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tion of shelf-life of soymilk using
a surface-enhanced Raman spectroscopy (SERS)
fiber and convolutional neural networks

Bezalel Adainoo, Zili Gao and Lili He*

Predicting the shelf-life of food is important for reducing food waste and ensuring consumer safety. The

shelf-life of food products is predicted using models generated from data obtained from microbial,

flavor, compositional and sensory analyses. However, these methods are laborious, expensive, time-

consuming, and impractical for real-time analyses. In this study, a surface-enhanced Raman

spectroscopy (SERS) fiber was used together with convolutional neural networks (CNNs) to develop

models and predict the remaining shelf-life of soymilk during accelerated storage at 25 °C. The fiber

detected the presence of different volatile organic compounds (VOCs) and varying concentrations of

dimethyl sulfide during storage. In the early days of storage (days 0–5), the presence of VOCs

responsible for the beany and grassy odor typical of soymilk was detected. On day 9, the presence of

ketones, esters and some aldehydes was detected in the headspace. Using CNN models, the SERS

spectra showed strong correlations with key quality and safety indicators including optical density (R =

0.85, RMSE = 0.04), pH (R = 0.87, RMSE = 0.32), microbial count (R = 0.91, RMSE = 0.69 log10 CFU

ml−1), electrical conductivity (R = 0.92, RMSE = 0.07 mV), particle size (R = 0.94, RMSE = 212.59 nm),

and zeta-potential (R = 0.94, RMSE = 1.28 mS cm−1). The SERS spectra also showed strong correlations

with the remaining shelf-life (R = 0.95, RMSE = 1.30 days). Separate spectra were used to externally

validate the remaining shelf-life and microbial count models. The results demonstrated strong predictive

performance, with the model achieving accurate predictions for the remaining shelf-life and microbial

count. These findings support the potential of the SERS fiber–CNN approach for practical shelf-life

prediction. More tests are needed for different food products and conditions.
Sustainability spotlight

The developed surface-enhanced Raman spectroscopy (SERS) ber combined with convolutional neural network models for real-time shelf-life prediction
promotes sustainability in the food system by introducing a rapid, non-invasive and data-driven approach for predicting soymilk shelf-life which can be
extended to other food products. This study offers a solution that enables real-time and accurate monitoring of food quality and safety indicators. The tech-
nology can potentially allow food producers and retailers to better assess the actual freshness and safety of food products, reducing unnecessary premature
disposal, hence minimizing food waste. By maximizing the usable life of food products and ensuring they are only discarded when truly unsafe or of unac-
ceptable quality, this approach not only helps conserve resources and reduce environmental burden but also supports food security and economic efficiency
throughout the supply chain.
1 Introduction

Accurately predicting the shelf-life of food is crucial for
reducing food waste and boosting consumer condence in the
food industry. Recent studies have established an inverse rela-
tionship between shelf-life and food waste primarily because
consumers discard packaged food even before it is spoiled.1,2

This signicantly contributes to food waste. Conventionally,
food analysis methods such as microbial analysis, sensory
assachusetts, Amherst, MA 01003, USA.

y the Royal Society of Chemistry
analysis, avor prole analysis using gas chromatography-mass
spectrometry (GC-MS), and compositional analysis are used to
obtain data during storage of food products, which are then
used to develop various prediction models to determine the
shelf-life of these food products.3 However, while thesemethods
are accurate, they are laborious, expensive, and time-
consuming, making them impractical for real-time monitoring
of food shelf-life. Monitoring quality and safety changes in food
products in real-time is essential for safeguarding the food
system and quick decision-making to protect consumer health.
Several studies have demonstrated that headspace volatile
organic compounds (VOCs) provide real-time insights into food
Sustainable Food Technol.
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spoilage.4 Other studies have explored the combination of GC-
MS headspace analysis and neural networks for predicting the
shelf-life of food products.5,6

Surface-enhanced Raman spectroscopy (SERS) is an analytical
technique that involves the use of a roughened surface with
a nanoparticle coating that enhances the Raman signal of ana-
lytes when excited with a laser. SERS has effectively been utilized
to investigate VOCs in various samples including distinguishing
healthy and pest-infested plants based on their VOCs, identi-
cation of disease-related VOC biomarkers and detection of
metabolic products in the headspace bacterial cultures.7–9 SERS is
useful for these analyses because it is simple, inexpensive, and
rapid. In previous studies, a SERS-ber has been applied to study
the changes in the headspace VOCs of whole milk and arugula
leaves during storage.10,11 The SERS ber is a gold-coated stain-
less steel wire on which molecules of the VOCs adsorb when
inserted into the headspace of a sample. Spectral data can then
be acquired from the SERS ber which provides insight into the
VOCs that are present in the sample headspace.

Traditionally, chemometric data analyses such as principal
component analysis (PCA) and partial least squares (PLS) are used
to process SERS spectral data. Chemometric analyses make it
possible to preprocess spectral data to enhance data quality and
extract as much valuable information as possible.12 However,
these data analysis methods can cause overtting which increases
the risk of false discoveries and reduces generalizability of models
to new data.13 Some studies have explored the combination of
spectral data and chemometric analyses to predict the shelf life or
quality of different foods.11,14 These methods may also struggle to
capture the nonlinear relationships and high-dimensional
features commonly present in SERS data, limiting their effec-
tiveness for real-time applications such as food spoilage predic-
tion. On the other hand, convolutional neural networks (CNNs)
perform very well at handling raw, high-dimensional spectral
data, can extract valuable features directly from raw spectra, and
providemodels that are typically easier to interpret.15,16 As a result,
CNNs are increasingly being used for spectral data analysis in
both food quality monitoring and biomedical applications.17

In our most recent work, the combination of spectra from
the SERS ber and CNN model showed great promise in
detecting the changes in the headspace of whole milk during
storage and correlations with key quality and safety indicators.10

However, since whole milk spoils quickly, we could not explore
the potential of the SERS ber to predict the remaining shelf-
life. The aim of this current research was to predict the
remaining shelf-life of soymilk in accelerated storage (25 °C)
using headspace spectra from the SERS ber and CNN models.
Soymilk was used for this study because its spoilage is a gradual
process,18 which would allow for collection of sufficient head-
space data over a two-week period to allow for the prediction of
the remaining shelf-life during accelerated storage.

2 Materials and methods
2.1 Materials

Polished 304 stainless steel wire (ø 0.3 mm) was purchased from
Vigan via Amazon. Pure ethanol (200 Proof) was purchased from
Sustainable Food Technol.
Decon Labs Inc. (King of Prussia, PA, USA). Hydrochloric acid (36.5
to 38.0%w/w) was purchased from Fisher Scientic (Fair Lawn, NJ,
USA). Hydrogen tetrachloroaurate(III) hydrate was purchased from
Sigma-Aldrich (St. Louis, MO, USA), and 2% stock solution was
prepared using distilled water and further diluted to a 0.1%
solution which was used in the SERS ber fabrication. Plain,
unsweetened soymilk (Brand A) from different manufacturing
batches with at least one month le on its best by date was
purchased from two different local shops at different times: Stop &
Shop and Walmart (Hadley, MA). The soymilk from Stop & Shop
was purchased in March 2024 (Brand A1) to obtain the training
data and the soymilk from Walmart was purchased in February
2025 (Brand A2) to obtain the test data for themodels developed in
this study. In addition, two other brands of plain, unsweetened
soymilk (Brands B and C) were purchased in October 2025 to
validate the performance of the shelf life prediction model.

2.2 SERS ber fabrication

The SERS-ber used in this experiment was fabricated using the
method described in our previous work10 with some modica-
tions. The stainless steel wire was cut into 8 cm pieces and
washed with distilled water followed by washing with absolute
ethanol using an ultrasonic bath (Branson CPX 2800H Digital
Heated Ultrasonic Cleaner, Branson Ultrasonics Corporation,
Danbury, CT, USA) at frequency of 40 kHz and a power output of
110 W for 5 minutes at 25 °C. This was followed by air drying for
about 10 minutes then the dried wire pieces were etched in
concentrated hydrochloric acid for 30 minutes to enhance the
gold coating. The hydrochloric acid was poured off thewire pieces
and the wire pieces were washed with distilled water followed by
washing with absolute ethanol for 5 minutes using the ultrasonic
bath. The washed etched wire pieces were then air dried by
blowing air. The dried etched wire pieces were immersed in 0.1%
(v/v) hydrogen tetrachloroaurate(III) solution at room temperature
for 45 minutes to allow for the iron–gold replacement reaction to
take place, which resulted in the gold coating on the wire. The
gold-coated SERS ber was stored in a glass vial for use.

2.3 Experimental setup for headspace analyses using the
SERS ber

Soymilk samples were poured to half-ll 15 ml glass vials with
PTFE/silicone septa and open-top polypropylene caps. The
capped vials were stored at room temperature (25 ± 2 °C) over
a two-week period. Two vials were taken and analyzed for
headspace volatiles and other key quality indicators at each
time point (days 0, 3, 5, 7, 9, 11 and 13). Two SERS bers were
inserted into the headspace of each soymilk glass vial with the
aid of syringe needles and incubated at room temperature for 30
minutes. The SERS bers were then immobilized onto a plain
glass slide and SERS spectra were acquired using a Raman
microscope. This experimental setup was used for both sets of
soymilk samples used for training and testing the models.

2.4 Raman instrumentation

A DXR Raman microscope system (Thermo Fisher Scientic,
Madison, WI, USA) equipped with a 780 nm laser source
© 2025 The Author(s). Published by the Royal Society of Chemistry
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(maximum at 24 mW) was used to collect the SERS spectra in
this study. The Raman instrument was controlled with
OMNIC™ soware (version 9.1). The spectra were collected
using a 20× objective lens and a detection range from 400 to
3200 cm−1. The measurement was carried out over a 2-second
exposure time and a 3 mW laser power. Sixty spectra were
collected for each SERS ber. For the samples used to develop
the models, 20 spectra were selected for each ber, making
a total of 80 spectra for each time point for data processing and
analyses. For the samples used to validate the models, y
spectra were selected for each ber (making a total of 200
spectra for each time point) for data processing and analyses.

2.5 Data preprocessing

Prior to analysis, all spectra were preprocessed using z-score
normalization. For each spectrum, the mean and standard
deviation across all Raman shi positions were calculated, and
normalization was performed by subtracting the mean and
dividing by the standard deviation. This standardized each
spectrum to have a mean of 0 and a standard deviation of 1,
improving comparability across samples. To further reduce the
baseline dri and high-frequency noise, a Norris second deriv-
ative lter19 was applied to the normalized spectra. The result-
ing preprocessed data were used to train the CNN models.

2.6 CNN model establishment and evaluation

A one-dimensional convolutional neural network (1D-CNN)
model was developed to analyze headspace SERS spectra for
both classication and regression tasks, following a similar
approach described in our previous work.10 The architecture
consisted of two convolutional layers, each followed by batch
normalization and max pooling to reduce dimensionality while
retaining key spectral features. These were followed by fully
connected layers with ReLU activations to extract higher-level
representations. The output layer was task-specic: producing
class probabilities for classication and a single continuous
output for regression.

Data were split into training and testing sets, converted to
tensors, and processed using PyTorch. Cross-entropy loss and
mean squared error (MSE) were used for classication and
regression tasks, respectively, with optimization performed
using the Adam algorithm. Full-batch training was applied, and
model performance was evaluated using accuracy for classi-
cation, and R and RMSE for regression. A confusion matrix and
t-SNE were also used to visualize the classication results.

The developed CNN model was evaluated using a new set of
headspace SERS spectra from a separate soymilk sample during
its initial storage period. The prediction accuracy of the
remaining shelf-life and microbial counts of this new sample
was determined by comparing to the actual days and microbial
counts.

2.7 Analyses of key quality indicators

2.7.1 Microbiological analysis. Microbiological analysis of
the soymilk samples was conducted at each time point (days 0,
3, 5, 7, 9, 11 and 13) to obtain the total plate count. Serial
© 2025 The Author(s). Published by the Royal Society of Chemistry
dilutions of the soymilk samples were performed using peptone
water and 200 ml of the dilution was plated on tryptic soy agar by
spread plating and incubated at 37 °C for 24 to 48 hours. The
total plate count (CFU ml−1) was calculated from the colony
counts, and log10 conversions of the total plate counts were
calculated and used for further analyses.

2.7.2 pH analysis. The pH of the soymilk samples was
monitored at each time point during the storage period using
a digital pH meter (Fisher Scientic accumet AE150) at room
temperature (25 °C). The measurements were performed in
triplicate.

2.7.3 Optical density analysis. To determine the optical
density (OD600) of the soymilk samples, 10-fold dilutions of the
samples were prepared. Seven aliquots of 200 ml each were
dispensed into wells of a 96-well plate, using 200 ml distilled
water as the reference. Absorbances at 600 nm were measured
with a UV-Vis spectrophotometer (Molecular Devices, Spec-
traMax M2, San Jose, CA, USA), and the readings were recorded
as the optical density.

2.7.4 Particle size, zeta potential and electrical conductivity
analysis. The particle size of the soymilk samples at each time
point was measured by dynamic light scattering (Zetasizer Nano
ZS, Malvern Instruments Inc., Malvern, UK) as described by Li &
McClements20 using the same dilutions described in Section
2.7.3. The refractive index of the dispersion medium (water)
used for the determination of the particle size was 1.33. The
analyses were performed at 25 °C with a refractive index of 1.35
and a count rate of 76.5 kcps.

Zeta potential and electrical conductivity were measured by
electrophoresis using a Zetasizer Nano ZS (Malvern Instruments
Inc., Malvern, UK). The dilution and instrument settings were
the same as those used in the particle size analysis. For each
time point, at least three measurements were taken.
2.8 Statistical analysis

The averages and standard deviations of the results from the
microbiological, pH, optical density, particle size, zeta potential
and electrical conductivity were calculated and plotted on
graphs. Furthermore, the microbiological, pH, optical density,
particle size, zeta potential and electrical conductivity data were
analyzed for signicant differences between the time points by
analysis of variance (one-way ANOVA) and Tukey's test (p < 0.05).
The statistical analyses were done using OriginPro 2024b
version 10.1.5 soware (Origin Lab Inc., Northampton, MA,
USA).
3 Results and discussion
3.1 Spectral changes in the headspace during storage

The results from the study show that during the two-week
storage period, there were spectral changes in the headspace of
the soymilk samples indicating changes in VOCs (Fig. 1). On
days 0–5, there were broad bands between 800 cm−1 and 1000
cm−1 which indicate overlapping vibrational modes from
aromatic rings, C–C stretching and C–H bending.21 The mole-
cules with these vibrational modes which may have been
Sustainable Food Technol.
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Fig. 1 Headspace SERS spectra of soymilk samples during storage at
25 °C.

Fig. 2 t-SNE visualization of the classification of the SERS spectra.

Fig. 3 Confusion matrix showing the test accuracy on each test day
during the storage period.
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detected by the SERS ber include hexanal, 2-pentylfuran and 1-
octen-3-ol, which are also responsible for the beany, grassy odor
observed on days 0–5.22 Also, starting on day 3, a weak peak was
observed around 1035 cm—1, which increased gradually on day
5 and day 7. This may indicate the presence of aromatic thiols
such as thiophenol and alkyl substituted thiophenols in the
headspace.23,24 Also, this peak may indicate the C–S stretching
in dimethyl sulde.10,25 No beany, grassy odor was observed on
day 7, which is evident in the spectrum as the broad band
between 800 cm−1 and 1000 cm−1 present on days 0–5 was
absent. On day 9, the broad bands from 1110 to 1200 cm−1 and
1480 to 1660 cm−1 are consistent with the C–O stretching and
C]C stretching respectively.21 These broad bands suggest the
presence of other volatile organic compounds such as esters,
some aldehydes, ketones, and carboxylic acids in the headspace
of the soymilk samples by day 9. Notably, on day 9, the soymilk
samples had a fruity smell which was perceivable by smell,
suggesting the presence of esters and some aldehydes (like
nonanal) in the headspace. Aer day 9, other peaks, which are
consistent with the peaks in dimethyl sulde became more
pronounced indicating an increase in the concentration of
dimethyl sulde on days 11 and 13 when the samples were
completely spoiled. On day 11, the peaks at 676, 726, 983, 1035,
1323, 1424, 2915, and 2990 cm−1 became more apparent, and
these peaks increased in intensity on day 13 further showing an
increased concentration of dimethyl sulde in the headspace as
the soymilk samples spoiled.10,25

The spectral data and observations are consistent with the
formation and release of volatile organic compounds from the
soymilk samples reported in other studies.26 During soymilk
spoilage, the perceived odor was consistent with the fruity and
cooked bean odor indicative of the presence of aldehydes and
esters (like 2-heptenal, nonanal, heptanal, ethyl acetate, and
2,4-heptadienal) and spoiled odor consistent with the presence
of suldes from the breakdown of sulfur-containing amino
acids like cysteine.27 This shows that the SERS ber, which only
costs $0.07 to make can obtain headspace data consistent with
data obtained from GC-MS in a much shorter time (in 2
minutes) than the analysis time of GC-MS (1–2 hours).
Sustainable Food Technol.
3.2 Classication of SERS spectra using the CNN model

The classication of the SERS spectra was done using CNN and
non-CNN (Mahalanobis distance-based classication using
principal component analysis for dimensionality reduction)
models. Seventy percent of the spectral data from the rst batch
of the soymilk samples was used to train the model and the
remaining 30% was used to test the models. The results were
visualized with t-distributed Stochastic Neighbor Embedding (t-
SNE) (Fig. 2) and a confusion matrix (Fig. 3) was used to visu-
alize the accuracy of the classication on each of the test days.
The CNN model achieved a classication accuracy of 84%,
which was signicantly higher than the classication accuracy
yielded from non-CNN analysis (36%). While the non-CNN data
analysis is suitable for classication, the CNN data analysis
achieved better test accuracy because it could better extract
© 2025 The Author(s). Published by the Royal Society of Chemistry
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spectral features and reduce the effect of noise to achieve better
results.28,29 Furthermore, the t-SNE plot shows that the CNN
model could clearly distinguish between the headspace spectra
of soymilk on day 0 in the blue ellipse and those on days 3 and 5
in the green ellipse even though there are minor observable
differences between the spectra on those days in Fig. 1. The day
7 data points were more separated with a few overlapping with
day 3 and 5 clearly. The day 9 data points were well separated
and clustered, when the samples started to develop fruity and
spoiled smells. The headspace spectra from days 11 and 13 were
distinctly separated from the other samples, as the soymilk
developed increasingly strong sulfurous odor during this period
(Fig. 2).

The confusion matrix (Fig. 3) shows that ,overall, the CNN
model could accurately classify most of the spectral data. All the
spectral data used to test the model on day 0 were accurately
classied. The model, however, misclassied some of the test
data on days 3 and 5. Some of the day 3 spectra were mis-
classied as spectra taken on day 5, day 7 and day 9, whereas
Fig. 4 Physicochemical properties and microbial count: (A) pH; (B) m
conductivity and (F) zeta potential of soymilk samples during storage at

© 2025 The Author(s). Published by the Royal Society of Chemistry
some of the day 5 spectra were misclassied as spectra taken on
day 3, day 7 and day 9 (Fig. 3). These misclassications could be
attributed to the higher degree of similarity in the spectral data
collected on days 3, 5, and 7, a pattern that is also apparent in
the t-SNE plot (Fig. 2). The spectra collected on day 7, day 9, day
11 and day 13 were mostly classied accurately.

3.3 Analyses of key quality indicators

In addition to the headspace VOC analyses, other quality indi-
cators of soymilk including pH, microbial count, optical
density, particle size, electrical conductivity and zeta-potential
were assessed during storage at 25 °C (Fig. 4). These quality
indicators were evaluated to further understand how the
changes in the headspace VOCs as detected by the SERS-active
ber relate to these known quality indicators.

The pH of the soymilk product tested in this study was 8.16±
0.02 on day 0 (Fig. 4A), which is very alkaline. During soymilk
production, an alkaline pH is known to be useful in the
extraction of soymilk from soybeans as it yields a higher
icrobial growth; (C) optical density; (D) particle size; (E) electrical
25 °C.

Sustainable Food Technol.
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Table 1 Correlation coefficient (R), and root mean square error
(RMSE) from the regression analyses between the headspace spectra
and measured key quality and safety indicators using convolutional
neural networks (CNNs)

Quality indicator R RMSE

Optical density 0.85 0.04
pH 0.87 0.32
Microbial count (log10 CFU ml−1) 0.91 0.69
Electrical conductivity (mS cm−1) 0.92 0.07
Particle size (nm) 0.94 212.59
Zeta potential (mV) 0.94 1.28
Remaining shelf life (days) 0.95 1.30

Table 2 Prediction of soymilk Brand A2 remaining shelf life using the
CNN model

Day
True shelf
life (days)

Predicted shelf
life (days)

Predicted standard
deviation (days)

0 9 8.56 1.33
3 6 6.16 1.23
5 4 5.07 1.10
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extraction of protein, fat, and solids in soymilk and reduces the
formation of beany avors in soymilk.30,31 Since the pH was
more alkaline on day 0, it did not support any microbial growth
(Fig. 4B). Furthermore, soymilk is known to contain antimi-
crobial compounds like isoavones which could have also
inhibited microbial growth.32 Nonetheless, the microbial count
increased almost linearly over time as the pH decreased. During
storage, soymilk became increasingly acidic due to enzymatic
and microbial activities, particularly microbial fermentation,
which led to various chemical changes and the production of
acids. Hence, the pH of the soymilk samples decreased and
reached 6.26 ± 0.01 on day 13 (Fig. 4A).

Optical properties such as turbidity and particle size are
known to be good indicators of soymilk quality.33,34 Turbidity is
one of the important optical properties that can be used to
determine soymilk quality, stability, and protein content.31 In
this study, turbidity was measured during soymilk storage as
optical density at 600 nm (OD600). The results show that the
OD600 increased during the two-week storage from 1.468 ±

0.011 on day 0 to 1.660 ± 0.021 on day 13 (Fig. 4C). This pattern
of change is consistent with changes in optical density of
emulsions and suspensions as they become unstable.35 These
ndings show that during the storage period, there were
changes in the soymilk quality and the samples became
unstable over time. The increase in optical density was also
consistent with the visual observations made of the viscosity of
the soymilk samples. The samples became more viscous during
the storage period. Generally, smaller, uniform particle sizes
indicate better soymilk quality and stability. According to Fan
et al.,36 the particle size of soymilk increases steadily from about
600 nm to about 900 nm over a 100-day period at 25 °C.
However, the results obtained in this study show that the
particle size gradually reduced from 309.5 ± 5.4 nm on day 0 to
a lowest of 284.8 ± 0.9 nm on day 5 aer which the particle size
increased to 354.5 ± 1.5 nm on day 11 and then increased
sharply to 2051.3 ± 10.1 nm on day 13 (Fig. 4D). The reduction
in the particle size between day 0 and day 5 may have resulted
from the microbial breakdown of the soymilk particles, while
the increase in the particle size aer day 5 may have been due to
the agglomeration of the particles caused by the changes in pH
and ionic strength.37,38

Electrical conductivity is a measure of the ability of a mate-
rial to conduct electric current. During food spoilage, as the
food particles break down, they release more free ions into
solution, thereby increasing the electrical conductivity. Due to
this strong relationship between electrical conductivity and
food spoilage, it has been successfully used to evaluate the
quality of various foods including soymilk, tofu, and pome-
granate juice, among others.35,39,40 During the storage period,
the electrical conductivity increased from 0.596 ± 0.001 mS
cm−1 on day 0 to 1.143 ± 0.131 mS cm−1 on day 13 as the
spoilage progressed (Fig. 4E). This clearly shows that over time,
more free ions were released from the breakdown of the soymilk
particles into solution, indicating spoilage during storage.

Furthermore, zeta-potential was used as a measure of the
stability of the soymilk during storage. During storage, the
soymilk became less stable, which is evident in the zeta-
Sustainable Food Technol.
potential measured (Fig. 4F). The samples had a zeta-potential
of −25.97 ± 0.31 mV on day 0, which is very close to zeta-
potential values consistent with stable colloids.41 As the soymilk
spoiled, the zeta-potential increased to −13.37 ± 0.75 mV on
day 13, when the soymilk samples had become unstable and
separated into two phases. These changes occurred as a result of
the changes in the pH and surface charge, which resulted in
agglomeration and consequent instability.42
3.4 Correlations between headspace spectra from the SERS
ber and key quality and safety indicators

Regression analyses between the headspace spectra obtained
with the SERS ber and the key quality and safety indicators
measured in this study showed strong correlations between the
headspace spectra and all the quality indicators (Table 1). The
changes in the spectra during storage had a correlation coeffi-
cient (R) of 0.85 (RMSE = 0.04) with the changes in the optical
density. This is because, as the soymilk spoiled and released
VOCs into the headspace, the samples showed an increase in
the optical density at a similar rate. Similarly, the change in pH
showed strong correlations with the SERS spectra (R = 0.87,
RMSE = 0.32). Since a decrease in pH is a good indicator of
microbial spoilage in soymilk,43 its strong correlation with the
headspace SERS spectra obtained with the SERS ber demon-
strates that this method is reliable for monitoring spoilage.
Furthermore, the microbial count even showed a stronger
correlation with the headspace SERS spectra (R = 0.91, RMSE =

0.69 log10 CFU ml−1). Generally, in predictive microbiology and
food safety, an error margin of ±1 log is considered acceptable
for model performance and to ensure the protection of public
health.44 Since the RMSE of the microbial count regression
analysis is within the acceptable error margin, it demonstrates
the reliability of combining the SERS ber and CNN modeling
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Prediction of soymilk Brand A2 microbial count using the CNN model

Day
True microbial count
(log10 CFU ml−1)

Predicted microbial count
(log10 CFU ml−1)

Predicted standard deviation
(log10 CFU ml−1)

0 0.00 0.12 0.24
3 2.55 2.14 0.58
5 2.82 2.38 0.55

Table 4 Validation of shelf life model performance using two other
soymilk brands

Day
True shelf
life (days)

Predicted shelf
life (days)

Predicted standard
deviation (days)

Brand B
0 9 7.28 1.38
3 6 6.35 0.89
5 4 5.14 1.18

Brand C
0 9 7.52 0.93
3 6 6.41 1.05
5 4 4.97 1.22

Brand A1 + A2 + B (train), Brand C (test)
0 9 8.23 1.09
3 6 6.47 0.9
5 4 4.66 1.08

Brand A1 + A2 + C (train), Brand B (test)
0 9 8.31 1.16
3 6 6.41 0.93
5 4 4.38 0.77
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for monitoring and predicting soymilk safety in real-time. The
headspace SERS spectra also had strong correlations with
electrical conductivity (R = 0.92, RMSE = 0.07 mV), which is an
important food spoilage indicator. The particle size showed
strong correlations (R= 0.94, RMSE= 212.59 nm) (Table 1) with
the headspace SERS spectra as well; however, the large RMSE is
a result of the signicant increase from 354.5 ± 1.5 nm on day
11 to 2051.3 ± 10.1 nm on day 13 (Fig. 4D). Zeta-potential had
a similarly strong correlation (R = 0.94, RMSE = 1.28 mS cm−1)
with the headspace spectra during storage.

In order to use the headspace SERS spectra to predict the
remaining shelf-life of soymilk, a regression analysis was per-
formed with day 9 as the expiry date since that is the day on
which the microbial load reached the acceptable limit of 104

CFU ml−1.45 Hence, the remaining shelf-life on the respective
days was as follows: day 0 = 9 days, day 3 = 6 days, day 5 = 4
days, day 7 = 2 days, day 9 = 0 days, day 11 = −2 days, day 13 =

−4 days. Days 11 and 13 had a negative remaining shelf-life to
indicate how many days had passed beyond the shelf-life.
Regression analysis between the headspace SERS spectra
acquired from the SERS ber and remaining shelf-life shows
that there is a strong correlation (R = 0.95, RMSE = 1.3 days)
between the two factors. This demonstrates the great potential
of the SERS ber and CNN modeling to predict the remaining
shelf-life reliably and accurately in real-time.
© 2025 The Author(s). Published by the Royal Society of Chemistry
3.5 Evaluation of the prediction accuracy of the remaining
shelf-life and microbial count of a separate sample

To evaluate the CNN model's ability to predict the freshness of
new samples reliably and accurately in real-time, a separate
batch of soymilk (Brand A2) was purchased and tested during
the early storage days. Headspace SERS spectra were collected
from these new soymilk samples during the initial storage
period, and the previously developed model was used to predict
the remaining shelf-life at specic intervals (9, 6, and 4 days
remaining). Table 2 compares the actual remaining shelf-life
with the predicted values derived from these spectra. The model
accurately predicted the remaining shelf-life, retaining
a consistent standard deviation (1–1.5 days) across predictions
(Table 2). This demonstrates that the CNNmodel can effectively
utilize spectral data obtained during early and fresh storage
days to determine the remaining shelf-life, conrming the
practical applicability of the SERS ber and model in real-world
scenarios. Additionally, the CNN model's capability to predict
the microbial count was also evaluated using the same set of
headspace SERS spectra (Table 3). The microbial count during
storage was effectively predicted with standard deviations in the
range of 0.24–0.55 log10 CFU ml−1 using only spectral data
collected at the respective storage intervals.

Two other brands (Brands B and C) were later obtained, and
the headspace SERS spectra were collected under the same
conditions as those used for soymilk Brand A. The headspace
SERS spectra from Brands B and C were used to validate the
performance of the shelf life predictionmodel. The results show
that the model predicted the Brand B samples to have 7.28 ±

1.38 days and the Brand C samples have 7.52 ± 0.93 days le on
their shelf lives (Table 4).Overall, the model performed well in
predicting the remaining shelf life of Brand B with an error
margin of 0.89 to 1.38 days and that of Brand C with an error
margin of 0.93 to 1.22 days (Table 4). These error margins are
very close to those obtained when Brand A2 was used to test the
model built using Brand A1 (Table 1). To further conrm the
generalizability of the model, data from brands A1, A2 and B
were put together to train the model and tested with Brand C
data. Similarly, data from brands A1, A2 and C were put together
to train the model and tested with Brand B data. The results
clearly show that the performance of the model was consistent
with the results obtained from only Brand A data (Table 2).
Furthermore, although these soymilk brands had slightly
different protein contents (Brand A = 8 g per 240 ml serving,
Brand B = 7 g per 240 ml serving, Brand C = 9 g per 240 ml
serving), the changes in their headspace VOCs during
Sustainable Food Technol.
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accelerated storage were similar and yielded similar shelf life
prediction results.
4 Conclusion

This study aimed at testing the application of the SERS-ber
and CNN modeling for predicting the shelf-life of soymilk in
real-time. The ndings from this study show that, using the
headspace spectra collected from the SERS-ber method
described in this study together with CNN modeling, the
changes in the quality and safety of packaged soymilk can be
monitored in real-time. The SERS ber detected the presence of
VOCs that give soymilk its characteristic beany, grassy odor on
days 0–5. The VOC prole changed to indicate the presence of
ketones, esters, and some aldehydes on day 9 which gave the
soymilk samples a fruity odor consistent with the physical
observations made. Also, dimethyl sulde was the predominant
VOC detected on days 11 and 13, by which time the soymilk was
completely spoiled. Also, the SERS ber detected the increase in
the intensity of dimethyl sulde during the storage period. The
changes in the headspace spectra showed strong correlations
with optical density, pH, microbial count, electrical conduc-
tivity, particle size, zeta potential and remaining shelf-life.
Furthermore, the CNN model performed very well in predicting
the remaining shelf-life andmicrobial counts of separate sets of
soymilk samples, emphasizing the capability of the combina-
tion of the SERS ber and CNNmodeling to predict the shelf-life
of soymilk. Further studies are needed to further explore this
technology in real-time monitoring of shelf-life of other food
products.
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