

Food & Function

Linking the chemistry and physics of food with health and nutrition

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: J. Kusumah, J. Yuan and E. Gonzalez de Mejia, *Food Funct.*, 2026, DOI: 10.1039/D5FO02971F.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the [Information for Authors](#).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](#) and the [Ethical guidelines](#) still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Proteins and lunasin from *Glycine soja* inhibited inflammation by activating the Hippo pathway through phosphorylation of YAP1 kinase

Jennifer Kusumah¹, Jiazheng Yuan² and Elvira Gonzalez de Mejia^{1*}

¹University of Illinois at Urbana-Champaign, Department Food Science and Human Nutrition, 228 Edward R Madigan Lab, Urbana, IL 61801

²Fayetteville State University, Fayetteville, NC

*Correspondence: edemejia@illinois.edu; Tel.: +1-217-244-3196

Abstract

The Hippo pathway has attracted scientific interest as a target for anti-inflammation and anti-cancer therapy. Our objective was to elucidate and compare the potential anti-inflammatory mechanism of digested whole flour (DWF), total protein extract (TPE), lunasin-free total protein extract (LFP), and enriched lunasin protein extract (ELPE) from wild-type soybean (*Glycine soja*) on the Hippo pathway, using a human monocytic cell (THP-1) as a model. ELPE (56% to 73% purity) showed increased lunasin concentrations (52 – 87 mg/g of defatted flour, DF) compared to TPE (16 – 33 mg/g, DF). TPE significantly decreased IL-6, MCP-1, and TNF- α production (96%, 76%, and 52%). *G. soja* effectively inhibited IL-6 production (74% – 98%) more effectively compared to MCP-1 (6% – 99%). ELPE and TPE significantly ($p \leq 0.05$) decreased the expression of dephosphorylated YAP1 and increased phosphorylated YAP1 ($p \leq 0.05$). ELPE significantly increased ($p \leq 0.05$) cytoplasmic YAP1 retention. *G. soja* proteins and peptides inhibited inflammation by decreasing pro-inflammatory cytokines IL-6, IL-1 β , and MCP-1, phosphorylating YAP1 and LATS1/2, and increasing YAP1 cytoplasmic retention, thus activating the Hippo pathway. The results suggest that soybean proteins and peptides inhibited inflammation through the Hippo pathway, offering novel developments of functional food ingredients or supplements for a healthier diet.

Keywords: cytoplasmic retention, inflammation, kinase phosphorylation, plant phytochemicals, proteins, soybean

1. Introduction

The Hippo pathway is important in cell proliferation and differentiation, organ growth and development, embryogenesis, tissue regeneration and numerous other biological processes^{1, 2}. As this pathway is involved in both inflammation and cancer progression, there has been increasing research interest on how to modulate this pathway to treat and prevent chronic diseases^{3, 4}. In mammals, key regulators of these pathways are the macrophage stimulating 1 (MST1/2), large tumor suppressor kinase (LATS) 1/2, salvador-homolog 1 (SAV1), MPS one binder kinase activator 1 (MOB1), and Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ)⁵⁻⁷.

During the activation of this pathway, MST1/2 complexed with SAV1 to phosphorylate the LATS1/2 and MOB1 complex, thus activating them and phosphorylating the YAP/TAZ, leading to YAP/TAZ retention in the cytoplasm and proteosomal degradation⁸⁻¹⁰. Nuclear translocation of YAP/TAZ is inhibited in the active Hippo pathway, and in inactive Hippo pathway, YAP/TAZ accumulates in the nucleus, leading to gene transcription which could lead to cancer growth and proinflammatory cytokine secretion¹¹⁻¹³. Overexpression of YAP1 was associated with promotion of M1 pro-inflammatory macrophage polarization and increased IL-6 level¹⁴⁻¹⁶. YAP1 expression was found to be upregulated during monocyte to macrophage differentiation, but not TAZ³. MST1/2 have also been found to aggravate inflammation after stimulation by lipopolysaccharide (LPS)¹⁷.

Dysregulation of this pathway will result in a variety of diseases such as cancer, cardiac and pulmonary diseases^{16, 18}. Core kinases of Hippo (MST1/2, LATS1/2 and YAP1) have been targeted for drug development efforts¹⁹. Verteporfin is a drug that targets YAP1 and was found to be able to inhibit inflammation as well as decreasing the expression of

MST1/2 and LATS1/2^{18, 20 - 22}. VT02956 and XMU-MP-1 are other drugs developed to 1
target LATS1/2 and MST1/2 kinases respectively^{23 - 25}. Phytochemicals such as ursolic 2
acid from herbal plants, cucurbitacin B from the Cruciferae and Cucurbitaceae, curcumin 3
from turmeric, and naringin from tomatoes and grapefruits have been studied for their 4
effects on Hippo pathway^{26 - 28}. However, not much research has been found on the effects 5
of plant-based peptides on Hippo pathways as most inhibitors were synthetic peptides. 6

Plant-derived peptides and proteins have been receiving more attention for their 7
potential to prevent inflammation and inflammation-related diseases. Soybean-derived 8
peptides and proteins have been shown to have anti-cancer, antioxidant and anti- 9
inflammatory potentials^{29, 30}. Soybean-derived lunasin has been receiving much attention 10
for its anti-inflammation and chemopreventive potential³¹. However, the bulk of studies 11
were done on lunasin from commercial soybean *Glycine max* (*G. max*), while studies on 12
lunasin from wild-type soybean *Glycine soja* (*G. soja*) were scarcer. Extensive studies on 13
the anti-inflammatory potential of soybean proteins and peptides on the three classical 14
signaling pathways (NF- κ B, JAK-STAT, MAPK) have also been done, but not so much 15
on the Hippo pathway. *G. soja* is the ancestor of the commercial *G. max*, thus studies on 16
the bioactivity of its peptides could inform the selection and breeding process for future 17
health applications. 18

Our objective was to elucidate and compare the potential anti-inflammatory 19
mechanisms of digested whole flour (DWF), total protein extract (TPE), lunasin-free total 20
protein extract (LFP), and enriched lunasin protein extract (ELPE) from wild-type *G. soja* 21
soybean on the Hippo pathway, using THP-1 human cells as the inflammation model. We 22
hypothesized that ELPE will be most effective at inhibiting inflammation compared to 23

DWF, TPE and LFP *G. soja* treatments, through phosphorylation of core kinases, thus 1
activating the Hippo pathway and decreasing pro-inflammatory cytokine production. 2

2. Materials and methods

 3

2.1 Materials and reagents

 4

Wild-type (*G. soja*) soybeans were cultivated and harvested at the Central Crop 5
Research Station of North Carolina State University, Clayton, NC, USA. The *G. soja* 6
accessions used in this research were selected from 88 different accessions based on 7
their high protein and lunasin concentrations and with no apparent differences in their 8
protein profiles³². Detergent compatible (DC) protein assay kit, 2× Laemmli sample buffer, 9
tricine sample buffer, 10× tris/glycine/SDS buffer, 10x tris/tricine/SDS buffer, mini- 10
PROTEAN® TGX™ gels (4%–20%, 10 well-comb, 30 µL), and Precision Plus Protein™ 11
Dual Xtra standard were purchased from Bio-Rad (Hercules, CA, USA). Simply Blue Safe 12
Stain was purchased from Invitrogen (Carlsbad, CA, USA); 50% acetonitrile (ACN, LC/MS 13
grade, Fisher) and 5% formic acid (FA, LC/MS grade, Fisher). Purified lunasin control 14
(85% purity) was previously purified in our laboratory by Cavazos et al. (2012) (Urbana, 15
Illinois, USA). Verteprofin (>94% purity, HPLC) used as positive control was purchased 16
from Millipore Sigma (Burlington, MA). Primary antibodies GAPDH (Cat# A21994, 17
RRID:AB_2535905), YAP1 (Cat# PA1-46189, RRID:AB_2219137), p-YAP1 (Cat# MA5- 18
33207, RRID:AB_2812021, Ser127), LATS1/2 (Cat# PA5-115498, RRID:AB_2900134), 19
p-LATS1/2 (Cat# PA5-64591, RRID:AB_2664907, Ser909, Ser872), MST1/2 (Cat# PA5- 20
36100, RRID:AB_2553367), p-MST1/2 (Cat# PA5-104616, RRID:AB_2816091, Thr183, 21
Thr180), MOB1 (Cat# PA5-14268, RRID:AB_2145382), SAV1 (Cat# PA5-98927, 22
RRID:AB_2813540) were purchased from Thermo Fisher Scientific (Waltham, MA). 23

ELISA kits for human IL-1 β (ELH-IL1b-1), IL-6 (ELH-IL6), TNF- α (ELH-TNF α) and MCP-1 (ELH-MCP1) were purchased from RayBiotech (Peachtree Corners, GA). All other reagents were purchased from Sigma Aldrich (St. Louis, MO) unless otherwise stated.

2.2 Protein extraction from defatted soybean flour and protein quantification

Protein extraction from defatted soybean flour was done using the method described previously³². Extracted protein was then freeze-dried and stored at –20 °C for 3 months maximum or until further use. Soluble protein quantification was done using DC protein assay kit according to the manufacturer's protocol (Bio-Rad).

2.3 Purification of lunasin from selected *glycine soja* accessions

Purification of lunasin was done according to the protocol described in previous publication with some modifications³³. Briefly, lyophilized soy protein extract was solubilized in Tris-HCl buffer (pH 7.5) then loaded in pre-equilibrated diethylaminoethyl column (DEAE XK 50/30, 30 cm length and 50 mm inside diameter, Cytiva, NJ, USA) with a flow rate of 3 mL/min. Unbound proteins were eluted using Tris-HCl buffer (pH 7.5) with flow rate 3 mL/min, and bound proteins were eluted using NaCl (0.4 M) in Tris-HCl buffer with the same flow rate. The fractions containing lunasin were pooled and concentrated using 3 kDa molecular weight cut-off (MWCO) centrifugal filter (7,500xg, 4 °C, 15 min), then loaded again into the column. Fraction containing lunasin was saved and high molecular weight proteins were removed using 50 kDa ultracentrifugation membrane (7,500xg, 4 °C, 15 min). Filtrate was passed through 3 kDa ultracentrifugation membrane (7,500xg, 4 °C, 15 min) to further remove salts and water. Retentate was saved, freeze-dried and stored at –20°C for 3 months.

2.4 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

1

Samples were mixed at 1:1 with buffer (2% β -mercaptoethanol and 98% Tricine buffer) 2
and loaded into each well of Tris/Tricine gel. Gel electrophoresis was run with 3
Tris/Tricine/SDS running buffer at 100 V for 300 min. Gel was stained for 1 h with 4
SimplyBlue Safe Stain and washed with distilled water. ImageQuant 800 was used to 5
capture the gel image and ImageJ software was used for analysis. The estimated 6
percentage of lunasin was calculated as the intensity of lunasin band at 5 and 10 kDa (in 7
comparison to purified lunasin) over the sum of the total intensity of all the protein bands. 8

2.5 Proteomics sample preparation and LC-MS analysis of lunasin

9

Lunasin bands in the sample were identified using purified lunasin control (85%), and 10
the bands were then cut from the rest of the gel. The bands cut from SDS-PAGE gel were 11
destained with 50% acetonitrile until the dye was removed. The samples were then 12
digested with 1.5 μ g of trypsin (Thermo Scientific) in 50 mM triethylammonium 13
bicarbonate buffer (Sigma) overnight at 37°C. The digested peptides were extracted with 14
5% formic acid in 50% ACN. The combined samples were vacuum-dried. The samples 15
were suspended in 0.1% trifluoroacetic acid (Applied Biosystems) and desalted with 16
StageTips. After drying, the samples were suspended in 20 μ L of 5% ACN with 0.1% FA 17
and 1 or 3 μ L of each sample was injected into a Ultimate3000 RSLC nano system 18
coupled to a Fusion Orbitrap Tribrid Mass Spectrometer (Thermo Scientific). The peptides 19
were separated with a 50 cm μ PAC C18 analytical column (PharmaFluidics) maintained 20
at 30°C over the course of the run. Mobile phases of 0.1% FA (A) and 0.1% FA in 80% 21
ACN (B) were used for the separation. The gradient was 5% to 12.5% B over 10 min, 22
12.5% to 45% B over 45 min, 45 to 62.5 over 5 min, and then 62.5% to 94% B over 4 min, 23

followed by column washing and equilibration. The mass spectrometer was operated in 1 positive polarity in the top speed mode with MS1 scans from 300-2000 m/z at 120 K 2 resolution (100 ms max IT; 2e5AGC) followed by CID fragmentation (35%) of the most 3 abundant ions. The MS2 scans were collected in an ion trap with an isolation window of 4 1.2 m/z, a maximum IT of 60 ms, and an AGC target of 1e4. Unassigned charged ions 5 were excluded from selection for MS2, and the dynamic exclusion window was 60 s. The 6 raw LC-MS data was processed with Mascot v2.8.2 (Matrix Science Inc, Boston, MA, 7 USA) to identify the proteins. The peptide mass tolerance was set to 10 ppm, and the 8 fragment mass tolerance was set to 0.3 Da. A tryptic digest with a maximum of 2 missed 9 cleavages was specified along with variable modifications of methionine oxidation and 10 protein N-terminal acetylation. A reverse decoy database strategy was used to calculate 11 the false discovery rate (FDR) of the analysis. Searches were done against the Uniprot 12 *G. soja* (75060 entries; downloaded July 2024) reference proteome. 13

2.6 Lunasin quantification by enzyme-linked immunosorbent assay (ELISA) 14

Lunasin quantification by ELISA was done according to previously optimized 15 protocol^{32, 33}. Briefly, 100 µL of sample (diluted 1:10,000) was loaded per well and left to 16 incubate overnight at 4°C to bind to the plate. The well was washed three times with 17 phosphate buffered saline (PBS, 0.01 M, pH 7.4) before being blocked by 5% bovine 18 serum albumin (BSA, 300 µL per well) for 1 h at 4°C. The washing process was repeated 19 before incubation with the primary lunasin antibody (rabbit polyclonal) diluted 1:200 in 3% 20 BSA (50 µL per well) overnight at 4°C. The wells were washed again followed by 21 incubation by secondary anti-rabbit IgG conjugated to alkaline phosphatase (1:2000 22 dilution, 50 µL per well). The washing process was repeated and 100 µL of p-nitrophenyl 23

phosphate (pNPP) was added to each well. The plate was read at 410 nm after 20 min of 1
incubation at room temperature (24°C), before followed by addition of 100 µL of NaOH (3 2
M) to each well to stop the reaction. Reading was taken again at 410 nm after 5 min. 3
Previously purified lunasin (85% purity) was used to build the standard curve (0 – 1000 4
ng/mL). 5

2.7 Simulated gastrointestinal digestion 6

Soybean whole flour (defatted) was digested using the harmonized INFOGEST static 7
in vitro simulation of gastrointestinal food digestion protocol^{32,34}. Briefly, defatted flour was 8
combined with simulated digestive fluids (salivary, gastric, intestinal) at 1:1 ratio and 9
appropriate proteases during each digestive phase (pepsin for gastric phase; pancreatin 10
for intestinal phase). Digested samples were freeze-dried and stored at – 20°C for 3 11
months for further testing. 12

2.8 Cell culture and cell viability assay 13

Human monocyte THP-1 cell line was cultured in Roswell Park Memorial Institute 14
(RPMI) 1640 growth medium supplemented with 10% FBS, 1% penicillin/streptomycin, 15
and 0.05 mM β-mercaptoethanol at 37°C in 5% CO₂/95% air. THP-1 monocytes were 16
differentiated into macrophages by incubation with 150 nM of phorbol-12-myristate-13- 17
acetate (PMA), then followed by 24 h incubation in PMA-free RPMI medium³⁵. 18
Macrophages were seeded at confluence of 5 x 10⁴ cells/well in 96-well plate, then 19
incubated with samples (DWF, TPE, LFP and ELPE from PI407207, PI407159, PI407018, 20
PI424088; concentrations 0.1 – 2.0 mg/mL) for 30 min before stimulated with LPS (1 21
µg/mL) for 24 h. Verteporfin (0.5 µM for Western blot and 2 µM for ELISA) was used as 22

the positive control³⁶. Cell viability was measured by a colorimetric MTS assay and 1
calculated using the following equation: 2

$$\%CellViability = \frac{AbsorbanceofTreatment}{AbsorbanceofControl} \times 100$$
 3

2.9 ELISA pro-inflammatory cytokine interleukin in cell culture supernatant

 4

THP-1 cells were seeded and differentiated with 150 nM PMA at confluence of 1×10^6 5
cells/mL in 6-well plates before being treated with different concentrations of DWF, TPE, 6
LFP and ELPE (0, 0.1, 0.5, 1.0 and 2.0 mg/mL) and stimulated with LPS (1 μ g/mL). Based 7
on Table 2, IC_{50} values of IL1 β were not statistically different for most samples and 8
accessions, except DWF, which was significantly ($p \leq 0.05$) higher. 9
Supernatant from cell culture treatment was collected to use in ELISA. Protein 10
concentration in the supernatants was quantified and used to adjust and normalize the 11
expression of pro-inflammatory markers in ELISA (IL-1 β , IL-6, TNF- α , MCP-1) according 12
to the manufacturer's protocol (Raybiotech). 13

2.10 Western blot for expression of Hippo pathway kinases

 14

THP-1 macrophages (1×10^6 cells/mL) were seeded and differentiated in each well of 15
a 6-well plate and treated with IL-1 β IC_{50} values previously determined for DWF (0.6 – 1.9 16
mg/mL), TPE (0.012 – 0.070 mg/mL), LFP (0.021 – 0.144 mg/mL) and ELPE (0.017 – 17
0.038 mg/mL). Cell lysates were collected to be used in Western blot³². Briefly, 20 μ g of 18
sample was loaded into each well and gel electrophoresis was run at 200 V for 35 min, 19
before transferred to membrane. Membrane was blocked with blocking buffer (5% milk in 20
TBST), then with primary antibodies (GAPDH, 1:1000; YAP1, 1:1000; LATS1/2, 1:1000; 21
p-YAP1 (Ser127), 1:500; p-LATS1/2 (Ser909, Ser872), 1:1000; MST1/2, 1:500; p- 22

MST1/2 (Thr183, Thr18), 1:500; MOB1, 1:1000; SAV1, 1:1000) overnight at 4°C and 1
secondary IgG anti-rabbit and anti-mouse antibody (1:1000) for 2 h at room temperature 2
(24°C). 3

2.11 Confocal microscopy and immunofluorescent staining 4

Immunofluorescent staining and confocal microscopy imaging was done according to 5
previous protocol³⁷. Briefly, 3 x 10⁵ cells/mL was seeded in Ibidi μ-dish 35 mm and 6
differentiated using 150 nM of PMA. Cells were then treated with samples and stimulated 7
with LPS (1 μg/mL) for 24 h, before they were washed three times (5 min each) with PBS 8
and fixed with 4% formaldehyde aqueous solution (Electron Microscopy Sciences, 9
Hatfield, PA) for 30 min at 25°C. Cells were washed PBS, and permeabilized with 0.1% 10
Triton X 100 in PBS for 15 min at 25°C. Cells were washed once with PBS and incubated 11
with ultracold HPLC-grade methanol for 15 min at -20°C before incubated with PBS at 12
25°C for 30 min. Cells were blocked with Image-iT FX Signal Enhancer (Life 13
Technologies, Carlsbad, CA) for 30 min at 25°C, washed once with PBS, and incubated 14
with YAP1 (1:200) antibody 3 h at 25°C. Cells were washed three times (5 min each) 15
with PBS and incubated with Alexa Fluor 568 Goat Anti-Rabbit IgG (Life Technologies) 16
secondary antibody (1:200) for 90 min at 25°C in the dark. Cells were washed three times 17
(5 min each) with PBS and cured with ProLong Gold antifade reagent with DAPI (4',6- 18
diamidino-2-phenylindole) (Life Technologies) for 24 h at 25°C in the dark. The 19
microscopy chamber plate was stored at 4°C in the dark until further analysis. The cells 20
were visualized using Carl Zeiss LSM 880 Laser Scanning Microscope (Carl Zeiss AG, 21
Germany) with 63×oil immersion objective. The laser was set at 561 nm wavelength 22
excitation and 645 nm wavelength emission with 1.0 AU pinhole to visualize YAP1. For 23

DAPI, the laser was set a 405 nm wavelength excitation and 475 nm wavelength emission 1
with 0.99 AU pinhole. Five different fields were imaged per treatment and the integrated 2
density of YAP1 expression was analyzed from each field using the FIJI software³⁸ with 3
the average of the integrated density results normalized per cell. Images were scanned 4
in high-resolution format (512×512 pixels; 0.07 UM X 0.07 UM, 0.26 μ M x 0.26 μ M scaling 5
per pixel). Fluorescence integrated density of total, cytoplasmic and nuclear YAP1 6
expressions were taken. Single cells were measured by free-hand drawing tool in FIJI 7
software. Cytoplasmic YAP1 fluorescence integrated density was calculated as the 8
fluorescence integrated density of nuclear YAP1 expression subtracted from the 9
fluorescence integrated density of total YAP1 expression in cell. Results were presented 10
as the average fluorescence integrated density of five different fields, and as the 11
nuclear:cytoplasmic YAP1 expression ratio. 12

2.12 Statistical analysis

Data was expressed as the means of two independent replicates. The results were 14
analyzed using one-way and two-way ANOVA followed by Tukey's multiple comparison 15
test. Differences were considered statistically significant at $p \leq 0.05$. GraphPad Prism 16
(GraphPad Software Inc., San Diego, CA, USA) was used to perform all the statistical 17
analyses. 18

3. Results

3.1 ELPE contained 50% more lunasin than TPE

Previous study found that out of 88 *G. soja* accessions, four accessions were found 21
to have the highest lunasin concentration and these were selected to purify lunasin and 22

studied their anti-inflammatory potentials³². Lunasin polyclonal antibody identified bands at 5 and 10 kDa from fractions eluted at 8 and 9 min from the ion exchange chromatogram (**Figure 1A – B**). Proteomics analysis of *G. soja* accession PI424088 found a fragment of lunasin peptide sequence HIMEK in protein band at 5 kDa at elution time 8 min, and HIMEKIQRGDDDDDDDD in protein band at 5 kDa at elution time 9 min (**Figure 1C**), confirming the presence of lunasin peptide. Lunasin antibody was able to bind to protein band at 10 kDa, indicating that lunasin was present as both monomer at 5 kDa and dimer at 10 kDa (**Supplementary Figure 1**). Quantification of lunasin concentration by ELISA revealed that ion-exchange chromatography increased concentration of lunasin significantly ($p \leq 0.05$) in ELPE of accessions PI407207, PI407159, PI407018, PI424088 (51.6 – 86.9 mg/g DF) in comparison to lunasin concentration in TPE (16.2 – 32.9 mg/g DF) (**Figure 1D**). Analysis of SDS-PAGE results indicated that lunasin purity ranged from 55.5% – 72.5% (**Figure 1E**). These results demonstrated that lunasin was present in ELPE as dimer and monomer with purity up to 73%, and its concentration was significantly increased compared to TPE.

3.2 Digested whole flour, total protein extract, lunasin-free protein and enriched lunasin protein extract from *G. soja* accessions significantly lowered the levels of pro-inflammatory cytokines IL-1 β , IL-6, and MCP-1

Treatments of THP-1 macrophages with different concentrations (0.1, 0.5, 1.0 and 2.0 mg/mL) of DWF, TPE, LFP, ELPE from *G. soja* did not significantly decrease cell viability compared to untreated macrophages ($p \leq 0.05$) (**Supplementary Figure 2**). Treatments with 0.5 μ M and 2 μ M verteporfin (positive control) also did not significantly decrease viability of macrophages compared to untreated cells ($p \leq 0.05$). These results indicated

that *G. soja* treatments did not have cytotoxic effect.

Production of pro-inflammatory cytokine IL-1 β was inhibited significantly after treatment with different concentrations (0.1, 0.5, 1.0, 2.0 mg/mL) of *G. soja* DWF, TPE, LFP and ELPE in LPS-stimulated macrophages. **Table 1** presents the results of IL-1 β IC₅₀ (mg/mL) for the different samples tested. IC₅₀ is defined as the amount (mg/mL) of sample needed to inhibit 50% of the activity, in this case the production of IL-1 β . Lower IC₅₀ value indicated higher effectiveness of sample to inhibit 50% of IL-1 β production. IL-1 β IC₅₀ values of DWF (0.6 – 1.9 mg/mL), TPE (0.012 – 0.070 mg/mL), LFP (0.021 – 0.144 mg/mL) and ELPE (0.017 – 0.038 mg/mL) were used to test other biomarkers. DWF of all *G. soja* accessions (PI407207, PI407159, PI407018, PI424088) had significantly higher ($p \leq 0.05$) IC₅₀ values compared to TPE, LFP and ELPE, indicating that the latter were more effective than DWF in inhibiting IL-1 β production. **Table 1** also shows that IL-1 β production for TPE, LFP and ELPE was not statistically different for all accessions. IC₅₀ values of *G. soja* ELPE were significantly higher ($p \leq 0.05$) than *G. max* ELPE (more potent) for all accessions. IC₅₀ values of *G. soja* LFP were significantly lower ($p \leq 0.05$) than *G. max* ELPE for all accessions except for PI424088. These results also indicate that different accessions of DWF, TPE, LFP and ELPE have different efficacy to inhibit inflammation.

After treatment with IC₅₀ values, obtained from assessing the IL-1 β inhibition of all samples, the production of pro-inflammatory cytokine IL-6 was significantly decreased ($p \leq 0.05$) by treatments of *G. soja* DWF, TPE, LFP and ELPE in LPS-stimulated macrophages (**Figure 2A – D**). Comparing among different sample types within the same accession (**Figure 2E**), treatments with TPE and LFP in some accessions (PI407207 and

PI424088) significantly ($p < 0.05$) lowered IL-6 production compared to DWF and ELPE. 1
These results demonstrated that production of IL-6 was significantly decreased ($p \leq 0.05$) 2
in comparison to the control LPS by all sample types and all accessions; however, some 3
samples in different accessions showed different inhibitory potential. *G. soja* LFP of 4
several accessions seemed the most effective at inhibiting IL-6 production as it 5
demonstrated the highest inhibition (98%). 6

Potential of *G. soja* to inhibit MCP-1 production varied among sample types and 7
accessions. Production of pro-inflammatory cytokine MCP-1 was not significantly 8
decreased ($p > 0.05$) by treatment with DWF in comparison to control LPS, except for 9
macrophages treated with DWF of accession PI407207 (68% inhibition) (**Figure 3A**). 10
Treatments TPE, LFP and ELPE significantly decreased ($p \leq 0.05$) the production of 11
MCP-1 for all accessions (PI407207, PI407159, PI407018, PI424088) compared to 12
control LPS (31% - 99% inhibition) (**Figures 3B – D**). Comparing among different sample 13
types within the same accession, treatments with ELPE of accessions PI407159 (92% 14
inhibition) and PI407018 (97% inhibition) showed significantly lower ($p \leq 0.05$) MCP-1 15
production compared to treatments with DWF, TPE and LFP of the same accessions. 16
Treatments with DWF, TPE and LFP of accession PI407207 showed significantly lower 17
($p \leq 0.05$) MCP-1 inhibition, (68%, 64%, 59%, respectively) than ELPE (41% inhibition) 18
of the same accession. These results indicate that different sample type obtained from 19
the same *G. soja* accession could have significantly different ($p \leq 0.05$) inhibitory potential 20
due to the different chemical composition. *G. soja* ELPE of accession PI407018 seemed 21
to be the most promising at inhibiting MCP-1 (97%) (**Figure 3E**). 22

Production of TNF- α was not significantly decreased ($p > 0.05$) by treatments with 23

DWF, TPE, LFP and ELPE compared to control LPS, except for TPE (52% inhibition) of 1
accession PI424088 (**Figures 4A – D**). Verteporfin (2 μ M) also did not significantly 2
decrease ($p > 0.05$) production of TNF- α in comparison to control LPS. This marker did 3
not seem to be significantly affected by *G. soja* treatments. 4

Table 2 provided a summary of the increase and decrease in production of IL-6, IL- 5
1 β , TNF- α , and MCP-1 after treatment with samples DWF, TPE, LFP, ELPE from 6
accessions PI407207, PI407159, PI407018, and PI424088 in comparison to LPS. All 7
accessions and sample types were able to significantly inhibit production of IL-6 (74% - 8
98% inhibition), but not TNF- α . Only TPE of accession PI424088 was able to significantly 9
decrease ($p \leq 0.05$) all four pro-inflammatory cytokines tested (IL-1 β , IL-6, TNF- α , MCP- 10
1) in comparison to control LPS. TPE, LFP and ELPE of all accessions were able to 11
significantly decrease ($p \leq 0.05$) production of three pro-inflammatory cytokines (IL-6, IL- 12
1 β , MCP-1) in comparison to control LPS. All sample types of accession PI407207 were 13
effective in inhibiting production of IL-6, IL-1 β and MCP-1. These results demonstrated 14
that *G. soja* treatments were able to inhibit inflammation *in vitro* through decreased 15
production of pro-inflammatory cytokines. 16

3.3. Digested whole flour, total protein extract, lunasin-free protein and enriched 17 lunasin protein extract from *G. soja* decreased the expression of dephosphorylated 18 YAP1 and LATS1/2 kinases 19

Western blot results showed that expression of dephosphorylated YAP1 decreased 20
significantly after treatment by DWF, TPE, LFP and ELPE across all accessions of *G.* 21
soja ($p \leq 0.05$) in comparison to LPS-stimulated macrophages, except for DWF of 22

accession PI424088 (**Figure 5A – D**). TPE of accession PI424088 and ELPE of accession PI407207 were the only treatments that significantly ($p < 0.05$) increased the expression of phosphorylated YAP1 (p-YAP1) (**Figures 5A – D**). These results demonstrated that while *G. soja* treatments (DWF, TPE, LFP and ELPE of all accessions) could significantly decrease ($p \leq 0.05$) the expression of YAP1 compared to LPS, only two treatments (ELPE of PI407207 and TPE of PI424088) were able to significantly increase the expression of p-YAP1 compared to the control LPS. These results suggested that *G. soja* TPE and ELPE were able to phosphorylate the Hippo core kinase YAP1.

In addition, *G. max* was tested to compare LFP and ELPE of accessions PI567313 and PI594845 and showed that both treatments were able to significantly decrease ($p \leq 0.05$) the expression of YAP1 compared to control LPS (**Figure 5E – F**). *G. max* LFP of accession PI594845 and *G. max* ELPE of accessions PI567313 and PI594845 were also able to significantly increase p-YAP1 expression compared to control LPS.

G. soja DWF, TPE, LFP and ELPE of all accessions were able to significantly decrease ($p \leq 0.05$) the expression of dephosphorylated LATS1/2 compared to LPS (**Figures 6A – D**). Expression of phosphorylated LATS1/2 (p-LATS1/2) was increased significantly ($p \leq 0.05$) by *G. soja* DWF of accessions PI407207, PI407018 and PI424088 in comparison to control LPS (**Figure 6A**). Expression of p-LATS1 was not increased significantly ($p \leq 0.05$) by *G. soja* TPE, LFP and ELPE of all accessions compared to control LPS (**Figure 6B – D**). *G. soja* treatments of all accessions (PI407207, PI407159, PI407018 and PI424088) and all sample types (DWF, TPE, LFP, ELPE) were able to significantly lower ($p \leq 0.05$) expression of dephosphorylated LATS1/2, however, only *G. soja* DWF of accessions PI407207, PI407018, and PI424088 were able to significantly

increase ($p \leq 0.05$) expression of p-LATS1/2 compared to control LPS. These results 1
indicate that *G. soja* DWF was able to phosphorylate Hippo pathway central regulator 2
LATS1/2. 3

G. max LFP of accessions PI567313 and PI594845 were able to significantly decrease 4
($p \leq 0.05$) LATS1/2 expression and significantly increase ($p \leq 0.05$) p-LATS1/2 expression 5
compared to control LPS (**Figure 6E**); however, *G. max* ELPE of accessions PI567313 6
and PI594845 were not able to significantly increase ($p \leq 0.05$) p-LATS1/2 expression 7
compared to control LPS (**Figure 6F**). 8

MST1/2 kinase was not significantly ($p < 0.05$) affected by treatments with *G. soja* 9
(**Figures 7A – D**). Only four treatments (DWF PI407207 and PI407159, LFP PI407207 10
and ELPE PI407159) were able to significantly decrease ($p < 0.05$) expression of 11
dephosphorylated MST1/2 compared to control LPS. DWF of accession PI407207 was 12
the only treatment that significantly ($p < 0.05$) increased phosphorylated MST1/2 13
expression compared to control LPS. These results suggested that *G. soja* treatments 14
did not seem to affect MST1/2 kinase. 15

Treatment with *G. soja* DWF of accession PI424088 significantly decreased ($p \leq 0.05$) 16
expression of MOB1 compared to control LPS (**Figure 8A**), while treatment with *G. soja* 17
TPE of accession PI424088 significantly increased ($p \leq 0.05$) expression of MOB1 18
compared to control LPS (**Figure 8B**). Treatments with *G. soja* LFP and ELPE did not 19
significantly affect ($p > 0.05$) expression of MOB1 compared to control LPS (**Figures 8C** 20
– D). 21

Treatments with *G. soja* DWF of accessions PI407159 and PI424088 were able to 22

significantly decrease expression of SAV1 compared to control LPS (**Figure 9A**). 1
Treatment with *G. soja* TPE of accession PI407207 was able to significantly decrease 2
expression of SAV1 compared to control LPS (**Figure 9B**). Treatments with *G. soja* LPF 3
and ELPE of all accessions did not significantly affect ($p > 0.05$) expression of SAV1 4
compared to control LPS (**Figures 9C – D**). MOB1 and SAV1 regulatory proteins did not 5
seem to be significantly affected by *G. soja* treatments. 6

Table 2 provides a summary of the effect on the expressions of kinases after 7
treatments with different *G. soja* accessions (PI407207, PI407159, PI407018, PI424088) 8
and different sample types (DWF, TPE, LFP, ELPE) in comparison to control LPS. 9
Treatments of macrophages with ELPE of PI407207 and TPE of PI424088 were able to 10
phosphorylate YAP1. Treatments of macrophages with DWF of PI407207, PI407018 and 11
PI424088 were able to phosphorylate LATS1/2. Treatments of macrophages with DWF 12
of PI407159 were able to phosphorylate MST1/2. These results suggested that *G. soja* 13
treatments could modulate the Hippo pathway through phosphorylation of the kinases 14
LATS1/2 and YAP1, which are the central regulator and the core kinase of the pathway, 15
respectively. 16

3.4 Treatments with *G. soja* ELPE PI407207 and TPE PI424088 increased 17 cytoplasmic YAP1 retention 18

Cells were treated with ELPE of PI407207 ($IC_{50} = 0.017$ mg/mL) and TPE of PI424088 19
($IC_{50} = 0.070$ mg/mL) as these treatments had been shown to be able to significantly ($p \leq$ 20
0.05) decrease dephosphorylated YAP1 and increase phosphorylated YAP1 expression 21
compared to control LPS through Western blot. **Figure 10A** shows immunofluorescence 22
staining images of YAP1 expression and DAPI-stained nuclei indicating the location of 23

YAP1 in the macrophages. Further analysis showed that cells treated with *G. soja* ELPE 1
PI407207 showed significantly higher ($p \leq 0.05$) cytoplasmic YAP1 expression compared 2
to control LPS (**Figure 10B**), and cells treated with *G. soja* TPE PI424088 showed 3
significantly lower ($p \leq 0.05$) nuclear YAP1 expression compared to control LPS (**Figure** 4
10C). Calculation of the nuclear:cytoplasmic YAP1 expression ratio showed that cells 5
treated with *G. soja* ELPE PI407207 had a significantly lower ($p \leq 0.05$) ratio compared 6
to control LPS (**Figure 10D**). These results indicated that treatment with ELPE was able 7
to modulate the Hippo pathway by increasing the cytoplasmic retention of its core kinase 8
YAP1. 9

4. Discussion

Previous lunasin purification studies done using the same method reported lunasin 11
purity that ranged from 80% to 99%^{33, 40}. Our results showed higher purity (56% to 73%) 12
compared to lunasin purification done through recombinant protein expression method 13
(46% - 52%)^{41, 42}. Previous studies evaluating the anti-inflammatory and other bioactive 14
potentials of lunasin were done using chemically synthesized lunasin with at least 95% 15
purity⁴³⁻⁴⁶. However, there were other studies evaluating the anti-inflammatory potential 16
and other health benefits of lunasin-enriched protein extracts instead of pure lunasin that 17
showed lunasin-enriched protein extracts had antimicrobial and anti-inflammatory 18
potentials^{40, 47}. 19

Comparing sample types, DWF of all accessions seemed to be the least effective in 20
mitigating inflammation through reduction of pro-inflammatory cytokines, and DWF of all 21
accessions were shown to have significantly higher ($p \leq 0.05$) IC₅₀ values compared to 22

TPE, LFP and ELPE. DWF was the only sample type to have gone through simulated 1
gastrointestinal digestion, and previous study had shown that bioaccessibility of protein 2
and lunasin decreased in digested soybean flour³². Except for accession PI407207, DWF 3
did not significantly decrease ($p \leq 0.05$) production of MCP-1 compared to control LPS, 4
while TPE, LFP and ELPE of all *G. soja* accessions were able to do so. However, DWF 5
was able to phosphorylate LATS1/2 expression compared to control LPS (**Table 2**). DWF 6
of accession PI407159 were also the only treatment able to phosphorylate MST1/2. 7
These results suggested that *G. soja* DWF could affect the Hippo pathway at the 8
upstream kinases MST1/2 and LATS1/2, thus indirectly regulating YAP1 kinase as 9
studies have shown that MST1/2 and LATS1/2 were involved in the regulation of YAP1 10
expression and activation^{48, 49}. 11

Increased expression of LATS1/2 had been associated with inflammation-related 12
diseases such as inflammatory bowel disease (IBD) and diabetes^{50, 51}. The inhibition of 13
LATS1/2 had been shown to suppress growth of cancer cells and inhibit inflammation, 14
therefore, inhibition of LATS1/2 had also been proposed as therapeutic target for cancer 15
and inflammation-related diseases^{52 - 55}. A LATS1/2-specific inhibitor such as Src that 16
induce LATS1/2 phosphorylation to modulate the Hippo pathway had also been studied⁵⁶, 17
however, much of the research focused on the other kinases and mechanisms that could 18
induce LATS1/2 phosphorylation such as WWC1/2/3 and angiomotins instead of specific 19
compounds^{57, 8}. Thus, *G. soja* DWF could be explored as potential LATS1/2-specific 20
inhibitors. 21

Overexpression of YAP1 was associated with tumorigenesis and reduced patient 22
survival rate in cancer progression^{58, 59}. Increased expression of YAP1 was also 23

associated with inflammation in diseases such as psoriasis and fibrosis^{60, 61, 11}. The inhibition of YAP1 could be a therapeutic target for cancer suppression and inflammation-related diseases^{62, 16, 63} and studies had also shown that phosphorylation of YAP1 to be important in anticancer mechanisms⁶⁴⁻⁶⁶. YAP1 had been considered a therapeutic target for cancer and inflammation, and YAP1-specific inhibitors such as verteporfin and CA3 had been evaluated for their ability to decrease YAP1 protein level⁶⁷⁻⁶⁹. Several peptides had been shown to be YAP1 inhibitors, however, those were either chemically synthesized or purified through recombinant protein expression method⁷⁰. Treatments with *G. soja* ELPE and TPE were found to be able to phosphorylate YAP1 expression compared to control LPS, thus they could be explored as potential YAP1-specific inhibitors. Phosphorylation of YAP1 had also been shown to inhibit YAP1 nuclear translocation and increase YAP1 cytoplasmic retention⁷¹, and our results had shown that ELPE PI407207 was also able to increase YAP1 cytoplasmic retention.

TPE of accession PI424088 was also the only treatment that was able to significantly decrease ($p \leq 0.05$) the expression of all pro-inflammatory cytokines tested (IL-1 β , IL-6, TNF- α and MCP-1). This treatment was also able to phosphorylate YAP1, ($p \leq 0.05$) expression compared to control LPS. In addition to significantly reducing ($p \leq 0.05$) nuclear YAP1 expression compared to control LPS. Except for TNF- α , *G. soja* of all accessions and sample types were able to significantly decrease ($p \leq 0.05$) production of IL-6 and MCP-1 compared to control LPS. TPE is the total soluble protein extracted from defatted soybean flour, which had been evaluated to include other proteins (lipoxygenase, β -amylase; Kunitz trypsin inhibitor), β -conglycinin, glycinin and Bowman-Birk inhibitor, in addition to lunasin⁷²⁻⁷⁴. **Supplementary Figure 3** shows that LFP contained β -

conglycinin, as shown by bands appearing between 50 kDa to 75 kDa, but not lunasin. 1
Bowman-Birk inhibitor and β -conglycinin had been shown to exhibit anti-inflammatory 2
potential 75 - 78, 24. A study also showed that the combination of lunasin, Bowman-Birk 3
inhibitor and Kunitz trypsin inhibitor was able to exert anti-inflammatory potential through 4
decreasing production of nitric oxide, IL-6 and TNF- α ⁴⁶. 5

Increased phosphorylation of LATS1/2 and YAP1 had been shown to be able to reduce 6
inflammation⁷¹, therefore the *G. soja* treatments that were able to both decrease the 7
expression of dephosphorylated LATS1/2 and YAP1, as well as increase the expression 8
of p-LATS1/2 and p-YAP1, could be explored as either LATS1/2-specific or YAP1-specific 9
inhibitors. *G. soja* ELPE and TPE could be explored as YAP-1 specific inhibitors, while 10
DWF could be explored as LATS1 specific inhibitors. As YAP1 phosphorylation increased 11
YAP1 cytoplasmic retention and inhibited YAP1 nuclear translocation, we also showed 12
that *G. soja* ELPE and TPE had potential to be YAP1 nuclear translocation inhibitor. TPE 13
showed promising potential as pro-inflammatory cytokine production inhibitor. While there 14
are phytochemicals that had been studied as modulators of Hippo pathway²⁰, to our 15
knowledge, this is the first report on ancestral soybean proteins and peptides that had 16
been studied for their effect on the Hippo pathway so far. **Figure 11** presents a diagram 17
of the active (left) and inactive (right) Hippo pathway in the presence and absence of the 18
ELPE. This research offered more insight into alternative potential targets for 19
inflammation and inflammation-related diseases. 20

5. Conclusion

The purification process used was able to significantly increase lunasin concentration, 22

which then increased the potential to mitigate inflammation. In general, purified lunasin and total protein extract were most effective in inhibiting inflammation. *G. soja* was able to mitigate inflammation by decreasing pro-inflammatory cytokines IL-6, IL-1B and MCP-1, and activating the Hippo pathway through kinase-specific phosphorylation and YAP1 cytoplasmic retention. These results could be used to develop new functional food ingredients or supplements that offer alternative and novel therapeutic targets for a healthier diet to manage inflammation-related diseases.

Abbreviations

DWF	digested whole flour	9
ELISA	enzyme-linked immunosorbent assay	10
ELPE	enriched lunasin protein extract	11
IL	interleukin	12
LATS	large tumor suppressant	13
LFP	lunasin-free protein	14
LPS	lipopolysaccharide	15
MCP	monocyte chemoattractant protein	16
MOB	MPS one binder	17
MST	macrophage stimulating	18
SAV	Salvador homolog	19
TAZ	transcriptional coactivator with PDZ-binding motif	20
TNF	tumor necrosis factor	21
TPE	total protein extract	22
VP	verteporfin	23
YAP	Yes-associated protein	24
		25

CRediT authorship contribution statement

Jennifer Kusumah: Writing – original draft, Methodology, Investigation, Formal analysis, Data curation. **Jiazheng Yuan:** Resources, Visualization, Methodology, Investigation, Data curation, Conceptualization. **Elvira Gonzalez de Mejia:** Writing – review & editing, Supervision, Resources, Visualization, Project administration,

Methodology, Funding acquisition, Conceptualization. All authors read and approved the 1
manuscript. 2

Declaration of Competing Interest 3

The authors declare that they have no known competing financial interests or personal 4
relationships that could have appeared to influence the work reported in this paper. 5

Acknowledgements 6

This research was funded by the NSF-HBCU-UP-RIA program under award number 7
2101138. We thank Kaitlynn Lopez, Christina Ukkani and Lilly Thia for their assistance 8
with Western Blot and ELISA experiments. We thank Austin Cyphersmith and Reza 9
Rajabi Toustani for their technical expertise in confocal microscopy and 10
immunofluorescent staining. 11

Appendix A. Supplementary data 12

Supplementary data to this article can be found online at xxx 13

References 14

1. M. Fu, Y. Hu, T. Lan, K.L. Guan, T. Luo, M. Luo, The Hippo signalling pathway and its implications in human health and diseases, *Signal transduction and targeted therapy*, 2022, **7**, (1),376. <https://doi.org/10.1038/s41392-022-01191-9>
2. P. Guo, S. Wan, K.L. Guan, The Hippo pathway: organ size control and beyond. *Pharmacological Reviews*, 2024, 100031. <https://doi.org/10.1016/j.pharmr.2024.100031>
3. V.S. Meli, P.K. Veerasubramanian, T.L. Downing, W. Wang, W.F. Liu, Mechanosensation to inflammation: roles for YAP/TAZ in innate immune cells, *Science signaling*, 2023, **16**, (783):eadc9656. <https://doi.org/10.1126/scisignal.adc9656>
4. M.M. Mia, M.K. Singh, Emerging roles of the Hippo signaling pathway in

modulating immune response and inflammation-driven tissue repair and remodeling, *The FEBS Journal*, 2022, **289**, (14):4061-81. 1
<https://doi.org/10.1111/febs.16449> 2

5. Z. Xie, Y. Wang, G. Yang, J. Han, L. Zhu, L. Li, S. Zhang, The role of the Hippo 4
pathway in the pathogenesis of inflammatory bowel disease, *Cell Death & Disease*, 5
202, **12**, (1):79. <https://doi.org/10.1038/S41419-021-03395-3> 6

6. K.M. Tang, W. Chen, Z.H. Tang, X.Y. Yu, W.Q. Zhu, S.M. Zhang, J. Qiu, Role of 7
the Hippo-YAP/NF- κ B signaling pathway crosstalk in regulating biological 8
behaviors of macrophages under titanium ion exposure, *Journal of Applied 9
Toxicology*, 2021, **41**(4):561-71. <https://doi.org/10.1002/JAT.4065> 10

7. Y. Liu, Y. An, G. Li, S. Wang, Regulatory mechanism of macrophage polarization 11
based on Hippo pathway, *Frontiers in Immunology*, 2023, **14**, 1279591. 12
<https://doi.org/10.3389/fimmu.2023.1279591> 13

8. S. Qi, Y. Zhu, X. Liu, P. Li, Y. Wang, Y. Zeng, A. Yu, Y. Wang, Z. Sha, Z. Zhong, 14
R. Zhu, WWC proteins mediate LATS1/2 activation by Hippo kinases and imply a 15
tumor suppression strategy, *Molecular Cell*, 2022, **82**, (10):1850-64. 16
<https://doi.org/10.1016/j.molcel.2022.03.027> 17

9. J. Luo, L. Deng, H. Zou, Y. Guo, T. Tong, M. Huang, G. Ling, P. Li, New insights 18
into the ambivalent role of YAP/TAZ in human cancers, *Journal of Experimental & 19
Clinical Cancer Research*, 2023, **42**, (1):130. <https://doi.org/10.1186/s13046-023-02704-2> 20

10. N.R. Kastan, S. Oak, R. Liang, L. Baxt, R.W. Myers, J. Ginn, N. Liverton, D.J. 21
Huggins, J. Pichardo, M. Paul, T.S. Carroll, Development of an improved inhibitor 22
of Lats kinases to promote regeneration of mammalian organs, *Proceedings of the 23
National Academy of Sciences*, 2022, **119**, (28):e2206113119. 24
<https://doi.org/10.1073/pnas.2206113119> 25

11. L. Chen, X. Jin, J. Ma, B. Xiang, X. Li, YAP at the progression of inflammation. 26
Frontiers in Cell and Developmental Biology, 2023, **11**, 1204033. 27
<https://doi.org/10.3389/fcell.2023.1204033> 28

12. A. Nita, T. Moroishi, Hippo pathway in cell–cell communication: Emerging roles in 29
development and regeneration, *Inflammation and Regeneration*, 2024, **44**, (1):18. 30
<https://doi.org/10.1186/s41232-024-00331-8> 31

13. C.L. Kim, S.B. Lim, S.H. Choi, D.H. Kim, Y.E. Sim, E.H. Jo, K. Kim, K. Lee, H.S. 32
Park, S.B. Lim, L.J. Kang, The LKB1–TSSK1B axis controls YAP 33
phosphorylation to regulate the Hippo–YAP pathway, *Cell Death & Disease*, 34
<https://doi.org/10.1039/D5FO02971F> 35

2024, **15**, (1):76. <https://doi.org/10.1038/s41419-024-06465-4> 1

14. Y. An, S. Tan, J. Yang, T. Gao, Y. Dong, The potential role of Hippo pathway 2
regulates cellular metabolism via signaling crosstalk in disease-induced 3
macrophage polarization, *Frontiers in Immunology*, 2024, **14**, 1344697. 4
<https://doi.org/10.3389/fimmu.2023.1344697> 5

15. X. Zhou, W. Li, S. Wang, P. Zhang, Q. Wang, J. Xiao, C. Zhang, X. Zheng, X. 6
Xu, S. Xue, L. Hui, YAP aggravates inflammatory bowel disease by regulating 7
M1/M2 macrophage polarization and gut microbial homeostasis, *Cell reports*, 8
2019, **27**, (4):1176-89. <https://doi.org/10.1016/j.celrep.2019.03.028> 9

16. L. Liang, W. Xu, A. Shen, X. Fu, H. Cen, S. Wang, Z. Lin, L. Zhang, F. Lin, X. 10
Zhang, N. Zhou, Inhibition of YAP1 activity ameliorates acute lung injury through 11
promotion of M2 macrophage polarization, *MedComm*, 2023, **4**, (3):e293. 12
<https://doi.org/10.1002/mco2.293> 13

17. T. Li, Y. Wen, Q. Lu, S. Hua, Y. Hou, X. Du, Y. Zheng, S. Sun, MST1/2 in 14
inflammation and immunity, *Cell adhesion & migration*, 2023, **17**, (1):1-5. 15
<https://doi.org/10.1080/19336918.2023.2276616> 16

18. L Wei, X Ma, Y Hou, T Zhao, R Sun, C Qiu, Y Liu, Z Qiu, Z Liu, J Jian,. Verteporfin 17
reverses progestin resistance through YAP/TAZ-PI3K-Akt pathway in endometrial 18
carcinoma, *Cell Death Discovery*, 2023, **9**, (1):30. <https://doi.org/10.1038/s41420-023-01319-y> 19

19. Z Lao, X Chen, B Pan, B Fang, W Yang, Y Qian, Pharmacological regulators of 21
Hippo pathway: Advances and challenges of drug development, *The FASEB Journal*, 2025, **39**, (6):e70438. doi:[10.1096/fj.202401895RR](https://doi.org/10.1096/fj.202401895RR) 22

20. T Önel, E Yıldırım, A Yaba, P-049 Verteporfin suppresses cell proliferation, 23
survival and migration of TCam-2 human seminoma cells via inhibits the YAP- 24
TEAD complex, *Human Reproduction*, 2023, **38**, (Supplement_1):dead093-414. 25
<https://doi.org/10.1093/humrep/dead093.414> 26

21. Y Wang, L Wang, JT Wise, X Shi, Z Chen, Verteporfin inhibits lipopolysaccharide- 27
induced inflammation by multiple functions in RAW 264.7 cells, *Toxicology and applied pharmacology*, 2020, **387**, 114852. 28
<https://doi.org/10.1016/j.taap.2019.114852> 29

22. C Wei, X Li, Verteporfin inhibits cell proliferation and induces apoptosis in different 30
subtypes of breast cancer cell lines without light activation, *BMC cancer*, 2020, **20**, 31
1-8. <https://doi.org/10.1186/s12885-020-07555-0> 32

23. S Ma, T Tang, G Probst, A Konradi, C Jin, F Li, JS Gutkind, XD Fu, KL Guan, 33
Transcriptional repression of estrogen receptor alpha by YAP reveals the Hippo 34

pathway as therapeutic target for ER+ breast cancer, *Nature communications*, 2022, **13**, (1):1061. <https://doi.org/10.1038/s41467-022-28691-0>

24. AR Basson, S Ahmed, R Almutairi, B Seo, F Cominelli, Regulation of intestinal inflammation by soybean and soy-derived compounds, *Foods*, 2021, **10**, (4):774. <https://doi.org/10.3390/foods10040774>

25. TV Kudryashova, S Dabral, S Nayakanti, A Ray, DA Goncharov, T Avolio, Y Shen, A Rode, A Pena, L Jiang, D Lin, Noncanonical HIPPO/MST signaling via BUB3 and FOXO drives pulmonary vascular cell growth and survival, *Circulation research*, 2022, **130**, (5):760-78. <https://doi.org/10.1161/CIRCRESAHA.121.319100>

26. M Moloudizargari, MH Asghari, SF Nabavi, D Gulei, I Berindan-Neagoe, A Bishayee, SM Nabavi, Targeting Hippo signaling pathway by phytochemicals in cancer therapy, *In Seminars in cancer biology*, 2022, **80**, 183-194. Academic Press. <https://doi.org/10.1016/j.semcan.2020.05.005>

27. H Zhao, M Liu, H Liu, R Suo, C Lu, Naringin protects endothelial cells from apoptosis and inflammation by regulating the Hippo-YAP Pathway, *Bioscience reports*, 2020, **40**, (3):BSR20193431.

28. A Kumar, B BharathwajChetty, MK Manickasamy, J Unnikrishnan, MS Alqahtani, M Abbas, HA Almubarak, G Sethi, AB Kunnumakkara, Natural compounds targeting YAP/TAZ axis in cancer: current state of art and challenges, *Pharmacological Research*, 2024, 107167. <https://doi.org/10.1016/j.phrs.2024.107167>

29. G Franca-Oliveira, AJ Martinez-Rodriguez, E Morato, B Hernández-Ledesma, Contribution of proteins and peptides to the impact of a soy protein isolate on oxidative stress and inflammation-associated biomarkers in an innate immune cell model, *Plants*, 2023, **12**, (10):2011. <https://doi.org/10.3390/plants12102011>

30. CC Hsieh, CH Wu, SH Peng, CH Chang, Seed-derived peptide lunasin suppressed breast cancer cell growth by regulating inflammatory mediators, aromatase, and estrogen receptors, *Food & Nutrition Research*, 2023, **67**, 10-29219. <https://doi.org/10.29219/fnr.v67.8991>

31. SM Alves de Souza, B Hernández-Ledesma, TL de Souza, Lunasin as a promising plant-derived peptide for cancer therapy, *International Journal of Molecular Sciences*, 2022, **23**, (17):9548. <https://doi.org/10.3390/ijms23179548>

32. J Kusumah, JA Preciado, J Yuan, EG de Mejia, Lunasin, soluble protein concentration and profile in *Glycine soja* compared to *Glycine max*,

bioaccessibility and peptides bioactivity, *Food Bioscience*, 2025, **68**, 106370. 1
<https://doi.org/10.1016/j.fbio.2025.106370> 2

33. A Cavazos, E Morales, VP Dia, EG De Mejia, Analysis of lunasin in commercial 3
and pilot plant produced soybean products and an improved method of lunasin 4
purification, *Journal of Food Science*, 2012, **77**, (5):C539-45. 5
<https://doi.org/10.1111/j.1750-3841.2012.02676.x> 6

34. A Brodkorb, L Egger, M Alminger, P Alvito, R Assunção, S Ballance, T Bohn, C 7
Bourlieu-Lacanal, R Boutrou, F Carrière, A Clemente, INFOGEST static in vitro 9
simulation of gastrointestinal food digestion, *Nature protocols*, 2019, **14**, (4):991- 10
1014. <https://doi.org/10.1038/s41596-018-0119-1>

35. I Luzardo-Ocampo, G Loarca-Piña, EG de Mejia, Gallic and butyric acids 11
modulated NLRP3 inflammasome markers in a co-culture model of intestinal 12
inflammation, *Food and chemical toxicology*, 2020, **146**, 111835. 13
<https://doi.org/10.1016/j.fct.2020.111835> 14

36. S Jiang, T Deng, H Cheng, W Liu, D Shi, J Yuan, Z He, W Wang, B Chen, L Ma, 15
X Zhang, Macrophage-organoid co-culture model for identifying treatment 16
strategies against macrophage-related gemcitabine resistance, *Journal of 17
Experimental & Clinical Cancer Research*. 2023, **42**, (1):199. 18
<https://doi.org/10.1186/s13046-023-02756-4> 19

37. A Cam, EG de Mejia, RGD-peptide lunasin inhibits Akt-mediated NF-κB 20
activation in human macrophages through interaction with the αVβ3 integrin, 21
Molecular nutrition & food research, 2012, **56**, (10):1569-81. 22
<https://doi.org/10.1002/mnfr.201200301> 23

38. J Schindelin, I Arganda-Carreras, E Frise, V Kaynig, M Longair, T Pietzsch, S 24
Preibisch, C Rueden, S Saalfeld, B Schmid, JY Tinevez, Fiji: an open-source 25
platform for biological-image analysis, *Nature methods*, 2012, **9**, (7):676- 26
82. [doi:10.1038/nmeth.2019](https://doi.org/10.1038/nmeth.2019) 27

39. S Shan, R Yin, J Shi, L Zhang, F Liu, Q Qiao, Z Li, Bowman-Birk major type trypsin 28
inhibitor derived from foxtail millet bran attenuate atherosclerosis via remodeling 29
gut microbiota in ApoE-/-mice, *Journal of Agricultural and Food Chemistry*, 2022, 30
70, (2):507-19. <https://doi.org/10.1021/acs.jafc.1c05747> 31

40. VP Dia, W Wang, VL Oh, BO De Lumen, EG De Mejia, Isolation, purification and 32
characterisation of lunasin from defatted soybean flour and in vitro evaluation of 33
its anti-inflammatory activity, *Food Chemistry*, 2009, **114**, (1):108-15. 34
<https://doi.org/10.1016/j.foodchem.2008.09.023> 35

41. CF Liu, TM Pan, Recombinant expression of bioactive peptide lunasin in 36
Escherichia coli, *Applied Microbiology and Biotechnology*, 2010, **88**, 177-86. 37

<https://doi.org/10.1007/s00253-010-2754-5>

42. S Kyle, KA James, MJ McPherson, Recombinant production of the therapeutic peptide lunasin, *Microbial Cell Factories*, 2012, **11**, 1-8. 2
<https://doi.org/10.1186/1475-2859-11-28> 3

43. CC Hsieh, YF Wang, PY Lin, SH Peng, MJ Chou, Seed peptide lunasin ameliorates obesity-induced inflammation and regulates immune responses in C57BL/6J mice fed high-fat diet, *Food and Chemical Toxicology*, 2021, **147**, 111908. <https://doi.org/10.1016/j.fct.2020.111908> 4

44. S Fernández-Tomé, P Indiano-Romacho, I Mora-Gutiérrez, L Pérez-Rodríguez, L Ortega Moreno, AC Marin, M Baldán-Martín, JA Moreno-Monteagudo, C Santander, M Chaparro, B Hernández-Ledesma, Lunasin peptide is a modulator of the immune response in the human gastrointestinal tract, *Molecular Nutrition & Food Research*, 2021, **65**, (12):2001034. <https://doi.org/10.1002/mnfr.202001034> 5

45. PY Huang, CC Chiang, CY Huang, PY Lin, HC Kuo, CH Kuo, CC Hsieh, Lunasin ameliorates glucose utilization in C2C12 myotubes and metabolites profile in diet-induced obese mice benefiting metabolic disorders, *Life Sciences*, 2023, **333**, 122180. <https://doi.org/10.1016/j.lfs.2023.122180> 6

46. S Paterson, S Fernández-Tomé, B Hernández-Ledesma, Modulatory Effects of a lunasin-enriched soybean extract on immune response and oxidative stress-associated biomarkers, *InBiology and Life Sciences Forum*, 2022, **12**, 10. MDPI. <https://doi.org/10.3390/IECN2022-12367> 7

47. B Li, J He, R Zhang, S Liu, X Zhang, Z Li, C Ma, W Wang, Y Cui, Y Zhang, Integrin-Linked Kinase in the Development of Gastric Tumors Induced by *Helicobacter pylori*: Regulation and Prevention Potential, *Helicobacter*, 2024, **29**, (4):e13109. <https://doi.org/10.1111/hel.13109> 8

48. F Zhang, MA Issah, HY Fu, HR Zhou, TB Liu, JZ Shen, LATS1 Promotes B-ALL Tumorigenesis by Regulating YAP1 Phosphorylation and Subcellular Localization, *Current Medical Science*, 2024, **44**, (1):81-92. <https://doi.org/10.1007/s11596-023-2821-7> 9

49. D Su, Y Li, L Guan, Q Li, C Shi, X Ma, Y Song, Elevated MST1 leads to apoptosis via depletion of YAP1 in cardiomyocytes exposed to high glucose, *Molecular Medicine*, 2021, **27**, 1-1. <https://doi.org/10.1186/s10020-021-00267-6> 10

50. P Nterma, E Panopoulou, E Papadaki-Petrou, M Assimakopoulou, Immunohistochemical profile of tumor suppressor proteins RASSF1A and LATS1/2 in relation to p73 and YAP expression, of human inflammatory bowel 11

disease and normal intestine, *Pathology & Oncology Research*, 2020, **26**, 567-74.
<https://doi.org/10.1007/s12253-018-00575-z>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

51. T Yuan, K Annamalai, S Naik, B Lipse, S Geravandi, A Pal, A Dobrowolski, J Ghawali, M Ruhlandt, KD Gorrepati, Z Azizi, The Hippo kinase LATS2 impairs pancreatic β -cell survival in diabetes through the mTORC1-autophagy axis, *Nature communications*. 2021, **12**, (1):4928. <https://doi.org/10.1038/s41467-021-25145-x>
52. X Hao, J Zhao, L Jia, G Ding, X Liang, F Su, S Yang, Y Yang, J Fan, WJ Zhang, L Yang, LATS1-modulated ZBTB20 perturbing cartilage matrix homeostasis contributes to early-stage osteoarthritis, *Bone Research*, 2025, **13**, (1):33. <https://doi.org/10.1038/s41413-025-00414-3>
53. B Dai, X Liu, M Du, S Xie, L Dou, X Mi, D Zhou, Y Su, T Shen, Y Zhang, S Yue, LATS1 inhibitor and zinc supplement synergistically ameliorates contrast-induced acute kidney injury: Induction of Metallothionein-1 and suppression of tubular ferroptosis, *Free Radical Biology and Medicine*, 2024, **223**, 42-52. <https://doi.org/10.1016/j.freeradbiomed.2024.07.019>
54. F Deng, J Yan, J Lu, M Luo, P Xia, S Liu, X Wang, F Zhi, D Liu, M2 macrophage-derived exosomal miR-590-3p attenuates DSS-induced mucosal damage and promotes epithelial repair via the LATS1/YAP/ β -catenin signalling axis, *Journal of Crohn's and Colitis*, 2021, **15**, (4):665-77. <https://doi.org/10.1093/ecco-jcc/jaa214>
55. T Moroishi, T Hayashi, WW Pan, Y Fujita, MV Holt, J Qin, DA Carson, KL Guan, The Hippo pathway kinases LATS1/2 suppress cancer immunity, *Cell*, 2016, **167**, (6):1525-39. <https://doi.org/10.1016/j.cell.2016.11.005>
56. Y Si, X Ji, X Cao, X Dai, L Xu, H Zhao, X Guo, H Yan, H Zhang, C Zhu, Q Zhou, Src inhibits the Hippo tumor suppressor pathway through tyrosine phosphorylation of Lats1, *Cancer research*, 2017, **77**, (18):4868-80. <https://doi.org/10.1158/0008-5472.CAN-17-0391>
57. S Mana-Capelli, D McCollum, Angiomotins stimulate LATS kinase autophosphorylation and act as scaffolds that promote Hippo signaling, *Journal of Biological Chemistry*, 2018, **293**, (47):18230-41. <https://doi.org/10.1074/jbc.RA118.004187>
58. JS Muhammad, M Guimei, MN Jayakumar, J Shafarin, AS Janeeh, R AbuJabal, MA Eladl, AV Ranade, A Ali, M Hamad, Estrogen-induced hypomethylation and overexpression of YAP1 facilitate breast cancer cell growth and survival, *Neoplasia*, 2021, **23**, (1):68-79. <https://doi.org/10.1016/j.neo.2020.11.002>
59. L Guo, Y Chen, J Luo, J Zheng, G Shao, YAP 1 overexpression is associated with poor prognosis of breast cancer patients and induces breast cancer cell growth by

inhibiting PTEN, *FEBS open bio*, 2019, **9**, (3):437-45. 1
<https://doi.org/10.1002/2211-5463.12597> 2

60. C Huang, W Li, C Shen, B Jiang, K Zhang, X Li, W Zhong, Z Li, Z Chen, C Chen, X Jian, YAP1 facilitates the pathogenesis of psoriasis via modulating keratinocyte proliferation and inflammation. *Cell Death & Disease*, 2025, **16**, (1):186. 3
<https://doi.org/10.1038/s41419-025-07521-3> 4

61. D Lin, C Luo, P Wei, A Zhang, M Zhang, X Wu, B Deng, Z Li, K Cui, Z Chen, YAP1 recognizes inflammatory and mechanical cues to exacerbate benign prostatic hyperplasia via promoting cell survival and fibrosis, *Advanced Science*, 2024, **11**, (5):2304274. <https://doi.org/10.1002/advs.202304274> 5

62. M Shibata, K Ham, MO Hoque, A time for YAP1: Tumorigenesis, immunosuppression and targeted therapy, *International journal of cancer*, 2018, **143**, (9):2133-44. <https://doi.org/10.1002/ijc.31561> 6

63. S Li, X Zhou, R Zeng, L Lin, X Zou, Y Yan, Z Lu, J Xia, L Zhang, S Ni, S Dai, YAP1 silencing attenuated lung injury/fibrosis but worsened diaphragmatic function by regulating oxidative stress and inflammation response in mice, *Free Radical Biology and Medicine*, 2022, **193**, 485-98. 7
<https://doi.org/10.1016/j.freeradbiomed.2022.10.323> 8

64. CK Sinclair, J Maruyama, S Nagashima, K Arimoto-Matsuzaki, JA Kuleape, H Iwasa, H Nishina, Y Hata, Protein kinase C α activation switches YAP1 from TEAD-mediated signaling to p73-mediated signaling, *Cancer Science*, 2022, **113**, (4):1305-20. <https://doi.org/10.1111/cas.15285> 9

65. MA Cucci, A Compagnone, M Daga, M Grattarola, C Ullio, A Roetto, A Palmieri, AC Rosa, M Argenziano, R Cavalli, MM Simile, Post-translational inhibition of YAP oncogene expression by 4-hydroxynonenal in bladder cancer cells, *Free Radical Biology and Medicine*, 2019, **141**, 205-19. 10
<https://doi.org/10.1016/j.freeradbiomed.2019.06.009> 11

66. HT Zhang, T Gui, RX Liu, KL Tong, CJ Wu, Z Li, X Huang, QT Xu, J Yang, W Tang, Y Sang, Sequential targeting of YAP1 and p21 enhances the elimination of senescent cells induced by the BET inhibitor JQ1, *Cell Death & Disease*, 2021, **12**, (1):121. <https://doi.org/10.1038/s41419-021-03416-1> 12

67. D Andrade, M Mehta, J Griffith, J Panneerselvam, A Srivastava, TD Kim, R Janknecht, T Herman, R Ramesh, A Munshi, YAP1 inhibition radiosensitizes triple negative breast cancer cells by targeting the DNA damage response and cell survival pathways, *Oncotarget*, 2017, **8**, (58):98495. 13
<https://doi.org/10.18632/oncotarget.21913> 14

1 68. Y Zhang, W Peng, W Yang, W Zhang, Y Fan, Efficacy and safety of programmed
2 cell death protein-1 inhibitor for first-line therapy of advanced gastric or
3 gastroesophageal junction cancer: a network meta-analysis, *Frontiers in*
4 *Immunology*, 2025, **16**, 1500954. <https://doi.org/10.3389/fimmu.2025.1500954>

5 69. S Song, M Xie, AW Scott, J Jin, L Ma, X Dong, HD Skinner, RL Johnson, S Ding,
6 JA Ajani, A novel YAP1 inhibitor targets CSC-enriched radiation-resistant cells and
7 exerts strong antitumor activity in esophageal adenocarcinoma, *Molecular cancer*
8 *therapeutics*, 2018, **17**, (2):443-54. <https://doi.org/10.1158/1535-7163.MCT-17-0560>

9 70. J Yong, Y Li, S Lin, Z Wang, Y Xu, Inhibitors targeting YAP in gastric cancer:
10 Current status and future perspectives, *Drug Design, Development and Therapy*,
11 2021, 2445-56. <https://doi.org/10.2147/DDDT.S308377>

12 71. S Li, L Hao, N Li, X Hu, H Yan, E Dai, X Shi, Targeting the Hippo/YAP1 signaling
13 pathway in hepatocellular carcinoma: From mechanisms to therapeutic drugs,
14 *International Journal of Oncology*, 2024, **65**, (3):88.
15 <https://doi.org/10.3892/ijo.2024.5676>

16 72. J Kusumah, ED Castañeda-Reyes, NA Bringe, E Gonzalez de Mejia, Soybean
17 (Glycine max) INFOGEST colonic digests attenuated inflammatory responses
18 based on protein profiles of different varieties, *International journal of molecular*
19 *sciences*, 2023, **24**, (15):12396. <https://doi.org/10.3390/ijms241512396>

20 73. K Nishinari, Y Fang, S Guo, GO Phillips, Soy proteins: A review on composition,
21 aggregation and emulsification, *Food hydrocolloids*, 2014, **39**, 301-18.
22 <https://doi.org/10.1016/j.foodhyd.2014.01.013>

23 74. L Zheng, JM Regenstein, L Zhou, Z Wang, Soy protein isolates: A review of their
24 composition, aggregation, and gelation, *Comprehensive Reviews in Food*
25 *Science and Food Safety*, 2022, **21**, (2):1940-57. <https://doi.org/10.1111/1541-4337.12925>

26 75. A Gitlin-Domagalska, A Maciejewska, D Dębowski, Bowman-Birk inhibitors:
27 Insights into family of multifunctional proteins and peptides with potential
28 therapeutic applications, *Pharmaceuticals*, 2020, **13**, (12):421.
29 <https://doi.org/10.3390/ph13120421>

30 76. D Li, R Ikaga, T Yamazaki, Soya protein β -conglycinin ameliorates fatty liver and
31 obesity in diet-induced obese mice through the down-regulation of PPAR γ ,
32 *British journal of nutrition*, 2018, **119**, (11):1220-32.
33 <https://doi.org/10.1017/S0007114518000739>

34 77. C Chatterjee, J Liu, C Wood, C Gagnon, ER Cober, JA Frégeau-Reid, S Gleddie,
35

36

CW Xiao, The α' subunit of β -conglycinin and various glycinin subunits of soy are not required to modulate hepatic lipid metabolism in rats, *European Journal of Nutrition*, 2018, **57**, 1157-68. <https://doi.org/10.1007/s00394-017-1399-x>

78. A Nieto-Veloza, Z Wang, Q Zhong, D D'Souza, HB Krishnan, VP Dia, Lunasin protease inhibitor concentrate decreases pro-inflammatory cytokines and improves histopathological markers in dextran sodium sulfate-induced ulcerative colitis, *Food Science and Human Wellness*, 2022, **11**, (6):1508-14. <https://doi.org/10.1016/j.fshw.2022.06.008>

Figure legends

Figure 1. (A) Ion-exchange chromatogram. (B) SDS-PAGE of fractions eluted by ion-exchange chromatography. Red box indicate protein band where presence of lunasin was detected. (C) LC-MS results of lunasin peptide sequence found in protein band at 5 kDa from fraction eluted at 9 min; aspartic acid tail and chromatin-binding sequence. (D) Comparison of lunasin concentrations in total protein extract and enriched lunasin protein extract. Data was expressed as means of two independent replicates. Asterisks indicate significant differences according to two-way ANOVA (** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$). (E) Purity of lunasin (%).

Figure 2. Production of IL-6 expressed as pg per mg of protein in macrophages stimulated with LPS and treated with *G. soja* samples. Data is shown as the mean of two independent replicates and analyzed using one-way ANOVA. (A) Cells treated with digested whole flour. (B) Cells treated with total protein extract. (C) Cells treated with lunasin-free protein. (D) Cells treated with enriched lunasin protein extract. (E) Comparison of IL-6 produced in cells after different treatments. Letters A – C showed significant differences ($p < 0.05$) among different accessions within same sample type. Letters W – X showed significant differences ($p < 0.05$) among different sample type within same accession. LPS= lipopolysaccharide; UNT = untreated cells; VP=Verteporfin used as a positive control.

Figure 3. Production of MCP-1 expressed as pg per mg of protein in macrophages stimulated with LPS and treated with *G. soja* samples. Data is shown as the mean of two independent replicates and analyzed using one-way ANOVA. (A) Cells treated with

G. *soja* digested whole flour. (B) Cells treated with G. *soja* total protein extract. (C) Cells treated with G. *soja* lunasin-free protein. (D) Cells treated with G. *soja* enriched lunasin protein extract. (E) Comparison of MCP-1 produced in cells after different treatments. Letters A – D showed significant differences ($p < 0.05$) among different accessions within same sample type. Letters W – X showed significant differences ($p < 0.05$) among different sample type within same accession.

Figure 4. Production of TNF- α expressed as pg per mg of protein in macrophages stimulated with LPS and treated with G. *soja* samples. Data is shown as the mean of two independent replicates and analyzed using one-way ANOVA. (A) Cells treated with G. *soja* digested whole flour. (B) Cells treated with G. *soja* total protein extract. (C) Cells treated with G. *soja* lunasin-free protein. (D) Cells treated with G. *soja* enriched lunasin protein extract. (E) Comparison of TNF- α produced in cells after different treatments. Letters A – D showed significant differences ($p < 0.05$) among different accessions within same sample type. Letters W – X showed significant differences ($p < 0.05$) among different sample type within same accession.

Figure 5. Expression of YAP1 and p-YAP1 represented as fold change compared to LPS. Data was expressed as means of two independent replicates. Different letters showed statistical significance ($p < 0.05$) according to one-way ANOVA. (A) Cells treated with G. *soja* digested whole flour. (B) Cells treated with G. *soja* total protein extract. (C) Cells treated with G. *soja* lunasin-free protein. (D) Cells treated with G. *soja* enriched lunasin protein extract. (E) Cells treated with G. *max* lunasin-free protein. (F) Cells treated with G. *max* enriched lunasin protein extract. Asterisks (*) represent statistically significant difference ($p < 0.05$) in the expression of YAP1 compared to p-YAP1 according to Student's t-test. Different letters A – C represent statistically significant differences for YAP1 expression among different accessions ($p < 0.05$) according to one-way ANOVA. Different letters X – Z represent statistically significant differences for p-YAP1 expression among different accessions ($p < 0.05$) according to one-way ANOVA.

Figure 6. Expression of LATS1/2 and p-LATS1/2 represented as fold change compared to LPS. Data was expressed as means of two independent replicates. Different letters

showed statistical significance ($p < 0.05$) according to one-way ANOVA. (A) Cells treated with *G. soja* digested whole flour. (B) Cells treated with *G. soja* total protein extract. (C) Cells treated with *G. soja* lunasin-free protein. (D) Cells treated with *G. soja* enriched lunasin protein extract. (E) Cells treated with *G. max* lunasin-free protein. (F) Cells treated with *G. max* enriched lunasin protein extract. Asterisks (*) represent statistically significant difference ($p < 0.05$) in the expression of LATS1/2 compared to p-LATS1/2 according to Student's t-test. Different letters A – B represent statistically significant differences for LATS1 expression among different accessions ($p < 0.05$) according to one-way ANOVA. Different letters X – Z represent statistically significant differences for p-LATS1 expression among different accessions ($p < 0.05$) according to one-way ANOVA.

Figure 7. Expression of MST1/2 and p-MST1/2 represented as fold change compared to LPS. Data was expressed as means of two independent replicates. Different letters showed statistical significance ($p < 0.05$) according to one-way ANOVA. (A) Cells treated with *G. soja* digested whole flour. (B) Cells treated with *G. soja* total protein extract. (C) Cells treated with *G. soja* lunasin-free protein. (D) Cells treated with *G. soja* enriched lunasin protein extract. Asterisks (*) represent statistically significant difference ($p < 0.05$) in the expression of MST1/2 compared to p- MST1/2 according to Student's t-test. Different letters A – C represent statistically significant differences for MST1 expression among different accessions ($p < 0.05$) according to one-way ANOVA. Different letters X – Z represent statistically significant differences for p-MST1 expression among different accessions ($p < 0.05$) according to one-way ANOVA.

Figure 8. Expression of MOB1 represented as fold change compared to LPS. Data was expressed as means of two independent replicates. Different letters showed statistical significance ($p < 0.05$) according to one-way ANOVA. (A) Cells treated with *G. soja* digested whole flour. (B) Cells treated with *G. soja* total protein extract. (C) Cells treated with *G. soja* lunasin-free protein. (D) Cells treated with *G. soja* enriched lunasin protein extract. Different letters A – C represent statistically significant differences ($p < 0.05$) according to one-way ANOVA.

Figure 9. Expression of SAV1 represented as fold change compared to LPS. Data was

expressed as means of two independent replicates. Different letters showed statistical significance ($p < 0.05$) according to one-way ANOVA. (A) Cells treated with *G. soja* digested whole flour. (B) Cells treated with *G. soja* total protein extract. (C) Cells treated with *G. soja* lunasin-free protein. (D) Cells treated with *G. soja* enriched lunasin protein extract. Different letters A – C represent statistically significant differences ($p < 0.05$) according to one-way ANOVA.

Figure 10. (A) Immunofluorescence staining results as captured by confocal microscopy. (B) Cytoplasmic YAP1 expression in cells treated with LPS, VP, UNT, *G. soja* ELPE PI407207 and *G. soja* PI424088 represented as integrated pixel density (C) Nuclear YAP1 expression in cells treated with LPS, VP, UNT, *G. soja* ELPE PI407207 and *G. soja* PI424088 represented as integrated pixel density. (D) Nuclear:cytoplasmic YAP1 expression ratio in cells treated with LPS, VP, UNT, *G. soja* ELPE PI407207 and *G. soja* PI424088. Different letters showed statistical significance ($p < 0.05$) according to one-way ANOVA. The integrated density has been normalized to the number of cells present in each image (number of DAPI-stained nuclei visible = number of cells present). The bar graph results showed an average of five images per treatment that had been normalized according to the number of cells.

Figure 11. Diagram showing the activated (left) and inactive (right) Hippo pathway. Soybean bioactive compounds mitigated inflammation by increasing the expression of phosphorylated LATS1/2 and YAP1 kinases, leading to decreased production of pro-inflammatory markers IL-6, MCP-1 and IL-1 β .

Supplementary Figure 1. SDS-PAGE results of accession PI424088 after filtration with 30 and 50 kDa MWCO filters. Red box indicated lunasin band. Yellow box indicated the bands that were cut from the gel and used for LC-MS/MS analysis to find the lunasin sequence. Previously purified lunasin was used as a control. This figure was adapted from Kusumah et al. (2025).

Supplementary Figure 2. Cell viability after treatment with different concentrations of digests, lunasin-free protein, total protein extract and enriched lunasin protein extract from different accessions of *G. soja*. Different letters showed statistical significance ($p < 0.05$) according to one-way ANOVA

Supplementary Figure 3. SDS-PAGE results of accession PI424088 showing the protein profile of lunasin-free protein (LFP) eluted by Buffer A (Tris-HCl, 1 M, pH 7.5) in comparison to enriched lunasin protein extract (ELPE) eluted by Buffer B (Tris-HCl + NaCl, 1 M, pH 7.5) after first and second purification, and before filtration with 50 kDa MWCO filter. Red box indicated the presence of β -conglycinin and lunasin.

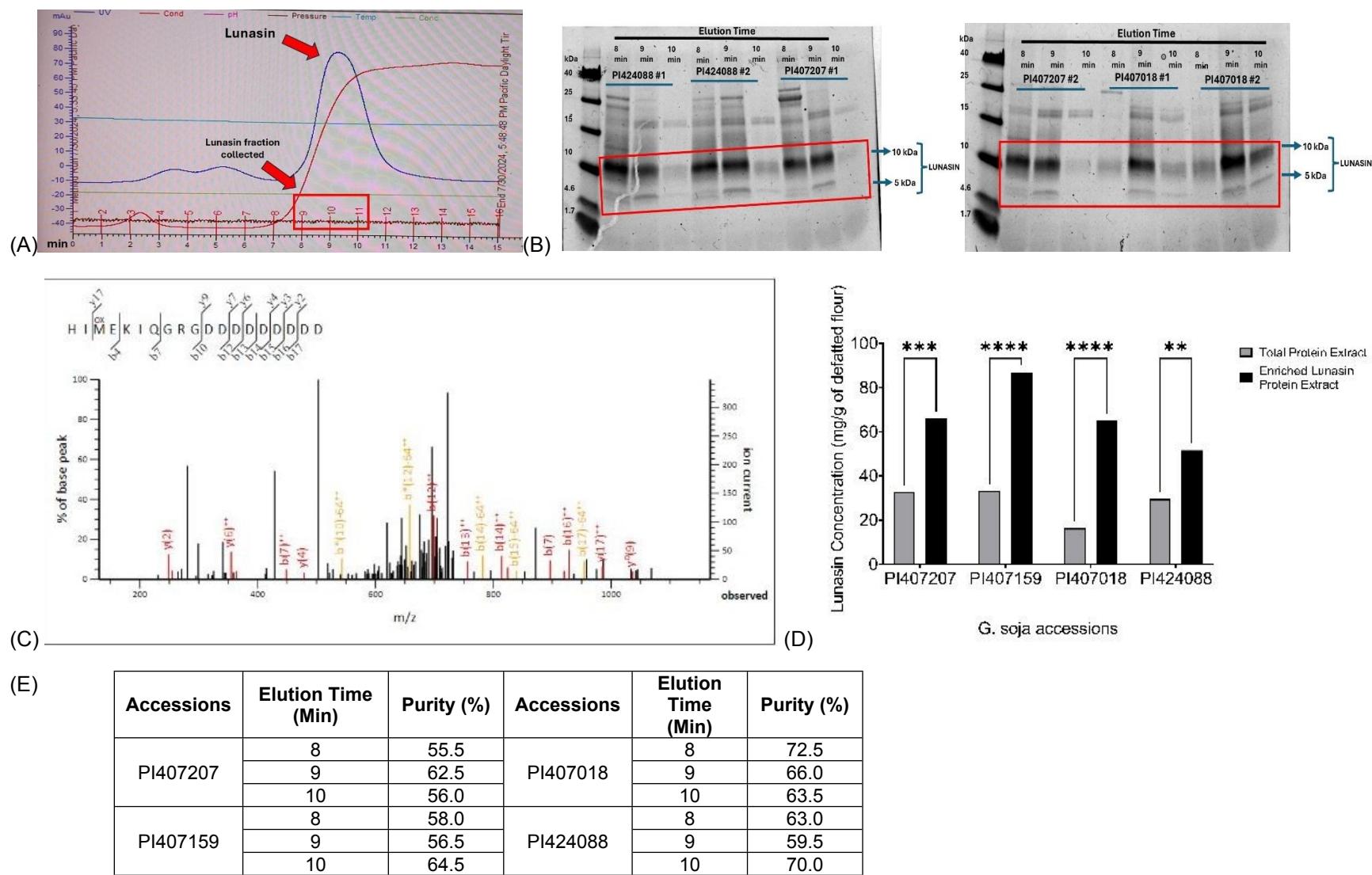
Table 1. Effect of different sample types from *G. soja* in IL-1 β (IC₅₀) in THP-1 macrophages stimulated by LPS.

Accessions	Sample Type	Lunasin (mg/g of defatted flour)	IL-1 β IC ₅₀ (mg/mL)
PI407207	DWF	0.9	1.50 \pm 0.1 ^{B, a}
	TPE	32.6	0.015 \pm 0.0002 ^{A, b}
	LFP	0.000233	0.021 \pm 0.02 ^{B, b}
	ELPE	65.9	0.017 \pm 0.01 ^{A, b}
PI407159	DWF	1.8	0.68 \pm 0.1 ^{C, a}
	TPE	32.9	0.012 \pm 0.0005 ^{A, b}
	LFP	0.000312	0.024 \pm 0.01 ^{B, b}
	ELPE	86.9	0.036 \pm 0.005 ^{A, b}
PI407018	DWF	1.2	0.86 (IC ₃₀) \pm 0.5 ^{D, a}
	TPE	16.2	0.025 \pm 0.008 ^{A, b}
	LFP	0.000211	0.022 \pm 0.01 ^{B, b}
	ELPE	65.1	0.016 \pm 0.01 ^{A, b}
PI424088	DWF	0.8	1.90 \pm 0.6 ^{A, a}
	TPE	29.5	0.070 \pm 0.06 ^{A, b}
	LFP	0.00031	0.144 \pm 0.07 ^{A, bc}
	ELPE	51.6	0.038 \pm 0.004 ^{A, c}
PI567313 (<i>G. max</i>)	LFP	1.4	0.124 \pm 0.08 ^A
	ELPE	19.1	0.0010 \pm 0.003 ^B
PI594845 (<i>G. max</i>)	LFP	2.4	0.164 \pm 0.12 ^A
	ELPE	25.5	0.0029 \pm 0.001 ^B

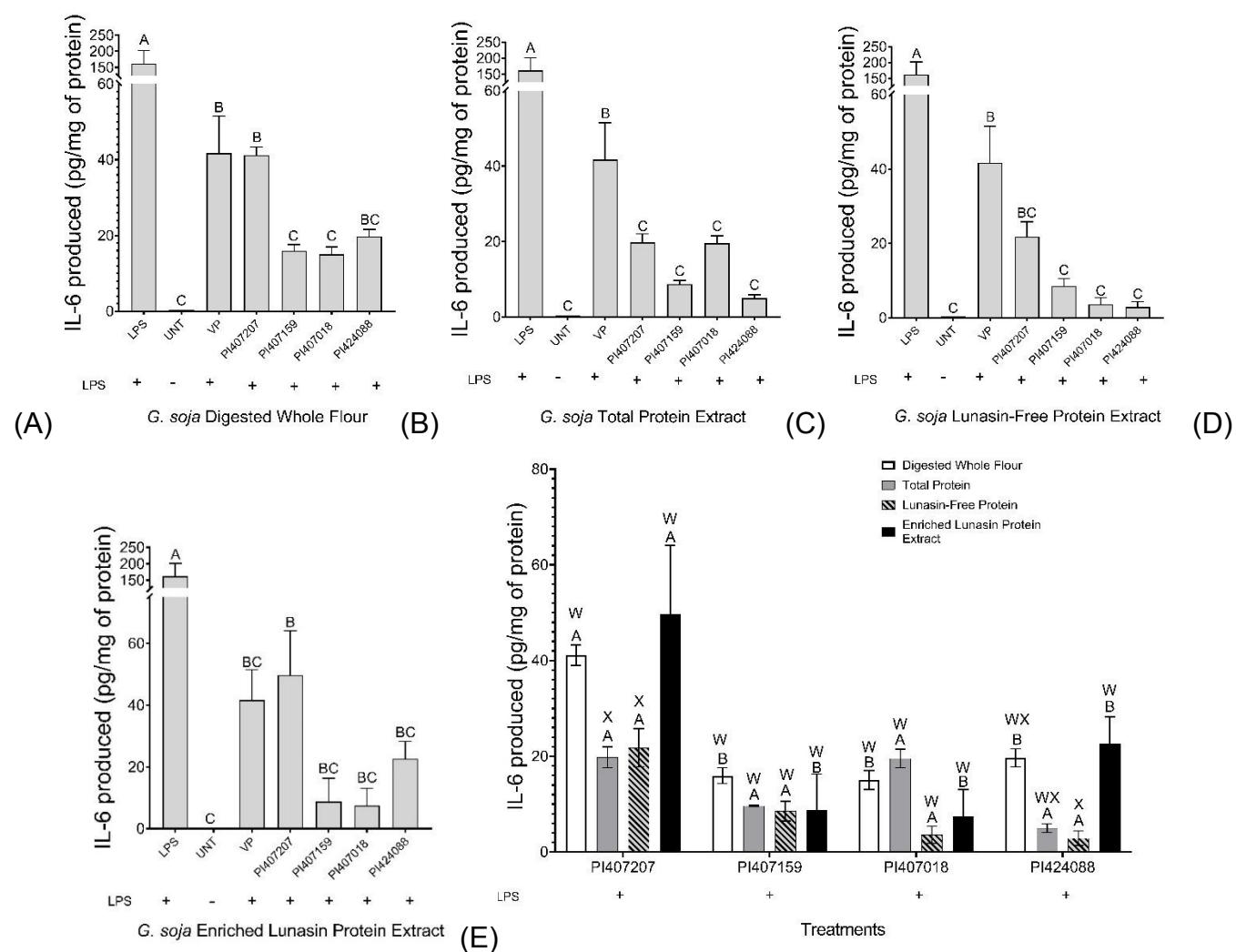
IC₅₀ is defined as the amount (mg/mL) of sample needed to inhibit 50% of activity, in this case the production of IL-1 β . Lower IC₅₀ indicated higher effectiveness of sample to inhibit 50% of IL-1 β production. Different letters A – D represent significant differences within same sample type and among different accessions according to one-way ANOVA ($p < 0.05$). Different letters a – d represent significant differences in different sample type and within same accessions according to one-way ANOVA ($p < 0.05$). Digested whole flour (DWF), total protein extract (TPE), lunasin-free total protein extract (LFP), and enriched lunasin protein extract (ELPE).

1
218
19
20
21
22
23
24
25
26

Table 2. Summarized changes in expression of pro-inflammatory markers.


1

Accessions	Sample Type	Biomarkers										MOB 1	SAV 1		
		IL-6	IL-1 β	TNF- α	MCP-1	YAP1		LATS1/2		MST1/2					
						P (-)	P (+)	P (-)	P (+)	P (-)	P (+)				
PI407207	DWF	↓*	↓*	NS	↓*	↓*	NS	↓*	↑*	↓*	NS	NS	NS		
	TPE	↓*	↓*	↑*	↓*	↓*	NS	↓*	NS	NS	↓*	NS	↓*		
	LFP	↓*	↓*	↑*	↓*	↓*	NS	↓*	NS	↓*	NS	NS	NS		
	ELPE	↓*	↓*	NS	↓*	↓*	↑*	↓*	NS	↑*	NS	NS	NS		
PI407159	DWF	↓*	↓*	↑*	NS	↓*	NS	↓*	NS	↓*	↑*	NS	↓*		
	TPE	↓*	↓*	↑*	↓*	↓*	NS	↓*	NS	NS	NS	NS	NS		
	LFP	↓*	↓*	↑*	↓*	↓*	NS	↓*	NS	NS	NS	NS	NS		
	ELPE	↓*	↓*	NS	↓*	↓*	NS	↓*	NS	↓*	NS	NS	NS		
PI407018	DWF	↓*	↓*	NS	NS	↓*	NS	↓*	↑*	NS	NS	NS	NS		
	TPE	↓*	↓*	NS	↓*	↓*	NS	↓*	NS	NS	NS	NS	NS		
	LFP	↓*	↓*	NS	↓*	↓*	NS	↓*	NS	NS	NS	NS	NS		
	ELPE	↓*	↓*	NS	↓*	↓*	NS	↓*	NS	NS	NS	NS	NS		
PI424088	DWF	↓*	↓*	NS	NS	NS	NS	↓*	↑*	NS	NS	↓*	↓*		
	TPE	↓*	↓*	↓*	↓*	↓*	↑*	↓*	NS	NS	NS	↑*	NS		
	LFP	↓*	↓*	NS	↓*	↓*	NS	↓*	NS	NS	NS	NS	NS		
	ELPE	↓*	↓*	NS	↓*	↓*	NS	↓*	NS	↑*	NS	NS	NS		


Arrow up (↑) indicates that the expression increased, arrow down (↓) indicates that the expression decreased compared to control, LPS. Asterisk (*) indicated that the decrease or increase is statistically significant ($p \leq 0.05$) compared to control, LPS. * Indicates statistically significant anti-inflammatory potential. P (-) represented dephosphorylated kinase. P (+) represented phosphorylated kinases. Verteprofin: IL-6↓*, 41.7 pg/mg of protein; IL-1 β ↓*, 5.0 pg/mg of protein; TNF- α , NS, 5.9 pg/mg of protein; MCP-1↓*, 20.9 pg/mg of protein; YAP-1↓*, 0.44 fold change; p-YAP1↑*, 1.69 fold change; LATS1/2↓*, 0.40 fold change; p-LATS1/2↑*, 1.65 fold change; MST1/2↓*, 0.65 fold change; p-MST1/2, NS, 1.08 fold change; MOB1, NS, 0.92 fold change; SAV1, NS, 0.82 fold change. Digested whole flour (DWF), total protein extract (TPE), lunasin-free total protein extract (LFP), and enriched lunasin protein extract (ELPE).

2
3
4
5
6
7
8
9
10

Figure 1

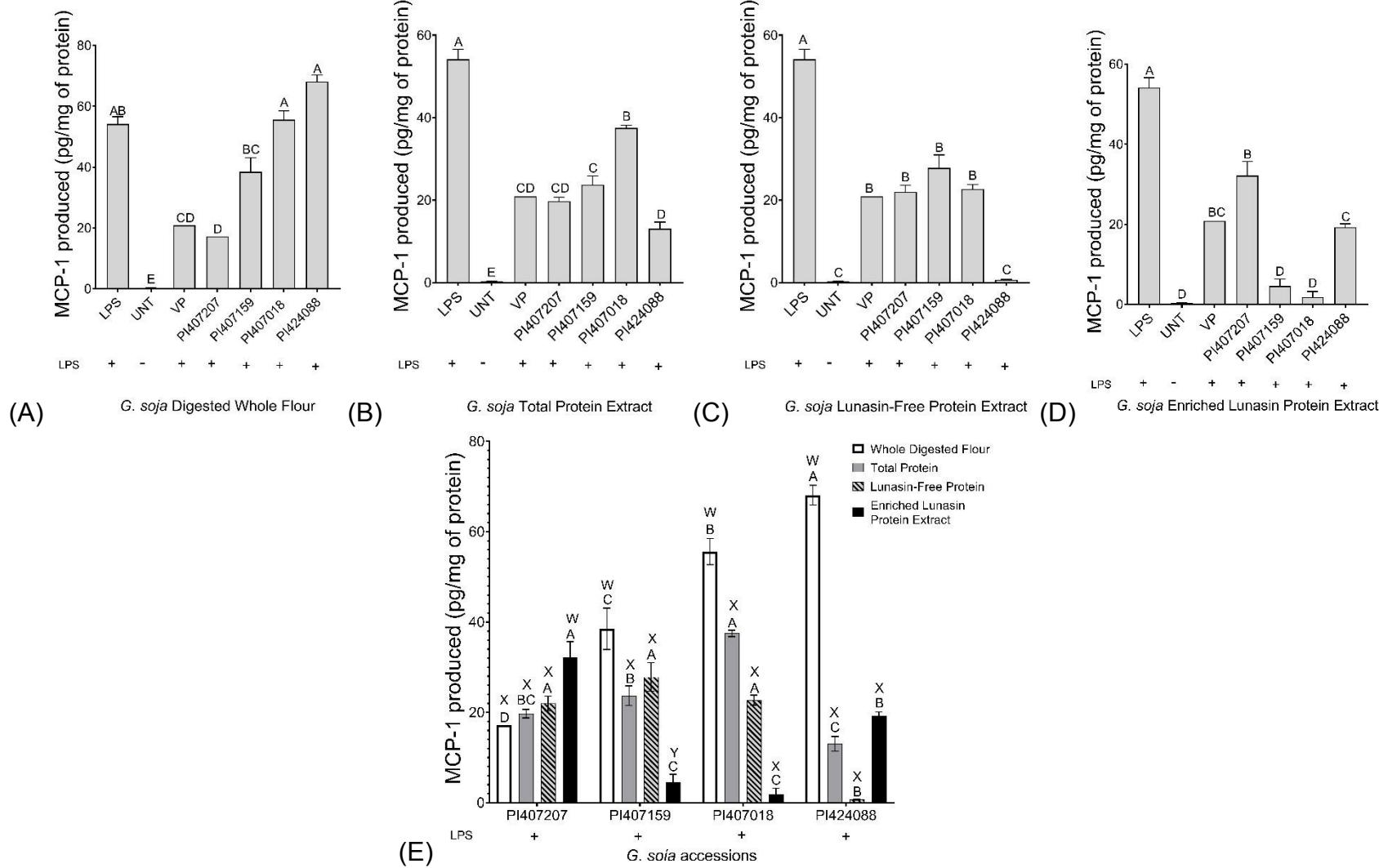


Figure 2.

9

10

11

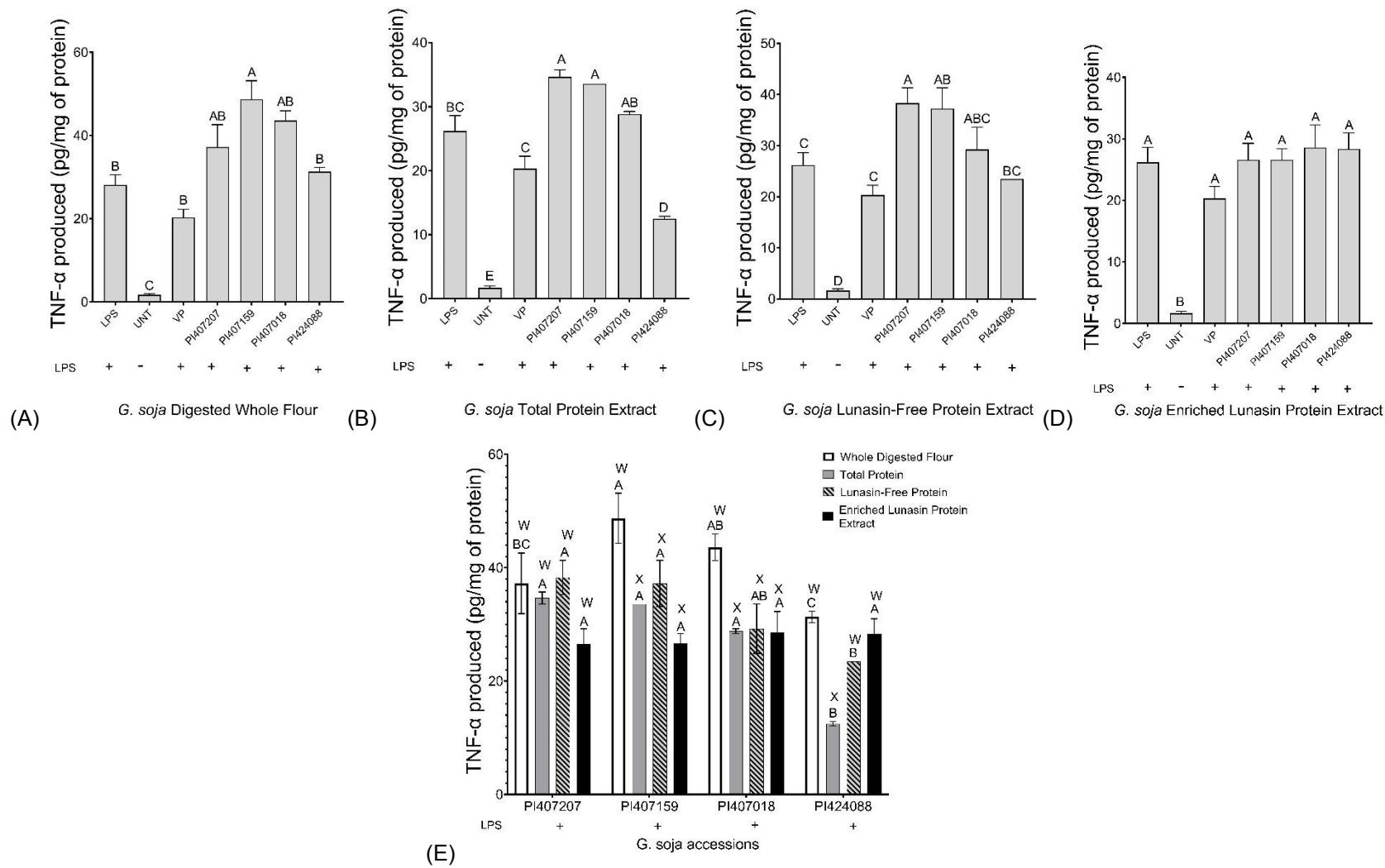
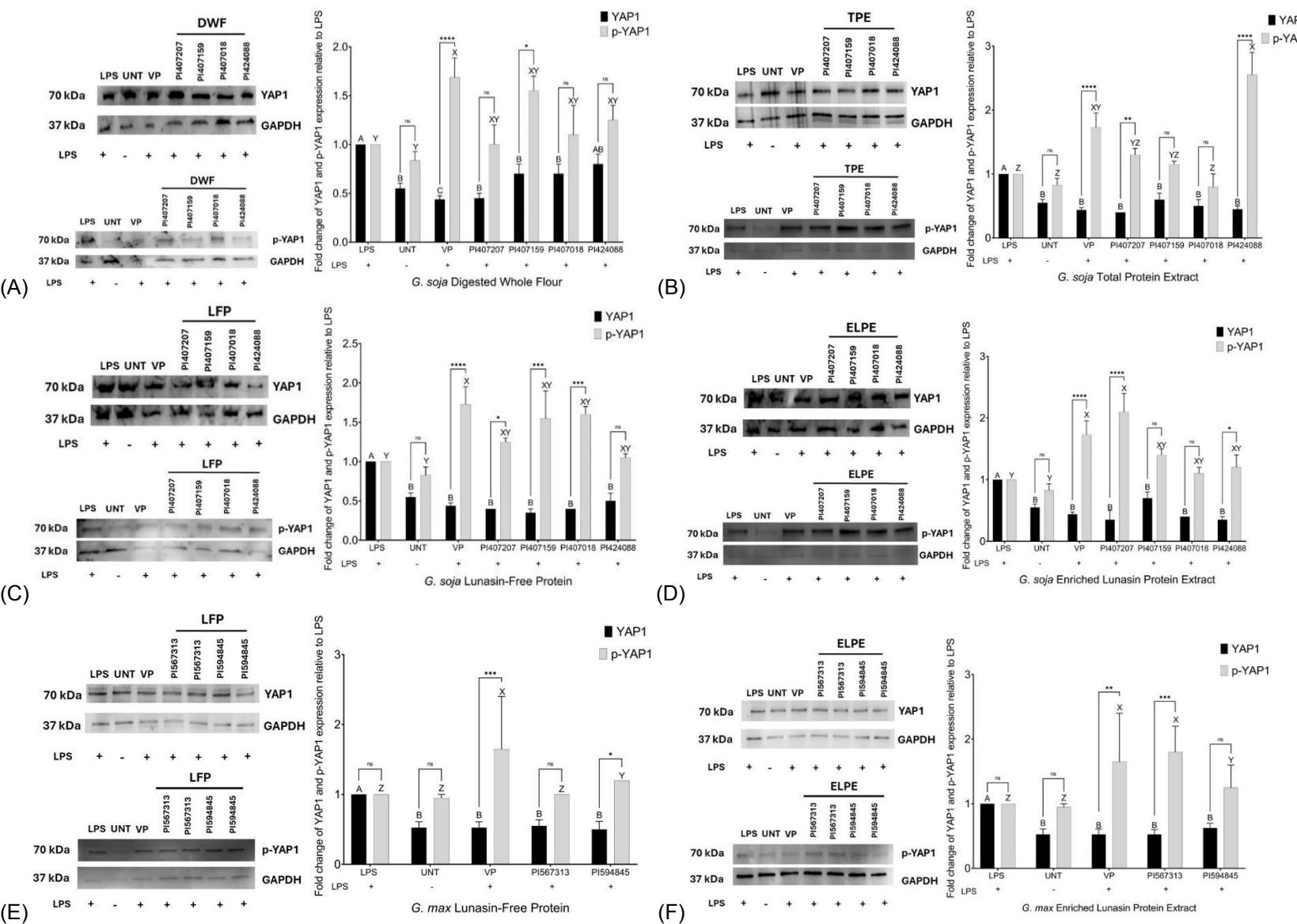


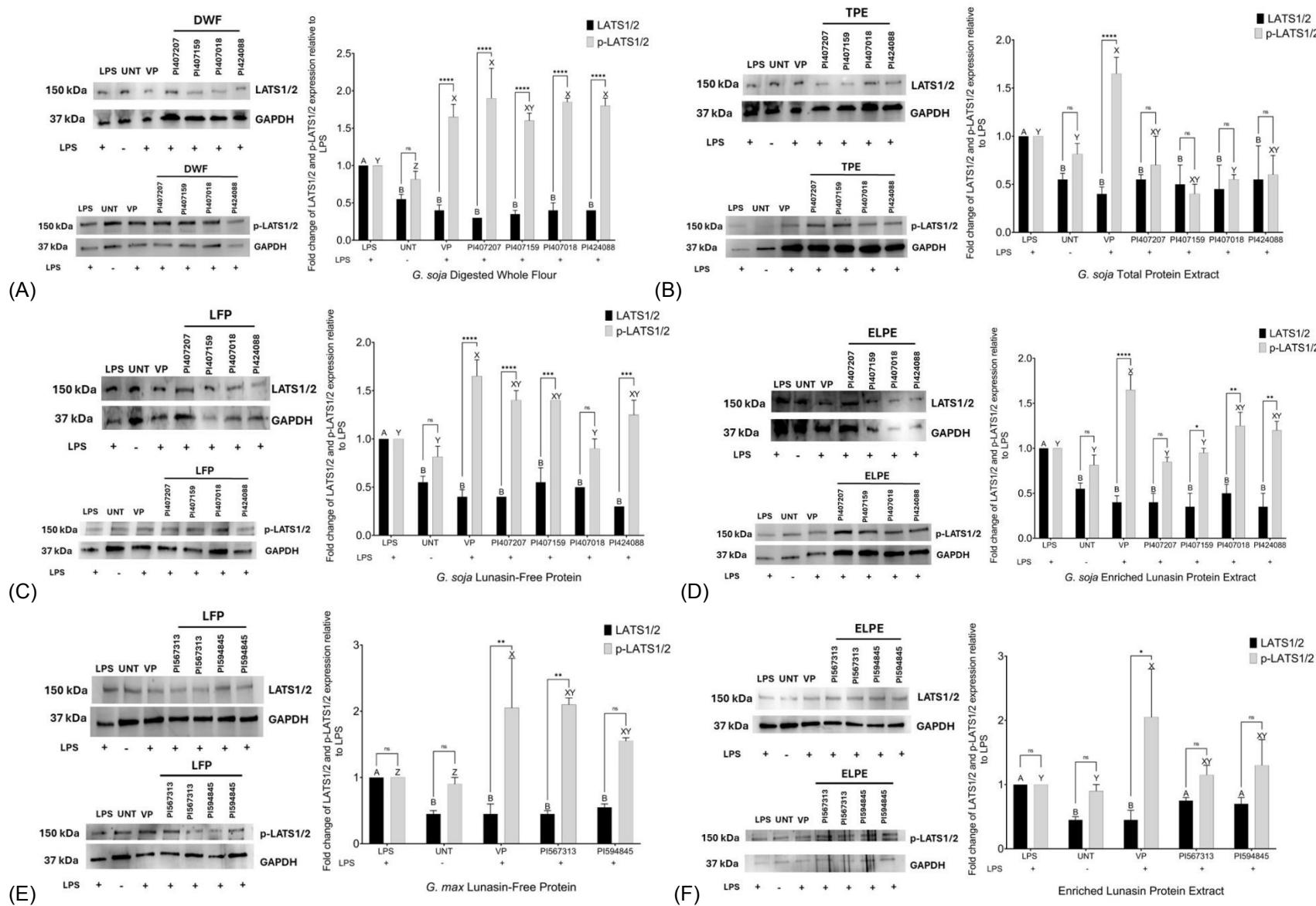
Figure 3.


12

13

14

Figure 4.


Figure 5.

18

19

20

21

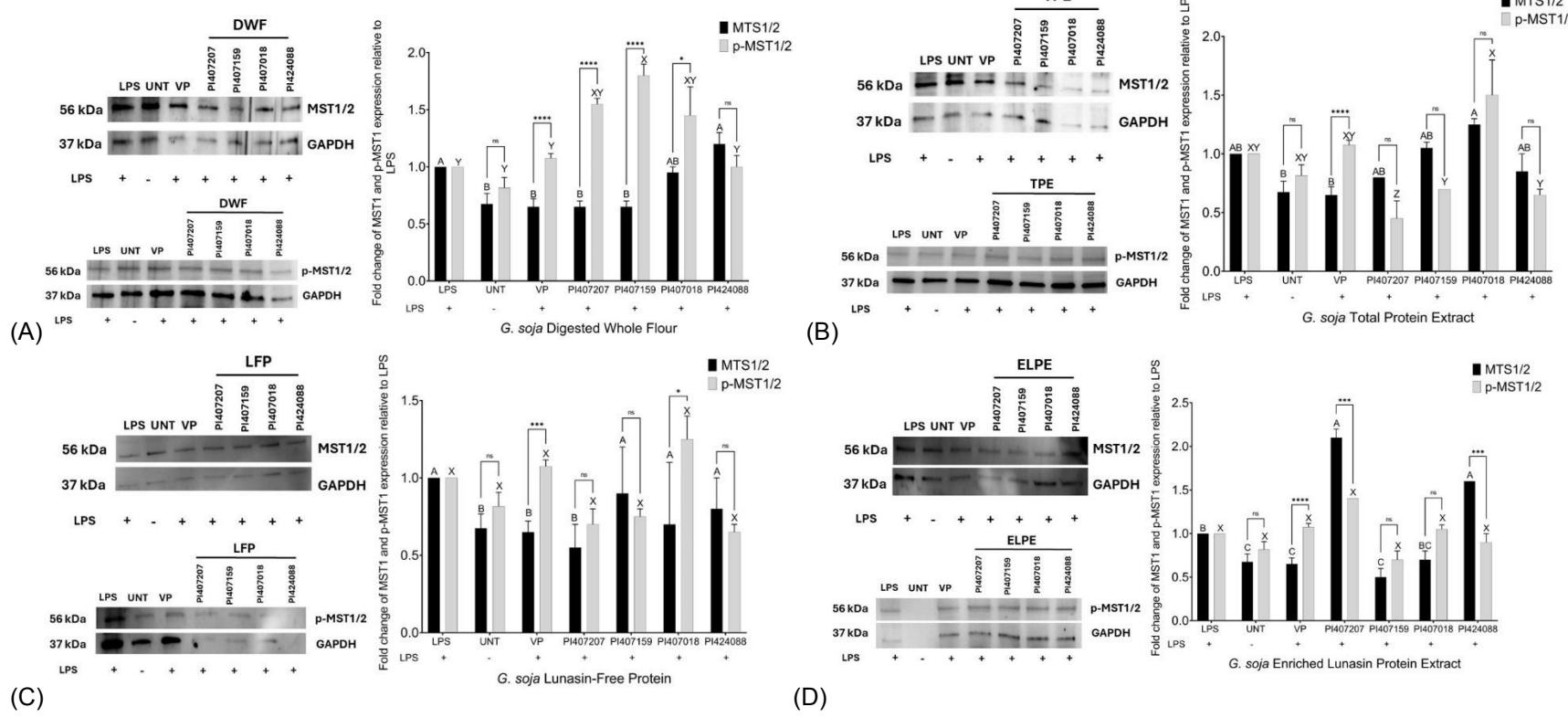
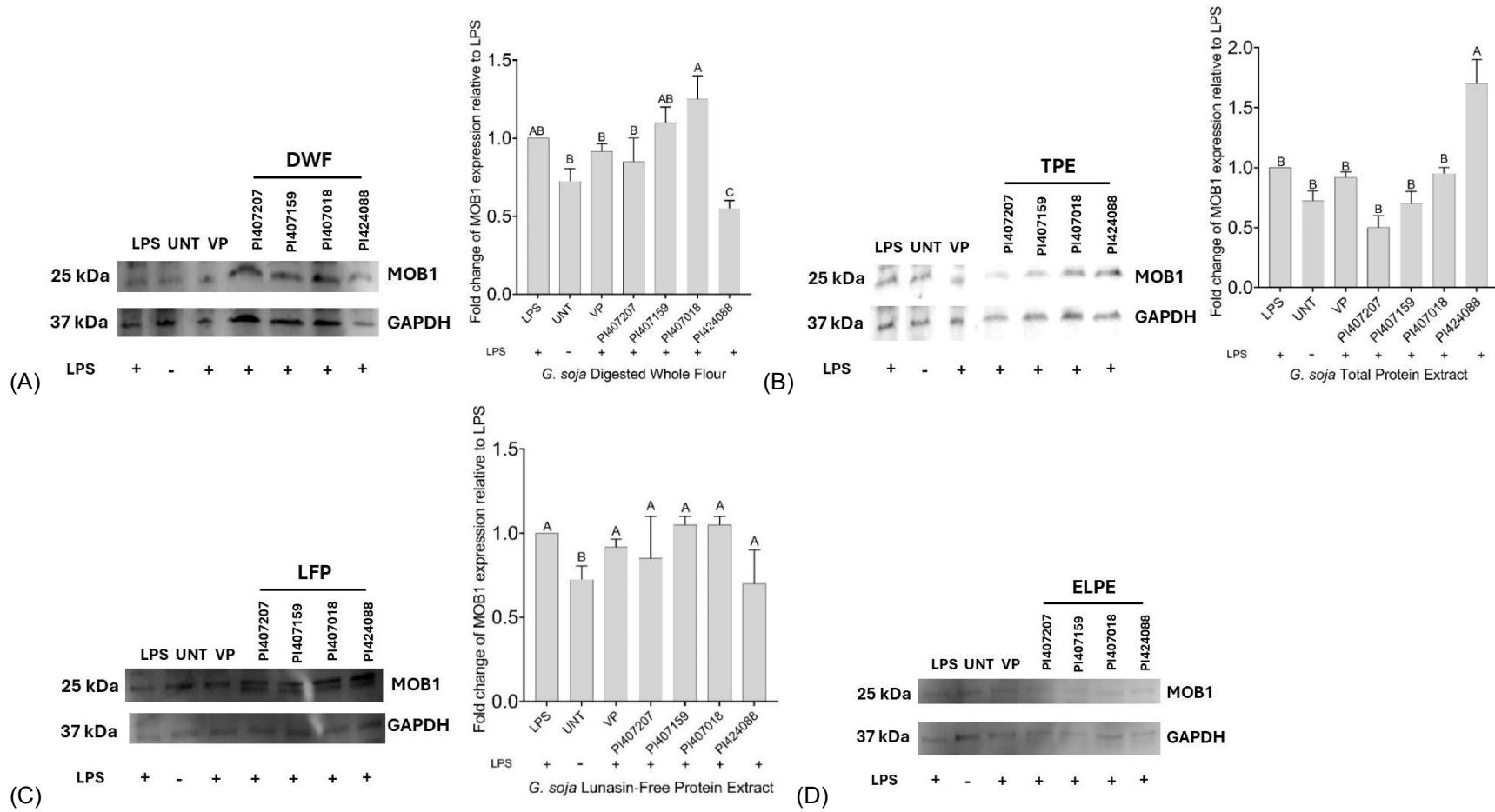
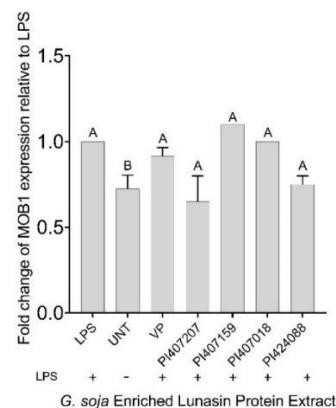
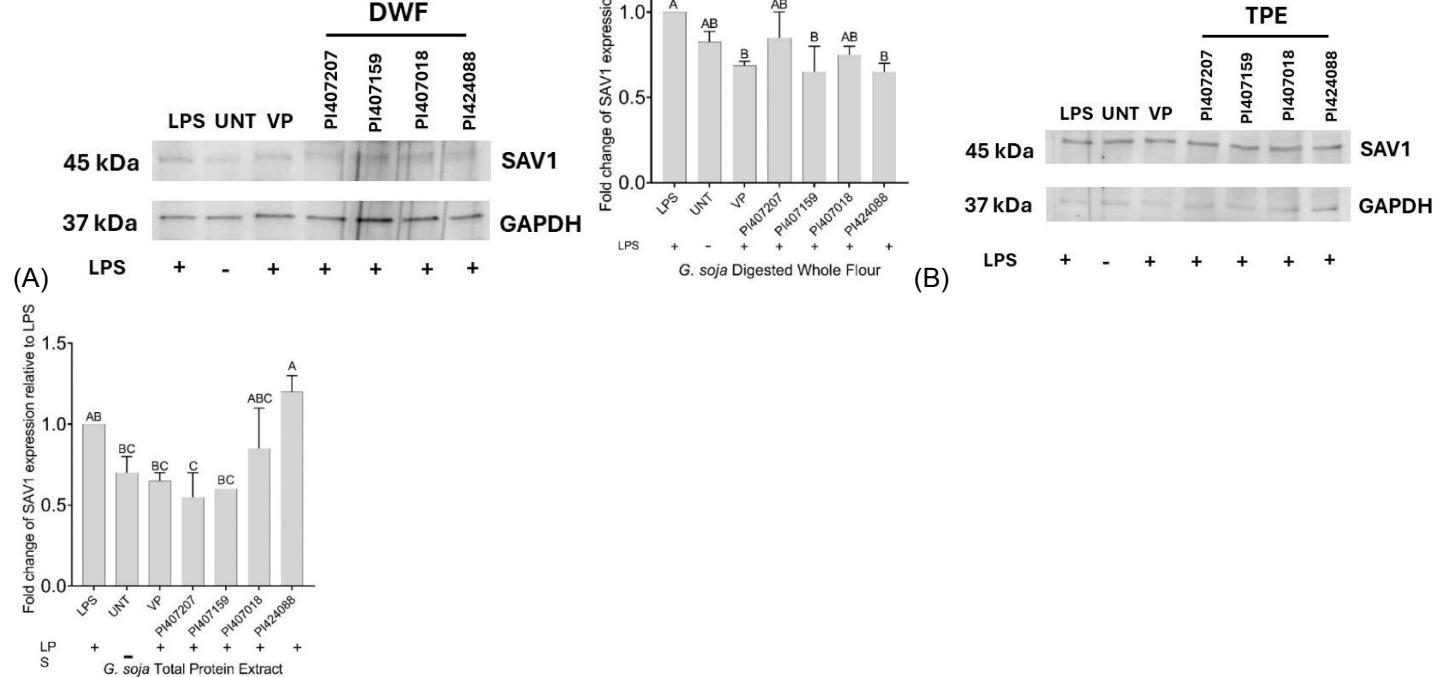





Figure 7.

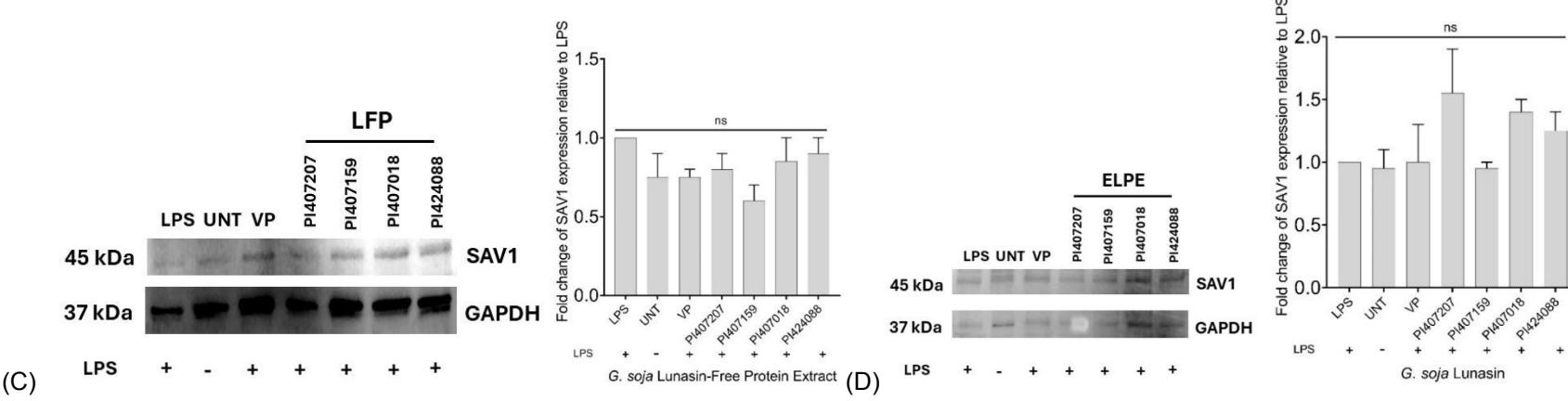


Figure 8.

33

34

Figure 9.

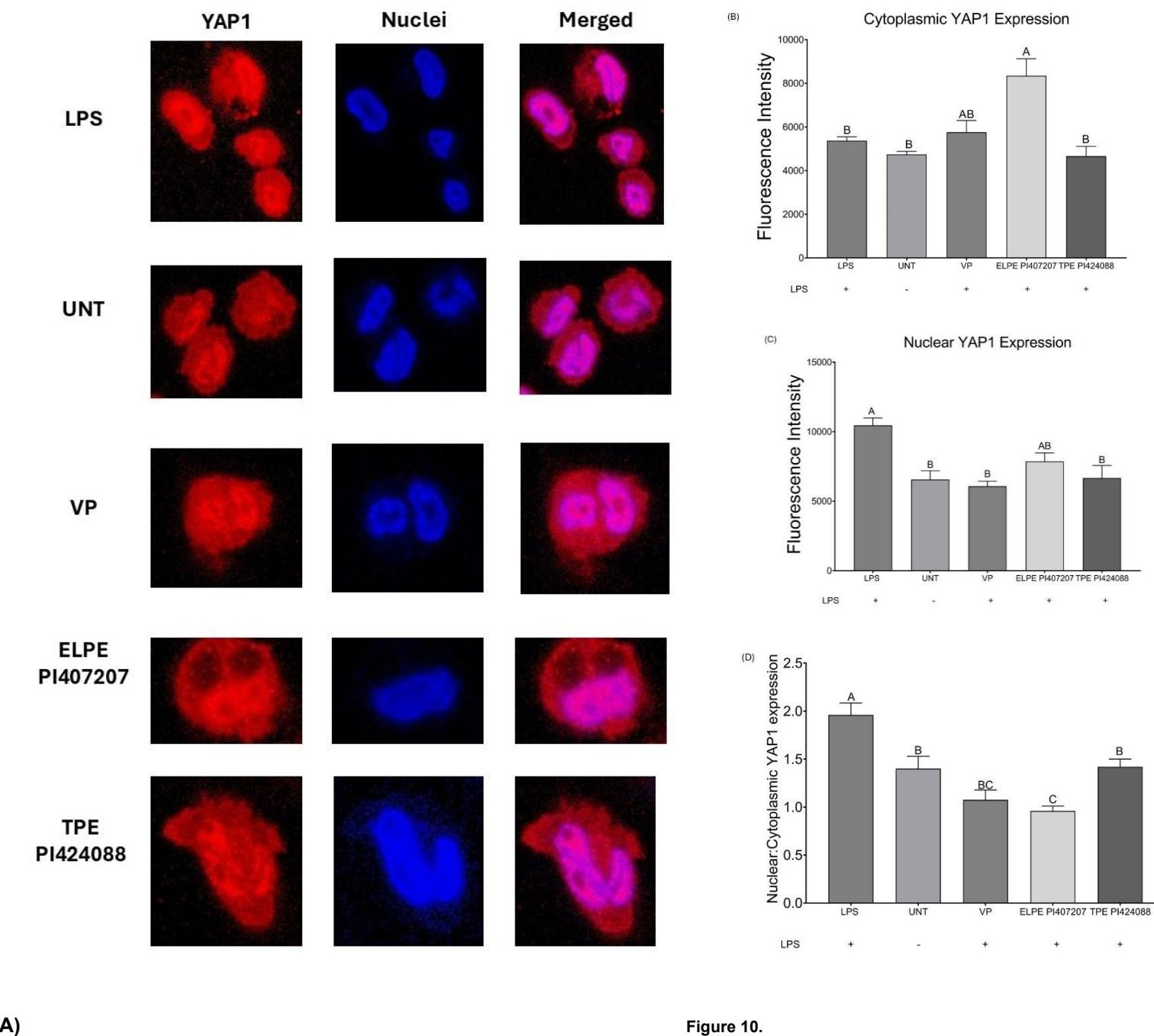


Figure 10.

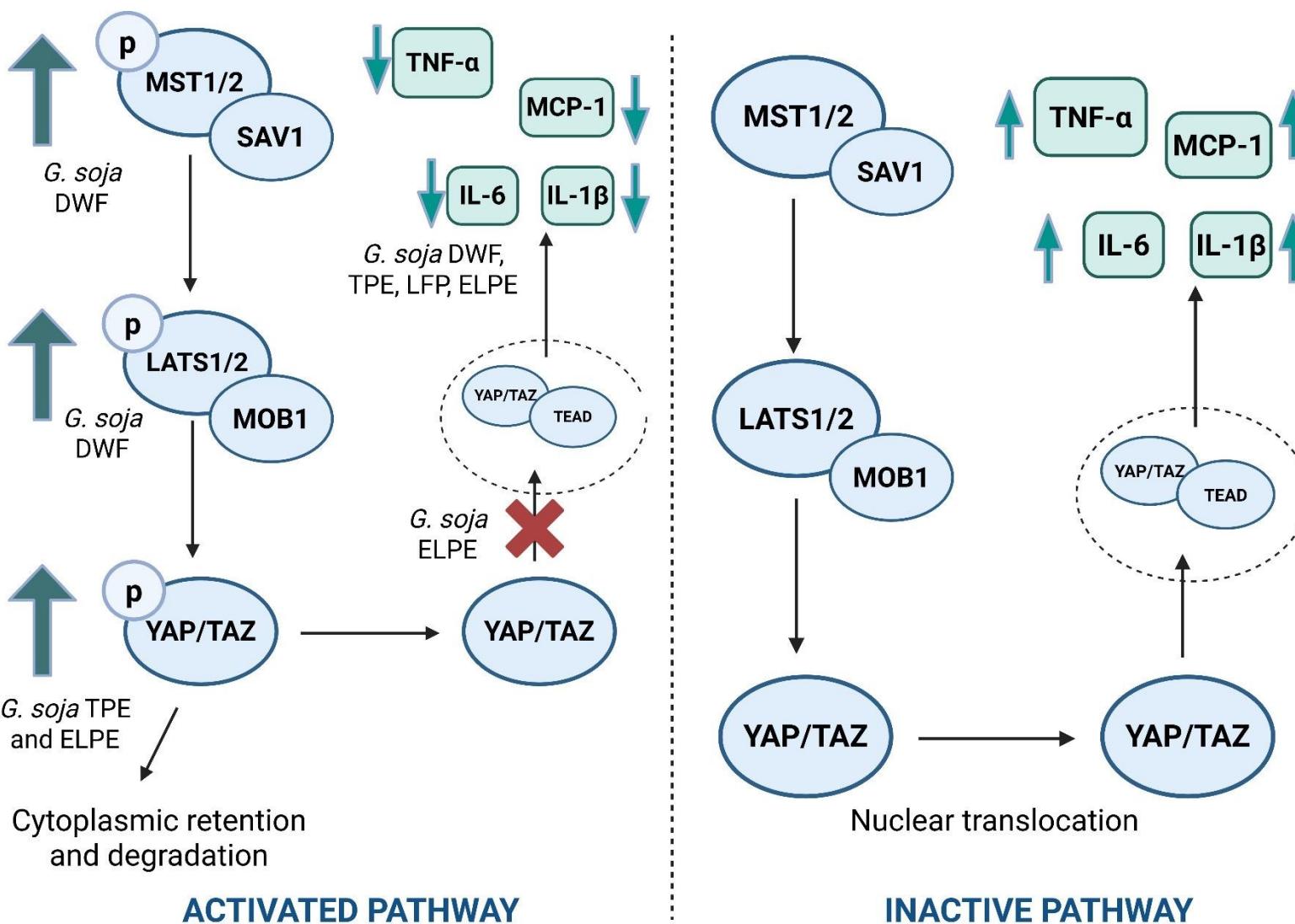


Figure 11.

Data available within the article or its supplementary materials

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

