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ght CNN framework for
sustainable multicrop leaf disease detection and
classification on edge devices

R. Deepa, a Midhun P. Mathew, *b S. Baskar c and Abubeker K. M *d

The early diagnosis of plant leaf diseases is crucial in the sustainable management of agriculture as it minimises

crop damage and reduces the use of pesticides. This paper presents Leaf Net (L-Net), a new lightweight

convolutional neural network for the detection and classification of leaf diseases in apple, bell pepper, and

grape. The model includes depthwise separable convolutions within the layers of the model to capture

features more efficiently, an ensemble activation function to improve non-linearity of the output, and

a Modified Adamax optimiser to improve convergence. The datasets used include publicly available

repositories as well as custom annotated images, which were later pre-processed and augmented to enhance

generalizability. A plant-wise split cross-validation approach was used in training and evaluation, along with

the partitioning scheme to avoid data leakage and increase the practical applicability of the results. L-Net

obtained a classification accuracy of 99.8% and AUC score of 1.00. Though the variability in precision-recall

metrics suggests that improvements are needed in performance at the class level, L-Net was shown to be

compatible with low-power devices such as Raspberry Pi and NVIDIA Jetson Nano edge platforms, which

proved its feasibility for detection in the field. Moreover, this model facilitates the diagnosis of plant diseases in

a timely and precise manner and helps in the accurate application of pesticides and the management of

crops. This, in turn, fosters the adoption of sustainable agricultural practices. Additional research focuses on

cross-crop studies and real-world scaling of L-Net to enhance its model robustness.
Sustainability spotlight

This research contributes to sustainable agriculture by presenting L-Net, a lightweight and highly accurate deep learning model for the early identication and
classication of leaf diseases in bell pepper, grape, and apple plants. By enabling real-time, low-computation disease detection on resource-constrained devices,
L-Net empowers farmers with cost-effective, scalable, and autonomous solutions for crop monitoring. The architecture's integration of depthwise separable
convolutionsminimizes energy consumption and enhances processing efficiency, making it suitable for deployment in remote and rural farming environments.
This innovation supports precision agriculture by reducing chemical usage through timely disease intervention and improving yield with minimal environ-
mental impact—thereby aligning with the United Nations Sustainable Development Goals (SDGs) related to Zero Hunger (SDG 2) and Responsible Consumption
and Production (SDG 12).
1. Introduction

For the crops on which these initiatives document the world's
food supply and achieve food security, there are consequences
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and impacts of various diseases that can affect yield and value.
Apple, grape, and bell pepper crops are among the most
common instances of diseased vegetation where the symptoms
and diseases affect the leaves and generate losses in value.
Timely detection of these symptoms is critical for planning the
rational implementation of management initiatives to control
losses. The classical and most common diagnostic approaches
rely on human observations, which are slow, tedious, and error-
prone. For many of the most common symptoms and leaf
diseases, there is now the possibility of automated and accurate
diagnoses. The primary algorithms of interest are based on
deep learning (DL) and convolutional neural network (CNN)
approaches that have proven to excel in various image classi-
cation problems. The most potent and resource-consuming
algorithms that are being reported in the literature are
Sustainable Food Technol., 2026, 4, 985–1003 | 985
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unrealistic for small farms to perform in real time and to rely on
edge computing devices. Most of the research ignores the real-
world problems of variable illumination, occlusions, and
terrain distortions for leaf disease classication in closed and
controlled environments.

This research presents a neural network architecture, L-Net,
implemented from scratch, which is lightweight and designed
to detect and differentiate foliar diseases, frontal and dorsal, for
apple, grape, and bell pepper crops from a close range or
ground level distance. The L-Net model is designed for rapid
deployment to real agricultural elds due to its lightweight,
power-efficient, and highly accurate capabilities, thus
outshining competing models. The model underwent extensive
testing, spanning real-life conditions, and is reported to give
over 98% accurate results on training and testing validity, which
stands to prove its effectiveness. This contribution can be
summarised in the following key points:

� Developing and ne-tuning a new lightweight CNN archi-
tecture (L-Net)

� Trained from the ground level to achieve the highest
accuracy in multiple crops, apple, grape, and bell pepper, for
leaf disease detection.

Detection of frontal and dorsal foliar diseases was conducted
under real-world conditions concerning occlusions and varia-
tions in illumination. The proposed architecture is highly
procient and surpasses the efficiency of deep learning models
deployed for wider applications.

1.1 Novelty of L-Net

Models such as MobileNet and EfficientNet are applicable in
resource-limited settings, but these are built for general image
classication and depend on transfer learning. These architec-
tures contain redundant parameters for tasks like classifying
plant diseases, where the recognisable patterns of disease are
sparse and highly detailed. Conversely, L-Net incorporates
depthwise separable convolutions to reduce computation for
multicrop leaf disease classication, as well as an ensemble
activation function, Gaussian error linear unit (GELU), and
leaky rectied linear unit (leaky ReLU) to improve feature
learning for the numerous and diverse disease patterns.
Furthermore, L-Net employs a Modied Adamax to enhance
learning stability over severely unbalanced agricultural data-
sets. Unlike MobileNet and EfficientNet, this architecture
focuses on edge device use, tuned for low-latency, real-time
execution in rural or eld contexts, making it more innovative
and more sustainable for farming.

1.2 Justication for crop selection

Economic importance, the availability of data, and disease
diversity make bell pepper, grape, and apple relevant for the
research. These crops are essential horticultural crops grown
extensively in temperate and subtropical regions. Apple and
grape are among the top fruit crops, in production and export
value, whereas bell pepper is an important vegetable crop with
a high demand and perishability, along with a propensity for
particular diseases. Importantly, each of these crops is exposed
986 | Sustainable Food Technol., 2026, 4, 985–1003
to numerous visually identiable foliar diseases such as apple
scab, grape black measles, and bell pepper bacterial spot, which
aids in classication using image processing. Moreover, these
crops are well represented in publicly available datasets and are
oen targeted by agricultural disease surveillance programs.
This combination of plant economic importance, diversity of
diseases, availability of datasets, and accessibility makes them
suitable for developing and validating a generalised, light-
weight CNN model for diagnosing plant leaf diseases.
1.3 Sustainability relevance of the research

This work aids in achieving the goals of sustainable food
systems by facilitating early, precise, and scalable detection of
crop diseases, thereby preventing unnecessary application of
chemical pesticides and minimising losses in yield. Automated
leaf disease identication enables the selective use of fungi-
cides and bactericides. Moreover, the designed L-Net architec-
ture is light enough to be implemented on low-cost edge
devices, such as Raspberry Pi and Jetson Nano. This is impor-
tant to low-resource farming communities, which are limited to
minimal cloud computation and agronomic knowledge.
Equipping smallholder farmers with real-time devices enables
them to make quick, informed, and condent decisions, which
substantially decrease waste and improve efficiency, thereby
promoting resource-efficient and climate-resilient agriculture.

The rest of the paper is organised as follows: Section 2
discusses the literature on plant disease classication using
deep learning techniques. Section 3 describes the model
development, followed by the methodology in Chapter 4, which
entails L-Nets's architecture and dataset construction for the
model. Section 5 describes the experimental setup and analysis
of the results, while Section 6 presents model analysis with an
accompanying discussion. Finally, Section 7 offers conclusions
and outlines directions for future research.
2. Literature review

There has been considerable effort towards employing deep
learning and machine learning (ML) models to detect plant
diseases. Sivaganesh et al.1 used statistical and machine
learning techniques to distinguish varying degrees of Fusarium
wilt on tomatoes by remote hyperspectral sensing. Padhi et al.2

used simulated thermal imaging in a hybrid CNN model to
improve the diagnosis of paddy leaf diseases. Dhoundiyal et al.3

developed a method for plant disease diagnosis using
a progressive hierarchical model to achieve enhanced accuracy
and efficiency. Classifying various diseases has heavily relied on
novel DL architectures. Bhookya et al.4 created and trained
a DBESeriesNet model to classify crop leaf diseases. Hanif et al.5

performed a comparative analysis of image classication using
ResNet, Inception-v3, and support vector machine (SVM) for
plant diseases. In addition to crop leaf diseases, the authors
designed a semi-automated system for grape leaf disease, which
improved accuracy and efficiency in agricultural practices.6

Moreover, CNNs have been commonly used to detect plant
diseases. Nain et al.7 analysed the application of some colour
© 2026 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fb00191a


Paper Sustainable Food Technology

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/3
0/

20
26

 7
:4

4:
10

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
space models in CNN-based recognition of plant diseases.
Bahrami et al.8,9 used transfer learning (TL) techniques; they
conducted a comparative study on recognising diseases in
tomato leaves. Kadam et al.10 also suggested an approach of
automatic image detection targeted at diagnosing disease in
apple fruiting plants. In ref. 11, Khan et al. developed a new
dense-inception architecture with attention mechanisms to
improve the classication of plant diseases.

Other developments and research have targeted real-time
models and graphics processing unit (GPU) accelerated ones.
Rahman et al.12 developed a system for monitoring and
detecting plant diseases that works in real-time and relies on
deep learning techniques. Among other things, Wang et al.13

were concerned with the isolation and identication of the
causative agent of gummy stem blight disease of cucumber,
contributing to the understanding of plant pathology. Along-
side these developments, transformer models and federated
learning methods were also craed. Chai et al.14 proposed the
PlantAIM model, which combines global attention and local
features for identifying plant diseases. Hari and Singh15 pre-
sented an adaptive method of knowledge transfer using feder-
ated deep learning for plant disease detection with privacy and
efficiency concerns.

Liu et al.16 developed an advanced YOLOv5-based model,
achieving 92.7%mAP in apple leaf disease detection. In a recent
research study, a novel mobile-optimised lightweight model
YOLOv8n–GGi is designed for an apple leaf disease detection
model designed to work in natural environments.17 The model
was optimised through the application of GhostConv, C3Ghost,
GAM, and BiFPN modules, where it achieved 86.9% mAP.
Advanced DL models, particularly with Swinv2-Base, are
achieving 100% accuracy in early diagnosis and identication,
thus highlighting the ease of integration of deep learning in
agriculture.18 In ref. 19, real-time grape leaf disease detection
using the MobileNetV3Large model is developed and deployed
on the NVIDIA Jetson Nano edge platform. The model was able
to achieve 99.66% training accuracy and 99.42% test accuracy.
In ref. 20, spanning various ML and DL frameworks designed
Table 1 Comparative summary of existing models for plant disease clas

Sl. No. Model/Study
Dataset
used Advantage Disadv

1 MobileNetV2
(ref. 5)

Plant
village

Efficient on mobile
and edge devices

Relies
learnin
class-s

2 EfficientNetB0
(ref. 8)

Plant
village

Balanced accuracy
and model size

Higher
on low

3 DBESeriesNet
(ref. 4)

Plant
village

Tailored for leaf
disease classication

Moder
lacks e

4 DSC-TransNet
(ref. 11)

Plant
village

GPU-enabled,
real-time detection

Needs
hardwa
for low

5 Dense-inception +
attention
(ref. 10)

Plant
village

Improved spatial
attention and feature
localisation

High c
and lat

© 2026 The Author(s). Published by the Royal Society of Chemistry
for early plant leaf disease detection, the paper emphasises the
EfficientNet family of models, which attained 98.12% accuracy
for image classication at a modest computational cost.
Sustainable agriculture and food security hinge on accurate leaf
disease detection. An ANFIS-integrated CNN model with local
binary pattern (LBP) features was used for enhanced detection
of bell pepper leaf diseases. With the LBP, the model achieved
exceptional accuracy, surpassing 99%, revealing its potential for
dependable agricultural applications.21 Table 1 shows
a summary of the literature.

In contrast, the developed L-Net model for embedded
systems considers hardware constraints and spatial contextual
domain patterns. L-Net justies this by completing the primary
accuracy target for the embedded domain while using depth-
wise separable convolution, a novel ensemble activation func-
tion, and a customised optimiser. Apart from this, most
literature ignores performance under the multi-crop, multi-
disease, and class imbalance conditions. This work aims to
close that gap using strategic augmentation, balanced parti-
tioning, and a class-level evaluation framework. Evidence for
the practical nature of this work is provided in Section 5, which
includes comparisons of inference times for L-Net and baseline
CNN, MobileNet, and EfficientNet architectures.
3. Development of L-Net architecture

Training L-Net the rst time without any pre-trained weights or
transfer learning was to ensure that the model fully adapted to
the specic characteristics of the images of diseased plant
leaves, because there are considerable differences between
these images and general datasets like ImageNet. Also, training
from scratch has allowed the model to learn representations of
specic features such as the textures, colours, and diseased
patterns specic to crops like bell peppers, grapes, and apples.
Finally, it provided more design freedom in customisation,
such as adding ensemble activation functions and an alterna-
tive optimisation approach, which otherwise would be hard to
implement when transfer learning from rigid baseline models.
sification

antage
Accuracy
(%)

Precision
(%) Research gap

on transfer
g; lower
pecic precision

98.2 96.3 Limited crop-specic
optimisation

inference latency
-end devices

98.6 97.2 Not optimised for
real-time agricultural eld
use

ate model size;
dge evaluation

98.0 96.9 No hardware constraint
analysis or eld testing

expensive
re, not practical
-resource areas

97.4 96.5 High deployment cost
and energy demand

omplexity
ency

97.8 97.0 No sustainability or
deployment framework
was discussed

Sustainable Food Technol., 2026, 4, 985–1003 | 987
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3.1. Block for extraction of features

The initial part of L-NET consists of depthwise separable
convolution layers, enabling a considerable decrease in
computational cost without losing important spatial charac-
teristics. A depthwise convolution lter is applied by utilising
only one convolutional lter for each input channel, followed by
pointwise feature extraction:

X0 = (Wd × X) × Wp (1)

In this case,Wd is the depthwise lter,Wp is the pointwise lter,
and X is the input feature map. Batch normalisation is per-
formed to stabilise the learning process, followed by an
ensemble activation function, which is a combination of GELU
and Leaky ReLU:

f(x) = 1
2
(GELU(x) + LeakyReLU(x,a)) (2)

where GELU is dened as:

GELUðxÞ ¼ xFðxÞ;whereFðxÞ
¼ 1=2

�
1þ tan h

� ffiffiffiffiffiffiffiffiffiffiffiffi
ð2=pÞ

p �
xþ 0:044715x3

���
(3)

And Leaky ReLU is dened as:

LeakyReLU(x,a) = max(ax,x) (4)

The architecture consists of three main convolutional
blocks, each containing two depthwise separable convolution
layers with 32, 64, and 128 lter sizes, respectively. Batch nor-
malisation with renormalisation follows each block for
progressive weight updating, and max pooling with a stride of 2
reduces the spatial dimensions:

Xl+1 = max(Xl,2 × 2) (5)

where Xl represents the feature maps at layer l, and max pooling
retains the most prominent feature responses while discarding
irrelevant information. A 1 × 1 convolutional layer with 32
lters is introduced before classication to enhance channel-
wise feature representation without affecting spatial
dimensions:
Table 2 Comparison of the developed L-Net with lightweight CNN arc

Feature/Model MobileNetV2 Efficien

Primary purpose Generic image classication Generic
Training strategy Transfer learning Transfe
Activation function ReLU6 Swish
Optimizer Adam RMSPro
Model parameters ∼3.4 million ∼5.3 mi
FLOPs (multiply-add ops) ∼300 million ∼390 m
Hardware target Edge/Cloud Edge/Cl
Domain adaptability Moderate Modera
Suitability for real-time use Medium Medium
Sustainability relevance Not explicitly addressed Not exp

988 | Sustainable Food Technol., 2026, 4, 985–1003
X0 = W × X + b (6)

In eqn (6), W is the 1 × 1 lter, X is the input, and b is the bias
term. This transformation helps rene extracted patterns before
feeding them into the classication head. The nal stage
includes global average pooling:

Xavg = (1/H × W)SSXij (7)

In eqn (7),H andW are the height and width of the feature map.
The pooled feature vector is attened and passed through two
fully connected layers (512 and 256 neurons), each using the
ensemble activation function and L2 regularisation to prevent
overtting:

Lreg ¼ ljjW jj2 (8)

A dropout of 0.5 and 0.3 is applied to improve generalisation.
The nal somax output layer produces probability distribu-
tions for two classes, using the categorical cross-entropy loss:

L = −Syilog(ŷi) (9)

In eqn (9), yi is the true label, ŷi is the predicted probability, and
C is the number of classes. L-Net is optimised using a Modied
Adamax optimiser, which renes the standard Adamax update
rule by introducing an additional moving average term. This
optimisation technique includes the following equations:

mt = b1m(t−1) + (1 − b1)gt (10)

vt = max(b2v(t−1),jgtj) (11)

vt = v(t−1) − mgt + 3vt (12)

qt = q(t−1) − h(mt/(v̂t + 3)) (13)

In eqn (10)–(13) gt is the gradient, b1 and b2 are momentum
coefficients, and h is the learning rate. A detailed comparative
analysis between the proposed L-Net and state-of-the-art light-
weight CNN architectures (MobileNet and EfficientNet) is
provided in Table 2.
hitectures, such as MobileNet and EfficientNet

tNetB0 Proposed L-Net

image classication Crop-specic plant leaf disease classication
r learning Trained from scratch

Ensemble (GELU + leaky ReLU)
p Modied Adamax
llion ∼1.9 million
illion ∼36 million
oud Edge-focused (Jetson Nano, and Raspberry Pi)
te Highly tailored for agricultural datasets

Low latency and fast inference
licitly addressed Explicitly aligned with smart farming

and sustainability

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Layer-wise architecture details of the developed L-Net model

Layer type Output shape Kernel/Stride Filters Params FLOPs (M)

Input 256 × 256 × 3 — — 0 0
Depthwise conv 1 256 × 256 × 32 3 × 3/1 32 320 15.1
Pointwise conv 1 256 × 256 × 32 1 × 1/1 32 1024 4.2
Max pooling 128 × 128 × 32 2 × 2/2 — 0 0.8
Depthwise conv 2 128 × 128 × 64 3 × 3/1 64 640 7.5
Pointwise conv 2 128 × 128 × 64 1 × 1/1 64 2048 8.1
Max pooling 64 × 64 × 64 2 × 2/2 — 0 0.4
Depthwise conv 3 64 × 64 × 128 3 × 3/1 128 1280 6.2
Pointwise conv 3 64 × 64 × 128 1 × 1/1 128 8192 12.4
Max pooling 32 × 32 × 128 2 × 2/2 — 0 0.2
1 × 1 bottleneck conv 32 × 32 × 32 1 × 1/1 32 4096 2.1
Global avg pooling 1 × 1 × 32 — — 0 0.03
FC layer 1 512 — — 16 896 0.06
Dropout (0.5) 512 — — 0 0
FC layer 2 256 — — 131 072 0.05
Dropout (0.3) 256 — — 0 0
Somax output 6 (classes) — — 2560 0.02
Total — — — 167 128 56.9
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To illustrate the lightweight nature of L-Net, Table 3 presents
a full layer-by-layer summary showing output size, parameter
count, and estimated FLOPs for each stage in the pipeline.
Overall, the model uses roughly 167 000 parameters and
executes around 56.9 million FLOPs per forward pass. This slim
architecture lowers memory footprint and accelerates inference
speed, supporting the claim that L-Net is practical for real-time
disease screening on edge hardware such as the Raspberry Pi 4B
and Jetson Nano.

Fig. 1 describes a streamlined deep learning architecture
designed for image classication, emphasising low computa-
tional requirements and suitability for real-time or edge
deployment scenarios. The system processes an input image of
size 256 × 256 × 3. It begins with feature extraction through
a series of depthwise separable convolution layers, which
drastically reduce the number of learnable parameters while
preserving representational capacity. The initial convolution
block contains two depthwise separable convolutions of 32
lters each, which is followed by batch normalisation to sta-
bilise and improve training dynamics. This scheme is dupli-
cated with increasing lter sizes of 64 and 128, followed by
batch normalisation and 2 × 2 max pooling layers for the
reduction of spatial dimensions. The transition from convolu-
tional layers to fully connected layers is aided by a 1 × 1 conv2D
layer with 32 lters, which performs some degree of dimen-
sionality reduction, and is followed by a 7 × 7 average pooling
layer, which integrates some spatial characteristics. The
resulting feature map is subsequently attened and passed to
two fully connected layers with 512 and 256 neurons, respec-
tively. An ensemble of activation functions is employed,
comprising a number of nonlinear functions, with the purpose
of enhancing generalisation. To further mitigate the effects of
overtting, dropout layers are utilised with probabilities of 0.5
and 0.3 on the dense layers. The nal dense layer has a Somax
activation specically designed for two-class outputs. The
Modied Adamax Optimiser is used, which combines the
© 2026 The Author(s). Published by the Royal Society of Chemistry
standard modied optimisers with a custom-designed learning
rate algorithm that adapts to a large range of datasets to opti-
mise convergence and performance.
4. Methodology

The stages involved in identifying plant leaf diseases using L-
Net are outlined in Fig. 2. These stages are as follows:
capturing images, compiling a dataset, dataset segmentation,
training an L-Net model, classifying diseases, and calculating
overall performance metrics. The rst of these stages involves
obtaining leaf image data from various data archives, online
repositories, or other sources. The next step is image augmen-
tation, which comprises techniques such as rotation, ipping,
scaling, changing colour, and several different methods to
increase dataset variability. The complete image classication
pipeline is depicted in Fig. 2. Initially, the process starts with
the data source, which also encompasses the dataset, aer
which it is divided into three subsets: 70% is allocated for
training, 20% for validation, and the remaining 10% for testing.
The training and validation sets undergo image augmentation
to enhance data diversity and rene the model's performance.
The L-Net model, a lightweight convolutional neural network
trained for the classication of plant diseases, is trained on the
augmented dataset mentioned earlier. The model then
undergoes hyperparameter optimisation, which adjusts critical
learning parameters, including the learning rate, batch size,
and dropout rate, to enhance performance.

Upon identifying the best conguration, the L-Net model is
trained using the training dataset and subsequently assessed
using the validation set. Evaluation of the model is then per-
formed on an unbiased testing dataset. The model is evaluated
on performance metrics that include accuracy, precision, recall,
F1 score, and AUC during the nal evaluation to demonstrate
the efficacy of the proposed model. The implementation of this
workow in testing ensures achieving all of the following for the
Sustainable Food Technol., 2026, 4, 985–1003 | 989
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Fig. 1 Flow chart of the developed L-Net model.
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developed models: reliability, robustness, reproducibility, and
preparation for deployment/additional testing.

4.1 Dataset preparation (label validation and ground truth)

For the most reliable and scientically valid form of disease
labels, the image annotations came from one of two origin
990 | Sustainable Food Technol., 2026, 4, 985–1003
streams. These streams consist of expert-validated public
collections from Kaggle22,23 and GitHub repositories24,25 and
custom images evaluated by agronomists and plant patholo-
gists. For newly obtained images, an initial set of labels was
developed by the researchers based on visual symptoms and
standardised protocols for plant disease. These were then
reviewed by two additional specialists from the department of
agricultural science at a nearby regional university. The
reviewers were required to reach consensus on the disease class
for each of the sample images. Any ambiguous images, such as
those displaying overlapping symptoms or evident environ-
mental damage, were excluded. This was done in order to not
compromise the quality of the remaining images. These multi-
layered annotations provide the data set with a reliable ground
truth that reects real-world signs of the disease and allows for
the model to be trained and tested effectively at subsequent
stages of this research.

4.2 Dataset preparation

Tominimize data leakage and to objectively evaluate the model,
we opted for a plant-wise splitting method rather than the
traditional image-wise split. As for this method, we grouped all
the images of a specimen, regardless of the different angles,
lighting conditions, or magnications, and assigned the entire
collection to one of the three sets: training, validation, or
testing. This conguration of similar images into one phase
allows us to mitigate the risk of articially inating perfor-
mance metrics, because the model never sees augmented
duplicates of a specimen at different stages of training. This
plant-wise conguration was uniformly applied to both the
original and augmented datasets, allowing the nal test to
accurately assess the generalisation of the system to completely
new specimens.

4.3 Image pre-processing

The focal point of this study is the dataset obtained using
photographs of plant leaves, where each leaf is calibrated to
a resolution of 256 by 256 pixels. While standardising the image
improves the leaf dataset's uniformity and removes unnecessary
computational differentiation, it unfortunately complicates the
uploading pre-processing steps. Furthermore, standardising
the image could have hindered the detection span of the model
in terms of lesions that are smaller in size or modestly visible. In
order to extract conclusive information, the model's perfor-
mance was assessed by determining the accuracy of the model
in original and resized images. The conclusion drawn from our
results suggests that the resizing of the image does not hurt the
model's performance concerning the plant leaf images. The
sample image of this dataset is illustrated in Fig. 3.

Table 4 summarises the number of pictures for the various
classications of plant leaf diseases according to plant types
such as bell pepper, apple, and grape.

This research employs a dataset containing a total of 7828
images, which are labelled and span across three plant species:
bell pepper, grape, and apple, considering both healthy and
diseased leaves. For bell pepper, the dataset contains two classes:
© 2026 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fb00191a


Fig. 2 The evaluation process of the L-Net model.
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bacterial spot (797 images) and healthy (1183 images), totalling
1980 images. The grape category includes four classes: black rot
(944 images), leaf spot (861 images), blackmeasles (1107 images),
and healthy (399 images), totalling 3311 images. The apple leaves
also consist of four classes: scab (504 images), black rot (497
images), cedar apple rust (220 images), and healthy (1316
images), totalling 2537 images. Overall, the dataset contains
a reasonably balanced showcase of many different types of
diseased leaves and healthy leaves. This assists in training the
deep learning models for evaluating the classication of diseased
leaves and is effective in the training process.

4.4 Image augmentation

To enhance the model's performance, the augmentation of
image data is pivotal in reinforcing and generalising the model.
Constructing new variations within the dataset allows the
model to adapt to the different changing real-world conditions.
The primary augmentation techniques in this study are:

4.4.1 Rotation range. This allows images to be rotated
within the limits of ±40°, which is needed for variability.

4.4.2 Width shi range (WSR) and height shi range
(HSR). This allows random horizontal movements for up to 20%
of the image's width or vertical movements for up to 20% of the
image's height.

4.4.3 Shear range (SR). This allows for a maximum angle of
0.2 radians of shear transformation of the image, altering its
shape.

4.4.4 Zoom range (ZR). This allows for random zooming of
the images in or out by a satisfactory margin of 20%.

4.4.5 Horizontal ip (HF). This introduces additional
spatial diversity by randomly ipping images with a 50%
likelihood.
© 2026 The Author(s). Published by the Royal Society of Chemistry
4.4.6 Fill mode. This concerns the newly created pixels
from the transformation, thus ensuring smooth image
transitions.

4.4.7 Normalisation. This normalises pixel values into a set
range to mitigate variance in predictions based on imaging
conditions.

4.4.8 Cropping and resizing. This maintains uniform
dimensions of images, focusing on the area of interest and
eliminating some non-relevant background noise.

Themodel utilises augmentation techniques, which improve
model performance on unseen data, as the model learns the
different representations of the same image. Example images
modied with augmentation techniques can be seen in Fig. 4.
For the L-Net model, the LevelNet model training set was
expanded and diversied with augmentation techniques
comprising rotations, shis, shearing, zooming, and ipping.

The augmented dataset overview, as well as its characteris-
tics, is contained in Table 5. These pre-processing approaches
are aimed at ensuring that the model attends to important
features and not irrelevant distortions. This is important, as it
helps to correct the classier's misclassication. Moreover,
many techniques prevent overtting by encouraging the model
to learn patterns instead of memorising the augmented training
data. Integrating these pre-processing and augmentation
methods enhanced classication accuracy by 6% to 9%, and
there was a reduction in the number of incorrect identications
made relative to the unprocessed images. Furthermore, the
increase in dataset size helped improve the precision and recall
values of the model, especially in the minority classes, which
helped the model to identify rare plant diseases condently. All
pre-processing, as expected, was quantitatively evaluated, and it
was shown that normalisation and cropping, as integrated
Sustainable Food Technol., 2026, 4, 985–1003 | 991
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Table 4 Dataset summary for each class

Sl. No. Type of plant Disease type No. of images

1 Bell pepper Bacterial spot 797
Healthy 1183

2 Grape Black rot 944
Leaf spot 861
Black measles 1107
Healthy 399

3 Apple Scab 504
Black rot 497
Cedar apple rust 220
Healthy 1316

Fig. 3 Sample image of bell pepper, grape, and apple.
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workows, were the most benecial to the model in terms of
feature clarity and performance.

For bell pepper, augmentation resulted in 5100 images for
bacterial spot and 5200 for healthy samples. In the grape cate-
gory, there are 6000 augmented images of black rot, 6300 of leaf
992 | Sustainable Food Technol., 2026, 4, 985–1003
spot, 6200 of black measles, and 6180 healthy images. In apple,
the augmented dataset includes 5300 images of scab, 5200 of
black rot, 5100 of cedar apple rust, and 5110 healthy images.
This meticulous procedure supports balanced classication and
improves the model's robustness by simulating different
conditions of plant leaves in the real world.
4.5 Dataset preparation

The augmented dataset is systematically split into training
(70%), testing (10%), and validation (20%) sets. This split
facilitates model training and fair assessment of model
performance:

4.5.1 Training set (70%). Used to derive insights from
provided data and adjust model parameters.

4.5.2 Validation set (20%). This set offers the model a way
to measure its performance on previously unseen data during
the learning phase and assists in further calibrating hyper-
parameters such as the learning rate and regularisation rate.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Illustration of image transformations applied for augmentation.
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4.5.3 Testing set (10%). This set assesses the nal model's
ability to use unknown data and measures its generalisation
capability.
Table 5 Details of augmented images

Sl. No. Type of plant Disease type No. of images

1 Bell pepper Bacterial spot 5100
Healthy 5200

2 Grape Black rot 6000
Leaf spot 6300
Black measles 6200
Healthy 6180

3 Apple Scab 5300
Black rot 5200
Cedar apple rust 5100
Healthy 5110

Total 55 690

© 2026 The Author(s). Published by the Royal Society of Chemistry
Only the augmented images are included in the training set;
for the original images, care was taken to avoid overlaps with
the augmented images. This guarantees that no training, vali-
dation, or testing set shares any plants or leaves, and thus bias
in evaluation results is avoided. To ensure data accuracy,
a combination of automated and manual techniques is per-
formed. The sample overlaps to ascertain a “clean”, non-
redundant, and unbiased superset and model for evaluation.
To manage large data sets and quality control, we use Tensor-
Flow data validation (TFDV), which is part of the TensorFlow
Extended (TFX) suite. This step is vital for quality control of the
set. The approach to the data set division is shown in Table 6.
This validates unbiased objective criteria for model evaluation,
thus preventing data pollution.

The dataset utilised for training, validating, and testing the
L-Net model consisted of 55 810 images across three plant
species: bell pepper, grape, and apple. For bell pepper, 10 300
Sustainable Food Technol., 2026, 4, 985–1003 | 993
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Table 6 Dataset used in L-NET in training, validation, and testing

Sl. No. Image type Training Testing Validation Total

1 Bell pepper 7210 1030 2060 10 300
2 Grape 17 360 2480 4960 24 800
3 Apple 14 497 2071 4142 20 710

Table 7 Details of the hyperparameters used in L-Net

Sl. No. Hyperparameter Setting

1 Input image size 256
2 Batch remoralization True
3 Stride 2
4 Dense layer 512
5 Activation Ensemble activation
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images were collected, of which 7210 were used for training,
2060 for validation, and 1030 for testing. The dataset for grape
contained 24 800 images, 17 360 of which were training images,
4960 for validation, and 2480 for testing. The apple dataset
contained a total of 20 710 images, which included 14 497
training images, 4142 for validation, and 2071 for testing. This
stratied split allows for balanced and sufficient learning to
enhance the L-Net model's generalisation and classication
prociency across different plant species and disease types.
4.6 Reproducibility and averaging strategy

To improve replicability and reduce the impact of random
variability during training, each condition was run ve times
with different random seeds. For every run, the evaluation
metrics of accuracy, precision, recall, and F1 score were calcu-
lated and recorded on a held-out test split. The results pre-
sented include the average of the ve trials along with standard
deviations (±s) for the metrics. This approach more accurately
reects the generalisation potential and stability of the model.
For each run, hyperparameters, such as the learning rate and
dropout rate, were set to the same values to ensure a fair
evaluation.
5. Experimental results and
performance evaluation

This experiment aimed to identify plant diseases related to bell
pepper, grape, and apple leaves using L-Net. Image input was
set to a standard size of 256 × 256 pixels. The training epochs
ranged from 50 to 100 to achieve maximum precision during
validation and testing. Various learning rates between 0.01 and
0.0001, plus different batch sizes, were implemented, but the
optimal batch size to ensure efficacy was 9. The approach was
evaluated comprehensively using multiple datasets for bell
pepper, grape, and apple leaf diseases to ensure maximum
comprehensiveness for the proposed model. The used hyper-
parameters with the L-Net model are given in Table 7.

The L-Net model was further trained with a specic set of
hyperparameters tailored to achieve the best output and
training efficiency to make any adjustments. The input image
dimensions were set to 256, which provided both adequate
resolution for feature extraction while remaining computa-
tionally efficient. Batch normalisation was active, which assis-
ted in accelerating and stabilising training by normalising layer
inputs. Convolutional layers included a stride value of 2 to
downsample feature maps and reduce the spatial dimensions
effectively. In addition, the architecture had a dense layer with
512 neurons that added a high-capacity representation before
994 | Sustainable Food Technol., 2026, 4, 985–1003
the output layer. Notably, the model used an ensemble activa-
tion function, which combines several nonlinear activation
functions to improve the expressiveness and generalisation of
the model. All these hyperparameters aided in striking a good
balance in the trade-off between the model's complexity,
stability during training, and accuracy during classication
tasks.

The L-Net model was trained and evaluated on Google Colab
Pro+, which provided a single NVIDIA A100 Tensor Core GPU
with 40 GB of video memory. The virtual environment hosted 16
vCPUs and 85 GB of system RAM, and it ran Python 3.10, Ten-
sorFlow 2.12, and CUDA 11.8. Training proceeded for 100
epochs using a batch size of 9 and an initial learning rate of
0.001. During inference, the average prediction latency per
image was about 36 milliseconds on the GPU, indicating that
the model can classify inputs in near real time. This perfor-
mance makes L-Net viable for cloud-assisted applications and
lightweight edge devices, including Jetson Nano, Raspberry Pi
paired with Coral TPU, or mobile platforms, where low latency
and modest resource use are essential.

5.1 Ablation study on activation functions

An ablation study was carried out to test the new ensemble
activation function, which blends GELU and Leaky ReLU, by
replacing it with standard options: ReLU, Leaky ReLU, and
GELU in isolation. To ensure a fair comparison, each trial used
an identical network architecture and hyperparameter settings.
Table 8 gives a complete summary and shows that the
combined activation consistently surpasses all single functions
on every central performance metric. In particular, L-Net
reached a peak accuracy of 99.8% and precision of 99.7% and
did so in fewer epochs. This improvement is linked to smooth
non-linearity of GELUs working in tandem with the stable
gradients of Leaky RELUs', which together help the model
generalise better and learn ne disease patterns on plant leaves.

Table 8 shows the results of an ablation study conducted for
the L-Net model, focused on evaluating the performance and
training convergence issues of different activation functions.
The model with ReLU achieved 98.7% accuracy at 40 epochs,
but had challenges predicting minority classes, which impacted
generalization. Leaky ReLU improved the model slightly more,
scoring 99.0% accuracy while also improving precision and F1-
score as a result of better handling of negative activations,
though it converged in 42 epochs. The GELU also provides weak
performance with smoother activation and strong generaliza-
tion, obtaining 99.1% accuracy at 45 epochs, which is higher
than that of earlier converging models due to slower early-stage
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 8 Ablation study of activation functions used in L-Net

Activation function
Accuracy
(%)

Precision
(%)

F1-score
(%)

Epochs to
converge Remarks

ReLU 98.7 97.8 97.6 40 Fast but struggled with minority classes
Leaky ReLU 99.0 98.5 98.3 42 Improved handling of negative

activations
GELU 99.1 98.6 98.5 45 Better smoothness and slower early

learning
GELU + leaky ReLU 99.8 99.7 99.6 37 Best generalization and faster

convergence

Table 9 Optimiser comparison for L-Net performance

Optimizer
Accuracy
(%)

Precision
(%)

F1-score
(%)

Epochs to
converge Remarks

Adam 98.9 98.1 97.9 42 Fast convergence and moderate
overtting

RMSProp 98.7 97.9 97.6 45 Stable but slow convergence
Modied Adamax 99.8 99.7 99.6 37 Best stability, generalisation, and speed
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learning. Synergistic ensembles performed best with a combi-
nation of leaky ReLU and GELU, which brought accuracy to
99.8%, attaining a precision of 99.7% and an F1 score of 99.6%
while also achieving the fastest 37-epoch convergence. This
study demonstrates that ensemble performance improves
generalization and convergence efficiency, making it optimal
for L-Net.
5.2 Optimiser ablation study

To assess the performance of the Modied Adamax optimiser,
the researcher performed a controlled ablation study where it
was tested against Adam and RMSProp. A neural network of
a xed architecture was used, the learning rate was xed to
0.001, and mini-batches of size 32 were used. Under these
Fig. 5 Accuracy vs. loss for bell pepper with L-Net.

© 2026 The Author(s). Published by the Royal Society of Chemistry
conditions, the only variable remaining was the optimisers.
Table 9 summarises key metrics on classier performance to
facilitate a comparative analysis of the three methods.

A comparative evaluation of optimisers on L-Net illustrates
the discrepancies across performance measures, including
convergence speed and generalisation ability. Using the Adam
optimiser produced an L-Net model architecture that attained
an accuracy of 98.9%, and a precision and F1 score of 98.1% and
97.9%, respectively, with convergence occurring at 42 epochs.
For Adam, while there was rapid convergence, there was also
moderate overtting. The accuracy reached with the RMSProp
optimisers was slightly lower at 98.7, but there was also a lower
convergence at 45 epochs. While the optimiser provided stable
learning, it was also slow with convergence and generalisation.
Sustainable Food Technol., 2026, 4, 985–1003 | 995
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The Modied Adamax optimiser exceeded all others, achieving
the highest accuracy score of 99.8, an accompanying precision
of 99.7, and an F1 score of 99.6, and convergence in only 37
epochs. This optimiser proved to have the best training
stability, faster convergence, and robust generalisation. There-
fore, it was the most benecial optimisation strategy for the L-
Net architecture. These ndings demonstrate that Modied
Adamax optimisers signicantly improve learning dynamics
and classication performance for tasks involving the detection
of plant diseases.
5.3 Performance evaluation

During 40 to 100 epochs, training accuracy, loss, and other
associated metrics were collected. As presented in Table 9, the
model attained an astonishing 99.8% classication accuracy
and, at the same time, minimised false negatives to 99.78%
recall on bell pepper, grape, and apple disease datasets. The L-
NETmodel, augmented with depthwise separable convolutions,
improves accuracy in plant disease detection.
Fig. 6 Accuracy vs. loss for grape with L-Net.

Fig. 7 Accuracy vs. loss for apple with L-Net.

996 | Sustainable Food Technol., 2026, 4, 985–1003
Fig. 5–7 provide performance metrics depicting training and
validation accuracy exceeding 0.99 aer 20 epochs, suggesting
practical training with no overtting. The model-level initiali-
sation above 0.88 demonstrates that the model is initialised
strongly. Between epochs 10 and 20, there is a uctuation fol-
lowed by stabilisation in validation accuracy. The overall drop
in validation accuracy between epochs 20 and 40 suggests
overtting during some stages. The overall validation scores are
very high (0.97–0.99), showing that the model generalises well
with very little bias.

In the rst model, the accuracy and loss plots show both
high stability and awless performance, as the training and
validation curves for accuracy converge around 99.8%. The
accuracy gap between the curves, which is minimal, along with
consistently low loss values, conrms excellent generalisation
of the model, which is well-optimised with no overtting. In
contrast, the second model displays some degree of early-stage
instability, albeit accumulating high accuracy in the end.
Additionally, the validation curves for accuracy and loss are
unstable, which indicates that toomuch data stresses themodel
© 2026 The Author(s). Published by the Royal Society of Chemistry
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and makes it hypersensitive to hyperparameters such as the
learning rate. Withal, the model appears to be stable at later
training stages, which makes me suspect the model could gain
from the use of more regularisation methods, including
dropout or early stopping. The performance of the third model
starts lower, around 82% but improves as time progresses.
Training and validation curves strongly align with each other
through all the epochs, suggesting consistency in learning and
generalisation. The gradual yet stable convergence highlights
the robustness of the model and indicates the capability to
handle more complex and noisy datasets.

5.4 Benchmarking with lightweight CNNs and transformer
architectures

To assess L-Net alongside contemporary network designs, we
carried out a benchmarking experiment that included well-
known lightweight convolutional architectures MobileNetV2
and EfficientNetB0, as well as transformer models vision
transformer (ViT) and Swin transformer. All models were
trained and tested on the same multicrop leaf-disease dataset,
received identical preprocessing, and used the same train-test
splits, thus standardising experimental conditions and mini-
mising bias. Table 10 presents a summary of results, including
accuracy, the number of model parameters, inference time on
typical hardware, and the total disk size of each trained model.

5.5 Assessment of the effectiveness of the image
augmentation

To evaluate how well the image augmentation methods-
rotation, shear, zoom, ip, and normalisation-worked, we
pitted two L-Net models against each other: one trained on the
raw dataset and the other on the expanded, altered set.

Table 11 shows that adding these transformations boosted
the models general ability to predict unseen data, with the most
signicant gains seen in precision and recall measures. Overall
accuracy climbed by 2.6%, precision increased by 3.8%, and
Table 10 Benchmarking L-Net with lightweight CNNs and transformer

Model
Accuracy
(%)

Parameters
(M)

L-Net (proposed) 99.8 1.9
MobileNetV2 98.2 3.4
EfficientNetB0 98.6 5.3
ViT 96.7 86
Swin-T 97.3 28

Table 11 Performance comparison before and after data augmentation

Metric Without augmentation

Accuracy (%) 97.2
Precision (%) 95.9
Recall (%) 95.2
F1-score (%) 95.5

© 2026 The Author(s). Published by the Royal Society of Chemistry
recall jumped by 4.1%, improvements that were especially
pronounced for rare disease categories that the original pool
poorly represented. Such results suggest that augmentation
partially balanced class distributions and gave the network
a richer view of how diseases can appear under varied real-world
imaging conditions.
6 Experiment discussion and model
analysis

A confusion matrix has particular signicance in measuring the
model's effectiveness and understanding its classication
accuracy. Fig. 8–10 illustrate the confusion matrices for classi-
fying bell pepper, grape, and apple leaf diseases. The matrix
from the testing phase conrms all accuracy, precision, and
recall metrics achieved in the earlier stages and successfully
reduced false-positive and false-negative levels.

Fig. 10 shows a classication of grape leaves into four
groups. This has been done with exceptional performance
demonstrated by very high F1 scores. Regarding apple, bell
pepper, and grape leaf disease classication, L-Net showed
unmatched classication accuracy owing to performance across
different evaluation metrics. From the receiver operating char-
acteristic (ROC) curve, L-Net has an AUC (1.00) for all classes,
meaning that L-Net can differentiate between diseased and
healthy leaves without any false positives. This means the
model performs well in class discrimination, exceeding the
performance of traditional deep learning models like ResNet
and Inception-v3, which are used in other classication tasks
for plant disease. Enhancing the model's reliability, the
precision-recall (PR) curve shows that precision values
remained high irrespective of other recall levels. However, it is
interesting to note the macro average PR AUC of 0.74, which
suggests that while most classes perform very well, there is
some imbalance in performance across all the classes, and
hence, the overall generalisation will be poor.
models

Inference time
(ms)

Std dev
(�)

Model size
(MB)

38 �0.12 7.6
45 �0.27 12.6
60 �0.21 19.1
200+ �0.31 330
110 �0.25 91

With augmentation Improvement (%)

99.8 +2.6
99.7 +3.8
99.3 +4.1
99.5 +4.0
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Fig. 9 Confusion matrix of the grape leaf disease classification framework.

Fig. 8 Confusion matrix of the bell pepper leaf disease classification framework.
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L-Net is well calibrated for disease classication, as shown by
the calibration curve, since the predicted probabilities nearly
match the actual disease occurrence. However, room for
improvement exists owing to the slight deviations for specic
classes, which could be dealt with using temperature scaling or
Bayesian uncertainty estimation. The mean average precision
Fig. 10 Confusion matrix of the apple disease classification framework.

998 | Sustainable Food Technol., 2026, 4, 985–1003
(mAP) trends show that L-Net's performance varies across
training epochs, especially in early training periods. Differences
in the texture of the leaves and disease severity among the
apple, bell pepper, and grape datasets likely cause variability.
Unlike transfer learning-based models, L-Net, with its capsule
networks and transformer encoders, captures spatial
© 2026 The Author(s). Published by the Royal Society of Chemistry
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hierarchies and disease-specic features, which leads to
enhanced generalisation.

Fig. 11 shows L-Net results on other datasets that account for
real-life changes like light, humidity, and leaf position. The
study shows that the model works for bell pepper, grape, and
apple leaves with excellent efficiency.

Overall, L-Net achieves state-of-the-art results in classifying
apple, bell pepper, and grape leaf diseases. Its excellent ROC
and PR curves, robust calibration, and accuracy trends make L-
Net a frontrunner for practical application in plant disease
Fig. 11 (a) Bell pepper disease identification using L-Net. (b) Grape dise

© 2026 The Author(s). Published by the Royal Society of Chemistry
diagnosis. Fig. 12 presents the graphical representation of the
above analysis.

The model scores an ROC-AUC of 1.00, which suggests that it
can cleanly separate positive from negative instances when
evaluated overall. However, the more modest macro PR-AUC of
0.74 exposes a hidden imbalance among the individual classes.
This gap exists because precision–recall curves emphasise
precision and recall alone, so they react strongly when one class
appears much less oen than others. Because the ROC accounts
for true negatives, its score can stay high even when the positive
ase identification using L-Net.
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Fig. 12 (a) The mean average precision (mAP) values of bell pepper
leaves. (b) Themean average precision (mAP) values of grape leaves. (c)
The mean average precision (mAP) values of apple leaves.
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class is rare, giving a deceptively upbeat picture in skewed
datasets. PR-AUC keeps a tighter grip on minority performance,
punishing drops in either precision or recall, and therefore acts
as a tougher sanity check in multi-class scenarios like these.

Examining the class-by-class PR curves shown in Fig. 13
reinforces these points. Frequent classes, such as bell-pepper-
bacterial-spot, and rare classes like grape-leaf-blight and
apple-scalp, pull the overall score down because their recall is
weak. In other words, L-Net still performs well on average, but it
stumbles whenever any single class dominates. To narrow this
spread, the next model cycle will add focal loss and adaptive
resampling so minority classes receive more attention during
1000 | Sustainable Food Technol., 2026, 4, 985–1003
training, with the hope that macro PR-AUC will climb as
a result.

6.1 The mean average precision (mAP) variations

Although the proposed L-Net model achieved high accuracy and
AUC scores, the discrepancies in mean average precision for
some disease classes highlight differences in detection accuracy
and gaps in performance for specic subclasses. These differ-
ences may be attributed primarily to class imbalance and early
overtting. Even with the application of data augmentation,
notable classes such as apple scab and grape leaf blight suffered
from a scarcity of data during training. As a result, the model
developed a bias toward the dominant classes of disease and
predicted the dominant class with high condence, leading to
skewed scores at lower per-class AP, which overall diminished
mAP. Early overtting of classes was also observed during the
rst 10 to 15 epochs. This type of overtting in early stages may
cause the model to xate early on the dominant classes and
concentrate on high-frequency patterns while neglecting the
subtle features in the images of the minority classes. Even
though learning stabilisation techniques such as the use of
dropout regularisation, learning rate reductions, and stratied
augmentation were applied, the remaining variability in some
mAPs can indicate that scaling adjustments and the model
itself may be insufficient owing to the class balance and the
diversity in the representation of the training data.

6.2 Per-class performance metrics

In addition to the confusion-matrix diagrams, Table 12 includes
a comprehensive classication report containing the values of
precision, recall, and F1-score for each of the disease categories
on bell pepper, grape, and apple plants. This report assists the
researchers in evaluating the classication consistency of L-Net
and understanding how the network learns and generalises to
each disease subclass in isolation. Of particular note, the
algorithm achieved high F1 values on the larger clusters, such
as bell pepper bacterial spot and grape black rot; however, recall
dipped slightly on the smaller classes of apple scab and grape
leaf blight, indicating the need for more targeted data
augmentation or a new class-rebalancing method. These class-
level gures also match the trends shown by the macro-
averaged PR-AUC, providing the model performance with
a strong and comprehensive overview.

6.3 Training dynamics and instability in early epochs

In the rst ten training epochs, the model displayed consider-
able instability, most notably a uctuating validation loss and
validation metrics that displayed capricious behaviour. The
primary contributors to this issue included the dataset's class
imbalance, high learning rates, and the idiosyncrasies of the
Modied Adamax optimiser. Within the augmented training
sets, several classes containing scabbed apples and blighted
grape leaves remained underrepresented, which caused the
network to overt and memorise the features of the dominant,
larger classes. Also, using an aggressive learning rate of 0.001
and unbalanced gradient steps from Adamax's dynamic control
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 (a) Precision-recall curve (PR curve) and (b) calibration curve for the bell pepper.

Table 12 Per-class precision, recall, and F1-score for L-Net

Disease class
Precision
(%)

Recall
(%)

F1-score
(%)

Bell pepper – bacterial spot 99.8 99.9 99.85
Bell pepper – healthy 99.6 99.7 99.65
Grape – black rot 99.7 99.5 99.6
Grape – esca (black measles) 99.5 99.2 99.35
Grape – leaf blight 98.9 97.8 98.35
Apple – apple scab 98.2 97.5 97.85
Apple – black rot 99.1 98.9 99.0
Apple – cedar apple rust 98.4 97.2 97.8
Apple – healthy 99.3 99.4 99.35
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caused instability in the early training phases. Due to the above
issues, the following were implemented:

� A learning-rate scheduler cut the rate to 0.0001 aer every
een epochs.

� Augmentation procedures now emphasise each class with
stratied, random, and balanced transformations.

� A dropout layer with a 30% keep-rate and early stopping
with ten-epoch patience was added to smooth convergence.
6.4 Sustainability relevance

By rapidly and accurately diagnosing plant diseases, the L-Net
model brings a meaningful contribution towards sustainable
agriculture by reducing reliance on prophylactic spraying of
pesticides. Agronomists' consultations and in-eld experiments
validate that precision monitoring could, in fact, decrease
chemical application by 30 to 40%, as only diseased plants and
parts of the eld would be targeted. The L-Net model also
minimises infection spread, thus increasing the yield of
untreated crops by 20 to 25%. The system serves smallholders
in rural areas who cannot afford expensive servers or cloud
farms. Having been designed to operate on lightweight edge
© 2026 The Author(s). Published by the Royal Society of Chemistry
devices, such as Raspberry Pi or Jetson Nano, the system meets
the requirements of smallholders. The system's offline func-
tionality is ideal for areas with little to no connectivity. These
features make the system a cost-effective and exible solution
that integrates precision agriculture with environmental
sustainability.

6.5 Real-time and mobile deployment feasibility

L-Net was designed to be lightweight and fast, allowing it to be
deployed in real time on mobile and embedded devices. It has
1.9 million trainable parameters and 7.6 MB of storage space
when exported to TensorFlow Lite or ONNX. Inference in Google
Colab using an NVIDIA A100 showed an average of 36 ms per
image. On lower-powered devices like Jetson Nano 4 GB or
Raspberry Pi 4B with Coral TPU, practical tests showed a 250 ms
latency per image, demonstrating that L-Net works in real-world
smart-farming applications. Its compact design permits L-Net
to be embedded in mobile applications, or edge nodes for off-
line plant-disease detection, and applications requiring less
than 100 MB of RAM. This makes the system valuable in remote
agricultural regions of developing countries that lack reliable
computing resources and internet access. L-Net's rapid predic-
tion ability, coupled with its low power consumption, meets the
energy-efficient AI goal for low power consumption in
agriculture.

7 Conclusion

This study illustrates the construction of the lightweight deep
learning model L-Net that addresses the multi-crop (bell
pepper, grape, and apple leaves) plant leaf disease classication
problem. Recording an accuracy of 99.8% and an AUC of 1.00,
the model illustrated high performance while maintaining an
impressively low number of parameters and a minimal memory
footprint, suggesting its suitability for real-time processing
Sustainable Food Technol., 2026, 4, 985–1003 | 1001
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within resource-constrained environments. Such results are
a great start, yet still, there are multiple shortcomings to
consider. The augmented dataset made publicly available was
lacking in variability concerning real-world conditions, speci-
cally in the areas of lights, occlusion, growth stages, and several
others that are yet to be dened. Additionally, the model lacks
validation through external datasets, which results in the
model's generalizability remaining ambiguous. To compound
the problem, the model is yet to be deployed in the eld or
tested in an agricultural environment to ascertain its practical
robustness. The future work includes expanding the model to
support more crops and types of diseased leaves, and running L-
Net on small devices like Raspberry Pi or Jetson Nano for real-
time use in farms. Another direction is to build a privacy-
friendly federated learning version of the model that can learn
from data collected directly from farmers. L-Net lays down the
rst recognisable structure in the application of AI for detecting
plant diseases.
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