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ABSTRACT View Article Online

DOI: 10.1039/D5FO03248B

Studies show that increased consumption of sugar sweetened beverage (SSB) is linked to non-alcoholic
fatty liver disease (NAFLD), a condition characterized by excess fat accumulation in hepatocytes. Genetic
factors also influence NAFLD. We conducted a clinical trial (NCT03783195) to determine if SNPs related
to NAFLD are associated with liver fat content and its changes in response to a 3-week SSB intervention
in Caucasian adolescents and young adults. Fifteen participants (Males-5, Females—10, mean age 25.5 +
9 yrs) consumed a beverage, daily for 3 weeks, consisting of fructose:glucose in 60:40 ratio. Liver fat
content was measured by transient elastography through controlled attenuation parameter (CAP) score.
At baseline, the CAP score was 212.5£10.1dB/m and was not significantly different between sexes. We
genotyped ten NAFLD-related SNPs, of which rs1227756 in COL13A1 (B=-22.4+7.5, p<0.05) was
associated with baseline CAP score. Individuals carrying AA alleles had significantly higher CAP score
than those carrying GG (234+34.7dB/m vs. 188 + 25.3 dB/m). The CAP score decreased post SSB
intervention, and the change was significantly associated with rs2228603 in NCAN ($=-20.1%+ 7.6, p< 0.05).
The T allele carriers showed a greater reduction in CAP score as compared to CC carriers (Mean * SE -
23.3 £ 5.8 dB/mvs. -18.24 £ 43.2 dB/m). This change was, however, not observed when adjusted for age,
sex and body composition. Significant associations were also observed between serum HDL and
rs1260326 in GCKR and triglycerides and rs58542926 in TMS6F2. This pilot study shows a potential role
for genetics in liver fat changes in response to SSB intervention that warrants a detailed investigation in a

larger sample for a longer duration.
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Non-communicable diseases like cancer, obesity, diabetes, cardiovascular diseases (CVD) and non-
alcoholic fatty liver disease (NAFLD), have become a significant public health concern(1-7). NAFLD,
representing a group of disorders including steatosis(2,8) and non-alcoholic steatohepatitis with
fibrosis(9,10), has substantially risen in prevalence over the last two decades with the estimated
prevalence being 20% among US adults and 25% in young adults(11-13). Over 64 million individuals
are believed to have NAFLD with annual medical costs rising to more than $100 billion(14—16). NAFLD
is more commonly observed in individuals who have obesity or diabetes and/or have metabolic
syndrome, and has been associated with increased cirrhosis, liver-related mortality and hepatocellular
carcinoma(17-19).

Unhealthy diet plays a major role in the development of NAFLD(20-22). Fructose, contained in soft
drinks, fruit juices and energy drinks, affects many metabolic processes, foremost being an increase in
fat accumulation in the liver(23—-25) and contributing to the onset and progression of NAFLD(26-29).
Fructose is almost entirely metabolized in liver and is rapidly phosphorylated to fructose 1 phosphate by
ketohexokinase (KHK) with ATP depletion in parallel(30,31). The fructose 1-phosphate gets metabolized
to dihydroxyacetone-phosphate and glyceraldehyde and finally to triglycerides®-> which get deposited in
liver and leads to NAFLD(29,30,32—-34). Although both glucose and fructose affect fat accumulation in
the liver, fructose seems to be the more potent stimulator of de novo lipogenesis (DNL) than
glucose(23,35,36). In population studies, it has been shown that fructose, and not glucose, is associated
with increased visceral adiposity(37—40), insulin resistance(26,37,39,40) and hyperuricemia(41-43).
Fructose is unique in its effects that it stimulates KHK and thus potentiates its own metabolism. Second,
the rate of phosphorylation of fructose by KHK is 10 times higher than the phosphorylation of glucose by
glucokinase(44,45). Third, fructose is directly absorbed into portal vein and delivered to the liver without
entering the systemic circulation(30,44). Because of this pass through the liver, it is exposed to a much
higher fructose load than other tissues. Fourth, fructose activates the lipogenic transcriptional factors,
SREBP1¢c(46—-48) and ChREBP(49-51) in the liver, promoting DNL. Finally, fructose tends to deplete
liver ATP levels and one of the outcomes is generation of more AMP which get converted to uric
acid(23,30,31). Uric acid has been shown to stimulate fat synthesis in the hepatocyte thus pointing to an
additional pathway through which fructose can increase liver fat content(30,31).

In addition to diet, genetic factors contribute to the onset and progression of NAFLD(52,53).
NAFLD is a complex and heritable phenotype. Family-based studies have reported heritability estimates
for NAFLD to be between 20% and 70%(54-57) and genome-wide and candidate gene studies have
identified several genes associated with NAFLD(58,59). Few studies have shown that fructose affects
lipogenesis in liver in a genotype-specific manner. Davis and colleagues found that Hispanic children
with GG genotypes of PNPLA3 SNP rs738409 were more inclined to accumulate fat in the liver as
compared to children with CC or CG genotypes(58). Similarly, another study investigating the effects of
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added sugars on liver fat found that individuals with TT of rs1260326 of GCKR increased their gde £10ve, ..
lipogenesis by 44% during an oral fructose + glucose challenge(59). The aim of our stu?j(;‘:\ﬁ'alggic/)mmoz%%
determine the role of key NAFLD-related single nucleotide polymorphisms (SNPs) in liver fat response to
a 3-week sugar-sweetened beverage (SSB) intake in adolescents and young adults.

EXPERIMENTAL

Study design

This pilot open label trial was conducted at the University of North Carolina at Chapel Hill Nutrition
Research Institute’s (UNC-NRI). The review protocol is available at Clinical Trials.gov (# NCT03783195).
A total of 72 participants aged 12 to 40 were screened. Inclusion criteria included ages between 12-40
years, no history of alcohol abuse (>7 drinks per week for a year), history of fructose intake of < 14
drinks per week and Caucasian ethnicity. Both ethnicity and race affect the deposition of fat in the
liver(60). Studies have shown that the tendency to accumulate fat in the liver is higher in Asians and
Hispanics as compared to While or Black Americans(61). To avoid differences in liver fat content
changes that may be due to ethnic differences, we focused only on one ethnic group (Caucasians) in this
pilot study. The exclusion criteria included ages < 12 and > 40 years, pregnant/lactating, known alcohol
abuse or fructose intake > 14 drinks per week, not of Caucasian ethnicity, glucose levels > 100 mg/d| if
fasting, > 140mg/d! if within 2 hours post meal and > 200 mg/dl if random sample, taking anti-
hypertensive, anti-diabetic, uric acid and/or lipid-lowering medications, known diagnosis of diabetes,
fructose intolerance, chronic kidney disease, NAFLD or any liver-related disease, hypertriglyceridemia,
polycystic ovary syndrome, hypothyroidism, obstructive sleep apnea, hypopituitarism and

hypogonadism, and liver fat fraction >5% as per baseline MRI scan. We excluded 54 participants after
screening for being in the exclusion criteria, 2 participants dropped out due to taste issues, and 1
participant was excluded after baseline liver MRI scan due to their liver fat fraction being greater than
5%. The mean ages and BMI for the three participants who dropped out after visit 1 were 30 years and
27.5 kg/m?, respectively. All participants gave written informed consent to the study and its procedures.
The study was approved by the Institutional Review Board of the University of North Carolina at Chapel
Hill (IRB # 17-3348).

15 participants completed the 3-week study. The study was divided into two visits. Both visits,
spaced three weeks apart, followed the same procedure (Figure 1). Visit 1 and 2: Following a 12-hour
overnight fast, participants arrived at UNC-NRI. They were given a standardized meal for dinner for the
previous night and were asked to refrain from drinking. The participants collected their 24-hr urine the
day prior to their visit and returned the samples at their visit. After signing the consent form, the
participants had their anthropometrics measured. The weight measures of the subjects were taken
standing while wearing shoes and light clothing. A stadiometer against the wall was used to measure
height, in an upright standing position, to the closest 0.1cm. Their body mass index (BMI kg/m2) was

calculated using the height and weight values. A stretch-resistant tape close to the umbilical region was
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measured for waist circumference (WC) to the nearest 0.1 inch. Bioelectric impedance analysis(BIA) onine
using Tanita Dual Frequency Total Body Composition Analyzer (DC-430U, Tokyo, Jap;r?)‘:\ll\?éosggdgggot?%
record every subject’s body composition. All anthropometric measurements were taken by the same staff
member to minimize measurement variation and margin of error. Omron digital blood pressure monitor
(HEM907XL, Omron Healthcare Inc., Lake Forest, IL, USA) was used on the right arm of the subjects to
measure blood pressure. Two measurements of BP were taken with an interval of 1 min; the average
was calculated and used in the statistical analysis. A detailed questionnaire on medical and dietary data
was administered to the participants on the day of the visit. Participants were then provided individually
packaged packets of powder containing 0.75g/kg body weight of fructose + 0.45g/kg body weight of
glucose which approximates to the 60:40 ratio found in regular sodas(62). Participants were instructed to
consume the packets of fructose dissolved in 24 oz of water and consume the drink daily for the three-
week intervention period. They were also instructed to not consume any other SSBs during the 3-week

period. All participants brought back empty packets for compliance checking.

Table 1: SNPs selected for genotyping

SNP Gene Risk SNP position Allele frequency in  Allele frequency in
allele general population  our study sample
(ensembl)
rs12137855 LYPLALT: Intergenic variant C 1: 219275036 0.84 0.79
rs1227756 COL13A1: Intron variant G 10: 69828748 0.61 0.43
rs738409 PNPLAS3: Missense Variant G 22: 43928847 0.26 0.27
rs887304 EFCAB4B : 3’ UTR variant T 12: 3648382 0.14 0.39
rs1260326 GCKR : Missense variant T 2: 27508073 0.29 0.43
rs2854116 APOC3 : Regulatory region C 11: 116829453 0.55 0.47
variant
rs2645424 FDFT1 : Intron Variant A 8: 11826954 0.52 0.30
rs58542926 TMSG6F2: Stop gained Variant C 19: 19268740 0.93 0.77
rs2228603 NCAN : Missense Variant T 19: 19219115 0.04 0.13
rs4240624 PPP1R3B :Intron Variant A 8: 9326721 0.89 0.87

SNP selection for genotyping
Ten single nucleotide polymorphisms (SNPs) were selected for genotyping based on their association
with NAFLD or liver fat from previous published studies: rs12137855 in LYPLAL1, for its influence on
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triglyceride lipase in adipose tissue and depalmitoylating calcium-activated potassium channels(63).. onine
rs1227756 in COL13A1,for its association with connective tissue proliferation(64) and Ii?/g:rli%ljﬁrgy//D(Sé%(fMB
missense variant rs738409 in PNPLA3 for its role in energy usage/ storage in adipocytes(63,64),
rs887304 in EFCAB4B gene for its role in calcium binding and regulation(65), GCKR rs1260326 for its
involvement in hepatic fat accumulation along with large very low density lipoprotein (VLDL) and
triglyceride levels(63,66), the missense variant in APOC3 gene rs2854116 for its role in
hypertriglyceridemia and impact of dietary fat intake and NAFLD(67,68), rs2645424 in FDFT1 for its role
in cholesterol biosynthesis(69), TMS6F2 gene variant, rs58542926 for its role in post prandial
lipemia(70,71), rs2228603 of the NCAN gene for its association with increased risk for liver inflammation
and fibrosis(72), and rs4240624 of the PPP1R3B gene for its association with glycogen
metabolism(73,74). The SNP positions and their frequencies are shown in Table 1.

Genotyping

DNA was extracted from saliva via an automated nucleic acid extraction platform (Anaprep 12, Biochain,
Institute Inc. Newark, CA, USA) using the Anaprep Forensic DNA extraction kit (Biochain Institute Inc.
Newark, CA, USA) Concentration and purity of genomic DNA was measured using NanoDrop
Spectrophotometer. Genotyping was performed via Tagman® predesigned SNP genotyping assay
(Applied Biosystems, Foster City, CA, USA) on Quant Studio 12k Flex Real-time PCR system (Thermo
Fisher Scientific, USA).

Liver fat content and stiffness measurement

Transient elastography using Fibroscan® (Echosens, Netherlands) was used to assess fat content in the
liver and liver stiffness(75,76). Fibroscan was done at both visits. This is a non-invasive measure that
uses ultrasound technology to measure liver stiffness and adiposity. The CAP score, which is measured
in decibels per meter (dB/m) is used to grade liver steatosis. A score below 238 dB/m is considered
normal. A score between 238 dB/m to 260 dB/m indicates grade 1 (S1) steatosis. A score between 260
dB/m to 290 dB/m is S2 and 290 dB/m to 400 dB/m is S3. As for Emed values, a score between 2 kPa
and 7 kPa (FO -F1) is normal, a score of 7.5 kPa to 10 kPa (F2) is considered moderate scarring 10 kPa
to 14 kPa (F3) is considered severe scarring and 14 kPa or higher (F4) is considered cirrhosis. In this
study, CAP score was used to indicate the amount of fat in the liver8283,

Sample collection, processing and storage

At both visits, a fasting blood and a 24-hr urine sample were collected. A trained phlebotomist collected
blood through venous puncture using 6-mL ethylenediaminetetraacetic acid (EDTA)-coated tubes and
serum tubes (BD Vacutainer, Becton, Dickinson & Company, Franklin Lakes, NJ, USA). Immediately
after collection, EDTA tubes were placed on wet ice and centrifuged at 3000 RPM for 15 min at 4°C.
Serum, plasma, buffy coat and urine samples were aliquoted and stored at -80°C for further biochemical
measurements.

Biomarker measurements

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fo03248b

Page 7 of 26 Food & Function

Open Access Article. Published on 13 January 2026. Downloaded on 1/14/2026 12:40:34 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(ec)

At each visit, serum concentrations of lipids, total cholesterol, high-density lipoprotein cholestergl, (DL ).
low-density lipoprotein cholesterol (LDL) and triglycerides were measured using fIuororﬁg‘frli%lg)sgéf;gozzm
(Abcam, Cambridge, MA, USA). Uric acid concentration in serum was measured using fluorometric
assays, as per the manufacturer’s instructions (Sigma-Aldrich, St. Louis, MO, USA) on BioTek Synergy 2
Multi-Mode plate reader (BioTek, Winooski, VT, USA). All measurements were conducted in duplicate,
and their coefficient of variation was less than 10%.

Statistical Analysis

Statistical analyses were performed using STATA software version 19.5 (College Station, TX, USA). The
primary outcomes for this study were CAP and Emed scores and the secondary outcomes were body
composition measurements (BMI, waist circumference, waist-height ratio, percent body fat, fat mass and
fat free mass), and serum concentrations of lipids (total, HDL, VLDL, LDL cholesterol and triglycerides)
and uric acid. As a first step, paired t-tests were conducted to determine whether there were any
significant changes in variables pre- and post-intervention. Linear regression analysis was performed to
determine the association between the ten selected SNPs and baseline values and changes in body
composition, liver fat content and serum concentrations of lipids and uric acid. Baseline or changes in
liver fat content and other biomarkers were the outcome or dependent variables and SNPs were the
predictor or independent variables. All analyses were adjusted for sex, age and baseline concentrations
of the variables and waist-height ratio wherever applicable. All results were considered significant at p <
0.05.

RESULTS

The descriptive characteristics of participants are listed in Table 2. Fifteen males (n = 5) and females (n
= 10) participated and completed the 3-week SSB intervention. Their mean BMI and age were 25.03 +
1.1 Kg/m?and 25.53 + 2.4 years, respectively. At baseline, significant differences were observed
between females and males with respect to fat free mass (104.8 + 3.8 vs 137.7+8 11.2g, p < 0.05), and
percent body fat (31.5 £ 2.0 vs, 17.0 £ 3.0%, p < 0.05). Serum urate concentrations were significantly
higher in males than females (7.35 + 0.4 vs. 6.1 £ 0.3 mg/dl, p < 0.05). Baseline CAP score was
significantly associated with fat mass (8 = 1.2 £ 0.5, p < 0.05), waist circumference (§ =2.3+0.9, p <
0.05), and systolic blood pressure ( = 1.6 £ 0.4, p < 0.005).

Table 2: Descriptive characteristics of participants at baseline

Female (N=10) Male (N =5) Total (N = 15)
Mean + SE Mean + SE Mean + SE P-value
BMI (kg/m?) 25.54(1.24) 24(2.19) 25.03(1.07) 0.52
Age (years) 26.60(2.81) 23.40(4.66) 25.53(2.37) 0.54

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 7


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fo03248b

Open Access Article. Published on 13 January 2026. Downloaded on 1/14/2026 12:40:34 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(ec)

Food & Function

Page 8 of 26

Percent body fat (%) 31.5(2.0) 17.0 (3.0) 27.0 (26.0) 0.003 View Article Online
DOI: 10.1039/D5FO03248B

Fat Mass (Ibs) 50.29(5.92) 31(8.31) 43.86(5.24) 0.08

Fat-free mass (Ibs) 104.77(3.82)  137.68(11.20) 115.74(5.95) 0.003

Waist Circumference (Cm)  87.02(3.33) 89.36(6.33) 87.92(3.04) 0.73

Waist-height ratio 0.42(0.07) 0.50(0.03) 0.44(0.05) 0.43

SBP (mm Hg) 124.00(5.59)  126.00(8.50) 124.67(4.51) 0.84

DBP (mm Hg) 78.50(4.20) 81.40(5.49) 79.47(3.25) 0.69

Emed (kPa) 4.46(0.34) 4.59(0.38) 4.51(0.25) 0.82

CAP score (dB/m) 222.23(13.07)  192.00(12.66) 212.15(10.15) 0.17

Triglycerides (mg/dl) 65.7(17.18) 56(20.24) 62.47(12.92) 0.74

HDL (mg/dl) 34.19(8.29)  24.58(10.17) 30.98(6.39) 0.50

LDL (mg/dI) 126.06(13.30)  138.64(22.32) 130.25(11.21) 0.62

Total cholesterol (mg/dI) 172.38(15.58)  174.42(21.02) 173.73(12.09) 0.97

UA (mg/dl) 6.07(0.34) 7.35(0.41) 6.49(0.30) 0.04

A paired t-test was conducted to detect differences between pre and post intervention anthropometrics,
liver fat content, and serum biomarker values (Table 3). Most of the biomarkers showed no changes
post intervention. The CAP score, however, showed a decreasing, albeit statistically insignificant, trend
(p = 0.07), contrary to our hypothesis. When data were analyzed with residuals after adjusting for age,
sex and waist-height ratio, there was no difference in CAP score between pre and post intervention (p =
1.00). Similarly, we observed a decrease in serum urate concentrations after the 3-week intervention
which was mitigated after adjusting for the covariates. The change in CAP score was significantly
correlated with baseline waist circumference (r2 = 0.53, p < 0.05) and not with fat mass or systolic blood
pressure as observed with baseline CAP score. Although baseline CAP score was not correlated with
baseline waist-height ratio, the change in the two variables were significantly correlated (r2 = 0.71, p <
0.005). Change in Emed score, waist circumference and waist-height ratio were also associated with
their baseline values (p < 0.05), respectively.

The ten genotyped SNPs were selected based on their links to NAFLD. Their minor allele
frequencies ranged between 13 and 47%. Genotype-specific analysis showed that rs1227756, an
intronic variant in COL13A1 (B =-22.4 + 7.5, p < 0.05) was associated with baseline CAP score, with
individuals carrying AA alleles having significantly higher CAP score (234 + 34.7 dB/m) as compared to
those with GG alleles (188 + 25.3 dB/m).

8| J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx
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Table 3: Anthropometrics and biomarkers pre and post SSB intervention

Variable Visit 1 (mean £ SE) Visit 2 (mean £ SE) P-value
“ BMI (kg/m2) 25.03(1.07) 25.13(1.05) 0.27
8
E PBF (%) 0.27(0.03) 0.27(0.03) 0.16
g FM (Ibs) 43.86(5.24) 44.71(5.24) 0.15
g FFM (Ibs) 115.74 (5.95) 115.77(6.15) 0.94
§ % Waist circumference (cm)  87.92(3.04) 88.16(2.82) 0.88
g g We/Ht 0.45(0.05) 0.51(0.02) 0.16
2
§ é SBP (mmHg) 124.67(4.51) 123.07(3.18) 0.75
g g DBP (mmHg) 79.47(3.25) 79(2.03) 0.88
g é E_med (kPa) 4.51(0.25) 5.01(0.49) 0.41
E é CAP score (dB/m) 212.15(10.15) 192.91(13.57) 0.07
§ % Triglycerides (mg/dl) 62.47(12.92) 73.07(21.47) 0.41
3 E HDL (mg/dl) 30.98(6.39) 29.72(5.66) 0.79
g % LDL (mg/dl) 130.25(11.21) 128.35(11.08) 0.79
% § Total cholesterol (mg/dl) 173.73(12.09) 172.68(12.95) 0.92
E %’ Uric acid (mg/dI) 6.50(0.30) 6.43(0.28) 0.04
g3
ZF
@ At baseline, systolic blood pressure was associated with rs121137855, an intronic variant in LYPLALT (B
;@ + SE--11.14 £ 4.3, p < 0.05). The same SNP was associated with changes in diastolic blood pressure (-

9.91 (£ 1.80), p < 0.005). The CAP score decreased post SSB intervention, and the change was
significantly associated with rs2228603, a missense variant in NCAN (3=-20.1£ 7.6, p< 0.05). The T

allele carriers showed a greater reduction in CAP score as compared to CC carriers (Mean + SE -23.3 +
5.8 dB/m vs. 18.24 + 43.2 dB/m). Significant associations were also observed between change in serum
HDL and rs1260326, a missense variant in GCKR, (8 + SE 11.73 + 4.6, p < 0.05), and triglycerides and
rs58542926, a stop gained variant in TMS6F2 (B + SE 77.1 £ 26.2, p < 0.05).

Table 4: Regression analysis (change in variable as dependent variable and SNP as independent
variable adjusted for baseline of the variable value, gender, age and waist circumference)

Primary outcome:

Change in variable SNP Id Beta coefficient + SE P value* 95% Cl

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 9
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rs58542926 22.26 (£ 9.61) 0.05 -0.47 44.98 view Article Online
CAP_med dBm DOI: 10.1039/D5FO03248B
rs2228603 -20.10 (¢ 7.59) 0.03 -38.05 -2.16
Secondary outcomes:
Change in variable SNP Id Beta coefficient (SE) P value* 95% CI
rs121137855  -11.14 (4.33) 0.04 -21.39 -0.9
Systolic blood pressure
rs1227756 0.62 (4.60) 0.05 -1.44 0.01
Diastolic blood pressure rs121137855  -9.91 (1.80) 0.001 -14.06 -5.56
HDL rs1260326 11.73 (4.61) 0.04 0.82 22.63
TAG rs58542926 77.07 (26.18) 0.02 15.16 138.97
VLDL rs58542926 15.41 (5.24) 0.02 3.03 27.79

*results with p values < 0.06 shown here

DISCUSSION

The main aim of this study was to determine whether SNPs previously linked with NAFLD tend to
associate with CAP score at baseline and CAP score’s response to SSB intake. In this study we utilized
transient elastography FibroScan, a non-invasive assessment of liver stiffness/fibrosis (Emed) and
steatosis (CAP score). These measures have been increasingly used for NAFLD and NASH evaluation
of patients over liver biopsy(77—80). The CAP scores present the total attenuation of sound waves, an
indirect measure of steatosis(81-83),(84). However, in this study we used CAP scores as a surrogate
measure of liver fat content as reported in some previous studies(85,86). We found that CAP score at
baseline was positively associated with body composition and systolic blood pressure. Similar results
have been shown by other studies(87,88)(89). In a study on NAFLD patients, CAP score was positively
correlated with fat mass, waist circumference and waist-height ratio(87). In another study of patients with
overweight and obesity, CAP values were positively associated with fat mass, BMI and homeostasis
model assessment of insulin resistance (HOMA-IR) (88). Another study in youths, found that individuals
with higher CAP score had higher BMI, waist circumference and other fat distribution measures(85).

A CAP score below 238dB/m is considered normal liver fat content (90). In our study, both males
and females had a CAP score lower than 238dB/m. We hypothesized that the three-week SSB
intervention will increase the liver fat content. In contrast, the CAP scores decreased slightly after the 3-
week period. The non-alcohol related fat deposition in the liver is dependent on an individual’s age, sex,
dietary intake of simple sugars and saturated fats, physical activity and presence of other metabolic
disorders such as obesity, insulin resistance and metabolic syndrome (91-93) (94). In our study, we
think that the decrease in CAP score may be due to many reasons: participants’ low CAP score at
baseline, our stringent inclusion criteria with the exclusion of adverse metabolic conditions, young age of
the participants, and the participants’ activities and healthy lifestyle. This may also explain as to why

there was no change in CAP score when the data were adjusted for age, sex and body composition.
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Although we had advised the participants to not alter any of their dietary habits, except reduction,incc onine
SSBs, it is possible that the participants may have cut down their other sources of sugaDrg.: gflﬁégiggacr%gf
controlled or domicile conditions may reflect the true effect of simple sugars on liver fat content.

Emed score or the measure of fibrosis / liver stiffness where higher values indicate higher levels of
liver stiffness or liver tissue scarring. In our study Emed scores were very similar between males and
females, and we observed an increase in the mean scores after the fructose intervention which was
negligible and non-significant. Like the liver physiological measures, anthropometrics and body
composition measures such as percent body fat and fat mass showed no significant changes. There
were significant differences in percent body fat and fat mass measures between males and females at
baseline. Studies have shown that the response to fructose intervention is different in males and females
(95,96). Males are usually reported to have adverse metabolic effects such as insulin resistance, high
blood pressure and hyperlipidemia in response to increased fructose intake(96—-98). Females, although
higher in fat mass and percent body fat, tend not to have higher metabolic adversities compared to
males(96,97). This may be due to the role of hormones such as estrogen in lipid metabolism and
storage(99).

Fructose metabolism inherently generates uric acid (41), and hyperuricemia has been linked to
the onset and progression of NAFLD(100-102). In a previous fructose response study in our lab, we
found that fructose intervention caused serum uric acid level to spike and did not return to the baseline
levels until 150 minutes after the intake of fructose(42,43). In this trial we wanted to understand the
long-term effects of SSB on adiposity and uric acid. Examination of 3-week fructose exposure on serum
urate levels in this study did not show any significant change in post intervention compared to baseline.
However, we did find that males had a higher serum uric acid level than females at baseline which is
consistent with other studies(42,43). This finding again highlights the difference in uric acid metabolism
in males and females highlighting protective effects against hyperuricemia in pre-menopausal females
(103,104).

In addition to sex-specific differences, interindividual variability - particularly genetic variation -
affects hepatic lipid response to fructose intake(105). In this study we explored and found few potential
links between NAFLD-related SNPs and liver fat content and serum lipids. The SNP rs121137855 of the
LYPLAL1 gene was related to systolic blood pressure especially the homozygous T genotype. This gene
has been studied for metabolic traits such as fat distribution, obesity, and hypertension(63,106). Other
SNPs rs2605100 and rs4846567 in the same gene, LYPLAL1, have been found to be associated with
the above-mentioned phenotypes and appetite suppression in Japanese population(107,108). Another
SNP rs2605100 in LYPLAL 1was found to be associated with high blood pressure in a cohort of Chinese
children(109). These findings suggest that LYPLAL1 has several variants that could influence blood

pressure and thereby cardiovascular function.
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SNP rs1227756 of the COL13A1 gene was associated with increased systolic blood pressure dAMA
genotype). This SNP has been studied in relation to lobular inflammation in CaucasiaanC\)/‘cz)lr%l(g?19(/1D%F(()))O.3248B
SNP rs2854116 in APOCS3 gene has been significantly associated with decreased diastolic blood
pressure, especially in individuals with homozygous C genotype. Although this gene has been
traditionally studied for its role in liver fat and dyslipidaemia(111-113), our results suggest a novel role in
blood pressure regulation.

The other interesting link we found was between SNP rs58542926 and CAP values. Individuals
with T allele of rs58542926 is in the TM6SF2 gene has been observed to have lower CAP values. But in
a previous study conducted in Hans Chinese population the same allele was associated with increased
CAP scores and increased risk for NAFLD(114) . Although in another meta-analysis study of different
populations including Chinese, the T allele of rs58542926 has been shown to be associated with lower
lipid profile and protective against CVD risk(115). Combined with findings from our study which is 100%
Caucasian, the SNP seems to take on a dual and opposite role depending on the ethnicity of the study
population.

Individuals with homozygous C allele and homozygous T allele of rs2228603 has been observed to
have lower CAP values. This SNP is in the NCAN gene and has shown a strong association with CAP
score, with T alleles being linked to greater reduction in CAP score. In a previous study that consisted of
European descent Caucasian and old order Amish population, the SNP’s T allele was associated with
increased risk of hepatic fat accumulation(116). In another study involving Chinese population, this same
allele was associated with high level of HDL and also increased level of alkaline phosphatase showing
opposite dual effects(117) . Interestingly in a study conducted in 80% female bariatric patient cohort,
rs2228603 T was associated with increased risk of steatosis(72).

We also found relation between genetic variants and changes in serum HDL and triglycerides. The
SNP rs1260326 in GCKR was associated with HDL in our study. In a children study, this SNP was
associated with liver fat content as measured by MRI(118). Most studies reported T allele carriers to
have lower levels of HDL which are in contrast to what we observed in our study(118-120). We found T
allele carriers to have higher HDL levels than CC carriers. We found similar differences with respect to
our association of rs58542926 in TM6SF2 with serum triglycerides. Other studies reported T allele to be
associated with lower triglycerides(121,122). Although we found higher concentrations in T carriers at
baseline, their triglyceride levels decreased after the 3-week SSB intervention while CC carriers
increased their triglycerides. This indicates that T allele may have a protective effect on serum
triglycerides in our sample. The SNP rs738409 in PNPLA3 has been linked to liver fat in many studies
but we did not find its association either with the baseline levels or its changes.

There are a few limitations to the study which may need to be addressed in future studies. The
sample of 15 is small for any type of clinical trial. Secondly, each genotype carriers were limited to 3-5

participants, and third, 3 weeks may be too short of a duration to observe significant changes in lipid

12 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fo03248b

Page 13 of 26 Food & Function

Open Access Article. Published on 13 January 2026. Downloaded on 1/14/2026 12:40:34 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(ec)

profile such as LDL-C, HDL-C, total cholesterol etc. It is also possible that short-term fructose exposure;..
might cause biochemical changes in hepatocytes without reaching the threshold for me%%&?gg?ig DfilFtoo32488
accumulation. Also, anthropometrics such as weight gain and fat redistribution typically require more
than 3 weeks to show significant changes. Underlying hormonal changes such as leptin, adiponectin,
cortisol and other metabolic hormones do not significantly shift with the limited duration of SSB
intervention. Also, the dosage of fructose might be too low to elicit measurable changes within this
timeframe, as our dose is equivalent to two 12-ounce soda cans. The results may not be generalizable
across all ethnic groups. And moreover, all participants had low or normal CAP scores at baseline (non-
steatotic range) which may limit the sensitivity of CAP score. However, the key strengths of the study are
its stringent inclusion criteria and homogenous sample, and that it is one of the very few that studied the
association of genetic variants on changes in CAP score in response to a SSB ingestion in an ethnically
homogenous population.

CONCLUSIONS

In summary, a 3-week SSB intervention did not affect the liver fat content or the liver fat markers in our
young adult population. Genetic heterogeneity is another important puzzle piece in NAFLD to understand
individual variability in disease susceptibility and progression. This study unlocks the possible role of
SNPs that may influence the NAFLD onset and progression to better understand the role of genetics in
this disease. It also provides pilot data for conducting larger studies where genetically susceptible groups
could be identified and their response to nutrient intake can be measured. Together this could implement
novel treatment, management and prevention strategies for NAFLD.
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FIGURE LEGEND

Figure 1: Consort diagram of the intervention study

Figure 2: Mechanism of dietary sugars and fat accumulation
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