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Lignin, a complex and abundant biopolymer found in plants, holds immense potential for
sustainable materials and chemicals. However, conventional extraction methods often
lead to structural deterioration of the native-like aryl ether structure via condensation
and other chemical alterations, limiting lignin utility. High delignification in conjunction
with preservation of the versatility and functionality of lignin structure for high-value
applications can be achieved using advanced mild extraction techniques. In this study,
an integrated modeling—experimental approach is used to attain a scalable framework
for lignin-first biorefining. Temperature and flow rate were optimized in a flow-through
mild ethanosolv system utilizing crude birch-wood chips (without extractive-removal)
to balance solvent use, delignification, and structure preservation. Delignification and
lignin yield were monitored separately as was its quality in terms of preservation of its
native aryl-ether structure, as determined via 2D HSQC NMR and GPC. Extraction
kinetics were monitored using UV-Vis spectroscopy to allow for maximizing efficient
solvent utilization. Response surface methodology identified optimal conditions (145-
151 °C, 8 Qgsowent Min~t flow rate), revealing temperature as the primary driver for
extraction, exhibiting synergistic effects with the flow rate. Notably, higher flow rates at
elevated temperatures (=140 °C) mitigated B-O-4 linkage degradation without
compromising delignification efficiency. Experimental validation of the optimized model
at 150 °C and 8 geowent Min~ ! achieved 82 wt% delignification and yielded lignin with
high B-O-4 linkage content (59.4 per 100 aromatic units (ArU)), aligning closely with
model predictions (81-87 wt%, =52 B-O-4 per 100 ArU). Solvent consumption was
optimized from the model (13.1 mL g™, solvent : biomass) and realized a reduction of
over 40% of solvent consumption when compared with solvent consumption from
typical batch organosolv systems (229 mL g% solvent:biomass). Finally, the
optimization reduced the extraction time significantly from typically 2 hours to 30 min
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when compared with previous standard extraction conditions (120 °C, 2 gsoent min~* flow
rate), without compromising on extraction efficiency and lignin quality. This study shows
the potential of mild organosolv extraction with alcohol with optimized conditions.

1 Introduction

Birch wood (genus Betula) is a predominant hardwood native to temperate and
boreal regions, particularly abundant in Northern Europe and Canada. Despite its
widespread availability and advantageous chemical composition, birch wood
remains underutilized in industrial processing’ due to challenges associated
with its high hemicellulose content and structurally complex lignin, which can
hinder conventional pulping and downstream operations. Consequently,
substantial volumes of birch wood are used for low-value energy production, or
discarded as waste."* As sustainable, non-food lignocellulosic feedstocks gain
prominence, birch wood has emerged as a prominent substrate for biomass
valorization and in particular in research related to lignin extraction and
utilization.

Lignin as a heterogenous polymer comprises mainly of three phenylpropanoid
monomers: p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol. These
monolignols form the building blocks of lignin, polymerizing into p-hydrox-
yphenyl (H), guaiacyl (G), and syringyl (S) units, respectively (Fig. 1). The relative
abundance of these units depends, among other environmental factors, on the
plant species, and birch as a hardwood consists mostly of S and G units.* Lignin’s
complex structure is characterized by various types of linkages between these
units, with the aryl ether p-O-4 linking motif being the most common, accounting
for 50-66% of all linkages in native-like birch-wood lignin.> Other important
linkages include 4-O-5, B-5, and B-B.** (Fig. 1).

Lignin accounts for up to 30% of lignocellulosic biomass and plays a critical
role in developing sustainable biorefining strategies.”® Historically, conventional
biorefineries have prioritized carbohydrate valorization using processes that
induce degradation of the lignin aryl ether structure and subsequent C-C bond
formation via condensation, increasing lignin recalcitrancy and making it more
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Fig. 1 Chemical structure of the three phenylpropanoid monomers of lignin and major
lignin linking motifs highlighting the inter-unit bonds.
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difficult to obtain added-value products such as aromatic monomers.*® The
conservation of the native structure of the lignin, mainly the f-O-4 linkages, as the
dominant C-O bonds, is essential for controlled depolymerization into valuable
monomers and for post-modifications for high-end applications as a oligomer/
polymer.*>"* For example, the selective cleavage of f-O-4 linkages through mild
catalytic conditions has resulted in high yields of aromatic monomers, which can
serve as the starting point for the synthesis of fine chemicals that could lead to
a number of polymer building blocks.”> Shuai et al.* also demonstrated that
protecting B-O-4 linkages with formaldehyde stabilization during lignin deligni-
fication is important for obtaining high yields of aromatic monomers via the
catalytic depolymerization pathway, emphasizing the importance of B-O-4
retention in lignin valorization and concluding that subsequent valorization
into monomers only succeeds when B-O-4 linkages are retained during pretreat-
ment. In another study, Deuss et al.'* demonstrated a strong correlation between
the yield of phenolic acetals from Fe(OTf);-catalyzed lignin depolymerization, and
the B-O-4 content of the lignin feedstock, where lignins with higher abundance of
-O-4 produced much higher monomer yields, clearly indicating once again that
preservation of B-O-4 linkages is an important requirement for effective down-
stream valorization.

This “lignin-first” approach emphasizes lignin valorization by integrating
lignin stabilization during extraction. This paradigm shift enables access to
a broader array of high-value aromatic compounds, challenging lignin’s tradi-
tional role as a low-value fuel source.”*>'® There are several lignin-first methods
such as reductive catalytic fractionation (RCF) and oxidative catalytic fraction-
ation (OCF), used to obtain monomers,'®'”** as well as aldehyde or alcohol
protection methods that have proven to be successful at protecting the lignin
structure from condensation, thus allowing the efficient isolation of high-aryl-
ether-content lignin (e.g., >50 per 100 aromatic units (ArU)).*®

Traditional batch organosolv systems suffer from prolonged lignin exposure to
reactive conditions, promoting degradation, condensation, and redeposition
onto solids. The reported lignin yields and quality from some batch processes
range between 2 to 11 wt% and 12 to 25 per 100 ArU, respectively.'****' To over-
come such limitations, semi-continuous flow-through organosolv systems have
been developed. These systems reduce the residence time of extracted reactive
lignin fragments and improve mass transfer, enhancing both delignification
efficiency and B-O-4 preservation.*'>*** Zijlstra et al.>® reported an efficient flow-
through butanosolv system at mild temperatures (120 °C) using different
biomasses.”® These conditions were also applied for ethanol, which showed yields
of 74% delignification and a high lignin quality of 59 $-O-4 per 100 ArU that could
be even further increased with a supercritical-CO, pretreatment.*»**** The mild
conditions used by the authors achieve a high B-O-4 retention compared to other
flow-through extractions with harsher conditions, such as the work of Kramar-
enko et al.,>* who used a 1:1 methanol-water mixture at 140-200 °C, achieving
88 wt% delignification but a B-O-4 content of 19 per 100 ArU, indicating the trade-
off between efficiency and structural preservation at high temperatures.

These advances underscore the potential of flow-through organosolv systems
for recovering high-quality lignin suitable for high-value applications, particularly
when process conditions are carefully optimized to balance delignification and
structural integrity. Therefore, further optimization is needed to enhance native-
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like lignin extraction, reduce solvent consumption, and address scalability for
industrial applications.

This study presents a methodical investigation into the optimization of
a modified flow-through ethanosolv system for lignin extraction from birch wood.
The research focuses on two critical process variables: temperature and solvent
flow rate. UV-Vis spectrophotometry was used to provide insight into the lignin
extraction kinetics in the flow-through system. Response surface methodology
(RSM) was employed to evaluate the impact of the selected parameters on the key
aspects of the extraction process: delignification efficiency, lignin structural
integrity and quality, and the extent of alcohol incorporation into the lignin
structure. By employing this approach, we aim to explore the complex interplay
between process conditions and extraction outcomes in terms of delignification
efficiency and extracted lignin quality. At the same time solvent use is optimized
as this is one of the key factors, alongside solvent recycling efficiency, that impact
the economic potential of large-scale lignin processing.””**

2 Materials and methods
2.1 Solvents, chemicals and biomass

The solvents and chemicals used for this research work were sourced as follows:

Absolute ethanol was purchased from J. T. Baker — Avantor Performance
Materials Poland S. A., acetone from Macron Fine Chemicals - Avantor Perfor-
mance Materials Poland S. A., sulfuric acid (95-97 wt%) from Merck KGaA -
Darmstadt Germany, sulfuric acid (72 wt%) from Chem-lab NV - Belgium, and
sodium hydroxide, acetone dg 99.9 atom % D and deuterium oxide 99.9 atom % D
all from Sigma-Aldrich.

Birch wood (Betula pubescens) was locally sourced and used as the biomass for
this research. Refer to Table S1 in the SI section for detailed compositional
analysis of the birch-wood biomass.

2.2 Flow-through reactor configuration and operation

Birch-wood feedstock was debarked and shredded by means of a low-speed
granulator to a particle size of 0.56-1.00 mm. The biomass was not processed
for extractive removal, as initial studies indicated the possibility of successfully
extracting lignin from unprocessed birch-wood biomass with high efficiency.
Samples were stored in airtight zip-lock bags to prevent moisture fluctuation prior
to experimentation.

Flow-through extraction was carried out using a custom-built reactor system
designed to maintain precise control over solvent delivery, temperature, and
extract collection, enabling reproducible results under standardized conditions.
The extraction was done as previously reported.””>* In a typical extraction
procedure, approximately 20 g of biomass were loaded in the reactor column. The
solvent (4 : 1 ethanol-water mixture with 0.18 M H,SO,.) was pumped through the
heated reactor at a controlled flow rate specific to the experimental conditions of
the run being conducted. Extractions were not limited by time but by the amount
of solvent pumped through the reactor. A solvent-to-biomass ratio of 18 mLggyent
Zpiomass — Was chosen. Therefore, even though the flow rate varied in different
runs, the solid-to-liquid ratio was maintained. Per the solvent biomass ratio,
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360 mL of solvent was required for each extraction. However, a little in the excess
of 400 mL of solvent was used to compensate for the reactor dead volume. An
automated sample collector retrieved aliquots of the extract at predetermined
intervals, enabling time-resolved analysis of extraction kinetics.

Lignin extraction was monitored using ultraviolet-visible (UV-Vis) spectros-
copy. The molar absorptivity coefficient (¢) of birch lignin was determined using
a representative lignin sample (refer to SI 1.1 for lignin extraction specifics),
corrected via 2D-HSQC NMR for carbohydrate content, to estimate purity.>* These
purity-corrected values refined the calibration curve (refer to SI Fig. S2), improving
quantification accuracy.

Following the extraction, lignin was precipitated using a previously established
method from the literature.”>* In brief, the liquors collected over time for each
run were combined and adjusted to a pH of 5-6 using sodium hydroxide,
concentrated via rotary evaporation, and redissolved in 30 mL of acetone (99.5%).
This solution was added dropwise to 300 mL of acidified water (pH 1, adjusted
with sulfuric acid) under vigorous stirring. Lignin precipitated from solution was
allowed to settle before isolation by vacuum filtration. The solid lignin was finally
dried overnight in a vacuum oven at 35 °C. A schematic overview of the entire
process is shown in Fig. 2. (See SI Fig. S1. for the Piping & Instrumentation
Diagram of the flow-through reactor).

2.3 Biomass composition analysis (structural carbohydrates & lignin)

The lignocellulosic composition of birch-wood biomass was quantitatively eval-
uated for both the untreated feedstock and the delignified pulp across all
experimental runs to assess delignification efficiency and structural modifica-
tions. A comprehensive compositional analysis was conducted, including acid-
insoluble lignin, acid-soluble lignin, and structural carbohydrates (glucan,
xylan, and arabinan) to characterize cellulose and hemicellulose fractions.
Quantification followed the NREL/TP-510-42618 protocol,** employing a two-step
acid hydrolysis: initial treatment with 72% sulfuric acid, followed by dilution to
4% for secondary hydrolysis. Monosaccharides were quantified via HPLC using an
Agilent 1200 pump equipped with a Bio-Rad organic acid column (Aminex HPX-
87H), a refractive index detector, and a UV detector (210 nm). The HPLC column
was operated at 60 °C, and a 5 mM aqueous sulfuric acid solution was used as the
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Birch wood Ethanosolv Crude lignin Purified lignin

debarking lignin extraction extract characterization via
and particle size using flow-through concentration (a) 2D-HSQC
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(0,56 mm—1mm) via UV-Vis via precipitation  (b) Gel permeation

spectrophotometry chromatography

Fig. 2 Flow diagram of the experimental processes (generated with Sora Al).
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mobile phase with a flow rate of 0.55 mL min~". The injection volume was set at 5
pL. The concentrations of individual compounds in the product mixture were
determined using calibration curves obtained by analyzing standard solutions of
known concentrations. The Acid Soluble Lignin (ASL) was measured via UV with
a quartz cuvette in an Agilent CrossLab Cary 60 UV-Vis spectrophotometer. Acid-
insoluble lignin was measured as the weight difference in the filter crucible after
drying the sample at 105 °C and corrected for the ash obtained after calcination at
575 °C. Moisture was measured with a PCE-MA 110 moisture meter.

2.4 NMR analysis

2D-HSQC NMR spectroscopy was used for lignin structural analysis and recorded
on a 600 MHz Bruker Biospin (BASIC PROBHD, Rheinstetten, Germany) instru-
ment. A 60 mg lignin sample was dissolved in 0.6 mL of acetone-ds with a few
drops of deuterium oxide to ensure complete dissolution. Spectra were acquired
with acetone-d; as the internal reference (6¢ 29.84, 6y 2.05 ppm). The Bruker pulse
sequence ‘hsqcetgpsisp.2’ was applied for the "*C-'H correlation experiment.
Data acquisition used 1024 points (11-0 ppm) in F2 (*H, 131 ms) and 512 incre-
ments (160-0 ppm) in F1 (**C, 6 ms), with 4 scans and a 1.5 s delay, totaling 1
hour. Data were analyzed using MestReNova 14; the integration region and
calculations were done according to previous works.>**

2.5 GPC analysis

For gel permeation chromatography (GPC) analysis, 10 mg of dried lignin was
dissolved in 1 mL of tetrahydrofuran (THF) with a drop of toluene as an internal
standard. The solution was filtered through a 0.45 um syringe and analyzed using
a Hewlett Packard 1100 series with a 20 puL injection volume and THF as the
mobile phase. The calibration standards were polystyrene with a calibrated range
of 200-10 000 Da. The software then calculated the molecular-mass distribution
of the lignin sample.

2.6 Experimental design (DOE)

A response surface methodology (RSM) design of experiment was made incor-
porating two factors, each examined at three levels, while measuring three
distinct responses. The factors, levels, and responses are detailed in Tables 1
and 2.

The final experimental design and runs were generated with Design Expert
from StatEase software and are detailed in Table 3.

The time intervals for the extract sampling (Table 3) were adjusted based on
the flow rate of each experiment in order to accommodate the maximum capacity
of the sampling vials (20 mL). For monitoring of the lignin extraction over time,

Table 1 Factors and levels used in the design of experiment

Factors Level 1 Level 2 Level 3
Temperature (degrees C) 120 140 160
Flow rate (Zsolvene Min ") 2 4 8

Faraday Discuss. This journal is © The Royal Society of Chemistry 2025
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Table 2 Responses and their measurement for the design of experiment

Responses As determined by

Lignin quality (aryl-ether bonds) Number of B-O-4 linkages per 100 aromatic units
% alcohol incorporation The degree of a-alkoxylation

% delignification Amount of lignin extracted from biomass

the volumes collected in each vial were accounted for and factored into all
calculations.

3 Results & discussion
3.1 Lignin extraction efficiency

Lignin extraction efficiency (delignification) under different flow rates and
temperatures (as per Table 3) was assessed by comparing the lignin content in the
biomass prior to the extraction with the lignin content in the pulp after extraction
(Fig. 3). At the same time, insight into the extraction kinetics was obtained by
following the UV-absorbance of the effluent at set intervals (Fig. 4). The efficiency
of lignin extraction observed in this study reveals a consistent and interconnected
relationship among the delignification results, UV-Vis monitored extraction
profiles, and the actual recovered lignin yields, apart from specific data points
discussed below (Fig. 5). However, note that absolute lignin UV-Vis extraction
profiles cannot be directly compared due to changes to the extinction coefficient
for lignin extracted under different conditions (vide infra).

Lignin extraction for all the runs were ended when approximately 360 mL of
solvent (in accordance with the solvent : biomass ratio of 18 mLgsjyent gbiomass’l]
were used. Extraction times varied inversely with respect to flow rates (Table 4).
For example, when the flow rate was increased from 2 g min~' to 8 ¢ min~", there
was a proportional reduction in total extraction time from 150 minutes to 38
minutes. A higher volumetric flow also results in decreased contact time between
biomass and the solvent and shorter residence time for extracted compounds
including lignin.

Delignification improved significantly with temperature, increasing from
57.6-74.1 wt% at 120 °C to 80-89 wt% at 140 °C and reaching 93.5-94.9 wt% at
160 °C (Fig. 3). These values exceed most of the reported values in the literature

Table 3 DOE with experimental runs

Runs  Temperature (°C)  Flow rate (gsonene min~')  Extract sampling interval (mins)

120
120
160
140
160
140
140
120

ToOmE®EOOR >
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Fig. 3 Delignification based on the compositional analysis on the crude biomass and the
pulp obtained after lignin extraction (see Sl Table S2 for details on quantified lignins based
on the mass balance).
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Fig. 4 Plot of accumulated lignin mass vs. solvent use from the UV-Vis spectrophoto-
metric monitoring of the flow-through extraction kinetics calibrated using an extinction
coefficient obtained from a reference isolated birch lignin.

(76.0-76.3 wt%),?>** equalling the 93-98% previously reported for butanosolv
extraction.”® Flow-rate effects were temperature-dependent: at 120 °C, a lower flow
(2 Zsolvenc min~?, run A) outperformed higher-flow runs (B and H), indicating
longer-residence-time benefits under mild conditions. However, at 160 °C, both
low (run E) and high (run C) flow rates achieved high delignification, highlighting
temperature as the dominant driver. While previous studies®** reported positive
effects of increased flow during biomass pretreatment, this study shows that flow
rate is more impactful at lower temperatures, where residence time governs the
main reactivity.

Faraday Discuss. This journal is © The Royal Society of Chemistry 2025
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Fig. 5 Comparison of lignin extraction obtained from different processing conditions
including: lignin recovery from the purification process (recovered lignin), lignin yield from

calibrated UV-Vis and lignin yield calculated based on the lignin content in the extraction
residue (delignification).

Table 4 Flow rates and their corresponding extraction times per minute as well as the
total extraction times for the selected flow rates in the experimental runs

Flow rate (g min ") Volume/min (mL min ") Total extraction time (mins)
2 2.4 150
4 4.7 77
6 7.1 51
8 9.4 38

UV-Vis monitoring (Fig. 4) further supports these findings: higher tempera-
tures led to steeper extraction curves and faster lignin solubilization. However,
most runs showed a plateau phase, e.g., run C extracted 6.6 mg of lignin with
335 mL of solvent, indicating saturation of extractable lignin and that the solvent
use can be optimized to the conditions via UV-Vis monitoring (vide infra). Lower-
temperature runs (A, B and H at 120 °C) showed slower extraction kinetics and
lower yields, especially at higher flow (run H), where limited residence time
hindered sufficient contact time and mass transfer. The positive effect of the
increased flow rate on mass transfer has been shown before for lignin extraction
using different solvent systems and operating conditions.**** These findings
highlight a synergistic interaction between temperature and flow rate.

Despite the general agreement between UV-Vis trends, delignification data and
isolated lignin, significant overestimations by UV-Vis quantification were

This journal is © The Royal Society of Chemistry 2025 Faraday Discuss.
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observed under certain conditions by using calibration with a single isolated
lignin (see Fig. 5). Most notably, in run E, the UV-Vis estimated lignin yield
reached 249% (12.2 g), far exceeding the theoretical maximum of 4.9 g lignin for
the biomass used. This overestimation is attributed to the formation of degra-
dation products, which interfere with absorbance measurements at 279 nm,
a known limitation of UV-Vis spectroscopy.** Lignin extracted at 120 °C was used
for calibration and does not reflect structural changes to the lignin obtained at
higher temperatures. Thus, although useful for real-time monitoring, UV-Vis
lacks the capacity to distinguish lignin extracted under different conditions.
While developing temperature-specific calibration curves (e.g., for 120 °C, 140 °C
and 160 °C) would improve accuracy, this was not pursued here, as UV-Vis was
used solely for process monitoring. The amount of recovered lignin adjusted for
the level of alcohol modification (as determined via 2D HSQC NMR, see below)
and moisture content followed the general trend of delignification, albeit lower.
This is explained by the incomplete precipitation of lignin from the solvent or by
an ineffective filtration step, which have been addressed in different works.*

Collectively, the analysis of delignification kinetics via UV-Vis monitoring and
the delignification efficiency obtained from lignin quantification in the recovered
biomass demonstrate that temperature is the dominant factor influencing lignin
extraction efficiency, while flow rate shows a temperature-dependent behavior,
enhancing extraction at lower temperatures through prolonged residence time,
but playing a less important role under higher temperature conditions.

3.2 Lignin quality analysis

Assessing the quality of the extracted lignin in terms of chemical structure
retention is just as crucial as evaluating the delignification efficiency when
determining the effectiveness of the flow-through extraction method. The
molecular architecture and compositional heterogeneity of lignin are profoundly
influenced by extraction conditions such as temperature and solvent flow
rate.*'*?>>* To assess the chemical structure, GPC (SI Table S3) and 2D HSQC
NMR (Fig. 6 and 7) analysis were performed.

GPC results show number-average molecular weights (M,,) between 1064 and
1484 g mol ', well within the range reported for lignins obtained via organosolv
or flow-through extraction methods.*® However, the weight-average molecular
weight (M,,) range of 2500 to 3900 g mol~* observed with the extracted lignin is on
the high side of the literature-reported range of M,,, typically 500-5000 g mol *.3°
This observation is in agreement with observed trends with alcohol extractions of
lignin resulting in structural modifications of lignins with alcohol groups, which
allow for the extraction of high-molecular-weight fragments due to increased
solubility.>®

The typical 2D HSQC NMR spectrum (Fig. 6) shown for run B (120 °C, 4 g
solvent Min~ ') confirms that the isolated lignin is primarily composed of syringyl
(S) and guaiacyl (G) units, with no detectable p-hydroxyphenyl (H) units. A high
retention of B-O-4 content is achieved, which is in line with earlier mild orga-
nosolv alcohol extractions reported in the literature.”****° The semi-quantification
shows that this is the case for most runs with a B-O-4 content ranging between 50-
63 per 100 ArU for these samples (Fig. 7) consistent with the hardwood origin of
birch wood.?” (See SI Fig. S3-S11 for NMR spectra of all runs).
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Fig. 7 Distribution of lignin linking motifs (left) and lignin subunits (right) quantified from
2D-HSQC NMR semi-quantification for the runs (A to H). Data can be found in Sl Table S4.

The samples extracted at low temperatures (120 °C, runs A, B and H) display
greater preservation of B-O-4 linkages and less evidence of structural condensa-
tion (higher aryl ether linkage content in the linkage region and lower Sconq
(Syringyl condensed units) in the aromatic region). Run A and run B, with flow
rates of 2 and 4 goene Min~ ' respectively, maintain B-O-4 contents above 59 per
100 ArU, with relatively high M,, values (3612 and 3766 g mol ). This suggests
relatively low lignin bond cleavage and minimal condensation. These runs also
exhibited balanced S/G ratios (4.2-5.1) with a general trend that higher extraction
efficiency and higher B-O-4 contents are concurrent with higher S unit content as
observed before.*

Run H (120 °C, 8 ggo1vene Min '), demonstrates the highest -O-4 content (62.0
per 100ArU) and a complete absence of S.onq units, indicating that both low
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thermal severity and high flow rate jointly support the extraction of structurally
intact lignin, but, as shown in the previous section, with a lower yield of 58 wt%.

At 140 °C, lignin structure is highly affected despite the modest temperature
increase. Run D (2 Zgowene Min ') shows the lowest B-O-4 content among samples
with quantifiable linkages (20.5 per 100 ArU), a relatively high level of S.onq units
(8.2%), all indicating the formation of condensation products. In contrast, runs F
and G, carried out at the same temperature but with increased flow rates (4 g.
solvent Min~" and 8 gyowene Min~ ", respectively), exhibit markedly improved
structural preservation. B-O-4 linkages increase to 53.6 per 100 ArU in run F and
58.0 per 100 ArU in run G, while condensation is notably reduced. These changes
suggest that higher flow rates effectively mitigate lignin degradation at this
temperature by facilitating faster removal of solubilized fragments. GPC profiles
further support this trend: run F shows the lowest M, and M,,, (1064 and 2518 g
mol ") indicating smaller fragments, whereas run D has a higher M, and M,,
(1334 and 3563 g mol '), likely due to some condensation of fragments in line
with the higher S¢ong.

A similar, yet more pronounced, pattern is observed at 160 °C, as seen in runs
C and E. Despite identical extraction temperatures, these runs yield markedly
different results due to their flow rates. Run C (8 gsolvent min’l) retains
a substantial amount of B-O-4 linkages (47.2 per 100 ArU), suggesting limited
structural breakdown. In contrast, run E (2 ggoene min~") shows a complete loss
of B-O-4 linkages, and the highest content of S.,,q units (23.6%), all pointing to
extensive depolymerization and condensation. These results are consistent with
literature reports by Crestini et al.*® and Zijlstra et al.,”> which highlight that high
temperature promotes B-O-4 cleavage and the formation of C-C linkages through
electrophilic aromatic substitution. However, such degradation can be signifi-
cantly reduced using increased flow. As also demonstrated by Rinaldi et al.,*®
increased flow rates shorten the residence time, suppressing recondensation and
preserving structurally relevant features. Thus, while temperature clearly drives
reactivity, the contrasting outcomes between runs C and E underscore the critical
role of flow rate and residence time in determining lignin structural integrity.

Together with the delignification and lignin yield discussed above, these
results emphasize that while temperature is a primary driver for efficient lignin
extraction, the flow rate, and by extension, residence time, is a critical process
variable for modulating the extent of lignin chemical structural preservation.

3.3 Influence of extraction conditions on lignin alkoxylation

As observed in Fig. 6, alkoxylation occurs simultaneously with lignin extraction
via incorporation of ethanol in the B-O-4 motif (forming B-O-4-OR). This process
can have significant implications for lignin valorization. Enhanced alcohol
incorporation has been directly correlated with improved solubility in polar
media and influencing catalytic depolymerization efficiency.?**® Furthermore, the
stabilization of a-carbon positions through etherification has been shown to
prevent undesirable repolymerization during downstream processing.** These
structure-property relationships underscore the importance of precise control
over extraction conditions to tailor lignin functionality for specific applications.

The degree of alcohol incorporation into lignin’s -O-4 linkages was found to
be significantly influenced by the extraction parameters, as revealed by
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quantitative NMR analysis (see SI Tables S4 and S5). Moderate alkoxylation was
observed at 120 °C (39.9-59.0% B-O-4-OR of the total f-O-4) with increased flow-
rate leading to lower alkoxylation. Significantly higher alkoxylation (>60%) was
consistently achieved under intermediate temperature conditions (140 °C) when
combined with moderate to high flow rates (4-8 ggoene min~'), as demonstrated
by runs F (61.4%) and G (63.3%). These conditions appeared to facilitate effective
reagent penetration while maintaining structural integrity of the B-O-4 linkages.

At elevated temperatures (160 °C), run C (8 gsovene min~ ') exhibited the highest
alcohol incorporation (67.7%), likely due to the increased stability of this motif
over the unmodified motif. These results suggest that the level of alkoxylation can
be tuned through a careful balance of temperature and flow parameters.

3.4 Optimization study

As observed in the extraction runs, the relationship between flow rate and
temperature and how these influence yield and lignin quality is not linear but
rather dependent on the synergetic interactions of the aforementioned parame-
ters. Moreover, a trade-off becomes evident between achieving high delignifica-
tion yields and preserving lignin structure. To better understand these dynamics
and identify the optimal operating conditions that balance yield and structural
integrity, a predictive model was developed.

Experimental data assessing delignification efficiency, lignin structural
integrity, and alcohol incorporation were compiled and analyzed using response
surface methodology (RSM). This statistical approach enabled both process-
parameter optimization for the flow-through system and mechanistic under-
standing of parameter-response relationships. Through Design Expert software,
three-dimensional response surface models were generated to visualize experi-
mental trends and identify optimal extraction conditions. These models facilitate
the design of a precisely controlled system capable of producing tailored lignin
products. The resulting predictive models are presented in Fig. 8. Statistical
evaluation of the models is presented in Table 5 below.

The delignification model (A) characterizes the effect of extraction temperature
and solvent flow rate on the efficiency of lignin removal from birch-wood
biomass. The 3D surface illustrates a strong positive correlation between
temperature and delignification, with increased values leading to higher lignin
solubilization. Likewise, higher solvent flow rates also contribute positively,
although with a less pronounced gradient, suggesting a secondary role compared
to temperature.

The relatively planar nature of the surface suggests predominantly linear
effects of the input parameters, with minimal synergistic interactions or
quadratic behavior. This reflects a predictable system, suitable for scaling.
Notably, high efficiency values (>90%) were achievable at elevated temperatures
and moderate-to-high flow rates, suggesting an optimal operational envelope.

The response trend aligns with current mechanistic understanding of orga-
nosolv processes, where elevated temperatures promote the cleavage of linkages
that will release soluble lignin fragments to the carbohydrate matrix. Increased
thermal energy accelerates both solvolysis and acid-catalyzed cleavage of B-O-4
bonds and potentially lignin-carbohydrate complexes (LCCs), thereby
enhancing delignification efficiency.*®

This journal is © The Royal Society of Chemistry 2025 Faraday Discuss.
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investigated responses; (A)-delignification efficiency, (B)-lignin quality & (C)-alcohol
incorporation.

Table 5 Statistical evaluation of optimization models (a difference of not more than 0.2
between adjusted R? and predicted R? indicates good model predictability and internal
consistency. An adequate precision greater than the threshold of 4.0 suggests a good
signal-to-noise ratio, confirming that a model is sufficiently robust for exploration and
optimization within the defined design space)

Adjusted Predicted Adequate
Model R? R? precision
Delignification efficiency model (A) 0.81 0.67 10.2
Lignin quality model (B) 0.85 0.77 10.3
Alcohol incorporation model (C) 0.75 0.31 8.5

The model describing lignin quality (B), based on the conservation of p-O-4
linkages, provides critical insight into the influence of extraction severity on the
structural integrity of the recovered lignin.
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The response surface model for lignin quality demonstrates a bell-shaped
contour, suggesting a delicate balance between conditions used and structural
preservation. At low to moderate temperatures (120-140 °C) and intermediate
flow rates, the highest B-O-4 linking motif retention (>60%) is observed. However,
beyond this window, particularly at higher temperatures (140-160 °C) and low
flow rates (2 gsowene Min~'), a steep decline in bond preservation occurs. This
behavior indicates that while harsher conditions improve delignification, they
also promote acidolysis and condensation reactions that degrade the B-O-4
architecture, forming C-C bonded lignin fragments that are less reactive and
more recalcitrant.™**

The model’s curvature suggests that both parameters interact synergistically to
influence bond conservation. Specifically, a high flow rate may mitigate the
negative impact of elevated temperatures by reducing residence time and swiftly
removing reactive lignin intermediates. This supports recent literature advocating
for fast lignin removal to preserve labile bonds, and enhanced yield of functional
lignin.*

Model C tracks the extent of alcohol incorporation from the extraction solvent
(ethanol) into lignin via chemical modification of -O-4 linkages. This phenom-
enon is indicative of stabilization via acetal or ether formation,**** which serves to
cap reactive intermediates and prevent condensation. It was noted that the
difference between the predicted R* and adjusted R* was greater than 0.2 and
hence makes the model’s predictability significantly limited. This difference may
be attributed to a large block effect which requires further experimentation to
resolve. However, the adequate precision value of the model was 8.5079, which is
greater the threshold value of 4 for the signal-to-noise ratio implying that this
model can still be used to navigate the design space.

The response surface displays a clear trend of increasing alcohol incorporation
with rising temperatures and flow rates. Maximum incorporation (>60%) occurs
at high temperatures (160 °C) combined with high flow rates (8.0 gsoyenc min ™),
pointing to conditions that favor both chemical reactivity and efficient extraction.
Elevated temperature promotes the activation of lignin’s a-hydroxyaryl units,
which can readily undergo etherification with alcohols under acidic conditions.*
Simultaneously, high flow rates reduce the likelihood of secondary degradation or
cross-linking by quickly flushing out the modified lignin.

This model underscores a vital consideration in lignin-first biorefining strat-
egies: that alcohol not only functions as a solvent but also participates directly in
lignin stabilization. The incorporation of solvent-derived fragments into B-O-4
linkages has been shown to improve solubility, reduce molecular weight distri-
bution, and enhance compatibility with downstream functionalization path-
ways.*>*® However, excessive incorporation may also alter the native lignin
structure beyond desirable limits, emphasizing the importance of tuning process
conditions based on end-use requirements.

The model’s shape suggests positive synergy between temperature and flow
rate, where both variables must be optimized concurrently to maximize incor-
poration while preserving functional moieties.

3.4.1 Optimized extraction model validation. Using computational model-
ling, an optimization framework was developed for lignin extraction in the semi-
continuous flow-through system. The predictive model simultaneously consid-
ered two key response variables, delignification efficiency and lignin quality, with
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Table 6 Optimal extraction parameters with predicted response values from the model

Temperature Flow rate Predicted Predicted lignin quality
(°C) (Zsolvent Min~") delignification (Wt%) (B-O-4 per 100 ArU)
145-151 8 81-87 =52

equal weighting assigned to both parameters. Table 6 presents the derived
optimal extraction conditions along with their predicted performance outcomes.

The optimal extraction conditions, determined computationally, were vali-
dated experimentally under the operational parameters of a temperature of 150 °©
C and a solvent flow rate of 8.0 Zsolvent min~?, resulting in 82 wt% delignification
efficiency and 59.4 B-O-4 linkages per 100ArU, which is well within the compu-
tationally predicted range of 81-87 wt% and minimum threshold of =52 3-O-4
linkages per 100ArU for the operational parameters employed (8 gsoene min ™"
flow rate at 150 °C). It must be noted that the optimal flow rate of 8 ggojyene min ™~
predicted by the model is dependent on the reactor’s maximum capacity, which is
the same and therefore it is possible that higher flow rates may be desirable for
higher capacity reactors.

2D HSQC NMR characterization of the lignin obtained from the optimized run
revealed 59.4 B-O-4 linkages per 100ArU, surpassing the predicted minimum
threshold of =52, alongside a high alcohol incorporation rate of 62.8%.
Furthermore, the lignin exhibited an S/G ratio of 4.9, while demonstrating
moderate S-unit condensation at 14.5%. The observed S.,,q remains within
acceptable limits for downstream valorization and reflects expected behavior
under these extraction conditions.*” Collectively, these structural parameters
demonstrate that the optimized conditions successfully balanced the inherent
trade-offs between delignification efficiency and lignin quality preservation and
outperformed similar methods used for the extraction of lignin, including deep-
eutectic-solvent extractions, steam explosion and hydrothermal pretreatment
followed by ethanol/water extractions.*®*’ Also worth mentioning is that the
results obtained for B-O-4 content conservation for this optimized ethanosolv
extraction, 59.4 B-O-4 linkages per 100ArU, comes close to results obtained with
butanosolv extractions, 66 B-O-4 per 100ArU, reported in the literature,* but the
process with ethanol is deemed more suitable due to easier purification and lower
cost.

3.4.2 Solvent optimization. The UV-Vis kinetic profile of the optimized run as
seen in Fig. 9 suggests that beyond a certain solvent volume, the rate of lignin
extraction significantly slows, suggesting an equilibrium where most of the
extractable lignin has already been removed. This finding highlights the potential
for optimizing solvent usage to minimize waste and reduce costs, further
enhancing the potential for industrial application of this system. The optimal
solvent cut-off is determined by identifying where the extraction rate derivative
falls below 5% of its maximum value.

The derivative in this context represents the rate of change of extracted lignin
mass with respect to solvent use, calculated as:

AM — M(i+1)— M()
AS, S,(i+1)-S.()
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Fig. 9 Plot of accumulated lignin mass vs. solvent use with the solvent cut-off point for

the optimized run of 150 °C at 8 gsopent Min~.

where M = extracted lignin mass (mg) and S, = volume of used solvent (mL)

The solvent cut-off point was defined as the time at which the first derivative of
the extraction rate dropped below 5% of its maximum observed value (1.90 g
mL™", corresponding to 5% of the peak rate of 37.98 ¢ mL™"). This threshold
signifies the onset of diminishing extraction efficiency, where further processing
yields minimal improvements in mass transfer. The complete kinetic profile and
the identified cut-off point are shown in Fig. 9 (see SI Table S6 for details of the
derivative analysis). The solvent cut-off point of 252.5 mL implies a 13.1 mLgojyent
Zpiomass - Solvent-to-biomass ratio. Compared to the original solvent-to-biomass
ratio for the flow-through extractions, expressed as 18 MLgowent Ebiomass —, W
observe a 4.9 mL reduction in the solvent requirement per gram of biomass. This
indicates a recalibration of the total extraction time for the determined optimal
flow rate (8 g.min ") in this study. Based on the volumetric flow rate of 9.4
mL min~" that was recorded from the experimental runs (see Table 4), the opti-
mized extraction would have a new duration calculated as follows:

N . 252.5 mL .
Total extraction time (min) = 7m71 = 27 min
9.4 mL min

This change represents a further decrease from the previous 38-minute period to
process a 360 mL solvent volume at a 8 g min~" flow rate to just under 30 minutes
and demonstrates the feasibility of process intensification opportunities via solvent
reduction. When comparing the optimised conditions (8 ¢ min™*', 13.1 mL g *
solvent : biomass, 27 minutes) to the standard extraction protocol used in previous
studies®*?** (2 g min~ ", 18.0 mL g~ " solvent : biomass, 150 minutes), it is clear that
the standard setup requires over five times longer and more solvent for the same
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biomass loading. This demonstrates the large gains in time and solvent usage that
can be achieved through tuning flow and solvent use appropriately. Effective use of
solvents can reduce the time and energy required to complete a process, while also
reducing the cost and environmental impact of downstream solvent recovery.

Furthermore, the optimal ratio (13.1 MLgoent Ebiomass ) Fepresents over 40%
less usage of solvent when compared to the solvent: biomass ratio of 22.9 mL.
solvent gbi(,mass’l for batch organosolv lignin extractions on a lab scale.*®** The
results obtained demonstrate that, under optimized laboratory conditions, the
flow-through reactor outperforms the batch reactor, and its performance
approaches that of pilot-scale Fabiola™ extractions (5 mL g~ ) in terms of solvent
usage.®” Although the flow-through reactor requires slightly more solvent, it yields
significantly higher lignin quality (the reported process shows between 4 and 10 B-
O-4 linkages per 100ArU for ethanol extractions and approximately 35 B-O-4
linkages per 100 ArU for acetone extraction) and substantially reduces opera-
tional times (from 2 hours to about 30 min) compared to the batch method.

These results collectively demonstrate that the computationally optimized
flow-through extraction process achieves efficient, predictable, and controllable
delignification of birch-wood biomass, with performance parameters that remain
stable across multiple experimental validations while significantly reducing the
total extraction time.

4 Conclusion

This study demonstrates the successful optimization and validation of a flow-
through organosolv system for lignin extraction from birch wood. The computa-
tional model predicted high lignin extraction efficiency (81-87 wt%) with substantial
retention of B-O-4 linkages (=52 per 100 aromatic units) under optimized conditions
(temperature range: 145-151 °C, flow rate 8 Zsoent minfl). These predictions were
validated experimentally, where 82 wt% delignification was achieved at 150 °C and
a flow rate of 8 gopene: min *, closely matching the model’s predictions. 2D HSQC
NMR revealed 59.4 B-O-4 linkages per 100 aromatic units and 62.8% alcohol incor-
poration, indicating strong structural integrity, with an S/G ratio of 4.9 and limited
condensation. These values surpass those realized from similar works where only
48 wt% delignification and a B-O-4 linkage conservation of 12 per 100 ArU were seen
in birch-wood lignin extractions. Under optimized conditions, the process also
demonstrated a solvent-to-biomass ratio of 13.1 MLggent Sbiomass , resulting in
a 40% reduction in solvent usage when compared to some laboratory-scale batch
reactors, also showing a significant decrease in operational time from two hours to
approximately 30 minutes. Mechanistically, the model and experiments showed that
temperature primarily governs extraction efficiency, while higher flow rates effec-
tively minimize thermal degradation of B-O-4 linkages, enabling optimal perfor-
mance at 150 °C. The robust agreement between computational predictions and
experimental results demonstrates the reliability of the model and the potential of
this optimized approach for efficient, high-quality lignin extraction.
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