.6%
and 89.1%, respectively. SVM with RF-FS also performed well,
with a test accuracy around 89.3%. KNN demonstrated
moderate performance, achieving up to 86.2% accuracy when
combined with RF-FS, but generally yielded lower results with
unsupervised feature selectors. Models using PCA and VT for
feature selection yielded slightly lower accuracies overall. Class
imbalance was addressed using SMOTE, and hyperparameter
tuning was performed by a grid search to optimize model
parameters and enhance classication performance. The
fundamental concept of supervised pattern recognition is to use
samples with known classes as a training set to build a model
that can predict the class of unknown samples. Building on this
principle, to further evaluate model generalization beyond the
cross-validation framework, the best-performing classiers
were tested on 12 completely unseen spectra, randomly selected
using a stratied sampling approach from the full dataset.
These new spectra were subjected to the identical preprocessing
pipeline to ensure consistency. The models correctly classied
10 to 11 out of the 12 samples, corresponding to an accuracy of
approximately 83% to 92%. This shows robust predictive
capacity and supports the practical applicability of the LIBS-ML
approach to mineral identication in real-world scenarios, such
as autonomous space mining. The approach also offers reliable
mixture classication, interpretability through emission line
matching, and condence estimation for autonomous adapta-
tion to new spectra.
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A. Křivková, et al., J. Anal. At. Spectrom., 2022, 37, 1815–1823.
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