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particle ICP-MS assessment using
a novel Python-based data processing algorithm
(Sparta) for nanoparticle quantification

Steffen Hellmann, *ab Teba Gil-Dı́az, c Mario Corte-Rodŕıguez, de

Dirk Merten, a Maŕıa Montes-Bayón de and Thorsten Schäfer *a

Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is a valuable tool to characterise

nanoparticles (NPs) regarding their element-specific mass, size and particle number concentration (PNC).

However, spICP-MS still suffers from a lack of harmonised and transparent data processing algorithms,

resulting in little user-flexibility in adapting parameters, when working with e.g. the manufacturer

software. In this study, we present a transparent Python-based algorithm (called ‘Sparta’), validated and

critically compared with existing data processing methods (SPCal and an in-house Excel method as well

as two commercial instrument software), applied for measurements of ∼30 nm Au, ∼74 nm TiO2 and

∼50, ∼100 and ∼300 nm SiO2 NPs, using instruments from two different manufacturers using milli vs.

microsecond dwell times. Sparta is capable of correcting baseline drift, determining the particle

detection threshold (PDT) via the Poisson and iterative Gaussian method, performing a peak summation

necessary for microsecond dwell times, and even extracting specific mass or size distributions from e.g.

polydisperse materials via a Gaussian peak-fitting. Although all data processing methods benchmarked

sizes and PNCs suit well for Au NPs, results show that millisecond dwell times systematically

overestimated sizes for TiO2 and SiO2 (from 50–100 nm). For microsecond dwell times, only SiO2 (50

nm) showed slight overestimation due to the methodological LODsize of 53.1 nm for our algorithm.

Nevertheless, Sparta accurately removes spurious background events of challenging samples such as

SiO2 at larger particle sizes (i.e., 300 nm). Thus, it can be readily applied to other engineered and natural

NPs or even for biological cells (single cell ICP-MS) showing its great potential in improving data

processing for spICP-MS.
Introduction

Single particle inductively coupled plasma-mass spectrometry
(spICP-MS) is a widely used method to characterise engineered,
inorganic nanoparticles (NPs) in aqueous suspensions. spICP-
MS can quantify NP size and particle number concentration
(PNC), having the unique advantage of breaking down single
NPs to their elemental composition. To our knowledge, spICP-
MS was rst reported by Degueldre and Favarger, who
of Geosciences, Applied Geology, Burgweg
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ment of Biogeochemical Processes, Hans-

f Applied Geosciences, Adenauerring 20b,

hemistry, Faculty of Chemistry, Julian

ipado de Asturias (ISPA), Av. Del Hospital

f Chemistry 2026
presented the feasibility of analysing several colloids ranging
from 150 to 400 nm.1 Particularly, gold (Au) and silver (Ag) NPs
reveal low size detection limits (LODsize) of 12.3 and 9.0 nm,2

respectively, using spICP-MS. Such low LODs are obtained due
to the (i) known composition, size and morphology of these
NPs, (ii) the few, well-known ICP-MS-based interferences
affecting these elements and nally (iii) their low (ionic) back-
ground (i.e., low dissolution).3–6 Also, more complex NPs, such
as titanium dioxide (TiO2) or silica (SiO2), have been studied
using this technique.5,7,8 On the one hand, TiO2 NPs have gained
attention due to their use in food and especially in cosmetics
such as sunscreen, consequently being released into the
(aquatic) environment, posing a potential danger to living
organisms.9 Investigating TiO2 NPs is challenging as they tend
to agglomerate in neutral, slightly acidic aqueous suspensions
(zeta potential at pH 6.2: ∼0 mV), resulting in larger size
distributions.10 However, suspensions may be bath sonicated
(temperature-controlled to prevent dissolution) prior to anal-
ysis, to counteract agglomeration of NPs.11–13 Furthermore, ICP-
J. Anal. At. Spectrom., 2026, 41, 173–189 | 173
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MS based interferences (e.g. 48Ca+) on the most abundant
isotope (48Ti+) and lower sensitivity result in a higher LODsize

(∼30 nm) for TiO2 compared to Au or Ag.3 On the other hand,
SiO2 NPs are also common additives for food and cosmetics to
prevent products from clumping and binding together.14–16 The
analysis of SiO2 NPs using spICP-MS is even more challenging
than TiO2 NPs due to the intrinsic high ionic and particulate
background. This background originates from glass-containing
equipment used in ICP-MS and the high number of polyatomic
spectral interferences (e.g. 12C16O+ or 14N14N+) for the most
abundant isotope (28Si+).17 Overall, these challenges generally
result in a poor LODsize of 105 nm.3 It is important to enable the
detection of even smaller NPs as the potential danger of all types
of NPs for living organisms is not yet fully understood and it
depends on their elemental composition and size.9 As cell
incorporation is greater with smaller NPs, small NPs pose an
especially high potential cytotoxic danger for living organisms,
depending on their elemental composition. Therefore, there is
a niche in research for more efficient methods to characterise
and distinguish (small) NPs by their elemental composition
that can be improved via spICP-MS.18

Although spICP-MS has several strengths such as high sensi-
tivity in characterising singleNPs and a large variety of information
provided, some intrinsic challenges and limitations remain. For
instance, to calculate NP sizes in spICP-MS, assumptions must be
made regarding their composition (e.g. Ti as TiO2 equivalents),
density and shapes; NPs are typically assumed to be spherical.
Moreover, quadrupole (Q)-based spICP-MS (used in this study)
cannot predict the elemental composition in each single NP in
contrast to time of ight (TOF) spICP-MS. spICP-Q-MS works
sequentially, whichmeans that the NPs in the sample are assumed
to be homogeneous in composition and therefore contain either
one element or a xed ratio of different elements. Nevertheless, the
latest quadrupole-based ICP-MS systems are generally ca. one
order of magnitude more sensitive than TOF-based ICP-MS
systems making spICP-Q-MS highly valuable for detecting small
NPs (lower LODsize).19–21

Another challenge in spICP-MS is the need for a good inter-
play between dwell time (also known as integration time), i.e., the
time during which data are collected, and sample dilution. When
using dwell times in themillisecond range (most commonly 2–10
ms), even with a dilution to yield about 104 and 105 NP per
mL,11,22,23 more than one event can occur within a dwell time,
leading to an overestimation of the NP size and underestimation
of the PNC. A big step-forward during measurements was the
introduction of microsecond dwell times, available with the new
generations of ICP-MS.24 As a typical NP duration, in the plasma
until ionisation, is between 200 and 1000 ms,3,25,26 depending on
the NP size and elemental composition, dwell times between 50
and 100 ms (ref. 23) are typically preferred to separately detect NP
events and allow higher PNCs, while maintaining the low
occurrence of two-particle events and even decreasing the NP
LODsize.3,24,27,28 A dwell time between, or slightly higher than, the
NP duration should be avoided to prevent partial/split event
detections.24 As presented in another study for 60 nm Ag NPs,
174 | J. Anal. At. Spectrom., 2026, 41, 173–189
when ionic Ag ($1 mg L−1) is present, the distinction of NPs from
the ionic background is only successful for dwell times #100 ms,
as for millisecond dwell times, the background and NP histo-
grams merge and prevent clear NP identications.24 Thus, using
microsecond dwell time not only signicantly reduces the impact
of ionic content but also improves the precision from ∼5% (10
ms) to ∼1% (#100 ms) and signicantly lowers the occurrence of
multiple NP events in an integration time.24

However, spICP-MS analysis currently lacks of harmonised,
standardised and, particularly, transparent data processing
procedures.27 The manufacturers of ICP-MS provide user-
friendly soware for simple case studies. However, the exact
NP identication algorithm is oen not as transparent (e.g., not
clearly documented) and not all relevant settings can be freely
adapted for more complex samples. The instrument soware
typically shows excellent results for well-dened, optimally
mono-element NPs, as presented in an application note for
10 nm Au NPs (LODsize 6.5 nm) with low (ionic) background/
noise content.29 However, when the (ionic) background
increases, the frequency vs. signal histograms of the back-
ground and NPs merge and overlap. When analysing elements
with a higher (ionic) background such as Ti or Si, the NP
separation from the background is only successful when the
ionic content and the ICP-based interferences are (very) low, as
presented in application notes for TiO2 (LODsize ∼30 nm)30 and
SiO2 (LODsize # 100 nm).31 As this is rarely the case, many
laboratories develop in-house data-acquisition procedures to
process spICP-MS data. Many users rely on their internally
developed scripts to have the possibility of adapting parameters
for the interpretation, based on their specic samples and
conditions.23 However, their detailed algorithms are rarely
presented and seldomly available. There is a limited selection of
free soware available, such as SPCal,32 Nanocount33–35 and
calculation tools (e.g. RIKILTWageningen UR), each has its own
strengths and weaknesses but in specic systems limited in
their adjustment options. spICP-MS data treatment approaches
were critically evaluated in a recent study, where the authors
summarised that spreadsheet-based soware (e.g. Excel or
Origin) have the advantage of a smooth learning curve, wide-
spread use and provides quick results, but are limited in their
capabilities regarding multi-element analysis and the difficulty
of implementing iterative processes.36 They further stated that
open-source soware (e.g. SPCal or Nanocount) are transparent
and have more advanced treatment options than spread-
sheets.36 Though they are user-friendly for quick calculations,
but in-depth understanding requires a steep learning curve and
are oen discontinued or not maintained.36 These disadvan-
tages are even more pronounced for programming options, as
they usually have no user interface, a particularly steep-learning
curve and are usually developed for special scenarios, but have
the impregnable advantage of enabling complete control over
all (advanced) treatment processes and theoretically no limita-
tions remain.36 In any case, currently, common data processing
approaches for quantifying particle detection threshold (PDT)
include averaging the whole dataset and collecting only data
This journal is © The Royal Society of Chemistry 2026
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which are higher than the average (m) + 3 or 5 standard devia-
tions (SD) in an iterative way.6,37 Other approaches such as SPCal
implemented local data thresholding (so-called rolling median
lter) to correct for baseline dri scenarios.32 This is frequently
accompanied by deconvolution methods, as presented in
a previous publication for 10, 15 and 30 nm Au NPs, to improve
the background-free NP identication.33 These deconvolution
methods are usually based on Poisson and/or Gaussian
ts.17,32,33,37

In this study, we aim to provide our novel data processing
ideas and improvements within our Python algorithm named
‘Single Particle Analysis & Reliable Tracking Algorithm – Sparta’ to
the Scientic Community, freely available via GitHub (link in
Table 1), explained and validated in this study for spICP-MS of
engineered NPs. We present a transparent Python-based data
processing algorithm developed for spICP-MS, equipped with
quadrupole mass analyser(s), combining already established
strengths and tackling remaining issues in a constructive way.
Our algorithm is capable of distinguishing NPs from the back-
ground signal based on the conventional Gaussian method in
an iterative way6 and via the Poisson method,32,38 which is
especially valuable for low-background elements such as Au.
Furthermore, we present a baseline dri correction and a peak
summation for both methods when using dwell times smaller
than the NP duration combined with an outlier removal for NP
artefacts such as agglomerates. Here, we compare and validate
our novel algorithm with existing data-acquisition methods
from two manufacturers (MassHunter from Agilent Technolo-
gies and Qtegra from Thermo Fisher Scientic), one freely-
available soware (SPCal32), and an in-house algorithm based
on Excel (Uni-Oviedo).39,40 To increase the applicability of the
algorithm and verify the instrumental performance, we further
evaluate micro vs. millisecond dwell time analyses (100 ms vs. 5
ms) for the test samples (NPs of Au, TiO2 and SiO2 of different
sizes).
Materials and methods
Materials and reagents

All ionic standards and particle suspensions were prepared in
$18.2 MU cm ultrapure water (Barnstead GenPure UV-TOC,
Thermo Fisher Scientic, Bremen, Germany). Ionic calibra-
tions (0–50 mg L−1) were prepared in 2 mL polypropylene (PP)
microreaction tubes (Eppendorf, Hamburg, Germany) using
ICP standards (1000 mg L−1): Au as HAuCl4 in 7% HNO3, Ti as
(NH4)2TiF6 and Si as (NH4)2SiF6 both in H2O, pH ∼3.5, all from
Certipur (Merck, Darmstadt, Germany).
Nanoparticle samples and preparation

The investigated particles varied between 30 and 300 nm in size.
In this manuscript, we use the term ‘nanoparticles’ (NPs) for
particles in the metric nano-range between 1 and 1000 nm.
Three different types of certied reference materials (CRMs)
were investigated: (1) gold (Au) NPs (citrate stabilised) with
a nominal diameter of 30 nm and a modal diameter of 32.7 ±

2.0 nm (LGCQC5050, LGC Standards, Teddington, UK), certied
This journal is © The Royal Society of Chemistry 2026
for PNC and modal diameter via spICP-MS and particle tracking
analysis, respectively; (2) titanium dioxide (TiO2) nanopowder
consisting of 76% anatase and 24% rutile (NIST SRM 1898,
National Institute of Standards & Technology, Gaithersburg,
USA), re-suspended in ultrapure water resulting in certied
diameters of 71 ± 4 and 77 ± 7 nm via laser diffraction spec-
troscopy and X-ray disc centrifugation provided by the manu-
facturer, respectively, and PNCs calculated by the authors based
on the certicate information; (3) aminated silica (SiO2) nano-
spheres of 50, 100 and 300 nm, certied via transmission elec-
tron microscopy (TEM) and, suspended in ethanol
(nanoComposix, San Diego, USA) for which both calculated
PNCs and certied sizes are provided by the manufacturer's
certicate. NP suspensions were diluted in ultrapure water to
nal concentrations of ∼5 × 104 NPs per mL. For deagglomer-
ation, all suspensions were sonicated (SONOCOOL 255.2, Ban-
delin, Berlin, Germany) for $15 min at 20 °C prior to spICP-MS
measurements. An overview of the NP suspensions used, and
their certied parameters are summarised in Table S1.
spICP-MS instrumentation

Two instruments were used for the benchmarking: the 8900
ICP-MS/MS (Agilent Technologies, Waldbronn, Germany) and
Thermo iCAP-TQ (Thermo Fisher Scientic, Bremen, Germany),
both equipped with a total consumption spray chamber and
a microconcentric nebulizer (High Sensitivity Single-Cell
Sample Introduction System for ICP-MS, Glass Expansion,
Port Melbourne, Australia). For the sample introduction,
a Fusion 100-X (Chemyx, Stafford, USA) or E-1000 (New Era
Pump Systems Inc, Farmingdale, USA) syringe pump (Thermo
or Agilent, respectively) equipped with a 1 mL syringe (Hamil-
ton, Bonaduz, Switzerland) was used set to a constant ow rate
of 10 mL min−1. For the SiO2 measurements with the Thermo
instrument, a cyclonic spray chamber was used to reduce the
glass-based background, equipped with a peristaltic pump with
a constant ow of 438.1 mL min−1. For comparison, these
measurements were also repeated with the previously
mentioned total consumption system, but the background was
higher in this case, probably due to the additional use of the
glass Hamilton syringe. Detailed information on the ICP-MS
settings and tune parameters can be found in Table S2. In
addition, the ionic limits of detection (LOD) and quantication
(LOQ) using 3 and, respectively, 10 standard deviations (SD) +
average (blank) criteria are presented in Table S3. Dwell times of
0.1 and 5 ms with total acquisition times of 40 s and 120 s,
respectively, were used for all measurements using the Agilent
instrument, whereas 5 ms dwell and 120 s total acquisition time
were used for the Thermo instrument. Author's note: for the
Thermo instrument (beta version) used in this work, the setting
of short dwell times is a limitation, but short dwell times can
also be selected for the new Thermo iCAP-TQ ICP-MS instru-
ments. The transport efficiency (h), also known as nebulisation
efficiency, providing the ratio of NPs arrived in the plasma
divided by the NPs in suspension, was measured daily and
individually determined for each dwell time and instrument
J. Anal. At. Spectrom., 2026, 41, 173–189 | 175
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Table 1 Data processing methods and their corresponding versions used for the interpretation of the spICP-MS data. The ‘criterion’ describes
how the particle detection threshold (PDT) was set to identify particle events

Method/soware Version Threshold method/criterion Integration/dwell times (ms)

Agilent, MassHunter 5.1 (measurement)
/5.2 (data processing)

G7201D/D.01.02/Build 708.1 ‘Automatic’ 0.1, 5.0

Thermo Qtegra 2.10 2.10.3324.131 ‘Automatic’ 5.0b

SPCal32 1.4.5 Gaussian (m + ka SD) & Poisson;
‘automatic’ choice

0.1, 5.0

In-house algorithm based on Excel
(Uni-Oviedo)39,40

— Gaussian (m + ka SD) 5.0

Spartac 1.1; Jupiter Lab (2.2.6) via
Anaconda Navigator (2.6.0)

Gaussian (m + ka SD) & Poisson 0.1, 5.0

a ‘k’ is a factor commonly set between 3 and 7 (Sparta) but can be extended to any number if necessary. For SPCal, it can be adapted between 1 and 8.
b For the Thermo instrument (beta version) used in this work, the setting of short dwell times is a limitation, but short dwell times can also be
selected for the new Thermo iCAP TQ ICP-MS instruments. c The code of our Python algorithm (Sparta) (version 1.1) is available via GitHub:
https://github.com/Steffen9204/Sparta-sp_scICP-MS.
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using the 30 nm Au NPs via particle number method, as
described elsewhere.6,41
Comparison of methods and thresholds

The particle detection threshold (PDT) criterion and dwell times
used in this study are shown for all validation and comparison
data processing methods applied in Table 1.
Data treatment for spICP-MS: in-house Python algorithm –

single particle analysis & reliable tracking algorithm (Sparta)

In this subsection, the theoretical calculations used for Sparta
(Gaussian and Poisson methods) are described and explained.
Further calculations, which are not primarily used in this
manuscript, are listed in eqn (S1) and (S2). All densities, mass
fractions and ionic calibration parameters are listed in Table S4.

Baseline dri correction. In some cases, especially when the
(ionic) background is high, a baseline dri is occurring (i.e., not
constant over time) and the drimust be corrected to accurately
Fig. 1 Baseline-drift correction via Sparta for 197Au+ (10 ppb, ionic stand
before correction. (b) Raw histograms (frequency vs. signal) before corre
(frequency vs. signal).

176 | J. Anal. At. Spectrom., 2026, 41, 173–189
account for the particle events. Based on the premise intro-
duced in a previous publication,34 we rst apply a baseline
correction to our raw data as shown in eqn (1),

Icorr:ðcpsÞ ¼ Iraw �ModeIrawð�50Þ þ mModeIraw ð�50Þ; (1)

where Icorr. is the corrected signal, Iraw is the raw signal, ModeIraw
(±50) refers to the moving mode of 100 of the closest signals and
mModeIraw ð� 50Þ is the average of the detected moving modes of 100 of
the closest signals. This is further expressed in Fig. 1 before further
processing and calculating the PDT. Fig. 1a and b show the
baseline dri of the raw data before the correction, which would
complicate extracting particle events from the background (several
local PDTs would be necessary). Fig. 1c and d demonstrate the
corrected raw data, where particle events can now easily be
extracted and separated from the background with only one PDT.
The ‘moving mode’ represents the mode of each data point based
on the 100 closest signals moving for each data point.

Particle detection threshold (PDT). Independent of the
chosen dwell time, rst, a PDT must be set. Two methods were
ard in ultrapure water, 5 ms dwell time). (a) Raw signals (signal vs. time)
ction. (c) Corrected signals (signal vs. time). (d) Corrected histograms

This journal is © The Royal Society of Chemistry 2026
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implemented: the (i) Gaussian and (ii) the Poisson method. The
detailed iterative Gaussianmethod (average (m) + factor (k)× SD) is
described elsewhere.6 Briey, the SD and average were calculated
from the entire dataset, and all data points above m + k× SD were
iteratively removed until there were none le above this threshold,
and detected as particle events. Data points # m + k × SD were
detected as background. Based on the recommendation from
Laborda et al. (2019) to also consider 5× SD instead of 3× SD, to
reduce false event detections, we expanded our approach for k
values between 3 and 7.37 For a not purely Gaussian background
emerging from a mixture of dissolved elements but also particles
(e.g. SiO2 from glass), a higher factor k must be selected to main-
tain the same false positive rate, although a higher k value
increases the risk of small particle events being overlooked. We
used a higher ‘buffer value’ (max. 40 iterations) to be sure the
iterations were sufficient as more iterations do not change the
nal threshold and the code operation is not time-consuming,
even though we did not detect more iterations than 17, thus
number ‘40’ was set as default to nally obtain the PDT for iden-
tifying particle events. In version 1.1 of Sparta, there is a possibility
to ‘enable’ the by default disabled ‘clear_cut’ function if there is
a clear separation in the histogram between the background and
the NP signal distribution (for well dened, monodisperse distri-
butions). If enabled, the iteration is stopped and the ‘cps value’, at
which the frequency has reached ‘0’, was selected as the PDT to
avoid disturbing background signals in thenal particle output, as
is oen the case for low background elements such as Au. For the
datasets presented in this manuscript, this function was, however,
not used. For the Poisson method, we used the statistical basis
from Currie (1968) for paired observations (alpha = 0.05 was
assumed) and Lockwood et al. (2021), but expanded it by adding
the average from all raw data before separation, as we oen
observed an underestimation of the LC and PDTPoissonfor our
CRMs to have base accounting better for varying background, as
presented in eqn (2) (adapted from ref. 32, 38, 42 and 43),

Critical value½LC� ðcpsÞ ¼

mrawðcountsÞ þ 2:33� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mrawðcountsÞ þ 3

p
sðsÞ ; (2)

and eqn (3) (adapted from ref. 32, 38, 42 and 43),
Fig. 2 Peak summation principle of Sparta for dwell times # NP duratio

This journal is © The Royal Society of Chemistry 2026
Particle detection threshold½PDTPoisson�ðcpsÞ ¼

mrawðcountsÞ þ 2:71þ 4:65� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mrawðcountsÞ þ 3

p
sðsÞ ; (3)

where mraw refers to the average of all raw signals, 3 is the
correction factor, which is ‘0.5’ in case the average of all raw
signals is <5 counts, otherwise it is ‘0’ and s is the chosen dwell
time (their use is explained in the ‘Peak summation’
section).32,38 Both Gaussian and Poisson distributions are
probability distributions, each tting in specic cases better to
the samples measured and thus both having their own value. As
explained in a previous publication, quadrupole-based ICP-MS
instruments equipped with electron multipliers follow a Pois-
son distributed noise for low-count signals, while Gaussian
distribution oen better suits high-count signals.37

Peak summation. When choosing dwell times below the NP
duration (i.e., 0.1 ms), a peak summation is necessary for both
methods (Gaussian and Poisson) (Fig. 2a and b). Our algorithm
performs a peak summation if dwell times are <2 ms (based on
the typical NP duration). For the Gaussian method, a particle
event is detected when a signal exceeds the PDT (green vertical
lines) and is merged until a data point falls below the PDT. All
signals below the PDT are recognised as background (grey
vertical lines). The average of the background data is subtracted
from each particle event (from each green vertical line, not from
the nal summed-up data) to set the baseline to ‘0’. This step is
the reason the baseline dri correction is crucial. For the
Poisson method, the event detection works similarly. The only
difference is in the use of the critical value (eqn (2)). When
a particle event exceeds the PDT and is thus detected, all data
points that precede and/or follow it and that are already above
the critical value are summed. That is, all the data points
before and aer the detected signal(s) that are above the
critical value, will be summed until the data points are below
the critical value and thus recognised as background (le
peak in Fig. 2b). Events between the critical value and PDT are
not detected as particle events and are merged to the back-
ground data (right peak in Fig. 2b). The advantage of choosing
short dwell times (i.e., 0.1 ms) is that higher PNCs can be
measured as shown in Fig. 2a. For the longer dwell times (i.e.,
5 ms), only one event must occur in a 5 ms time to avoid
double events, which would result in multiple signal
n (i.e., 0.1 ms). (a) Gaussian (b) Poisson.
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intensities and thus spurious ‘larger’ NPs.44 Thus, for the
cases of 5 ms, events are accounted individually but not
summed-up when appearing adjacent over time.

Outlier removal. For well-known systems, such as our model
NPs (CRMs), having monodisperse distributions (as presented
and used in this manuscript), the ‘Outlier removal’ was
enabled to remove large agglomerates or other artefacts.
However, we suggest for unknown, natural samples to disable
(set by default) the ‘Outlier removal’ (available from Version
1.1 of Sparta), as detected ‘agglomerates’ could indeed
correspond to large particles. If enabled, particle data above
PDT are detected as outliers if they are > m + i SD. This outlier
PNC ðNPs per mLÞ ¼ number½½NP events.PDT OR NP events under the peak fitting�� ðNPsÞ �DF

T ðsÞ � h� VðmL s�1Þ : (5)
ltering step is designed to remove only certain events that
may distort some measures of central tendency, such as the
average. The outlier detection is monitored using histograms.
If enabled, the factor ‘i’ is set as default to ‘3’ but may be
increased for well-known samples to any number if a high
background is expected, such as for Si. One example where ‘i’
melemental ðfgÞ ¼ ½IP ðcpsÞ � intercept½ionic calibration�ðcpsÞ � � sðsÞ � VðmL s�1Þ � h� 109ðfg mg�1Þ
slope½ionic calibration�ðcps per mg per LÞ � 103

�
mL L�1� ; (6)
had to be increased to ‘12’ is shown for 300 nm SiO2, 0.1 ms
dwell time in Fig. S1.

Transport efficiency. The transport efficiency (h) was deter-
mined for both dwell times (0.1 and 5 ms) individually using three
replicates each of the 30 nm Au NPs via the particle number
method as shown in eqn (4) (adapted from ref. 6, 32 and 41),

h ¼ ½number of particle events. threshold� �DF

T ðsÞ � VðmL s�1Þ � certified PNCðNPs per mLÞ; (4)

where DF refers to the dilution factor; T is the total acquisition
time; V is the sample volume ow and PNC refers to the
particle number concentration. Based on the background, the
‘threshold’ was daily adapted usually varying between 1000
and 5000 counts per second (cps). For instance, for a 5 ms
dwell time (Agilent), a threshold of 3000 cps was chosen. The
nal h is the average of three replicates, which are listed in
Table S5.

Particle number concentration. The particle number
concentration (PNC) was calculated aer the peak summation
for both dwell times, either considering all events above PDT or
only extracting chosen events under the Gaussian peak-tting
as presented in eqn (5) (adapted from ref. 32),
178 | J. Anal. At. Spectrom., 2026, 41, 173–189
Particle masses and sizes. Masses emerge from the particle
raw signals and represent the elemental mass per particle; sizes
are estimated using assumed mass fractions and densities
presented as size equivalents (e.g. Si as SiO2). The calculation of
the elemental particle masses is demonstrated in eqn (6)
(adapted from ref. 32),
and the calculation of the spherical particle sizes as expected
size equivalents in eqn (7) (adapted from ref. 32),

dparticleðnmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6�melementalðfgÞ � f

p� rðg cm�3Þ � 1015ðfg g�1Þ
3

s
� 107

�
nm cm�1�;

(7)
where melemental refers to the elemental particle mass; f is the

mass fraction (e.g. for Si as SiO2 equivalent:
MðSiO2Þ
MðSiÞ ); M is the

molar mass and r describes the particle density.
Limit of detection (LOD) for masses and sizes. The LODs

were calculated from the background signals, singled out
during particle event selection (i.e., grey signals, Fig. 2a and b),
in a similar way as for particle masses and sizes, just using
instead of the particle raw signals the corrected PDTs (Gaussian
or Poissonmethod). The corrected PDT is for both methods, the
PDT minus the average of all background data (<PDT).

The calculation of the limit of detection (LOD) for particle
masses is presented in eqn (8) (adapted from ref. 32),
and the calculation of the limit of detection (LOD) for the
spherical particle sizes as expected size equivalents in eqn (9)
(adapted from ref. 32),

LODsizeðnmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6� LODmassðfgÞ � f

p� rðg cm�3Þ � 1015ðfg g�1Þ
3

s
� 107

�
nm cm�1�:

(9)

Gaussian peak-tting. A common issue of spICP-MS is the
accurate positioning of the PDT. Even if the PDT is set well,
some background events may remain and would be combined
with the particle events, leading to an underestimation of the
particle sizes when an averaging of the overall dataset is used.
This journal is © The Royal Society of Chemistry 2026
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LODmassðfgÞ ¼ ½PDTcorrected � intercept½ionic calibration�ðcpsÞ� � sðsÞ � VðmL s�1Þ � h� 109ðfg mg�1Þ
slope½ionic calibration�ðcps per mg per LÞ � 103

�
mL L�1� ; (8)
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Thus, Sparta uses a exible multi-modal Gaussian peak-tting
algorithm (based on ref. 45) to simplify the identication of
detected signicant masses or sizes, which can account for one
to four Gaussian peaks which are either particle distributions or
the background itself (e.g., Fig. 3a). In addition, the alpha (a)
and beta (b) errors of the identied peaks are included in the
code. The a error provides the condence interval of the
calculated peak values (height and deviation). The b error
provides the probability of a Type II error (b) assuming the true
amplitude is the estimated one. In our case, we obtain an
indication of the peak detectability based on the signicance of
the amplitude (i.e., using the tted amplitude as a proxy for the
true effect size of the b values), providing in return the power of
the test (1−b). In this way, both parameters (a and the power)
allow proper identication of Gaussian peaks with a default
value of 95% (k = 2) condence (i.e., modiable to higher reli-
abilities with the ‘alpha_error’ parameter in the code). All
masses and sizes were plotted as histograms, and aer peak-
tting it was statistically decided (via the power) which peaks
are real and suitable (e.g., case of peak-tting for SiO2, 300 nm,
Agilent, 0.1 ms dwell time in Fig. 3a and b). In several cases,
peak-tting improved the accuracy of the mass and size calcu-
lations (e.g., Fig. 3b, orange vs. blue boxplot), otherwise
underestimated due to spurious NPs above PDT emerging from
Fig. 3 Gaussian peak-fitting algorithm for silica (SiO2), 300 nm, 0.1 ms d
particle detection threshold (PDT) and Gaussian peak-fitting (orange, n=

‘real’ peaks, which are identified via the power test of the b error, meaning
peak 0 and 2) are below the confidence interval of 95% and thusmarked in
standard deviation (SD) emerges from the Gaussian function (k = 1). (b)
boxplot shows only the extracted particle events under the Gaussian pea
analysed using transmission electron microscopy (TEM) with a certified

This journal is © The Royal Society of Chemistry 2026
the background. The Gaussian peak-tting algorithm extracts
the original data (blue bars) under each detected Gaussian peak
(orange), even if the bar frequency (no. of events) exceeds the
orange t.
Results and discussion
Size method comparison and validation

In this section, we validate Sparta in a benchmarking round
using NP sizes of three different elements/species (Au, TiO2 and
SiO2) measured with two instruments (Agilent and Thermo). As
the NP sizes emerge from the NP masses, we only present the
obtained sizes. Examples of size histograms from Sparta can be
found in Fig. S2–S6. In the following sections, the terms ‘Agi-
lent’ and ‘Thermo’ are used for the instruments 8900 ICP-MS/
MS and Thermo iCAP-TQ, as specied in section ‘spICP-MS
instrumentation’.

Gold (Au) – ∼30 nm. One of the most studied NPs using
spICP-MS are Au-containing NPs, as Au has a low (ionic) back-
ground and little interferences. Au is also oen used to deter-
mine the transport efficiency in spICP-MS. The manufacturer
soware (MassHunter from Agilent and Qtegra from Thermo)
usually shows excellent results for Au, this is why we used Au as
a validation tool for Sparta. As hypothesised, all methods, dwell
well time (Agilent). (a) Histogram of all particle events (blue bars) above
3) for the Poissonmethod. Peaksmarked in ‘bold’ (i.e., peak 1) represent
they are within the confidence interval of 95% (k= 2). Other peaks (i.e.,
brackets and not bold. The red dashed line represents the LODsize. The
The blue boxplot shows all particle events above PDT and the orange
k-fitting. The certified diameter (average, green line ± uncertainty) was
uncertainty (k = 1).
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Fig. 4 Size comparison for the ∼30 nm Au NPs via spICP-MS between Agilent (0.1 vs. 5 ms dwell time) and Thermo (5 ms dwell time) using
different data processing methods. The indicative hydrodynamic diameter (mode, green line) ± uncertainty (green area) is taken from the
providers' certificate, originally measured via nanoparticle tracking analysis (NTA) with an expanded uncertainty (k = 2). The black dashed line
represents the nominal particle diameter of 30 nm from the provider. NP-events were identified above the particle detection threshold (PDT),
defined as follows: for the MassHunter software (Agilent), options were set on ‘auto” (algorithm not known), for SPCal (set on ‘auto’, based on the
background) the chosen method was Poisson (both instruments and dwell times), and for the Excel (both instruments), the Gaussian method
(average (m) + 6 standard deviations (SDs)) was used. In our case, Sparta used the Poisson method (all data above PDT) for both instruments and
dwell times. The Qtegra (Thermo) software was not applied in this round of measurements. ‘IQR’ = interquartile range. ‘LOD’ = size limit of
detection. ‘BED’ = background equivalent diameter.
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times and instruments showed very similar results close to the
certied nominal diameter of 30 nm (black dashed horizontal
line) (Fig. 4). Only the 0.1 ms results t better to the certied
mode of 32.7 nm (green horizontal line, Fig. 4), corresponding
to the hydrodynamic diameter certied obtained via nano-
particle tracking analysis (NTA) from the certicate.

For Sparta, we used the Poisson method to set the particle
detection threshold (PDT) and identify NP events. Anyhow,
there were only minor differences between both methods, as an
Fig. 5 Size comparison for the ∼74 nm TiO2 NPs via spICP-MS betwee
different data processing methods. Two diameters (average, green line
obtained using laser diffraction spectrometry (71 ± 4 nm) and X-ray disc c
NP-events were identified above the particle detection threshold (PDT), d
set on ‘auto’ (algorithm not known), for SPCal (set on ‘auto’, based on th
dwell times), and for the Excel (both instruments), the Gaussian method (
used the Poisson method (all data above PDT) for both instruments and d
of measurements. ‘IQR’ = interquartile range. ‘LOD’ = size limit of detec

180 | J. Anal. At. Spectrom., 2026, 41, 173–189
example for the case of 0.1 ms dwell time via Agilent, the
median for the Gaussian method (m + 7SD) was 30.9 nm vs.
31.2 nm for the Poisson method. The Gaussian peak-tting is
not shown here, instead the NP events represent all valid events
(no agglomerates) above PDT. The size limit of detection
(LODsize) and the background equivalent diameter (BED) are
lower for a short dwell time of 0.1 ms compared to 5 ms, sug-
gesting improved particle discrimination from the background
for shorter dwell times. Sparta shows a LODsize of ∼6.6 nm for
n Agilent (0.1 vs. 5 ms dwell time) and Thermo (5 ms dwell time) using
) ± uncertainty (green area) were used from the provider's certificate
entrifugation (77 ± 7 nm) with a certified expanded uncertainty (k = 2).
efined as follows: for the MassHunter software (Agilent), options were

e background) the chosen method was Poisson (both instruments and
average (m) + 7 standard deviations (SDs)) was used. In our case, Sparta
well times. The Qtegra (Thermo) software was not applied in this round
tion. ‘BED’ = background equivalent diameter.

This journal is © The Royal Society of Chemistry 2026
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Agilent at 0.1 ms dwell time, whereas at 5 ms it increased to
almost double (∼12.9 nm) for Agilent and nearly triple (∼16.6
nm) for Thermo. This is explained by the fact that with
increasing dwell time, a higher background signal is integrated
within a specic dwell time, resulting in a lower signal-to-noise
ratio.24 Lower LODsize with decreasing dwell time is a common
feature reported in the literature, e.g., LODsize = 9.0 nm (0.1 ms)
vs. 12.7 nm (5 ms) for Au NPs.2,3 For 0.1 ms dwell time, our
LODsize (via Sparta) is very similar to the one presented in the
Agilent application note (∼6.5 nm),29 and the LODsize for 5 ms
dwell time is for Agilent very close and for Thermo slightly
larger than reported in literature.2,3 In a nutshell, for 30 nm Au
NPs, the applied instruments, data processing methods and
dwell times only show minor differences in terms of their
calculated particle size and work well.

Titanium dioxide (TiO2) – ∼74 nm. TiO2 NPs are more
challenging than Au for spICP-MS. Although reported LODsize

(0.1 ms dwell time) is ∼30 nm, i.e., relatively higher than Au
NPs,2,30 our LODsize for 0.1 ms dwell time was ∼43 nm with
Sparta using the Poisson method (Fig. 5). The resulting median
size obtained via Sparta (∼71 nm, 0.1 ms dwell time) was close
to the certied size (74 ± 10 nm). For the same dwell time, both
MassHunter (median ∼96 nm) and SPCal (median ∼209 nm)
overestimated the certied size. For SPCal, it seems that the
threshold was set too high so that the small events were lost
within the background. This was supported by the low number
of events detected (n = 29) and the comparably high LODsize

(∼63 nm).
For 5 ms dwell time, previous literature reported a LODsize of

ca. 42 nm (measured as 47Ti).2 However, we used the isotope 48Ti
as we do not expect to have the 48Ca interference and 48Ti has
a higher abundance, leading to a higher sensitivity. All methods
with the 5 ms dwell time show very similar results,
Fig. 6 Size comparison for the ∼50 nm SiO2 NPs via spICP-MS betwee
different data processing methods. The certified diameter (average, gree
microscopy (TEM) with a certified uncertainty (k = 1). NP-events were ide
for the MassHunter software (Agilent), options were set on ‘auto’ (algorit
chosen method was for 0.1 ms Gaussian (average (m) + 5 standard de
approach here and for 5 ms dwell time (both instruments) the Gaussian (m
the Gaussianmethod (m+ 4SD) was used. In our case, Sparta used the Pois
Gaussian method (m + 5SD, all data above PDT) was used for both instru
measurements. ‘IQR’ = interquartile range. ‘LOD’ = size limit of detectio

This journal is © The Royal Society of Chemistry 2026
systematically overestimating (median: ∼90–110 nm) the certi-
ed particle size. This suggests that smaller NPs were lost
within the background for 5 ms dwell time, which is an
instrument, method-based issue, not a data processing effect.
This is further conrmed by the trend of a higher LODsize with
increasing dwell time, already seen for Au NPs (Fig. 4). This is
clear from Sparta, where the LODsize is higher than the certied
NP size (Sparta, 5 ms dwell time: LODsize ∼82 nm). The lower
LODsize for SPCal and lower BED for MassHunter is a result of
different calculations. SPCal uses their PDT to obtain their
LODsize,32 instead of our corrected PDT (both are different), as
explained in Subsection ‘Particle detection threshold (PDT)’ in
the Materials and methods. In contrast, MassHunter has
a different approach to estimate their BED, based on an average
of their particle signals and the intensity of noise signals, which
is dened in detail in ref. 46. Moreover, minor size differences
were seen between the Thermo and Agilent instruments for 5
ms dwell time. In summary, when measuring TiO2 NPs #

82 nm, a shorter dwell time, such as 0.1 ms, should be preferred
to accurately determine the NP sizes. Under these conditions,
Sparta performs well, i.e., was successfully validated using TiO2

NPs for 0.1 ms dwell time.
Silica (SiO2) – ∼50 nm. Even more challenging than TiO2 are

SiO2 NPs for spICP-MS, especially small sizes. As mentioned in
the introduction, SiO2 suffers from polyatomic interferences
and Si-based NPs from glass materials equipped in the instru-
ment, resulting in comparable poor signal-to-noise ratios.13,17 In
this work, the smallest particle size studied was ca. 50 nm SiO2,
certied by the provider via TEM (Fig. 6). Results show that for
the short dwell time (0.1 ms), all methods applied (MassHunter,
SPCal and Sparta) systematically overestimate (<100 nm) the
certied diameter. Nevertheless, out of all methods, Sparta
shows the closest size compared to the certied diameter
n Agilent (0.1 vs. 5 ms dwell time) and Thermo (5 ms dwell time) using
n line ± uncertainty) is given by the provider via transmission electron
ntified above the particle detection threshold (PDT), defined as follows:
hm not known), for SPCal (set on ‘auto’, based on the background) the
viations (SDs)) but changed to Poisson as this was the more suitable
+ 5SD) was chosen. For the Excel (both instruments), 5 ms dwell time,
sonmethod (all data above PDT) for 0.1 ms and for 5ms dwell time, the
ments. The Qtegra (Thermo) software was not applied in this round of
n. ‘BED’ = background equivalent diameter.
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(median ∼65.3 nm). The explanation for the overall over-
estimation is that small NPs cannot be differentiated from the
background and are thus not identied as such. An earlier
publication also found that 80 nm SiO2 NPs were partly lost
within the background and the size was therefore over-
estimated.17 To compensate for the overestimation, the authors
used a Gaussian function, overlapping with the background, to
accurately determine the particle distribution. Therefore, small
SiO2 NPs seem to be still a limitation for the spICP-MS tech-
nique, even if choosing small dwell times (i.e., 0.1 ms).

In contrast, the results achieved using a higher dwell time of
5 ms greatly overestimate the particle sizes with all data pro-
cessing methods and both instruments. This becomes even
clearer when emphasising the lower total number of events
detected at 5 ms dwell time compared to 0.1 ms dwell time,
although the total acquisition time at 5 ms was three times
larger than at 0.1 ms dwell time (120 s vs. 40 s). In any case,
a high number of events is sought to achieve sufficient statis-
tics. A minimum number of approximately 100 events per
minute acquisition time is suggested but may be set lower for
homogeneous materials.47 In the case of 0.1 ms dwell time (40 s
acquisition time), ∼66 NPs are suggested, which is reached by
Sparta (282 events). Under these conditions, the MassHunter
soware (Agilent) shows the closest results to the certied size
for a 5ms dwell time. However, it is highly unlikely to be true, as
the BED was higher than the greatest event, i.e., the largest NP,
detected. Given the fact that the exact MassHunter soware
algorithm to determine the PDT is not disclosed, we cannot
verify this hypothesis, nor explain the reason for the good
output for a 5 ms dwell time. In any case, even if the diameter
for 50 nm SiO2 NPs is overestimated for both dwell times, Sparta
shows comparable, or even better, results to other data pro-
cessing methods, representing the best-tting diameter
compared to the certied value for 0.1 ms dwell time.
Fig. 7 Size comparison for the ∼100 nm SiO2 NPs via spICP-MS betwee
different data processing methods. The certified diameter (average, g
microscopy (TEM) with a certified uncertainty (k = 1). NP-events were ide
for the MassHunter software (Agilent) and Qtegra software (Thermo), op
based on the background) the chosenmethod was Gaussian (average (m)
for the Excel (both instruments), the Gaussianmethod (m + 4SD) was used
all data above PDT) was used for 0.1 ms and the Gaussian method (m + 5
interquartile range. ‘LOD’ = size limit of detection. ‘BED’ = background

182 | J. Anal. At. Spectrom., 2026, 41, 173–189
Silica (SiO2) – ∼100 nm. By increasing the NP diameter by
a factor of two, for 0.1 ms dwell time, all three data processing
methods show very well-tting results compared to the certied
diameter (Fig. 7). This is a big step forward compared to
previous literature, showing that only 1–3% of 100 nm SiO2 NPs
could be detected, although this was using dwell times of 25–
100 ms, and explained that only the largest particles were
differentiated from the background.8 However, as with the
50 nm SiO2 NPs, the results for 5 ms dwell time still over-
estimate the certied diameter. MassHunter (Agilent) gives
once more a well-suited diameter, even though the BED is
higher than the greatest event detected. However, for the rst
time, we detect differences between the two instruments (Agi-
lent vs. Thermo). The data processing of the output from the
Agilent instrument results in many NPs events with the SPCal,
Excel and Sparta methods, despite the difference between 0.1
ms and 5 ms analyses (i.e., fewer events in 5 ms), indicating that
only larger particles were detected using 5 ms dwell times and
small NPs were lost in the background. In contrast, the number
of detected events obtained from the Thermo instrument was
much lower, suggesting that even more (small) NP events were
lost in the background. Nevertheless, despite these NP losses,
the overall NP sizes calculated from 5 ms dwell times are
systematically overestimated with both instruments and
generally with all data processing methods. Moreover, in this
case, the Thermo soware (Qtegra) displayed an average ± SD
(219 ± 14 nm), which also overestimates the size, indicating
that the calculations of the commercial soware are similar to
SPCal, Excel and Sparta. Thus, as expected, the dwell time of 0.1
ms gave the most accurate NP size calculations for SiO2

∼100 nm, almost independent of the data processing method.
Silica (SiO2) – ∼300 nm. Out of all tested particle types and

sizes, the outcomes from the measurements of SiO2 NPs of
∼300 nm showed best the advantages of the newly developed
n Agilent (0.1 vs. 5 ms dwell time) and Thermo (5 ms dwell time) using
reen line ± uncertainty) was analysed using transmission electron
ntified above the particle detection threshold (PDT), defined as follows:
tions were set on ‘auto’ (algorithm not known), for SPCal (set on ‘auto’,
+ 5 standard deviations (SDs)) for both dwell times and instruments, and
for 5 ms dwell time. In our case, Sparta, the Gaussian method (m + 7SD,
SD, all data above PDT) for 5 ms dwell time (both instruments). ‘IQR’ =
equivalent diameter.

This journal is © The Royal Society of Chemistry 2026
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Fig. 8 Size comparison for the ∼300 nm SiO2 NPs via spICP-MS between Agilent (0.1 vs. 5 ms dwell time) and Thermo (5 ms dwell time) using
different data processing methods. The certified diameter (average, green line ± uncertainty) was analysed using transmission electron
microscopy (TEM) with a certified uncertainty (k = 1). NP-events were identified above the particle detection threshold (PDT), defined as follows:
for the MassHunter software (Agilent) and Qtegra software (Thermo), options were set on ‘auto’ (algorithm not known), for SPCal (set on ‘auto’,
based on the background) the chosenmethod was Gaussian (average (m) + 5 standard deviations (SDs)) for both dwell times and instruments. For
Excel, the Gaussianmethod (m + 6SD for Agilent and m + 4SD for Thermo) was used for a 5ms dwell time. In our case, Sparta, the Poissonmethod
(peak-fitting/extraction algorithm) was used for 0.1 ms and the Gaussian method (m + 6SD for Agilent vs. m + 5SD for Thermo) was used for 5 ms
dwell time, both using the peak-fitting/extraction algorithm. ‘IQR’ = interquartile range. ‘LOD’ = size limit of detection. ‘BED’ = background
equivalent diameter.
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Gaussian peak-tting/extraction algorithm integrated into
Sparta, applied here for both dwell times and instruments. For
the short dwell time (0.1 ms), we obtained a median ± SD of
279.1 ± 17.1 nm (Fig. 8). Both, MassHunter and SPCal calcu-
lations underestimated the certied particle diameter by
a factor of 2–3, the same factor as Sparta if the peak-tting/
extraction algorithm, as presented in Fig. 3, would not have
been applied. As discussed, for the ∼50 nm SiO2 NPs, a higher
event number (n) usually provides better statistics. However,
this does not necessarily mean that a higher event number also
provides a better data quality. As demonstrated in Fig. 3, all
events above PDT would result in many false-positive back-
ground signals (n = 2091) detected as spurious events, vs. the
Gaussian peak-tting algorithm provided fewer events (n= 255)
but a more accurate size. The higher background (originally in
ethanol matrix) in the case of 300 nm SiO2 might be related to
a lower dilution factor (DF: ∼6 × 106) as the particle concen-
tration was lower compared to 50 nm (DF∼1× 109) and 100 nm
SiO2 (DF ∼2 × 108). As the original silica standards were
provided from the manufacturer in glass vessels, which were
bath sonicated to deagglomerate NPs before dilution, there are
most likely more silica NPs emerging from the vessel itself. A
lower dilution factor directly means more silica NPs in the nal
sample.

It is worth noting that 5 ms dwell time measurements only
show acceptable sizes for larger SiO2 NPs, well-tting for both
instruments when using SPCal, Excel and Sparta as data pro-
cessing methods. In contrast to Sparta, in combination with the
peak-tting/extraction algorithm, Excel takes all data above
PDT. For a 5 ms dwell time, the LODsize was much higher
(LODsize, Sparta: 203 nm) than for 0.1 ms dwell time
(LODsize, Sparta: 60 nm). Thus, the small spurious background
particles, which were only detected at 0.1 ms dwell time, played
This journal is © The Royal Society of Chemistry 2026
only a minor role at 5 ms dwell time. Nevertheless, even at 5 ms
dwell time, Sparta using the peak-tting/extraction algorithm,
was able to remove some leover background, which resulted in
better tting sizes (median ± SD: 279.4 ± 20.1 nm). Both
manufacturer soware (MassHunter and Qtegra) slightly
underestimated the particle diameter. Overall, we show that
Sparta also works well for larger SiO2 NPs (∼300 nm) with both
dwell times and instruments and highlight the importance of
the Gaussian peak-tting/extraction algorithm.
Particle number concentration method comparison and
validation

A second important parameter, which was used alongside the
sizes for the benchmarking and validation of Sparta, is the
element-specic particle number concentration (PNC), which
shows the uniqueness of spICP-MS compared to other methods
such as Nanoparticle Tracking Analysis or Laser Induced
Breakdown Detection. In this study, we aimed to target an
accuracy of one order of magnitude in PNC. For Au, the outcome
is similar as for the sizes, the PNC can be accurately estimated
with any instrument, dwell time and data processing method,
including Sparta, which suits well to the other methods and was
thus successfully validated (Fig. 9a). The error is greater for
TiO2, even when using the more sensitive 0.1 ms dwell time,
however, all methods, instruments and dwell times were within
one order of magnitude of the calculated PNC assuming 74 nm
as an average diameter, as the PNC was not certied here (eqn
(S3) and (S4)). Thus, Sparta was also successfully validated for
TiO2.

As expected, the accurate determination of the PNC of SiO2

NPs (Fig. 9b) was more complex and challenging than for Au
and TiO2. When comparing the results from the short dwell
time (0.1 ms), the certied value of the PNC for the 50 nmNPs is
J. Anal. At. Spectrom., 2026, 41, 173–189 | 183
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Fig. 9 Particle number concentration comparison (semi-logarithmic) via spICP-MS between Agilent (0.1 vs. 5 ms dwell time) and Thermo (5 ms
dwell time) using different data processing methods. (a) Au, ∼30 nm and TiO2 ∼74 nm (differences in the calculated PNCs between Agilent and
Thermo are a result of two different PNCs of the original suspensions). (b) SiO2, ∼50, ∼100 and ∼300 nm. For spICP-MS, data represent the
average± 2SD of three replicates. For ‘SiO2, 50 and 100 nm via Thermo, 5 ms (all methods)’ and ‘SiO2, 50 nm via Agilent (MassHunter), 5 ms’, only
two replicates were available, thus the error represents half the range. The certified PNC (average, green line ± uncertainty, k = 2) was certified
using nanoparticle tracking analysis (NTA). NP-events were identified above the particle detection threshold (PDT), which were further specified
in the descriptions of Fig. 4–8.
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slightly underestimated, while for 100 and 300 nm it is rather
overestimated. This may be because, for 50 nm, very small
particles may be lost within the background, while for 100 and
300 nm, the detected background (i.e., polyatomic interfer-
ences, glass containing NPs) increases the actual number of
detected events, thus increasing the total PNC. This issue was
resolved for 300 nm SiO2 and 0.1 ms, because the peak-tting/
extraction algorithm was used to remove spurious NP events,
leading to a well-tting PNC. Nevertheless, all three data pro-
cessing methods are within the accuracy of one order of
magnitude in PNC.

In contrast, the longer dwell time (5 ms) shows an under-
estimation of PNC for the 50 nm NPs with all methods for
Agilent and even more for Thermo. This can be explained, on
the one hand, by a lower LODsize achieved by Agilent (more NPs
detected) compared to the Thermo instrument. On the other
hand, for the Thermo instrument, a cyclonic spray chamber
with a lower h was used (∼5%), which has almost no effect on
the NP mass or size calculation for homogeneous samples but
the uncertainties in h lead to a larger relative error in PNC,
especially for smaller h as is here the case. The underestimation
in PNC achieved by Thermo is also visible for the 100 nmNPs, in
contrast to the well-tting results achieved by the Agilent
instrument via SPCal, Excel and Sparta, despite the worse tting
for its own soware (MassHunter). We believe that for Thermo,
the LODsize was too high to accurately estimate the PNC here,
receiving underestimated results with all methods. For the
300 nm SiO2 NPs, Sparta suits best to the certied PNC, together
with the Thermo soware (Qtegra). The difference between the
instruments does not play a big role here as the LODsize is, in
this case, lower than the actual NP sizes, even though Excel still
184 | J. Anal. At. Spectrom., 2026, 41, 173–189
signicantly underestimates the PNC for the Thermo
instrument.

In summary, we successfully validated Sparta also for SiO2 in
PNC and could accurately estimate the PNC within one order of
magnitude for all measurements with 0.1 ms dwell time and for
5 ms dwell time for Agilent $ 100 nm and Thermo $ 300 nm.
Working features, new tool improvements and remaining
limitations of Sparta

Our proposed Python data processing algorithm (Sparta) was
applied to model NPs above and compared and validated using
two different instruments and four (non-)commercial data
processing soware. This section contains a general summary
and discussion of the applied working features, the new
improved tools and the remaining limitations which should be
tackled in future studies. An overview is presented in Table 2:

Baseline dri correction. The potential baseline dri was
corrected as a very rst step in Sparta before further data pro-
cessing. As presented in Fig. 1, our approach allows the usage of
only one PDT for the whole dataset. Previous literature32

described local data thresholding to correct for baseline dri
scenarios, delivering several dynamic PDTs, which worked well
but could lead to confusion due to several PDTs during data
interpretation. If not correcting baseline dri and also not
considering dynamic PDTs, the particle mass/size distributions
but also PNCs are directly affected. In the case of a negative
baseline dri (e.g. Fig. 1a, ∼15–30 seconds), particle events
would be lost within the background and detected events would
be underestimated due to a lower signal intensity. In the
opposite case, having a positive baseline dri (e.g. Fig. 1a, ∼5–
15 seconds), false-positive background events would be
This journal is © The Royal Society of Chemistry 2026
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Table 2 Overview of the new features/tools of Sparta, their improvement potential and original sources

Feature/tool New Improvement Original source(s)

Baseline dri correction Calculation
(mode instead of average; eqn (1))

More robustness using mode instead of
averages to directly access background and
not particles. No need for dynamic PDTs if
noise is consistent (baseline dri but no
noise width uctuations), only one PDT for
the whole dataset

34

Particle detection
threshold (Gaussian
method; m + 3–7 SD)

(1) ‘clear_cut-function’. (2) Buffer of 40
iterations

(1) Optional feature: no background
contribution for monodispersed well-
dened NPs (e.g. Au). (2) Ensured stable PDT

6 and 37

Particle detection
threshold & critical value
(Poisson method)

Adding the average from all raw data (eqn
(2) and (3))

Allowing to use the Poisson method also for
high background systems (e.g. silica)

32, 38, 42 and 43

Peak summation Peak summation for datasets if choosing
dwell times <2 ms

Necessary, as each NP event may have several
data points

32

Outlier removal Outlier removal from valid NP events (>m
+ i SD)

Optional feature: Elimination of false-
positive artefacts or agglomerates for well-
dened, monodisperse CRMs

—

Transport efficiency
(particle number/frequency
method)

Calculation slightly adapted;
(eqn (4))

— 6, 32 and 41

Particle number
concentration

Possibility to calculate PNC from an
extracted peak using the Gaussian peak-
tting/extraction algorithm (eqn (5))

PNC calculation of artefact-free and/or
polydisperse distributions

32

Particle masses/sizes Calculations slightly adapted
(eqn (6) and (7))

(1) Mass fraction moved to the particle size
calculation to report particle masses for
unknown materials without any
assumptions. (2) consideration of the
intercept of the ionic, linear calibration

32

LOD Corrected PDT (PDTminus the average of
background data);
(eqn (8) and (9))

Consideration of the intercept from the
ionic, linear calibration

32

Gaussian peak-tting/
extraction

Multi-modal peak nding, tting and
extraction algorithm for 1–4 peaks within
the NP histogram for NP masses and
sizes. Including alpha (a)/beta (b) error
calculations for statistical signicance of
the identied peaks

Removal of remaining, false-positive
background events; investigation of chosen
peaks from polydisperse distributions. Peak
descriptors are better constrained with the
a error calculation. Additionally, the power
test of the b error calculation improves the
condence of peak identications

—
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detected as particles and particle mass/size distributions would
be overestimated due to a higher signal intensity. Compared to
the original idea introduced by Cornelis & Rauch 2016, we used
moving modes instead of moving averages, which are more
robust against extreme values (i.e., particle events) to directly
access the background signals and their dri.34 Our baseline
dri correction was developed and validated for rather small
baseline uctuations such as pumping inconsistencies within
one sample, but not for changes in the noise width (e.g., ref. 34).
Overall, we did not discover large changes in the noise width in
all our samples and the baseline dri correction homogenises
the time-dependent variations of the spectrogram, keeping the
proportionality between the ionic signal and the detectable
peak events.

Particle detection threshold. For the Gaussian method, we
rst developed an optional feature applicable for well-dened,
monodisperse CRMs such as Au NPs, which detects a so-
called ‘clear_cut’ between the background and the NP distri-
bution within the histogram. It is an automatic feature without
This journal is © The Royal Society of Chemistry 2026
the user-dependent ‘error contribution’. If enabled, it would
replace the statistical Gaussian threshold, which suffers in
some cases from remaining, false-positive background events.
Secondly, we implemented a buffer of 40 iterations, as more
iterations do not change the nal PDT and do not take up much
time, although in most cases, fewer than ten iterations were
sufficient to dene the Gaussian PDT. For the Poisson method,
we adjusted the original Poisson formulas (critical value and
PDT) as described in Currie 1968, by adding the average of the
raw data.38 The original Poisson approach is specically applied
and validated for low-intensity systems (e.g. low background
such as for Au).33 This approach increases the PDT for low and
medium background systems such as Au and TiO2, respectively,
consequently also the LOD increases. In any case, the effect is
minor, as the LOD only increases for Au from 6.4 to 6.6 nm and
for TiO2 from 42.0 to 43.4 nm (for Agilent, 0.1 ms dwell time).
However, our new Poisson approach now allows data processing
also for high background systems such as SiO2 (as presented in
Fig. 6 for 0.1 ms dwell time, Agilent). In contrast, the
J. Anal. At. Spectrom., 2026, 41, 173–189 | 185
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conventional Poisson threshold (Fig. S7a) would have detected
several false positive background signals and was not suitable,
while the adapted approach from Sparta (Fig. S7b) shows well-
tting PDTPoisson. In summary, our empirically tested adjust-
ment accounts for a more realistic detection scenario, where the
threshold must exceed both background average and the
statistical variation (noise). The workability was presented and
validated in the above sections, comparing our results with
other the comparison methods.

Peak summation. The peak summation (only activated if the
dwell time is <2 ms) works that way that adjacent data point
(here referred as peak) above the background threshold (i.e., the
PDT value) are added continuously until the upcoming peak
trend (i.e., the following data point) falls below the PDT
(Gaussianmethod) or below the critical value (Poissonmethod).
Like the area under a curve, approximated as the sum of the
individual bar charts. Each individual peak height is registered
without the contribution of the ionic background, as the ionic
average is subtracted from the individual peak heights before
adding them up. Finally, the summed peak (in ‘counts per
seconds’) represents one detected particle event. This operation
is crucial, as otherwise the particle number concentration
would be overestimated, and their mass and size would be
underestimated, as ‘combined particle events’ would have been
split into individual events. In contrast, when the dwell time is
>2 ms, adjacent peaks (above the PDT) are considered as inde-
pendent particle events (i.e., 5 ms is in most of the cases larger
than the event duration), based on good sample dilution and
thus, the peaks are accounted for as individual peaks for the
total peak budget. Moreover, in Fig. 3–8, the variable ‘n’ repre-
sents the number of events detected by each data processing
method. As each method works slightly differently (e.g. in
determining the PDT and executing the peak summation), there
are differences for ‘n’ visible even within the same dataset and
dwell time. Comparing both dwell times, lower dwell time
means we are able to detect smaller NPs and therefore resulting
in more events if the LOD of 5 ms dwell time is close or higher
than the certied size (e.g. 50 and 100 nm SiO2, Fig. 6 and 7).
However, the differences in total acquisition time must be
considered if directly comparing event numbers (for 5 ms was
120 s and for 0.1 ms 40 s). It should be further noted that the
peak summation was only applied for the short dwell time,
necessary if the dwell time is shorter than the NP duration.
Finally, event number differences between the instruments can
occur due to daily varying instrument sensitivity.

Outlier removal. This tool was used for our well-dened,
monodisperse model NPs to remove outliers (artefacts/
agglomerates) from valid particle events above PDT, which
would potentially overestimate the particle masses and sizes.
For the PNC calculation, all events (also outliers) are considered
as they represent still particle events, although if agglomerated,
the PNC would be slightly underestimated. If particles are
normally distributed, no outliers would be detected and none
removed. In any case, detected outliers were very few, not
reproducible and in most cases <5 events (e.g. Fig. S1). Never-
theless, we recommend disabling this tool (Sparta version 1.1,
disabled by default) for natural, unknown and/or
186 | J. Anal. At. Spectrom., 2026, 41, 173–189
heterogeneous materials, as the tool would then remove actual
large particle events.

Transport efficiency. In this study, we used and evaluated the
particle number/frequency method, as the PNC was certied for
the 30 nm Au NPs, but the size was determined using NTA,
representing the hydrodynamic diameter. Therefore, it was
more accurate to use the proposed method. Generally, also the
particle size, waste collection or dynamic mass ow methods
can be used to determine h.23,41,48 Briey, the particle number
method counts the events in a given time and compares them
with the total number of events (known/certied) in the
suspension by using the volume ow for the calculation.48 In
contrast, the particle size method uses the slope of the ionic
calibration, the volume ow and dwell time to convert the mean
particle intensity to an elemental mass and compares it to
a certied elemental particle mass.48 Both methods require
CRMs (e.g. Au NPs).48 The waste collection method determines
gravimetrically the sample inlet and waste outlet ow to esti-
mate the ratio of suspension arriving in the plasma, but could
not be applied here as we used a total consumption spray
chamber.48 The waste collection method has further the
disadvantage that adsorbed droplets in the tubes or on the spray
chamber, as well as evaporation, are not considered, which
leads to a large uncertainty that is ∼20% relative standard
deviation (RSD).48 Lastly, the dynamic mass ow method also
works gravimetrically and compares the slope of the direct
continuous sample mass ow measurements over time to the
slope of the uptake by ICP-MS.23,48,49 The latter two methods
have the advantage that they do not require CRMs. In any case,
most authors recommend either the particle size or particle
number method, depending on each special case.23,48 The suit-
ability of the particle number/frequency method, compared to
the particle size and waste collection method, was reported in
a previous publication.13

Particle number concentration. The PNC was discussed in
detail in the above section. In Sparta, we added the possibility to
calculate the PNC within chosen detected peaks to accurately
assess PNCs in polydisperse distributions. This was shown and
validated for the case of 300 nm SiO2 NPs (0.1 ms), where the
PNC was determined via the Gaussian peak-tting algorithm
using the extracted events under the detected peak, without the
remaining background events (Fig. 9b).

Particle masses, sizes and their LOD. The particle sizes
emerge from the particle masses and were discussed for each
material accordingly. The only major adaptation made in (eqn
(6)–(9)) is the consideration of the intercept of the linear, ionic
calibration, as we nd this is part of the equation and should be
considered. Furthermore, we moved the mass fraction to the
particle size calculation, as for e.g. natural/unknown materials,
no mass fraction is usually known and the particle masses can
then still be used without any assumptions. For the LODmass, we
used the corrected PDT, which means the original PDT minus
the average of background data (all data below PDT), as the
same operation was also done for the raw particle intensities.
The LODsize emerges from the LODmass.

Gaussian peak-tting/extraction. This tool was applied for
the case of 300 nm SiO2 NPs (0.1 ms) and discussed in detail in
This journal is © The Royal Society of Chemistry 2026
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the above section. This is especially valuable to remove false-
positive background contributions or to determine specic
peaks within polydisperse distributions regarding their mass,
size and/or PNCs. This approach is reinforced by the statistical
calculation of the a and b errors of the peak identications,
providing a higher condence (here 95%, k = 2) on the NP
identication.

Conclusions

In this study, we present a novel and transparent data pro-
cessing Python algorithm (Sparta) capable of processing
quadrupole-based single particle Inductively Coupled Plasma-
Mass Spectrometry (spICP-MS) raw data from different manu-
facturers (here Agilent Technologies and Thermo Fisher Scien-
tic). The elaborated benchmarking of two instruments, micro-
and millisecond dwell times as well as the use of ve data
processing methods not only validates Sparta, but also shows
the improvement in accuracy, especially reached for chal-
lenging silica (SiO2) nanoparticles (NPs) in size and particle
number concentration (PNC).

We present that all data processing methods with both
instruments provide well-tting sizes and PNCs for 30 nm Au
NPs, further validating Sparta. Sparta is a step-forward in data
processing as it combines previous well-working procedures
with new ideas and adaptations, especially well presented for
microsecond dwell times, showing accurate sizes and PNCs up
to an order of magnitude even for matrix-challenging materials,
i.e., TiO2 and SiO2 NPs. In general, shorter dwell times (0.1 ms)
signicantly improve the limit of detection for sizes (LODsize),
allowing the accurate detection of 74 nm TiO2 as well as 100 and
300 nm SiO2 NPs, although 50 nm SiO2 NPs were too close to the
LODsize and therefore overestimated with all data processing
methods and instruments. One highlight is the baseline-
correction, which allows the usage of only one PDT for the
whole dataset and thus solves errors when subtracting the
average background signal from each single particle event. The
microsecond dwell time approach is combined with a peak
summation to correctly identify separate particle events, with
the advantage of decreasing the signal-to-noise ratio and the
size limit of detection of NPs compared to millisecond dwell
times. Furthermore, a widely discussed issue is the threshold
method and criterion used for the correct positioning of the
particle detection threshold (PDT). Usually, setting the PDT is
a compromise between the reduction of false-positive NP events
originating from the background (higher PDT) vs. the preven-
tion of lost events in the background (lower PDT). Sparta
provides the exibility of using either the Poisson method
(usually for low background elements such as Au) or choosing
the conventional Gaussian method (usually for high back-
ground elements such as Si) to determine the PDT. Events above
the PDT can be further divided into peaks using the Gaussian
peak-tting/extraction algorithm to eliminate spurious ‘le-
over’ background signals, as presented in this study for the
300 nm SiO2 NPs. Consequently, a too-low PDT is no longer
problematic for well-known materials when applying the
Gaussian peak-tting/extraction algorithm, as false-positive NP
This journal is © The Royal Society of Chemistry 2026
events are ltered out aer setting the PDT. Moreover, the
Gaussian peak-tting allows the extraction of chosen size
distributions for polydisperse samples, which was previously
not possible as all events above PDT were extracted and merged
to the result. For unknown heterogeneous samples, the correct
setting of the PDT remains important, particularly when ana-
lysing small NPs whose distribution might overlap with the
background.

Beyond that, Sparta can not only be used for technical,
engineered NPs, but can be readily applied to all other NPs of
technical and natural origin. For instance, the quantication of
the element association of metals into/onto single biological
cells (single cell ICP-MS) or even the elemental adsorption onto
nano or microplastics can be studied with Sparta (already
tested, not shown here). Combined with the Gaussian peak-
tting/extraction algorithm, microplastics can be even sepa-
rately detected and differentiated from small organic colloids
when tracking carbon. Both applications are becoming
increasingly important to better understand uptake and/or
transport mechanisms of pollutants, e.g., in aquatic environ-
ments, thus validated analyses and data processing methods, as
the one shown in this work, are of utmost relevance to facilitate
future studies and their comparability in this eld.
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