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NADES-based extraction of olive leaf phenolics
using RSM, ANFIS and machine learning techniques

Fatiha Brahmi,*® Lokesh Kumar Ramasamy,b Selvaraj Kunjiappan, & ¢
Hayate Guemghar-Haddadi,® Kahina Djaoud,? Tinhinane Haddad,® Hadjer Lamri,®
Lila Boulekbache-Makhlouf® and Federica Blando & *

An environmentally friendly technique was developed for recovering total phenolics (TP) from olive leaves
(cv. Chemlal) using a natural deep eutectic solvent (NADES) mixture composed of citric acid/glucose (2 : 1).
Optimized extraction parameters were validated through an adaptive neuro-fuzzy inference system (ANFIS)
and a random forest regressor machine learning (ML) algorithms. The highest TP yield (95.00 +1.49 mgg~*
dry matter, DM) was achieved after 90 min of maceration at 500 rpm with a solid/solvent ratio of 1/70 g
mL™Y. Compared with response surface methodology (RSM), a commonly used conventional
optimisation approach, the ML-based models diplayed greater generalization and prediction accuracy.
The extraction process was best optimized by XGBoost and ANFIS, with time and solvent ratio identified
as the most influential variables. The optimized extract contained 0.52 + 0.03 mg g~ DM flavonoids and
6.64 + 0.30 mg g~ DM tannins, and displayed strong antioxidant activity with ICsq values of 194.165 ug
mL~! (phosphomolybdate), 3330 pg mL™t (DPPH), and 9750 pg mL™! (ABTS). The results demonstrated
that the ANFIS model was well aligned with operational data, with a high R? of 0.9611, along with the
lowest RMSE close to 4.4. Moreover, in this study, ANFIS and ML algorithm models represent a unique
contribution beyond NADES/RSM studies. Taken together, these findings highlight the optimal extraction
conditions and an eco-friendly solvent mixture never before used for TP recovery from olive leaves,
supporting the valorization of olive by-products.

The agri-food sector related to olive growing and olive oil production generates large amounts of olive leaves, an undervalued by-product that contributes to
waste accumulation and resource underutilization. With the increase in environmental awareness, there is a growing interest in a circular economy and in the
valorization of agro-food by-products, whose value is still underestimated. Addressing this challenge is essential for promoting circular bioeconomy strategies
and reducing environmental impacts. This study demonstrated that through an environmentally friendly technique, a high amount of phenolic compounds can
be recovered from olive leaves. By valorizing this agro-industrial residue, this study advances sustainable technology for nutraceutical and pharmaceutical
sectors, and contributes to resource efficiency, waste reduction, and the development of functional food ingredients. This research aligns with UN sustainable
development goals 3 (good health and well-being), 9 (industry, innovation, and infrastructure), and 12 (responsible consumption and production).

Introduction

The olive plant (Olea europaea L.) is one of the oldest cultivated
fruit trees in the world and one of the most representative fruit
tree species of the Mediterranean basin. Today, nearly 11

million hectares of the plant are cultivated worldwide,
predominantly in Greece, Italy, Spain, Australia, Portugal,
France, Cyprus, Israel, Jordan, the USA, Morocco, Turkey, and
Tunisia.*

The olive oil industry represents one of the most prominent
agro-industrial sectors in Mediterranean countries, playing
a major role in their economic and social development. Over the
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last 60 years, global olive oil production has tripled. Likewise,
olive oil consumption has been increasing not only in the top
five producing countries (Spain, Greece, Italy, Turkey, and
Morocco) but also in regions outside the traditional cultivation
zones.”

As an agro-industrial activity, olive oil production has
notable environmental impacts, including waste generation.’
One of the main contributors to this waste is olive leaves, which
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are an unavoidable by-product of routine tree pruning and olive
harvesting. It is estimated that olive leaves account for
approximately 25% of the dry weight of total pruning residues.
Olive leaves are also generated as a by-product at olive mills,
where they are discarded during the cleaning of olives with
a blower machine. They typically account for approximately
10% of the olives’ weight.*

This large amount of olive leaves adds additional expense for
farmers and poses a sustainability challenge, as a significant
portion of this by-product remains underexploited, used as
a feed additive or inadequately disposed of through incinera-
tion or other treatments.>>*

Historically, olive leaves were generally used in the Medi-
terranean countries as a medicine to cure fever and other
infectious diseases like malaria. In the last decade, the
discovery that olive leaves are rich in bioactive compounds with
health-promoting properties has attracted increasing interest
from researchers worldwide, in line with the growing emphasis
on the circular economy in green development.®® Therefore,
this waste biomass can provide value-added ingredients for
dietary supplements and functional food formulation. Simple
phenols, flavonoids, and secoiridoids are the polyphenol
classes present in olive leaf extract. In particular, secoiridoids
are a characteristic phenolic class in the Olea genus.’ The major
secoiridoid compound in olive leaves is oleuropein, which
exhibits interesting biological and pharmacological properties,
in large part attributed to its putative antioxidant and anti-
inflammatory effects.®*®

Solid-liquid extraction of phenolic compounds from a plant
matrix is typically performed using organic solvents; however,
most of these are dangerous and pollute the environment."*
Green chemistry concepts must be applied across all scientific
fields to promote sustainability. Sustainable analytical tech-
niques have been developed based on the principles of green
analytical chemistry. Reducing or eliminating the use of by-
products and solvents harmful to the environment and
human health is currently one of the top concerns.”” The
extraction of natural products, including phenolic compounds,
is one of the potential areas where green chemistry principles
might have a substantial impact on output quality and
productivity.*®

Recently, natural deep eutectic solvents (NADES) have
emerged as alternatives to organic solvents.'* They are growing
in popularity for use in novel sustainable extraction techniques
because they are cost-effective, more biodegradable, and less
toxic than traditional solvents. Chemical characteristics,
including low melting temperatures, low volatility, nonflam-
mability, low vapor pressure, polarity, chemical and thermal
stability, and miscibility and solubility, are among the advan-
tages of NADES. Additionally, their low costs and excellent
manufacturing yields are linked to a convenient atom economy
and a minimal environmental impact. Their formation involves
intermolecular hydrogen bonding rather than chemical reac-
tions; therefore, no by-products are formed, eliminating the
need for purification and minimizing waste generation."

NADES are a combination of two or three basic components
that, when combined at the appropriate molar ratio, have
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melting points lower than those of their individual compo-
nents." These transparent liquid mixtures consist of hydrogen
bond donors (HBDs) and acceptors (HBAs). Their components
often interact through hydrogen bonding. NADES are regarded
as “natural” as the eutectic mixture's constituent parts are
primary metabolite groups, including sugars, organic acids and
bases, and amino acids. Thus, they can be exploited in food and
promote green technologies. Moreover, compared to traditional
organic solvents, they effectively generate extracts with greater
yields, with broad potential applications including phenolic
component recovery from biomass waste.'”'®

In this study, olive leaves (cv. Chemlal) were extracted using
a citric acid and glucose mixture, a NADES combination, which
had not previously been used for extracting phenolics from olive
leaves.

Complex extraction processes can be modeled and opti-
mized with the help of machine learning (ML) techniques.
These methods are able to simultaneously capture non-linear
correlations and interactions between several response vari-
ables and process parameters.'*>°

The response surface methodology (RSM) is a statistical
technique, which uses a second-order polynomial equation for
modeling and optimization. For non-linear systems, to predict
the optimal conditions, the adaptive neuro-fuzzy inference
system (ANFIS) and machine learning algorithm approaches are
also widely used.

Here, RSM was used in conjunction with ML techniques,
such as artificial neural networks (ANN), extreme gradient
boosting (XGBoost), and ANFIS to improve predictions and
optimizations. A central composite design (CCD) was employed
to systematically vary and analyze the influence of three key
process parameters: extraction time, stirring speed, and solvent-
to-solid ratio.

Despite the growing research on NADES and RSM/ML, the
specific combination of “olive leaves, NADES, RSM and ML”
remains scarcely explored, if not entirely absent from the liter-
ature. Moreover, no research papers have investigated the use of
RSM and ANFIS to optimize phenolic extraction from olive
leaves.

The objective of this study is to maximize the phenolic
component recovery for olive leaves (cv. Chemlal) by adopting
a new NADES mixture (citric acid and glucose). The study also
aims to compare RSM, ANFIS and ML techniques in the opti-
mization process.

Materials and methods
Raw material and chemicals

Olive leaves (cv. Chemlal) were harvested in February 2024 from
Ahl El Ksar (36°15'11.16” N 4°02/21.98" E, at an altitude of 686
m) southeast of Bouira province (Algeria). The raw material was
rinsed three times with tap water and then dried in a ventilated
oven (Memmert, Germany) at 40 °C for 48 h. After drying, the
leaves were ground into a fine powder (=250 um) using a home
grinder and stored at room temperature in paper bags for
further analysis.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Analytical grade ethanol (96%), methanol (99%), hydro-
chloric acid (HCl, 37%), citric acid, and phosphomolybdate
ammonium were sourced from Biochem Chemopharma
(Cosne-Cours-sur-Loire, France). Gallic acid, catechin, quer-
cetin, vanillin and glucose were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Diphenyl-picryl-hydrazyl (DPPH), 2,2'-
azino-bis  (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS),
Folin-Ciocalteu reagent, sodium carbonate anhydrous
(NayCO3) and aluminum chloride (AICl;) were purchased from
Prolabo (Llinars del Valles, Spain).

Preparation of NADES and extracts

To prepare NADES, citric acid was selected as the hydrogen
bond acceptor (HBA) and glucose as the hydrogen bond donor
(HBD). The HBA (citric acid) and HBD (glucose) were mixed at
a 2:1 molar ratio and stirred in a water bath at 50 °C until
a clear liquid formed. Additionally, water was added (30% w/w)
to increase extraction and reduce viscosity. The material was
then allowed to cool at room temperature and stored in sealed
containers in a desiccator.”® The density of the citric acid:-
glucose mixture was 1748.38 kg m > at 20 °C. The dynamic
viscosity value for this NADES was around 0.0370 Pa s at 20 °C.
Its electrical conductivity increased with temperature in the
range of 0.00421-0.03090 S m™'.>> A weighed amount of leaf
powder was placed in a 100 mL screw-capped conical flask
containing the prepared NADES, and stirred at room tempera-
ture on a magnetic stirrer (Are Heating Magnetic Stirrer, Velp
Scientifica, Usmate (MB), Italy). The time ranged from 30 min to
120 min, and the stirring speed ranged from 100 to 900 rpm.
The solvent-to-powder ratio fluctuated from 30/1 to 90/1 (mL
g™ '). To investigate the optimal process conditions for the
NADES extraction, these variables were changed sequentially,
while the temperature was kept constant at 25 °C. The powerful
solvation ability of NADES allows for effective extraction at room
temperature, despite temperature being a critical factor in
conventional extractions. To optimize the extraction process
based on operational parameters (time, agitation speed, and
solvent-to-solid ratio), the temperature was held constant. After
the extraction process, the mixture was filtered, and the filtrate
was used to measure the total phenol content (TPC).
A schematic diagram summarising the workflow

(extraction — analysis — modelling) is shown in Fig. 1.

Total phenolic content (TPC) measurement

The amount of TPC (Y) in the extracts was ascertained by
spectrophotometric analysis using the previously mentioned
method.? In short, 0.5 mL of Folin-Ciocalteu reagent (diluted
to 1/10) was combined with 2.5 mL of olive leaf extract. After
vortexing the mixture for two minutes, 1 mL of 7.5% sodium
carbonate (Na,CO;) was added five minutes later, and the
samples were incubated at 50 °C for 15 min. After cooling, the
absorbance was measured at 760 nm, using a spectrophotom-
eter (Rayleigh UV-1800, Beijing, China). Gallic acid was used as
the reference standard, and the results were expressed as
milligrams of gallic acid equivalent (GAE) per gram of dry
matter (DM).

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Olive leaf powder (cv. Chemlal)

V.

i Leaf powder was mixed with NADES:HBA (citric acid)
and HBD (glucose) at a 2:1 molar ratio

Total phenolic
extraction

Response surface methodology: central
composite design

Adaptive neuro-fuzzy

o Machine learning
. >
inference system

algorithm

! 1
[ > Data analysis (JMP and < !

MATLAB v. R2013a Fuzzy
logic toolbox)

Fig. 1 Schematic workflow diagram illustrating the experimental
design for the optimization of phenolic extraction from olive leaves
(cv. Chemlal).

TPC extraction optimization and statistical modelling

Design and optimization of experiments by RSM. A three-
level, three-factorial central composite design (CCD) was
employed. The values of the independent variables, extraction
time (7), stirring speed (S), and solvent-to-solid ratio (R), were
coded as —1, 0, and +1 from low to high (Table 1). Twenty trial
runs were carried out using this design. To determine every
potential interaction between the input variables and response,
the results were fitted to a second-order polynomial model of
RSM.

Adaptive neuro-fuzzy inference system (ANFIS). This
approach uses a rule-based fuzzy logic model that learns using
rules created throughout the process. This system uses back-
propagation modeling and least squares to give training data-
sets. The initial phase in training data for the ANFIS is
backpropagation of the ANN. Fuzzy logic membership func-
tions are then applied to the ANN's output response as input
variables for time (7), stirring speed (S), and solvent-to-solid
ratio (R). The optimizations for these variables are more accu-
rate when the fuzzy inference system (FIS) is used. To obtain
several inputs (7, S, and R) and a single output response (Y), the
Sugeno-type fuzzy inference model was used for the ANFIS
modeling in this study.” Multiple inputs and a single output
reaction are shown simultaneously in the ANFIS architecture

(Fig. 2).

Table 1 Levels of factors chosen for the extraction experiments

Factor levels

Independent variables -1 0 +1

T (time, min) 60 90 120
S (stirring speed, rpm) 100 300 500
R (solid-to-liquid ratio, g mL ™) 1/70 1/80 1/90

Sustainable Food Technol.
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A FIS has two inputs, “x” and “y,” and one output response,
“z.” The following is an expression for two fuzzy if-then rules for
a first-order Sugeno fuzzy model:

Rule 1: f1 = p1x + g1y + r1 if x is A1 and y is B1. Rule 2: f2 =
p2x+q2y+r2ifxis A2 and y is B2, where A1 and B1 are the fuzzy
sets, f1 is the output response, and p1, g1, and r1 are the design
parameters, which were established during the training phase.

Trial and error were used to establish the number of
membership functions for each input variable.

Machine learning algorithm. A random forest regressor was
applied, as the target values of the experiment were continuous.
This ensemble method constructs multiple decision trees, each
trained on a randomly selected subset of features and training
data, which reduces overfitting and improves predictive
performance. The final prediction is obtained by aggregating
the outputs of all decision trees, resulting in a more robust and
accurate model.*

In this study, the experimental variables T, S, and R were
used as inputs, while Y served as the output response. The
dataset was first imported for prediction and then pre-
processed to identify and handle noisy or missing data.

Total flavonoid and condensed tannin content (TFC) of the
optimized extract

The procedure reported by Brahmi et al. (2022)** was used to
calculate the TFC of the optimized extract. 1 mL of 2%
aluminum chloride solution was combined with 1 mL of the
sample extract. After 15 min of incubation in a dark environ-
ment, the absorbance was measured at 430 nm. The results
were displayed in milligrams of quercetin equivalent (QE) per
gram of material (mg QE/g DM).

To determine the amount of condensed tannins, the proce-
dure already reported was followed.> The extract (50 uL) and 4%
vanillin/methanol solution (150 pL) were combined, and the
resulting mixture was vortexed. After incubation for 24 h at 4 °C,
750 uL of HCl was added; then, the solution was allowed to sit at
room temperature for 20 min. The absorbance was measured at
550 nm, and the concentration was expressed as milligrams of
tannic acid equivalent per gram of dry matter (mg TA/g DM).>®

Input MF Input MF Rule Output Output
Layer Layer Layer MF Layer Layer
(Layer 1) (Layer 2) (Layer 3) (Layer 4) (Layer 5)

Fig.2 Adaptive neuro-fuzzy inference system (ANFIS) architecture for
olive leaf extraction model precision. T: time, S: speed, R: ratio, MF:
membership function, TPC: total phenolic content.
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Evaluation of the antioxidant properties of the optimized
extract

For the antioxidant activity, 200 pL of optimized extract and
two mL of ammonium phosphomolybdate reagent [H,SO, (0.6
M), Na,HPO, (28 mM) and ammonium phosphomolybdate (4
mM)] were added, and the mixture was incubated at 90 °C for
90 min in a water bath. The absorbance was read at 695 nm,
after cooling.”*

For the assessment of the antioxidant capacity using the
DPPH scavenging test, two mL of extract were combined with
150 pL of DPPH free radical solution (0.1 mM DPPH in ethanol);
the mixture was then incubated for 60 min at ambient
temperature.

The absorbance was measured at 517 nm and using eqn (1),
the percentage of DPPH radical scavenging capacity was
determined.*”

The ABTS free radical scavenging potential was calculated in
accordance with our previous study.” Briefly, 7 mM ABTS
radical solution was combined with 2.45 mM potassium per-
sulfate, and the resulting reaction mixture was left at room
temperature for 16 h in the dark. The absorbance of the reaction
mixture was then adjusted to 0.70 £+ 0.05 at 734 nm using
ethanol. 10 uL of optimized extract was combined with 1 mL of
this reaction mixture. The following equation was used to
calculate the inhibitory activity:

Inhibition % = [absorbanceconirol — absorbancesmpie/
absorbanceconiro)] X 100 (1)

All results were expressed as ICs, (mg mL ™).

Statistical analysis

Every assay was carried out three times to calculate mean values
and standard deviations. The ANOVA test was performed to
compare the means, and significant differences were consid-
ered at a p-value of 0.05.

CCD trials were carried out and JMP.7 regression was used to
analyze the experimental results. The experimental data were
separated for training, testing, and validation of the network
model using MATLAB v. R2013a fuzzy logic toolbox to forecast the
results of the extraction of a significant amount of phenolics from
olive leaves.

Results and discussion
Usage of RSM to analyze experimental results

In this investigation, the modeling and prediction of phenolics
from olive leaves (cv. Chemlal) extracted by NADES were
performed.

Only recently, phenolics from olive leaves have been extrac-
ted using various combinations of NADES.”*** Table 2 reports
previous studies in the literature on the use of NADES for
extracting phenolics from olive leaves.

In the present study, a new mixture of NADES (citric acid and
glucose) was utilized. To the best of our knowledge, this
combination has not yet been applied for the extraction of

© 2026 The Author(s). Published by the Royal Society of Chemistry
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phenolic compounds from olive leaves. In particular, this
NADES mixture was chosen to evaluate the extraction condi-
tions, in terms of the general and global output, for the total
phenolic content (evaluated by the widely used Folin-Ciocalteu
assay) and antioxidant capacity (evaluated by three distinct
assays, as recommended). We were not interested in studying
the selective extraction of specific phenolic compounds from
olive leaves, which will be addressed in a future study.

Several methods for maximizing polyphenol extraction from
olive leaves using NADES have been reported, including
ultrasound-assisted extraction,®® microwave-assisted extrac-
tion,* and solid-liquid extraction with stirring,>*"**3% all of
them with or without temperature control. NADES demon-
strated superior extraction performance compared to conven-
tional solvents, including ethanol.*>*-**

We chose to use a new mixture, highly sustainable in terms
of cost, food compatibility, and safety.

From a mechanistic point of view of the solvent-solute inter-
action, it can be assumed that the quantity and distribution of
hydroxyl groups, the acceptor-to-donor molecular ratio, or the
structure of the hydrogen bond donor are important factors influ-
encing the solubility of phenolic compounds in NADES. Their
structure allows for the accommodation of many phenolic mole-
cules via interactions with aliphatic protons. High solubility of
phenolic compounds occurs when hydroxyl groups are present in
their structure.*® Citric acid and glucose contain numerous
hydroxyl groups (-OH) capable of forming hydrogen bonds with
polyphenolic compounds such as oleuropein and hydroxytyrosol.
These interactions promote the association of polyphenols with the
NADES, increasing their solubility and, consequently, enhancing
the amount of polyphenolic compounds that can be extracted.
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Furthermore, the strong polarity of the glucose-citric acid combi-
nation enhances the solubility of naturally polar polyphenolic
compounds. This high polarity improves the extraction efficiency
by facilitating the disruption of interactions between polyphenols
and the plant matrix. In addition, the acidic environment provided
by citric acid contributes to the stabilization of polyphenols during
extraction. By limiting oxidation and degradation processes, an
acidic pH helps preserve the integrity and purity of the extracted
compounds.*

To assess the effect of variables on the NADES extraction
process, a CCD-RSM optimisation was created using the coded
parameters T (time), S (speed), and R (ratio) (Table 3). The
experimental design was established on the basis of the coded
level of the aforementioned three variables, resulting in 20
experimental runs with six replicates of the central point.

The model has a better agreement with the input parame-
ters, as indicated by its coefficient of determination (R®) of
0.9495. Similarly, the findings of the error analysis showed
a negligible lack of fit (p > 0.05) of 2.4113 (Table 4).

The generated model is reproducible, as evidenced by the
coefficient of variation (C.V.) of 3.88, which is less than 5%. The
model's relevance is implied by its higher F value of 20.88 with
a correction coefficient (adj R*) of 0.9040. This fits the practical test
and explains 90.40% of the change in the response value.

After deleting the non-significant variables, the following
mathematical equation (eqn (2)) shows the relationship between
the three independent factors and the TPC response (Y) of olive
leaves:

Y=72.99 — 1.98T + 5.53S + 3.10R + 5.46TS + 3.43TR + 3.78SR
— 10.95TT + 3.518S + 13.60RR )

Table 3 CCD matrix of three independent variables applied to the extraction of ‘Chemlal’ olive leaves by NADES, and the resulting total phenolic

contents (TPC)

TPC (mg GAE per g DM)

Run no. T (min) S (rpm) R(mLg™) Experimental RSM ANFIS ML algorithm
1 90 300 70 85.05 83.48 84.67 84.92
2 120 500 90 92.36 90.92 91.27 101.57
3 90 300 80 70.74 72.99 74.51 89.33
4 90 100 80 68.21 70.96 70.29 67.45
5 90 300 80 73.92 72.99 73.58 74.18
6 120 500 70 82.01 85.41 84.67 83.24
7 60 500 90 74.98 77.08 75.12 65.31
8 90 300 80 74.51 72.99 72.51 65.87
9 120 100 90 75.25 76.49 75.81 74.92
10 120 100 70 57.94 55.86 57.13 58.67
11 90 300 90 88.22 89.69 88.91 87.45
12 60 500 70 86.51 85.3 85.15 85.93
13 90 300 80 69.59 72.99 72.56 68.12
14 60 100 90 87.88 84.51 86.43 86.24
15 90 300 80 73.70 72.99 72.07 54.89
16 90 500 80 84.88 82.03 83.21 83.76
17 60 300 80 62.99 64.02 64.59 71.45
18 90 300 80 75.28 72.99 72.01 66.01
19 60 100 70 76.14 77.6 77.23 65.33
20 120 300 80 61.18 60.06 59.84 59.12

Sustainable Food Technol.

© 2026 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5fb00765h

Open Access Article. Published on 15 January 2026. Downloaded on 1/15/2026 11:39:58 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Table 4 Analysis of variance for the selected dependent variables
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Source Sum of squares df Mean square F value p-value, prob > F
Model 1636.68 9 181.85 20.88 <0.0001
Extraction time (T) 39.05 1 39.05 4.48 0.0603
Stirring speed (S) 306.03 1 306.03 35.13 0.0001
Ratio (R) 96.35 1 96.35 11.06 0.0077
TxS 238.82 1 238.82 27.42 0.0004
T xR 94.19 1 94.19 10.81 0.0082
S X R 114.23 1 114.23 13.11 0.0047
T 329.81 1 329.81 37.86 0.0001
s? 33.85 1 33.85 3.89 0.0770
R* 508.54 1 508.54 58.38 <0.0001
Residual 87.10 10 8.71

Lack of fit 61.55 5 12.31 2.4113 0.1784
Pure error 25.55 5 5.11

Cor total 1723.79 19

R 0.9495

R? adj 0.9040

R* pred 0.4026

C.V. % 3.88

Significant effects are seen for the ratio (p = 0.0077), and
stirring speed (p = 0.0001). Additionally, the time x stirring
speed, time x ratio, and stirring speed x ratio all exhibited
significant interactions with one another, indicating a relation-
ship between their effects.

The squared effect of time (p = 0.0001) suggests that the rela-
tionship between time and the dependent variable is non-linear.
Likewise, a non-linear link between the ratio and the dependent
variable is indicated by the squared effect of the ratio (p < 0.0001).
However, there appears to be a linear relationship between stirring
speed and the dependent variable, as evidenced by the non-
significant interaction between stirring speed and itself (p =
0.0770).

Another way to depict the regression equation is as a three-
dimensional response surface (Fig. 3). The relationship between
the stirring speed and the solid-to-liquid ratio is shown in Fig. 3a,
and an increase in the ratio had a detrimental influence on the
TPC yield. According to the relationship between the ratio and
extraction time (Fig. 3b), a low ratio and extraction time both
constrain the amount of TPC. The relationship between speed and
extraction time is depicted in Fig. 3¢, and it positively affects the
amount of TPC. By maximizing the desirability, the mathematical
formula made it possible to determine the ideal circumstances for
TPC recovery from olive leaves, which included a ratio of 1/70 (g
mL "), a stirring speed of 500 rpm, and a time of 90 min.

Experiments were repeated using these inferred processing
settings to compare the practical value with the predicted value
(96.30 mg GAE per g DM). The real study yielded a mean value of
95.00 £+ 1.49 mg GAE per g DM (n = 3), demonstrating the
model's efficacy as there were no significant differences
between the actual and the predicted values for TPC (p > 0.05).

Modeling with an adaptive neuro-fuzzy inference system
(ANFIS)

The main benefit of ANFIS over artificial neural networks (ANN) is
that it blends fuzzy logic and neural network best practices to more

© 2026 The Author(s). Published by the Royal Society of Chemistry

precisely and accurately describe complex systems.” In order to
forecast the extraction variables of olive leaf extracts along with
validating experimental data, ANFIS modeling was employed. To
create the ANFIS model prediction, the same 20 experimental data
sets that are displayed in Table 3 were split into three sets for
training and testing data sets and model validation. Then, these
sets were utilized to build a fuzzy inference system, whose
parameters were modified for the membership function using the
backpropagation technique and the least-squares approach. A FIS
of ANFIS model with membership functions, one output response,
and three input responses needs to be built in order to guarantee
accuracy. As shown in Fig. 2, the suggested design of the ANFIS
model consists of one output value and five input variables. One by
one, a number of parameters need to be checked. There are three
fuzzy sets: low, medium, and high for each of the input variables,
such as extraction time (7), speed (S), and ratio (R).

Similarly, the TPC (91.00 & 1.49 mg GAE per g) was specified
in five fuzzy sets—very low, low, medium, high, and very high—
based on experimental results for the expected output response.
The fuzzy rule was constructed using data from human obser-
vations and experiments. RSM was utilized to improve the fuzzy
rules using the projected values of the response.

Modeling with the ML algorithm

The use of ML to optimize phenolic compound extraction from
olive leaves is currently mainly unexplored, despite its potential.
Only Rodriguez-Fernandez et al. (2023)* modelled phenolic
extraction from leaves of a Turkish olive cultivar using
ultrasound-assisted extraction optimized by machine learning.
The experimental parameters, namely extraction time (7),
speed (S), and ratio (R), are selected as inputs, and TPC (Y) is the
output data. The random forest regressor model was developed
by changing the model's output data while maintaining
constant input data because the dataset includes the five target
columns. R* score error computation is used to evaluate the
models after they have been fitted to the training set of data.
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Fig. 3 Response surface methodology (RSM) graphical analysis. (a—c)
Demonstrations of the effect of time, speed, and solid-to-liquid ratio
on the total phenolic content of ‘Chemlal’ olive leaves.

The model then predicts the input values (T: 90 min, S:
500 rpm, R: 70 mL g '). The expected output response for TPC
(101.57 mg GAE per g) was reached based on the experimental
results. To illustrate the error variation between the actual and
anticipated values, a graph model (Fig. 4) was created.
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Model validation

The optimized extraction parameters for the TPC were validated
using the RSM results. The validation experiments were con-
ducted using Design Expert software, which could determine
the best extraction settings and their combinations. For the
same data, the ANFIS and machine learning algorithm models
were employed, and the optimum conditions were also
confirmed.

A rule viewer plot (Fig. 5) was used to observe the values of
the responses upon varying the process variables. The rule
viewer is a condensed toolset that has fuzzification and neural
weight optimization built in. Here, the rule viewer plot tool was
used to anticipate the response variables for different model
inputs. Further cross-validation of the model was made possible
by conducting tests and comparing the results with the pre-
dicted values of the model.

At the desired optimal settings for the extraction parameters
(T = 90 min, S = 500 rpm, R = 70 mL g '), the expected
response for the extract of olive leaves, as determined by the
ANFIS model, was 91.27 mg GAE per g. The value for TPC was
101.57 mg GAE per g for the machine learning algorithm model.
The results showed that the experimentally measured values
and the predictions from RSM, ANFIS, and machine learning
modeling fit each other well.

Comparative study of the different models

Twenty experimental runs were conducted, and the TPC values
obtained served as the basis for training and evaluating the
performance of multiple models. Model performance was
evaluated using the coefficient of determination (R?) and root
mean square error (RMSE) calculated for the test dataset.

The RSM model, developed using a second-order poly-
nomial, provided a good approximation of the TPC trends with
an RMSE of approximately 7.2, but was limited in capturing
highly non-linear relationships.

The ANN model, built using a multilayer perceptron with
backpropagation, slightly improved prediction quality, espe-
cially where interactions were non-linear. However, XGBoost
demonstrated superior performance with an RMSE of around
4.8, owing to its boosting mechanism and ability to model
complex variable dependencies.

The ANFIS model showed the best predictive accuracy (R> =
0.9611), followed by considerably lower performance from the
ML model (R* = 0.2802).

Compared to RSM, the ML model showed a greater diver-
gence. This is explained by the fact that ML is a data-intensive
non-linear learning technique that needs a sizable training
dataset in order to achieve robust generalization. Because our
experimental matrix was relatively small and tuned for RSM, ML
tended to overfit the training data, which resulted in larger
prediction errors. This explains why RSM has better predictive
performance and is more reliable when dealing with small,
structured experimental designs.

Among all models, ANFIS stood out due to its hybrid archi-
tecture combining fuzzy logic and neural networks. It utilized
three membership functions per input variable, forming a rule

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig.5 Adaptive neuro-fuzzy inference system (ANFIS) rule viewer for the effect of extraction parameters on responses for the extraction of total

phenolics from ‘Chemlal’ olive leaves.

base of 27 fuzzy rules, and achieved an RMSE close to 4.4. The
ANFIS structure was visualized in MATLAB, showing five layers
including input, membership functions, rule base, output
membership functions, and final output node. These results
clearly show that ANFIS outperforms ML in modelling the non-
linear extraction system with a small dataset.

Phenolic contents of the optimized extract

Using the extraction conditions already tested in other
studies®***%* the extract of olive leaves of the cv. Chemlal

© 2026 The Author(s). Published by the Royal Society of Chemistry

exhibited an increased polyphenol content, which ranged from
57.94 to 92.36, with a mean value of 76.07 mg GAE per g DM
(Table 2). The average TPC value was higher or similar to the
results reported in the above-mentioned studies, using NADES
with stirring plus temperature.

After the optimization studies, the optimized extract exhibits
a considerable amount of total phenolics (95.00 & 1.49 mg GAE
per g DM) (Table 5).

Under physical conditions similar to those we used, choline
chloride (ChCl) combined with glycerol, at 80 °C for 2 h, was
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Table 5 Phenolic content and antioxidant capacity of the optimized
extract from olive leaves (cv. Chemlal)

Assay Result
Phenolic content (mg per g dry matter)

Total phenolic content 95.00 + 1.49
Total flavonoid content 0.52 + 0.03
Total tannin content 6.64 + 0.33
Antioxidant capacity (IC5oug mL )

Phosphomolybdate 159.01 + 9.02

1357.00 £ 21.21
7200.00 £ 14.14

DPPH radical scavenging capacity
ABTS radical scavenging capacity

able to extract most polyphenols, although the authors did not
report a TPC as a Folin-Ciocalteu assay.*

ChCl and acetic acid were the best combination to extract
most polyphenols from olive leaves, with stirring plus temper-
ature, giving a maximum of 34 mg GAE per g DW.*!

When using NADES solvents (glycerol with three amino
acids: lysine, proline, and arginine), a range of TPC values was
obtained (from 67.40 to 177.54 mg GAE per g DM).**

Our findings are also comparable to those of Kaltsa et al
(2020),>° who studied the Agrielia Kalamon variety of olive leaves
employing NADES, made up of glycine and r-lactic acid. A
liquid-to-solid ratio of 36 mL g ' and a stirring speed of
500 rpm were the optimal process variable settings with an
overall polyphenol yield of 97.53 mg GAE per g DM.

Nonetheless, the measured TPC in our system was lower
than those reported by Unlu et al (2021),> who reported
a maximum level of 187.31 + 10.30 mg GAE per g DM at the
optimized conditions, with choline chloride-fructose-water. In
that case, the author used an ultrasound-assisted extraction.
Higher TPC values were achieved by Chakroun and co-authors
(2021)* using B-cyclodextrin and i-lactic acid/ammonium
acetate for olive leaves of the Greek cv. Koroneiki. Using ideal
extraction parameters (300 rpm stirring speed, a liquid-solid
ratio of 100 mL g, at 80 °C), a TPC result of 113 mg caffeic acid
equivalents per g DM was obtained.

As for total flavonoids, with a concentration of 0.52 =+
0.03 mg EQ per g DM, the extract contains a low amount. This
value does not reflect what other authors have found.**?* It is
well known that the main compounds present in olive leaves are
oleuropein, hydroxytyrosol and luteolin 7-glucoside. It can be
assumed that the combination of citric acid and glucose used
here as a NADES can extract a small amount of flavonoids
(luteoline 7-glu) relative to secoiridoids.

Tannins may be found in substantial quantities in olive
leaves. In our extract, an amount of 6.64 £ 0.30 mg EC per g DM
was measured. The values reported in previous studies are
lower*®*” or higher*® than this amount. These variations may be
attributed to the different methodological procedures used for
phytochemical analysis.

Moreover, a number of variables, including climate, soil
composition, date of collection, drying conditions, cultivation
zone, and cultivar, can affect the qualitative and quantitative
phenolic composition of olive leaves.* Together with these
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factors of variability, there are also the consequences of the
processing methods and the storage conditions before
extraction.*

Antioxidant activity of the optimized extract

According to all assays, remarkable antioxidant capacity was
demonstrated by the ‘Chemlal’ olive leaf optimized extract
(Table 5). The total antioxidant activity, which evaluates the
ability to reduce molybdate ions, demonstrated a better
performance with a significant difference (p =< 0.05) with an ICs,
value of 159.01 £ 9.02 ug mL~". Additionally, the leaves extract
exhibited a significant ability to neutralize DPPH and ABTS
radicals, with corresponding ICsys of 1357.00 + 21.21 and
7200.00 4 14.14 pg mL ™.

The abundance of phenolics, particularly oleuropein, in the
leaf extract contributes to these effects, as it is well known that
the TPC is highly correlated with the antioxidant leaf extract
exhibiting a significant ability to neutralize DPPH and ABTS
radical activity.>

In the literature, the DPPH test is more suited for assessing
olive leaf antioxidant capacity. Still, the results are not of the
same magnitude or presented in the same manner as those in
this study. In the DPPH assay, various olive leaf extracts from
Greece exhibited a powerful anti-DPPH capacity with ICs,
varying from 30.2 + 3.8 to 126.3 + 9.5 ug mL~'.** The results of
the same test demonstrated significant antiradical activity of
‘Chemlal’ and ‘Sigoise’ ethanolic extracts with ICs, values
ranging from 98.94 & 1.01 pg mL™" to 188.85 =+ 3.65 pg mL™".*

Conclusions

The current investigation attempts to optimize the NADES-
based extraction of phenolic compounds from ‘Chemlal’ olive
leaves using RSM. The results were compared and validated
using ANFIS modeling with an ML algorithm.

The RSM predicted result for the olive leaf extract was
96.30 mg GAE per g at the intended optimal extraction parameter
settings (T = 90 min, § = 500 rpm, R = 70 mL g ). According to
the ANFIS model, the predicted response was 91.27 mg GAE
per g. At the moment when the machine learning algorithm
model predicted the reaction, the TPC value was 101.57 mg GAE
per g. The findings demonstrated a good fit between the
predictions from RSM, ANFIS, and machine learning modeling
and the experimentally measured value (95.00 mg GAE per g).

The comparative results demonstrated that ML-based
models provided higher prediction accuracy and better gener-
alization compared to traditional RSM. The XGBoost and ANFIS
models were particularly effective in optimizing the extraction
process, with time and solvent ratio identified as the most
influential parameters. This comprehensive modeling frame-
work provides a robust approach for enhancing phenolic
compound extraction from olive leaves, offering valuable
insights for industrial applications in the nutraceutical and
pharmaceutical sectors, with industrial relevance.

Furthermore, the NADES employed (citric acid and glucose),
besides being safe for both operators and food-related

© 2026 The Author(s). Published by the Royal Society of Chemistry
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applications, appears to exhibit greater selectivity towards sec-
oiridoids (oleuropein) than flavonoids (luteolin) present in olive
leaves. Future investigations will be directed at confirming this
hypothesis.
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