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Waste polyoxymethylene (POM) plastic was upcycled using m-phenolsulfonic acid-formaldehyde resin, a
polymeric heterogeneous catalyst, to afford multiple value-added chemicals, including solvents, insecti-
cides, herbicides, and pillar[5]arenes using biomass-derived alcohols, amines or water as reactants. The
acid catalyst exhibited stable and reliable performance at a 260 mol ppm S loading and remained active
after five reuse cycles without any loss of catalytic efficiency. The upcycling process was effective even at
a 40-gram scale. Under acid-catalyzed conditions, the POM moiety in carbon-fiber-reinforced polymers
(CFRPs; 360 mg-5 g scale) was selectively depolymerized, yielding carbon fibers free of POM residues, as
confirmed by solid-state NMR and SEM. This process also mitigates environmental concerns by convert-
ing microplastics into value-added chemicals. Additionally, microwave irradiation proved more effective
(up to 99% upcycling) than conventional heating methods (73%). Life cycle assessment analysis results
indicate that this upcycling process is sustainable and helps reduce environmental pollution.

1. Plastic pollution is escalating. Our new upcycling strategy for waste polyoxymethylene utilizes a reusable polymeric acid catalyst, overcoming previous

methods that relied on non-recyclable catalysts and high energy demands.
2. We have successfully developed a method for upcycling waste polyoxymethylene using biomass-derived diols, alcohol, or water, with a recyclable polymeric

acid catalyst at ppm levels and synthesize value-added chemicals. This methodology was effectively demonstrated at the 40 g scale and applied to microplas-

tics and carbon fiber-reinforced polymers (CFRPs). Using microwave irradiation as an energy source enables selective, energy-efficient heating. A life-cycle
assessment indicates that our approach is sustainable. This method contributes to SDG 7 (clean energy), SDG 12 (responsible consumption), and SDGs 14
and 15 (protecting life underwater and on land).

3. Further studies utilizing solar energy instead of grid electricity for upcycling waste polyoxymethylene will make the process greener.

Introduction

copious greenhouse gases.” The chemical upcycling of plastic
waste has therefore attracted increasing attention.’™° Plastic

Plastics are ubiquitous in contemporary life owing mainly to
their widespread availability and low cost: however, most
plastic materials are non-degradable and non-reusable, result-
ing in significant plastic waste, which adversely affects both
terrestrial and aquatic ecosystems and thus places a consider-
able burden on the environment." Incinerating plastic is not a
viable waste management solution because this process emits
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upcycling aims to transform waste materials into value-added
chemicals in accordance with the Sustainable Development
Goals (SDGs), a global framework for environmental, social,
and economic sustainability set up by the United Nations.
Polyoxymethylene (POM), also known as polyacetal and
commonly referred to as engineered thermoplastic, is a versa-
tile plastic used in various everyday items, including buckles,
kitchen utensils, motor gears, joints, lighters, and coffee
brewers.”® It is known for its high mechanical strength,
stiffness, and water-repellency. Hence, the demand for POM
has increased, with the current global production capacity
reaching approximately 1900 kilotons annually.>® However,
POM materials are difficult to recycle and exacerbate environ-
mental pollution. POM can be treated using various methods
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such as mechanical recycling, electrochemical
depolymerization,>*** and pyrolysis;*® however, mechanical re-

cycling typically does not reconvert the polymeric plastic into
monomers and thus downgrades the polymer, while pyrolysis
aggravates greenhouse gas emissions. Although electro-
chemical depolymerization produces small molecules, the
reaction is non-selective.** Electrochemical depolymerization
also requires solvents and electrolytes and is therefore less
atom-efficient. To address these issues, several studies have
investigated the chemical upcycling of POM.***' A method
using formic acid and manganese catalysts produces methanol
via POM upcycling; however, this method produces CO, and
requires high reaction temperatures and long reaction times.>
The synthesis of cyclic acetals such as 1,3-dioxane®” or 1,3-
dioxolane®® from waste POM using Bi(OTf); or 4-chlorobenze-
nesulfonic acid (4-CIC¢H,SOz;H) catalysis has been achieved
using diol derivatives (Fig. 1A). These cyclic acetals act as both
solvents and reagents in the synthesis of 7- and 8-membered
cyclic molecules;** they are also used in solid-state batteries*?
and for the storage of natural gas.* Despite yielding valuable
cyclic acetals from waste POM, the reaction requires high cata-
lyst loadings (0.2-5 mol%). In contrast, the alcoholysis of POM
catalyzed by Bi(OTf); affords valuable dialkoxymethanes;
however, the process does not occur in water, necessitating the
use of additional solvents.”® The catalysts used in existing
POM upcycling methods, including formic acid, Bi(OTf);, and
4-chlorobenzenesulfonic acid, are homogeneous and not reu-
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sable. Proton-exchanged montmorillonite-catalyzed POM upcy-
cling has been reported.’® However, this strategy requires a
high catalyst loading (12.5 mg of catalyst for 50 mg of POM)
and organic solvents. Similarly, a nano-H-beta-15-zeolite cata-
lyzed POM  upcycling has also been documented.*
Unfortunately, this method also demands high catalyst
loading (20 mg of catalyst for 30 mg of POM). Therefore,
efficient processes are required to upcycle waste POM plastic
with reusable catalysts to produce cyclic acetals and dialkoxy-
methanes under solvent-free conditions. Moreover, depolymer-
izing POM using water as a reactant offers several advantages,
improving atom economy and enhancing sustainability.

A highly active, stable, and heterogeneous acid catalyst,
m-phenolsulfonic acid-formaldehyde resin (PAFR II) was pre-
viously developed for continuous-flow esterification®® and
Ritter reactions.®® The acid catalyst remained stable for more
than two weeks of continuous use in both continuous-flow
esterification and Ritter reactions, demonstrating excellent
stability. Therefore, solid PAFR II was hypothesized to facilitate
the upcycling of POM materials into value-added chemicals
owing to its high stability and acidity. Additionally, using
microwave irradiation as a heating source may enhance the
efficiency of the reaction by selectively heating the hetero-
geneous catalyst.>”*® The selective heating properties of micro-
waves can save electricity and thus contribute to achieving
carbon neutrality by minimizing CO, emissions.*® Thus, in
this study, we developed a microwave-assisted reusable poly-
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Fig. 1 Representative examples of POM upcycling using alcohol. (A) Upcycling of POM using homogeneous catalysts. (B) Upcycling of POM using a

reusable polymeric acid catalyst (this study).
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meric acid-catalyzed process for upcycling waste POM plastics
(Fig. 1B). To the best of our knowledge, this is the first
reported instance of waste plastic upcycling catalyzed by a reu-
sable polymeric catalyst. This microwave-assisted plastic upcy-
cling contributes to SDG 7 (clean and affordable energy via the
use of microwaves as a heating source), SDG 12 (responsible
consumption and production using biomass-derived alcohols,
amines, and water), and SDGs 14 and 15 (life underwater and
life on land via the decomposition of waste plastics and
microplastics).

Results and discussion
Reaction development and optimization

Initial optimization of the reaction conditions was conducted
using polyoxymethylene 1. The reaction of 1 and 1,3-propane-
diol (2a) in the presence of the PAFR II catalyst (260 mol ppm
S) was performed under microwave irradiation for 2 h, yielding
1,3-dioxane (3a) in 99% yield (Table 1, entry 1). Microwave
heating was more effective than conventional methods, which
afforded 3a in only 73% yield even after an extended reaction
time (entry 2). The high catalytic activity of the PAFR II cata-
lysts under microwave irradiation was attributed to the pres-
ence of polar functional groups, which more efficiently absorb
microwaves. The catalyst remained effective even at a sulfur
loading of 100 mol ppm, producing 3a in 79% yield (entry 3).
This result indicates that the PAFR II catalyst is highly effective
for POM depolymerization. An evaluation of several acid cata-
lysts for POM degradation demonstrated the superior catalytic
performance of PAFR II (entries 4-10). The polymeric acid
catalyst poly(4-styrenesulfonic acid) (PSS, Fig. 2) afforded 3a in
71% yield (entry 4). The use of p-toluenesulfonic acid (PTSA),
p-chlorosulfonic acid (PCSA) and phenol as catalysts afforded
3a in low yields of 19%, 40%, and 4%, respectively (entries

Table 1 Synthesis of 1,3-dioxane from polyoxymethylene (1)

bt

PAFR 11 (260 mol ppm S)

OH OH 130 °C, 2 h, MW, air
2a 3a

.

\/O

Entry Deviations from standard conditions Yield of 3a (%)
1 None 99
24 130 °C conventional heating 73
3 100 mol ppm of PAFR II 79
4 PSS catalyst 71
5 PTSA catalyst 19
6 PCSA catalyst 40
7 Phenol catalyst 4
8 m-Phenolsulfonic acid catalyst 34
9 Formic acid catalyst 75
10° H,SO, catalyst 64
11 No catalyst 0

Reaction conditions: 1 (400 mg, 13.3 mmol (based on monomer),
1 mol equiv.), 2a (1.2 mol equiv., 16 mmol), PAFR II (260 mol ppm S),
130 °C (microwave heating), 2 h under aerobic conditions. “ Reaction
time: 6 h. ” Reaction scale: 28 mmol.

This journal is © The Royal Society of Chemistry 2026
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Fig. 2 Structure of the acid catalysts and the reaction intermediate in
Table 1.

5-7). Interestingly, the monomeric m-phenolsulfonic acid was
less effective than the polymeric PAFR II catalyst, affording 3a
in 34% yield (entry 8). Formic acid and sulfuric acid catalysts
afforded 3a in 75% and 64% yields, respectively (entries 9 and
10), and the reaction intermediate 1,3,5-trioxane (4) (Fig. 2)
was detected in 31% and 9% yields, respectively (entries 9
(31%) and 10); moreover, polymer 1 was consumed. In all
other reactions using homogeneous acid catalysts, unreacted
polymer 1 remained. No reaction was observed in the absence
of a catalyst (entry 11).

Reactivity of diols and diamines

Under the optimal reaction conditions, the reactivity of 1 with
various biomass-derived diols and diamines was explored
(Fig. 3). The reaction of 1 with 1,3-propanediol (2a) afforded
1,3-dioxane (3a) in 99% yield. The degradation of 1 was per-
formed using butane-1,3-diol (2b), pentane-2,4-diol (2c),
ethane-1,2-diol (2d), propane-1,2-diol (2e), and pinacol (2f) to
afford the corresponding 1,3-dioxacyclic compounds 3b-g. The
observed trend indicates that primary alcohols demonstrate
higher reactivity than sterically hindered secondary and ter-
tiary alcohols. The formation of thermodynamically stable six-
membered rings resulted in more efficient POM upcycling
than the formation of five- or seven-membered rings.
Interestingly, the diamines also produced aminals under this
polymeric acid-catalyzed POM upcycling. When reaction was
performed using 2,2-dimethyl-1,3-propanediamine (2h), the
corresponding 3h was observed in 99% yield.

Reactivity of alcohols and water

Common and environmentally sustainable alcohols such as
ethanol and methanol facilitated the depolymerization of 1
(Fig. 4). The reaction of 1 with ethanol required a slightly higher
catalyst loading (0.1 mol% S), but afforded diethoxymethane (5)

PAFR Il

fo) TRy eoumolpoms) A
O, XH XH 130°C,2hai MW X__X
1 2

(m=0,1,2) 3

X =0, NH
m m/ W Oﬁo \ % m %
0_0 0_0 0_0 O.° 0_0 0_0 0_0d HN_NH
3a 3b 3¢ 3d 3e 3f 3g 3h

(99%)  (47%) (24%) (T7%)  (44%)  (14%)  (63%) (99%)

Fig. 3 POM depolymerization of 1 with various diols and diamines (3a—
h).
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Fig. 4 Reaction of 1 with ethanol, methanol, and water.  Polymer 1
originates from a joint clip made from POM. (A) Depolymerization of
POM using ethanol. (B) Depolymerization of POM using methanol. (C)
Depolymerization of POM using water.

in a relatively high 87% yield (Fig. 4A). Moreover, reacting a
POM-based joint clip with ethanol under optimal reaction con-
ditions gave 5 in 84% yield. The reaction of 1 with methanol in
the presence of PAFR II at 123 °C, which reached the pressure
limit of 10 bar, afforded dimethoxymethane (6) in 66% yield
(Fig. 4B). The use of water as a nucleophile resulted in complete
conversion; however, the desired product was not detected,
likely owing to its volatility. To address this issue, formaldehyde
was trapped using acetophenone (7) via a PAFR II-catalyzed
aldol condensation, affording 8 in 46% yield (Fig. 4C).

Reactivity of different waste plastics

The formation of 3a was achieved by upcycling various POM
plastic products over 6 h (Fig. 5). A laboratory joint clip readily
reacted with 2a in the presence of PAFR II, affording 3a in 88%
yield (entry 1). The reaction of plastic buckles obtained from a
backpack and a polyacetal gear gave 3a in yields of 67% and
82%, respectively (entries 2 and 3). Similarly, the depolymeriza-
tion of a black joint and white tube made from POM afforded
3a in 95% and 56% yields, respectively (entries 4 and 5).

Depolymerization of CFRPs and microplastics

Depolymerizing the POM moiety of carbon-fiber-reinforced
polymers (CFRPs), which are known for their strength, water
repellency, and corrosion resistance, is crucial for recovering
high-value carbon fibers via POM upcycling. The POM moiety
is depolymerized by PAFR II acid catalysis (Fig. 6A). The reac-
tion of CFRP (10% carbon-fiber-reinforced polymer) with 2a
under the standard reaction conditions afforded 3a in 71%
yield, and reinforced carbon fiber was recovered in 83% yield.
The solid-state *C-NMR spectra indicated that the recovered
carbon fibers contained no POM (SI). The Scanning Electron
Microscopy (SEM) analysis of the recovered carbon fiber
showed needle-like materials. Microplastics are potentially
hazardous to human health and pose a significant risk of
environmental pollution. To address this, we investigated the

Green Chem.
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PAFR 11 (260 mol ppm S)

POM-made
plastic OH OH  130°C,6h, MW, air 0._0
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1 P + 2a ——» ::! (88%)
=
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¥
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Fig. 5 Upcycling of plastic materials made from POM. Reaction con-

ditions: plastics (400 mg, 13.3 mmol, considered as pure POM material),
2a (1.2 mol equiv.), PAFR Il (260 mol ppm S) under microwave irradiation
(80 W) at 130 °C for 6 h. All yields are NMR yields using 1,3,5-trimethox-
ybeneze as an internal standard. ? Catalyst loading: 1 mol%.

A
10% carbon-fiber
o PAFR Il 260molppms) ("
polymer (CFRP) ~ OH OH 130 °C, 6 h, MW, air 0._0
(POM type) 2a 3a (71%
4 |
R
B POM PAFR 11 (260 mol ppmS) ™
microplastics = oH OH 130 °C, 6 h, MW, air 0._0
2a 3a (88%P)
S—
-

Fig. 6 Upcycling of 10% CFRP and POM microplastics. Reaction con-
ditions: plastics (400 mg, 13.3 mmol, considered as pure POM material),
2a (1.2 mol equiv.), PAFR Il (260 mol ppm S) under microwave irradiation
(80 W) at 130 °C for 6 h. All yields are NMR yields using 1,3,5-trimethox-
ybeneze as an internal standard.  10% carbon fiber was considered the
only additive. ® Microplastic was prepared by ball-milling of black polya-
cetal joints. (A) Upcycling of carbon-fiber-reinforced polymer (CFRP). (B)
Upcycling of POM microplastics.

acid-catalyzed decomposition of microplastics (Fig. 6B). The
reaction of microplastics prepared from black polyacetal joints
via ball milling and with 2a under the optimized catalytic con-

This journal is © The Royal Society of Chemistry 2026
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ditions afforded 3a in 88% yield. These results demonstrate
the efficacy of this approach in facilitating the degradation of
microplastics, offering a potential solution to this pressing
environmental challenge.

Scale-up upcycling of waste plastics

The upcycling of polyoxymethylene was effective on a 5-gram
scale without an increase in catalyst loading. The conversion of
waste polyacetal joints (5 g) afforded 3a in 89% yield (Fig. 7A).
Similarly, the upcycling of 10% carbon-fiber-reinforced POM
(5 g) containing 500 mg of carbon fibers gave 3a in 68% yield
(Fig. 7B). The carbon fibers were recovered from the reaction
mixture in 96% yield, demonstrating the efficiency of this
approach for both polymer depolymerization and carbon fiber
recovery. Interestingly, our method also successfully upcycled
waste polyacetal joints on a 40-gram scale, yielding 89% of 3a
(Fig. 7C). Even this 40-gram scale reaction does not demand
increased catalyst loading or higher reaction temperature.

Reusability of PAFR II catalyst

The reusability of the PAFR II catalyst was also investigated
(Fig. 8). The catalyst was recovered by filtration; it was washed
and dried under vacuum prior to reuse (SI). The catalyst was
used six times without any loss of activity, affording 3a in
97-99% yields. Elemental analysis confirmed the exceptional
stability of the PAFR II catalyst under optimal reaction con-
ditions. After six cycles, the recovered catalyst retained a sulfur
content of 10.4%, similar to the 11.2% sulfur content of the
fresh catalyst, indicating minimal loss of active components.
SEM analysis revealed no morphological differences between
the fresh and the recovered catalysts (Fig. S10). Likewise, FT-IR
spectra indicated that the structural features of the PAFR II
catalyst remained unchanged after reuse (Fig. S11). PAFR II

PAFR 11 (260 mol ppm S)

T OH OH 130°C, 12h, MW, air
2a
polyacetal
joints
o
PAFR I (260 mol ppm S) e |
.
OH OH 130°C,12h,MW,air  O._O
2a 3a
CERP) (68%)
(POM-C-10)
c
PAFR 11 (260 mol ppm S)
N
OH OH 130°C,30h,MW,air  O._O
2a 3a

Wate POM
Joints (40 g)

(89%) |

Fig. 7 Scale-up for POM and CFRP upcycling. (A) 5 g-scale depolymeri-
zation of polyacetal joints. (B) 5 g-scale upcycling of POM-C-10 (10%
carbon-fiber-reinforced polymer, CFRP), (C) 40 g-scale upcycling of
waste polyacetal joints.

This journal is © The Royal Society of Chemistry 2026
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Fig. 8 Reusability of PAFR Il in the reaction of 1 with 2a.

retained its catalytic activity during the upcycling of POM-
based joint clips (Table S2), confirming its high reusability.
Notably, after three cycles, the reused catalyst PAFR-II afforded
3a in 88% yield, which was identical to the yield obtained
using the fresh catalyst. These results highlight the remarkable
durability and sustained catalytic activity of PAFR II in the
upcycling of plastic waste, thereby demonstrating its potential
for sustainable chemical recycling.

The synthetic utility of the upcycled products obtained
using PAFR II was also explored (Fig. 9). The reaction of ethylal
(formaldehyde diethyl acetal) (5) with 1,4-dimethoxybenzene
(9) in the presence of PAFR II (1 mol% S), afforded DMpillar[5]
arene 10, an important molecule in host-guest chemistry,*® in
63% yield (Fig. 9A, top). The insecticide chlorfenapyr (12)*!
was obtained in 55% yield via the reaction of 5 and 11 (Fig. 9A,
bottom). In addition, we also synthesize compound 14 in one-
pot with 81% yield, which is a herbicide (Fig. 9B).*> Thus, the

' i o/
{Eto” ot PAFR Il (1 mol% S)

5 1 130°C,6h
"""""" air, MW FaC™ >N
H
cl
B
Me ' Me 1. PAFR 1l (260 mol ppm S) o
130 °C, 2 h, air, MW | \N
o, + .
O n
NHz NHz 213 (2.6 mol equiv) cl
1 2h Et3N (2.6 mol equiv)

Fig. 9 Synthesis of value-added chemicals. (A) Stepwise synthesis of
DMpillar[5]arene (top) and stepwise synthesis of chlorfenapyr (bottom).
(B) One-pot synthesis of herbicide (14).
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Fig. 10 Plausible catalytic pathway for POM upcycling.
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PAFR II-catalyzed POM upcycling strategy converted waste
plastic materials into value-added chemicals.

Plausible catalytic pathway

The chemical kinetic studies suggest that the POM upcycling
process follows a first-order dependence for the polymer (1)
(Fig. S15) and the catalyst (Fig. S13), whereas it follows a zero-
order dependence for 1,3-propanediol (2a) (Fig. S14). Thus,
based on chemical kinetics, the interaction between two solid
materials (PAFR II catalysts and polymer) is the rate-determin-
ing step for this conversion. A plausible catalytic pathway
(Fig. 10) is proposed based on mechanistic studies (SI, Section
S11) and chemical kinetics. Initially, PAFR II interacts with
polyoxymethylene (1) to form an oxonium ion intermediate B
Formation of this oxonium ion intermediate is also observed
by IR (Fig. S16). Next, 1,3-propanediol (2a) acts as a nucleo-
phile and forms intermediate B. A proton exchange generates
intermediate C from intermediate B. Next, intermediate D is
generated via an intermolecular cyclization, followed by
another proton exchange to regenerate the catalyst and
produce 1,3-dioxane (3a) as a product.

Life cycle assessment analysis

The life cycle assessment (LCA) analysis reveals that our POM
upcycling strategy results in significantly lower greenhouse gas
emissions (1.88 kg CO,-eq per kg) compared to traditional
methods of 1,3-dioxane synthesis (6.08 kg CO,-eq per kg), indi-
cating that our method is more environmentally friendly and
sustainable (see SI, Section 12). Moreover, the incineration of
polyoxymethylene can be avoided by directly converting the
plastics to value-added chemicals, which also makes the
upcycle strategy sustainable.

Conclusions

In this study, we successfully achieved the upcycling of waste
polyoxymethylene (POM) plastics using a novel polymeric

Green Chem.
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heterogeneous catalyst. This approach enabled the efficient
depolymerization of POM in the presence of diols, ethanol,
methanol, or water, with a remarkably low catalyst loading of
260 mol ppm. The PAFR II catalyst exhibited outstanding stabi-
lity and maintained essentially 100% catalytic activity for at
least six cycles. This method is a powerful and scalable strategy
for the upcycling of waste polyacetal plastics into value-added
chemicals and demonstrates versatility across both small- and
large-scale applications. Moreover, the catalytic system exhibits
broad utility, enabling the synthesis of high-value pillar[5]
arenes, insecticides, and herbicides. Building on this success,
ongoing research in our laboratory continues to expand the
frontier of plastic upcycling and explore the potential of PAFR
II catalysts in a wide range of sustainable polymer transform-
ations. Additionally, we plan to design a new sulfur-bearing
catalyst for more efficient plastic upcycling.
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