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Soil heavy metal contamination poses a serious threat to agricultural product safety and public health,

which urgently calls for the development of rapid and accurate in situ detection techniques. LIBS enables

simultaneous multi-element analysis and requires minimal sample preparation, and has been widely

applied in the field of elemental analysis. However, under practical field conditions, moisture in soil

significantly interferes with the stability and intensity of LIBS signals, thereby limiting its capability for

large-area, in situ, and accurate detection in real-world environments. To address this issue, this study

proposes a novel approach for simultaneous multi-element quantitative analysis by integrating neural

networks with physical correction strategies. Adaptive Iteratively Reweighted Penalized Least Squares

(airPLS) and Random Forest were employed to optimize spectral data and screen characteristic spectral

fingerprints. An ablation factor model was established to correct spectral intensity under moisture

interference, and a Multi-Task Convolutional Attention Network (MT-CAN) was constructed to predict

both moisture content and multiple heavy metal concentrations. The results demonstrated that the root

mean square error for moisture prediction reached 0.83%, and the relative errors for simultaneous

quantification of Zn, Cr, Cu, and Pb were all below 8%. Finally, a transfer learning strategy based on

model parameters was adopted to further enhance the cross-regional generalization capability of the

model. This study provides an effective technical foundation for achieving in situ heavy metal detection

in field soil environments.
1 Introduction

Soil, as a fundamental natural resource essential for sustaining
agricultural production, ecological balance, and human
survival, has attracted extensive attention regarding its quality
status. However, accelerated industrial and agricultural devel-
opment, along with the continuous application of agrochemi-
cals, has led to the introduction of heavy metals into soils
through multiple pathways. Over the past half-century, the
global environment has accumulated more than 3 million tons
of chromium (Cr) and 80 million tons of lead (Pb),1 with over
10% of agricultural soils exceeding safe thresholds for heavy
metal concentrations.2 These potentially toxic metallic pollut-
ants exhibit persistent toxicity and a propensity for bi-
oaccumulation,3 posing severe threats to soil functionality and
public health. There is an urgent need to develop rapid
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detection methods which are capable of multi-element analysis,
large-area coverage, and in situ measurement under eld soil
conditions.

Laser-induced breakdown spectroscopy (LIBS), recognized
for its rapid analysis, capability for simultaneous multi-
element detection, and minimal sample preparation require-
ments, is widely regarded as a promising tool for on-site
elemental analysis.4 It has been successfully applied in
various elds including geological exploration.5–7 For instance,
Han et al. converted LIBS spectral intensities into RGB images
and employed clustering algorithms to map the distribution of
Cu, Cr, and Pb in contaminated soil with high spatial resolu-
tion, thereby achieving heavy metal imaging and spatial
distribution analysis of the polluted areas.8 Li et al. integrated
graphite enhancement with a machine learning model
(LWNet), which enabled the accurate quantication of Cd
across mixed soil types and signicantly improved the sensi-
tivity and accuracy of LIBS for detecting trace toxic heavy
metals.9 In contrast to traditional soil detection methods that
rely on complex wet chemical digestion procedures, such as
AAS,10 ICP-AES,11 and ICP-MS,12 LIBS substantially reduces the
analytical cycle time and dependency on laboratory settings,
rendering it more suitable for rapid analysis in eld
J. Anal. At. Spectrom.
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environments. However, moisture in natural soils (ranging
from 2 to 25%)13 severely interferes with the formation and
evolution of the laser-induced plasma, markedly reducing
signal stability and intensity,14,15 which limits the technique's
ability to achieve multi-element in situ detection in eld soil
environments. Consequently, heavy metal detection in soils
still largely requires laboratory drying pretreatment to ensure
analytical accuracy.

Notably, LIBS technology itself offers potential pathways to
overcome moisture interference. Studies have indicated that
LIBS spectral signals contain information closely related to the
moisture state of samples, which can be utilized for the
quantitative assessment of water content.16 To date, several
researchers have employed LIBS to investigate moisture
content in samples and the plasma excitation characteristics
of wet specimens. For instance, M. Chen et al. studied the
inuence of moisture content in coal powder on laser-induced
plasma properties, revealing a nonlinear relationship between
moisture variation and plasma electron density;17 however, no
effective signal correction method was proposed. Y. Liu et al.
utilized laser-induced breakdown spectroscopy (LIBS) to
analyze moisture content in cheese by normalizing the ratio of
the oxygen signal to the CN signal,18 yet the generalization
capability of this single-ratio approach in complex real-world
matrices remains limited. Chen et al. developed an articial
neural network (ANN) prediction model based on low-
moisture coal samples and proposed a stochastic spectral
attenuation method to mitigate moisture-induced perturba-
tions,19 but simultaneous multi-element detection was not
achieved. Meanwhile, Wudil et al. achieved non-destructive
analysis of soil moisture using support vector regression
combined with adaptive boosting (SVR-ADB) for feature
selection,20 although they did not extend the method to
quantify heavy metals under moisture inuence.

Building upon this, the present study is designed to develop
a method for simultaneous and accurate multi-element quan-
titative analysis that is suitable for eld soils by integrating
moisture content prediction, spectral correction strategies, and
neural network-based advanced data processing techniques.
Initially, a two-dimensional convolutional neural network with
an attention mechanism will be constructed based on extracted
spectral ngerprint features to predict soil moisture content.
Subsequently, incorporating an analysis of the laser ablation
physical mechanism, an ablation factor will be introduced to
correct the intensity of spectral signals affected by moisture. On
this basis, a multi-task convolutional attention network will be
established to achieve synchronous and high-precision quan-
titative analysis of multiple target heavymetal elements (such as
Zn, Cr, Cu, and Pb) inmoist soil. Finally, to enhance themodel's
generalizability and practicality, transfer learning of model
parameters will be introduced. Using a small amount of spectral
data from the target region (or soil type), the pre-trained model
will be ne-tuned to rapidly adapt to detection requirements in
new environments. This research is expected to provide tech-
nical support for real-time and in situmonitoring of heavy metal
contamination in agricultural soils (moisture content 0–25%).
J. Anal. At. Spectrom.
2 Materials and methods
2.1 Sample preparation

The experiment utilized National Standard Soil for Composition
Analysis (GBW07552, acquired from the China National
Resource Platform for Certied Reference Materials, CNRM),
the matrix of which was derived from typical farmland soil in
Anyang City, Henan Province, China. Aer being oven-dried,
ve portions (each 5 g) of dried soil labeled 1 to 5 were
weighed. A standard solution containing Zn (1000 mg mL−1), Cr
(1000 mg mL−1), Cu (1000 mg mL−1), and Pb (1000 mg mL−1)
(purchased from the Beijing General Research Institute of
Nonferrous Metals, Beijing, China) was diluted with ultrapure
water to form a working solution with concentrations of Zn 200
mg mL−1, Cr 150 mg mL−1, Cu 50 mg mL−1, and Pb 75 mg mL−1.21

Standard samples were prepared using the standard addition
method. Aliquots of 0, 1, 2, 3, and 4 mL of the mixed solution
were added to the standard soil samples, respectively. Aer
constant volume adjustment, stirring, and soaking, the
mixtures were sealed and allowed to stand for 6 hours to ensure
complete saturation of the soil. Subsequently, the samples were
oven-dried at 105 °C until constant weight was achieved in
accordance with the Chinese National Standard (HJ 613-2011).
From each of the ve samples, 2 g was taken, and the elemental
concentrations of Zn, Cr, Cu, and Pb were analyzed using ICP-
MS as reference values.

To prepare moist soil samples, ve standard soil materials (4
g) were oven-dried and subdivided into 2.0 g aliquots. Each
subsample was placed in a 50 mL beaker, and 2.0 g of ultrapure
water was added. To alleviate moisture gradients within the soil
particles, the samples were periodically stirred and sealed to
maintain equilibrium. Aer 6 hours, the samples were trans-
ferred to a drying oven to undergo slow and more uniform
moisture loss. By controlling the duration in the drying
chamber, soil samples with nal moisture contents of 0%,
9.09%, 13.79%, 18.03%, and 23.08% were obtained. This
gradient was designed to cover the typical soil moisture range
and, based on observations from actual farmland sampling
(where soil moisture at 15 cm depth seldom falls below 10%)
focuses on characterizing the higher moisture range. Prior to
analysis, each soil sample was stirred and mixed again to
further reduce heterogeneity, ensuring that the local moisture
content at any random laser ablation site reasonably approxi-
mated the overall average moisture content determined gravi-
metrically. One set of samples was used for LIBS analysis, while
parallel samples were tested according to HJ 613-2011 to
determine the actual moisture content, which served as the
benchmark truth value for the LIBS moisture prediction model.
The concentrations of elements Zn, Cr, Cu, and Pb, along with
the moisture content, are presented in Table 1.
2.2 LIBS setup and measurement

A schematic diagram of the mobile LIBS analysis instrument is
shown in Fig. 1. The laser source was a Q-switched Nd:YAG laser
(Quantel CFR200, France) which operated at a wavelength of
1064 nm with a pulse width of 7 ns and a single-pulse energy of
This journal is © The Royal Society of Chemistry 2025
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Table 1 Concentrations of Zn, Cr, Cu, and Pb and moisture content

Sample 1 2 3 4 5

Dry/ppm Zn 65.8 102.7 140.6 178.5 214.2
Cr 34.6 66.3 95.2 121.7 158.6
Cu 15.1 28.1 32.8 45.1 54.7
Pb 39.5 56.2 72.4 85.5 102.6

Wet/% MC 0.00 9.09 13.79 18.03 23.08

Fig. 1 Schematic diagram of the mobile LIBS analysis instrument.
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up to 200 mJ. A beam expander was employed in the beam path
to reduce the laser divergence angle and adjust the spot size,
thereby ensuring a smaller and more stable focused spot on the
sample surface while also protecting the focusing lens from
damage. Subsequently, a dichroic mirror was used. It has high
transmissivity at the laser wavelength (1064 nm), allowing the
beam to reach the sample and generate plasma, while also
having high reectivity in the range of 200–990 nm, effectively
transmitting the plasma emission light to the optical ber
probe. The transmitted beam was focused 1 mm below the
sample surface using a lens with a focal length of 35 mm to
avoid air breakdown. The spectrometer (LIBS2500plus, Ocean
Optics, UK) is equipped with a 7-channel CCD array, covering
a spectral range of 190–990 nm with a resolution of 0.1 nm
(FWHM). It effectively captures characteristic emission lines of
typical trace metal elements, including Zn at 213.8 nm, Cr at
427.4 nm, Cu at 327.4 nm, Pb at 406.3 nm, and Mg at 279.6 nm.

To obtain high-quality plasma signals, the optimized exper-
imental parameters were set as follows: a single-pulse energy of
50 mJ, an integration time of 1.2 ms, a delay time of 1 ms, and
a repetition rate of 10 Hz. The samples were placed on an X–Y–Z
motorized translation stage for precise positioning. To ensure
that the spectral data used for modeling represented stable and
representative signals, 100 sampling points were randomly
selected from the surface of each soil sample, with ve spectra
collected per point. By calculating the average cosine similarity
of each spectrum to the others,22 the 400 spectral data points
with the smallest differences were ultimately selected as
representative signals, thereby minimizing the potential impact
of local moisture heterogeneity and other transient uctuations
on model reliability. The total spectral acquisition time per
sample was #8 minutes, ensuring that moisture content
This journal is © The Royal Society of Chemistry 2025
variation remained within 1% (see Fig. S3). A total of 4000 LIBS
spectra were collected, of which 2000 were used for moisture
content analysis and 2000 for multi-element concentration
prediction.
3 Data analysis
3.1 Data preprocessing

The overall ow of the study is shown in Fig. 2. The raw LIBS
signals contain signicant background interference, which
necessitates baseline correction. Traditional baseline correction
methods fall into two major categories. The rst category
employs machine learning for automated or semi-automated
spectral processing. Although this approach can achieve high
precision, it requires hundreds of thousands of spectra for
model training. The second category involves selecting specic
points on the spectral line as anchor points for tting a baseline
curve. However, the selection of these points greatly inuences
the effectiveness of background correction, and noticeable
troughs may appear on both sides of the peaks, adversely
affecting subsequent quantitative analysis. This study adopts
the adaptive iteratively reweighted penalized least squares
(airPLS) method, which iteratively adjusts the weight of the sum
of squared errors (SSEs) between the tted baseline and the
original signal. In the characteristic peak regions, the weight
approaches zero, while in the baseline regions, the weight
coefficients are updated based on the tting error, thereby
effectively separating the target signal from the background
baseline.23 This method requires no prior knowledge and offers
strong portability, making it highly suitable for practical engi-
neering applications.24 Subsequently, discrete wavelet trans-
form (DWT) denoising was applied to the baseline-corrected
spectral data using the ‘db50 wavelet basis,25 and the results are
illustrated in Fig. 3.
3.2 Feature selection

Soil spectral data oen suffer from noise, feature redundancy,
and complex nonlinear interactions, which increase computa-
tional burden and reduce model generalizability. This study
employed the Random Forest (RF) algorithm for dimensionality
reduction and feature selection of LIBS data. Compared to
Fig. 2 Flow chart of multi-element prediction in moisture soil.
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Fig. 3 Preprocessed LIBS signal.

Fig. 4 RF feature selection weights and spectral line distribution: (A)
pertaining to moisture content; (B) pertaining to element
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unsupervised linear dimensionality reduction methods such as
Principal Component Analysis (PCA), RF demonstrates superior
performance in preserving original feature interpretability,
handling nonlinear relationships, and improving predictive
accuracy.26–28 First, the spectral data were standardized to
eliminate scale differences. By optimizing the tree number and
maximum depth based on OOB error, a random forest model
consisting of 100 trees with a maximum depth of 10 for each
tree was constructed to balance model complexity and gener-
alization ability. Furthermore, based on the relationship
between the ‘inection point’ on the feature number curve and
cumulative importance, the spectral line with cumulative
importance exceeding 99.5% was selected as the feature spec-
tral ngerprint (shown in Data Preprocessing module in Fig. 2).
This method combines the efficiency of ltering approaches
with the predictive orientation of wrapper methods, signi-
cantly reducing dimensionality while retaining critical
discriminative information. The selected LIBS spectral lines
and their importance analysis are shown in Fig. 4.

Among the 80 spectral lines correlated with moisture
content, high-weight features are concentrated in characteristic
hydrogen and oxygen emission regions such as Ha 656.3 nm, O
I 777.2/844.6 nm, and the OH molecular band at 308–320 nm.
The remaining weights are mainly concentrated in the 200–
500 nm band, where the emission lines of metallic elements are
dense, due to the rapid vaporization and dissociation of water
molecules in moist soil when irradiated with laser pulses. A part
of the incident laser energy is consumed, thereby reducing the
overall plasma temperature. This suppressed plasma state
directly attenuates the emission intensity of certain metallic
elements. Consequently, the intensity variations of these
metallic spectral lines indirectly reect plasma state modica-
tions induced by moisture content. Furthermore, from the LIBS
data of dried soils with varying concentrations, 64 core spectral
lines related to elemental quantication were densely distrib-
uted in the 200–500 nm region, which contains characteristic
J. Anal. At. Spectrom.
metal emission peaks including Zn I 213.8 nm, Cr I 427.4 nm,
Cu I 324.7 nm, and Pb I 406.3 nm, showing high consistency
with the characteristic excitation bands of the target elements.
3.3 Multi-task convolutional attention network

Previous studies have conrmed that machine learning can
effectively correct chemical matrix effects in LIBS analysis.29–31

Convolutional neural networks (CNN), as an efficient deep
learning method, have demonstrated signicant potential in
spectral data analysis. However the one-dimensional nature of
LIBS data restricts convolutional kernels to capturing only local
features between adjacent wavelengths. Thus, this study rst
transformed the one-dimensional spectral features of each
concentrations.

This journal is © The Royal Society of Chemistry 2025
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Fig. 5 MT-CAN flow diagrams.
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sample into a square matrix format with missing elements
padded with zeros, thereby increasing the dimensionality of
feature interactions while preserving the original sequence
order.

Based on this, we propose a Multi-Task Convolutional
Attention Network (MT-CAN, Fig. 5),which integrates two key
tasks: moisture content prediction and multi-element concen-
tration regression, with the aim of achieving rapid and accurate
in situ detection of various heavy metal elements in humid soils.
The core structure of MT-CAN consists of multi-level residual
feature extraction, parallelized multi-scale Inception modules,
dual attention feature calibration mechanisms, cross-stitch
multitask interaction units, and a deep regression output
module. First, the network employs a three-level residual
module to construct the base feature extractor. This structure,
through multi-layer convolution and non-linear hierarchical
stacking of the original spectrum, preliminarily extracts spectral
features related to elemental content or moisture, while effec-
tively alleviating the gradient vanishing problem in deeper
networks, thus providing robust low-level feature representa-
tions for subsequent multi-scale analysis. Subsequently, an
improved parallelized Inception module is introduced for
multi-scale feature reorganization. This module includes four
independent paths, each employing 1 × 1, 3 × 3, and 5 × 5
convolution kernels along with max-pooling operations, further
capturing subtle peak variations and global spectral trends
within the spectral data from different samples. Residual units
are embedded at the terminus of each path which enhances the
stability of model training and convergence efficiency. To
further strengthen the representation capability of critical
features, a dual-attention feature calibration mechanism is
employed in this work that adaptively re-weights feature
responses across both channel and spatial dimensions. The
channel attention submodule integrates average-pooling and
max-pooling information and learns the signicance weights of
each channel via a shared multilayer perceptron whereas the
spatial attention submodule generates spatial weight maps
based on double-polarity pooled features through a standard
convolutional layer thereby enhancing the focus on key wave-
length regions and suppressing redundant responses. The
collaborative weighting operation of both submodules effec-
tively improves the model's selectivity toward useful spectral
signals and its anti-interference capability. In response to the
This journal is © The Royal Society of Chemistry 2025
inherent correlations among chemical substrates in multi-
element regression prediction tasks, a cross-stitch multi-task
interaction mechanism32 is adopted which connects every two
elemental prediction tasks via a 4 × 4 learnable weight matrix
thereby enabling adaptive feature sharing across tasks and
allowing the network to autonomously learn synergistic and
constrained relationships among different elements.

To mitigate the risk of overtting in the complex model, we
adopted a hierarchical regularization strategy: L2 regularization
(weight decay coefficient l = 0.005) was introduced in the fully
connected layers, batch normalization layers were embedded
aer each convolutional and fully connected layer, and
a progressive dropout mechanism is employed (task layer
dropout rate = 0.3; output layer dropout rate = 0.2). The loss
function was formulated in a multitask weighted form (eqn (1)),
considering both the regression errors of each task and the
regularization constraint of the cross-stitch matrix. The optimal
task weight combination [0.3, 0.2, 0.3, 0.2] was determined
through grid search on the validation set, in order to balance
the learning process of the different subtasks.

L ¼
X4

i¼1

wikyi � ŷik2 þ lkA� IkF (1)

4 Results and discussion
4.1 Prediction of moisture content

The 80 characteristic spectral lines related to moisture content
selected by RF were used as input to the moisture prediction
module of the MT-CAN network, with the gravimetrically
determined actual moisture content serving as the ground truth
for training. To comprehensively evaluate model performance,
key metrics including the Root Mean Square Error (RMSE),
slope (K), and Mean Absolute Error (MAE) were calculated using
ten-fold cross-validation, as summarized in Fig. 6 presents the
scatter plot of predicted versus true moisture content values
during the validation phase, along with the distribution of
absolute errors.

Furthermore, comparative experiments were conducted with
other commonly used methods, including KNN, SVM and
1DCNN. Table 2 summarizes the performance metrics of all
comparative models. The MT-CAN model consistently out-
performed all other conventional models across every
J. Anal. At. Spectrom.
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Fig. 6 (A) Scatter plot of predicted and true values; (B) the distribution
of absolute errors.

Fig. 7 The feature visualization based on Grad-CAM; different colors
denote different contribution values.
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performance metric. With a K of 0.978 and an RMSE of 0.831, it
demonstrates high predictive accuracy. Moreover, the model
maintained robust predictive capability even in extreme mois-
ture content ranges (<2% or >20%), with the maximum absolute
error not exceeding 2%, thereby meeting practical detection
requirements.

To enhance the interpretability of the MT-CAN model, full-
spectrum data were input into the model, and Gradient-
weighted Class Activation Mapping (Grad-CAM) was applied to
generate feature importance heatmaps.33 This technique
computes gradient weights of the feature maps from the nal
convolutional layer and visually highlights key spectral regions
critical to the model's decision-making process. As shown in
Fig. 7, the highest activation intensities consistently correspond
to the characteristic emission regions of hydrogen (Ha 656.3
nm) and oxygen (OI 777.2/844.6 nm). This correlation occurs
because water molecules (H2O) dissociate in the high-
temperature plasma, and the resulting hydrogen (H) and
oxygen (O) atoms become excited by the plasma, enhancing
these characteristic spectral lines. Meanwhile, other signicant
weights are concentrated in the 200–500 nm region, which is
rich in emission lines frommetallic elements. This is attributed
to the substantial consumption of laser energy in vaporizing
and dissociating water, leading to a temperature drop in the
plasma core, thereby attenuating their spectral line intensities.
The visualization results conrm that MT-CAN successfully
captures the interaction between moisture and soil matrix
components, which is consistent with the features selected by
RF. Therefore, employing RF feature pre-selection can improve
the training efficiency of the network.
4.2 Correction model of the ablation factor

Variations in humidity can lead to divergent spectral intensities
being collected from samples with similar elemental concen-
trations, thereby preventing the establishment of a reliable
linear regression model.34 Consequently, it is essential to
Table 2 Performance of different models

MT-CAN KNN SVM 1D-CNN

RMSE/% 0.83 1.07 1.21 1.98
K 0.98 0.96 0.95 0.89
MAE/% 0.71 0.93 1.01 1.73

J. Anal. At. Spectrom.
perform intensity correction on in situ eld LIBS data obtained
from soils. In 2022, Xu et al. proposed a correlation model
between the ablation factor and moisture content.35 When
a laser irradiates a moist sample, the ideal ablation mass of the
soil is the total ablated mass minus the mass of water. However,
in practice, some samples are not effectively ablated by the laser
due to the absorption of energy by water and the rapid expan-
sion aer vaporization. In this study, this effect is quantied
using a reduction factor K to represent the inuence of moisture
on the actual ablated mass. Thus, the ablation factor q for moist
samples can be calculated using eqn (2).

q ¼ ma

md

¼ mw

md

$
ma

mw

¼ mw

md

$
1

ma þms

ma

¼ 1� 3

1þ Kð3Þ (2)

Here, ma denotes the actual ablated mass of the moist soil
sample, md is the ablated mass of the dry soil sample under
identical conditions, mw is the ideal ablated mass of the moist
soil sample,ms is the mass le unablated due to the presence of
moisture, 3 is the moisture content of the sample, and K(3) is the
moisture-dependent reduction factor. Furthermore, according
to the Lomakin–Scheibe formula,36 which states that the
intensity of an elemental spectral line exhibits a linear rela-
tionship with the concentration of the analyte, the following
expression can be derived:

Id ¼ Iw

q
¼ IwKð3Þ

ð1� 3Þ (3)

Iw denotes the measured spectral line intensity of an element in
the moist sample, while �Id represents the characteristic spectral
line intensity acquired by exciting a dry sample of identical
mass under laboratory conditions (shown in the ablation factor
correction model in Fig. 2). This study established an ablation
factor correction model using LIBS data obtained from the ve
moist soil samples listed in Table 1. To ensure the representa-
tiveness of the model, characteristic spectral bands of elements
including carbon, hydrogen, oxygen, nitrogen, aluminum,
calcium, magnesium, sodium, and potassium, as well as 64
spectral bands selected by RF associated with the concentra-
tions of Zn, Cr, Cu, and Pb, were employed as corrected data.

The reduction factor for each spectral band across samples
with varying moisture contents was calculated according to eqn
(3) and tted exponentially, as shown in Fig. 8 (with tting
This journal is © The Royal Society of Chemistry 2025
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Fig. 8 Fitting result of the reduction factor.
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results for other bands provided in Fig. S4). A correlation coef-
cient of 0.99 was achieved, indicating a strong correlation
between the ablation factor and moisture content. The empir-
ically derived tting function was incorporated into the calcu-
lation of the ablation factor in eqn (3), which was then used to
correct the peak intensities of characteristic spectral lines for
samples with different moisture levels. In Fig. 10, the uncor-
rected intensities are shown in black, and the corrected inten-
sities are shown in red. It can be observed that the corrected
spectral intensities increased signicantly across all bands and
converged toward those obtained under dry conditions. To
quantify the overall correction effect, cosine similarity was
employed to evaluate the spectral similarity between the
uncorrected and corrected spectra and the dry spectra. (calcu-
lated only within the corrected spectral bands), as shown in
Table 3. The results demonstrate that the spectra corrected
using the ablation factor exhibit substantially higher consis-
tency with those acquired under dry conditions.

4.3 Multi-element quantitative analysis

The 64 LIBS spectral lines associated with elemental concen-
trations, selected by RF, were rst used as inputs for the MT-
CAN. The elemental concentrations of Zn, Cr, Cu, and Pb, as
determined by ICP-MS, served as ground truth values. The
dataset was divided into training and validation sets in an 8 : 2
ratio to thoroughly train the model. To simulate realistic eld
conditions involving moist soil, ve dried soil samples with
different concentration levels (Table 1) were prepared by adding
ultrapure water following a standardized procedure, resulting
in moist samples with moisture contents of 0%, 8.7%, 12.8%,
Table 3 Cosine similarity between uncorrected and corrected spectra
and drying spectra

MC/% 0.00 9.09 13.79 18.03 23.08

uncorrected 1.00 0.98 0.94 0.85 0.68
Corrected 1.00 0.99 0.98 0.99 0.99

This journal is © The Royal Society of Chemistry 2025
16.6%, and 24.1%. For each sample, 120 LIBS spectra were
collected, and the same set of 64 characteristic spectral lines
was extracted. These spectral data were intensity-corrected
using the model described in Section 4.2, and the corrected
data were then input into the pre-trained MT-CAN network for
elemental concentration prediction. The prediction results for
Zn, Cr, Cu, and Pb contents on the independent validation set
are presented in Fig. 9 and Table 4.

To evaluate the contribution of each key component in the
MT-CAN architecture and explore potential simplications, we
systematically designed seven ablation models: Model A
(without residual connections), Model B (without Inception-
style multi-branch blocks), Model C (without attention mecha-
nisms), Model D (without CrossStitch units), Model E (retaining
only residual and attention modules), Model F (retaining only
attention and CrossStitch modules), and Model G (retaining
only residual and CrossStitch modules). As summarized in
Table S1 (see SI), the performance of the complete model was
compared with that of these ablated versions. The results
demonstrate that (1) removing the dual attention mechanism
caused the most signicant performance degradation (average
RMSE increased by 62.9%), conrming its crucial role in cali-
brating feature responses and suppressing noise. (2) Disabling
the CrossStitch units, thereby isolating the tasks, led to
substantial performance decline (average RMSE increased by
40.4%), highlighting the importance of leveraging intrinsic
correlations among elemental concentrations for synergistic
prediction. (3) Replacing the multi-scale Inception modules
with standard convolutional layers resulted in notable deterio-
ration (average RMSE increased by 39.4%), validating the
necessity of capturing spectral features at different scales. (4)
Moreover, eliminating residual connections not only reduced
prediction accuracy (average RMSE increased by 25.1%) but also
led to training instability and slower convergence.

The results demonstrate that the integrated LIBS analytical
framework, which combines a dynamic moisture content
correction model with multi-task learning, achieves relative
errors of less than 8% for the quantitative analysis of all four
Fig. 9 Scatter plot of multi-element quantitative prediction results.
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Fig. 10 Correction effect of typical spectral bands of Zn, Cu, Pb and Cr.
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elements, fullling the detection requirements in moist soil
environments and providing effective technical support for the
in situ monitoring of heavy metal contamination in soils.

Finally, to facilitate practical application, this study devel-
oped a standalone soware tool based on Python 3.8 and the
PyQt5 module, which integrates and encapsulates the entire
workow described above—including spectral preprocessing,
moisture content analysis, the ablation factor correction model,
Table 4 Performance of the multi-element quantitative prediction
model

MC = 16.6% Zn Cr Cu Pb

Corrected REMAX 7.89% 6.97% 5.13% 6.27%
RMSE 5.27 3.43 1.04 2.34
MAE 4.41 2.75 0.84 1.97

Uncorrected REMAX 49.29% 44.20% 37.53% 49.10%
RMSE 36.16 24.92 8.09 18.81
MAE 29.35 19.65 7.16 15.56

J. Anal. At. Spectrom.
multi-element quantitative prediction, and result analysis. A
representative example of the soware's user interface is
provided in the Fig. S5.
4.4 Transfer learning

In practical application scenarios, eld soil samples oen
exhibit regional variations (e.g., mineral composition, organic
matter content, and physicochemical properties), which can
degrade prediction performance of models trained on data
from a single region when applied to new target regions. To
enhance the cross-regional generalization capability of the MT-
CAN model, a model parameter transfer learning strategy was
introduced.37 This approach leverages the universal spectral
features learned from the source domain (typical farmland soil
from Anyang City, Henan Province) and ne-tunes the model
with a limited number of samples from the target domain
(farmland soil from Changchun, Jilin Province, prepared with
identical moisture content gradients; 200 LIBS spectra collected
This journal is © The Royal Society of Chemistry 2025
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Table 5 Performance of multi-element quantitative prediction model

Zn Cr Cu Pb

Strategy A RE 10.31% 9.41% 8.98% 12.89%
RMSE 8.24 6.25 2.11 3.65
MAE 7.03 5.47 1.83 3.25

Strategy B RE 15.62% 14.63% 15.33% 13.51%
RMSE 11.96 11.08 3.72 3.98
MAE 10.65 9.52 3.19 3.42

Strategy C RE 4.25% 3.32% 3.49% 5.04%
RMSE 3.31 1.79 1.07 1.33
MAE 2.90 1.51 0.90 1.10

Paper JAAS

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 1
2:

39
:5

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
in total), enabling rapid adaptive optimization of model
parameters.

The specic implementation of the transfer learning
framework includes the following steps: (1) the MT-CAN model
fully trained on the source domain was used as the initialized
network; (2) the front-end shared feature extraction layers
(multi-level residual layer and Inception layer) were frozen,
which preserved the knowledge of common spectral features
learned from the source model; (3) only the task-specic layers
(dual-attention layer, cross-stitch interaction layer, and regres-
sion output layer) were unfrozen and ne-tuned. The ne-
tuning process utilized target domain data with a lower initial
learning rate (5× 10−4), employed the loss function with weight
calibration, and applied early stopping to prevent overtting.
This approach effectively reused source domain knowledge
while adapting to the target domain characteristics through
targeted adjustments of task-specic parameters.

To validate the effectiveness of transfer learning, three
modeling strategies were compared: Strategy A (training from
scratch using only 200 target domain samples), Strategy B (direct
application of the source domain pre-trainedmodel without ne-
tuning), and Strategy C (the transfer learning strategy proposed in
this study). As shown in Table 5, Strategy C demonstrated supe-
rior predictive performance. This conrms that transfer learning
signicantly reduces the reliance on target domain data volume
(requiring only approximately 15% of the source domain data
size) by reusing shared spectral features and incorporating tar-
geted adjustments with target domain samples, thereby offering
an effective technical solution for LIBS-based monitoring in
complex and variable agricultural soils.

Conclusions

This study addresses the technical challenge of real-time moni-
toring of heavy metal elements in moist soils by proposing
a simultaneous multi-element quantitative analysis method
based on LIBS. By integrating deep learning with physical
correction strategies, it effectively overcomes moisture interfer-
ence in LIBS signals and achieves high-precision analysis of
multiple heavy metal elements such as Zn, Cr, Cu, and Pb.

The spectral data were optimized and characteristic spectral
ngerprints were screened using airPLS combined with random
forest; a multi-task convolutional attention network (MT-CAN)
was constructed to achieve simultaneous prediction of soil
This journal is © The Royal Society of Chemistry 2025
moisture content and multi-element concentrations. For
moisture prediction, theMT-CANmodel demonstrated superior
performance (k = 0.98, RMSE = 0.83%, and MAE = 0.71%).
Even under extreme moisture conditions, the prediction error
remained within 2%, indicating signicantly enhanced stability
compared to other benchmark models. Furthermore, the
introduction of an ablation factor model for intensity correction
of moist sample spectra resulted in corrected spectra that
exhibited high consistency with the reference dry spectra. All
evaluation metrics (REMAX, RMSE, and MAE) for multi-element
quantitative analysis were reduced to approximately one-
seventh of their pre-correction levels, with relative errors
consistently below 8%, demonstrating the method's strong
capability to correct moisture interference.

Finally, by employing a transfer learning strategy that ne-
tunes a source domain pre-trained model with a limited
number of target domain samples, the generalization capability
of the model across different regional soils was signicantly
enhanced. Compared with other strategies, the transfer
learning ne-tuned model achieved the lowest mean absolute
error in predicting target elements, validating the effectiveness
and practicality of the proposed method for cross-regional
applications.

Although the transfer learning strategy and the proposed
MT-CAN model in this study have demonstrated good adapt-
ability between two distinct soil types (the yellow-brown soil
from Henan and the black soil/chernozem from Jilin), it must
be acknowledged that the robustness of the proposed method
when applied to other soils (such as sandy/clayey textures or
markedly different mineral compositions) still requires further
systematic evaluation. Future work will focus on constructing
a large-scale spectral library encompassing a wider variety of
soil types and exploring the incorporation of soil physico-
chemical properties as auxiliary input variables to develop more
universal LIBS in situ detection solutions.
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code (airPLS preprocessing, quantitative analysis, and ablation
factor correction models) generated during this study are
available in the [Github] repository at [https://github.com/
gmh472/LIBS]. The complete dataset will be made publicly
available upon completion of the project and relevant
academic qualication.

Supplementary information: sample preparation methods,
soil moisture content trends, ablation factor correction model,
soware interface description, and ablation test results for the
MT-CAN model. See DOI: https://doi.org/10.1039/d5ja00355e.
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