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Broader Context to Learning in Higher Dimensions: A Strategy for 
Alloy Electrocatalyst Discovery

Vladislav A. Mints, Jack K. Pedersen, Gustav K. H. Wiberg, Jens Edelvang-Pejrup, 
Divyansh Gautam, Kirsten M. Ø. Jensen, Jan Rossmeisl, Matthias Arenz

Achieving carbon-neutrality is one of the most pressing challenges society is facing. A 
key step towards this goal is decarbonizing the chemical industry, which can be 
achieved through electrochemical processes leveraging efficient catalysts. High 
entropy alloys (HEAs), materials composed of at least five different elements, provide 
a vast and largely unexplored library of potential catalysts. However, this sheer 
number of possible HEA compositions makes it impossible to test them all, creating 
the need for smart exploration strategies. Here, we present a top-down approach to 
accelerate catalyst discovery. It starts with complex, multi-element alloy catalysts, 
which iteratively are simplified by removing the least active components until the most 
active composition is identified. The efficiency of this process arises from the fact that 
studying many elements together also yields information of all the simpler alloys they 
can form. We demonstrate this concept by studying Au-Ir-Os-Pd-Pt-Re-Rh-Ru alloys 
for the oxygen reduction reaction and identifying that the most active catalysts are 
composed of Au-Pd-Pt. This top-down approach offers a powerful new pathway for 
identifying optimal catalysts for the low-carbon chemical industry.
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Broader Context

Achieving carbon-neutrality is one of the most pressing challenges society is facing. A key step 

towards this goal is decarbonizing the chemical industry, which can be achieved through 

electrochemical processes leveraging efficient catalysts. High entropy alloys (HEAs), materials 

composed of at least five different elements, provide a vast and largely unexplored library of 

potential catalysts. However, this sheer number of possible HEA compositions makes it 

impossible to test them all, creating the need for smart exploration strategies. Here, we 

present a top-down approach to accelerate catalyst discovery. It starts with complex, multi-

element alloy catalysts, which iteratively are simplified by removing the least active 

components until the most active composition is identified. The efficiency of this process 

arises from the fact that studying many elements together also yields information of all the 

simpler alloys they can form. We demonstrate this concept by studying Au-Ir-Os-Pd-Pt-Re-Rh-

Ru alloys for the oxygen reduction reaction and identifying that the most active catalysts are 

composed of Au-Pd-Pt. This top-down approach offers a powerful new pathway for 

identifying optimal catalysts for the low-carbon chemical industry.
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Abstract

In this work, we demonstrate the inversion of the classical bottom-up approach to drive the 

discovery of improved energy conversion electrocatalysts top-down. Starting with complex 

alloy catalysts of many constituents, we down-select to optimal materials by removing low-

performing elements from the alloy. The efficiency of this data-driven approach arises from 

the fact that when studying many elements together in one material, information is also 

obtained on the less complex alloys that contain fewer constituents. Therefore, the number 

of experiments required to study the complex alloy is fewer than those needed for studying 

all constituent alloys individually. In addition, this top-down approach allows for a new way 

of comparing activity models constructed from experimental data with theoretical 

simulations. We introduce the approach by studying the Au-Ir-Os-Pd-Pt-Re-Rh-Ru high 

entropy alloy (HEA) composition space for the acidic oxygen reduction reaction (ORR). By 

studying 200 compositions, we created a machine-learned activity model and provide 

evidence that the model can predict the activity of underlying, less complex compositions that 

are contained in the Au-Ir-Os-Pd-Pt-Re-Rh-Ru HEA composition space.

Introduction

Design strategies for improved energy conversion electrocatalysts typically follow a bottom-

up approach. Starting with simple, monometallic model systems of the most active element, 

one or several additional elements are added creating bi-metallic or multi-metallic surfaces. 

Thereby, the number of alloy constituents and the complexity of the catalyst are gradually 

increased, and theory is used as a means to rationalize the observed catalyst performance1. 

For example, for the acidic ORR, one of the central electrocatalytic processes for energy 

conversion, Pt is the element with the highest catalytic performance, and the majority of 

research to identify improved ORR catalysts is rooted in experimental and theoretical studies 

of Pt single-crystal surfaces2–4. Well-defined bimetallic Pt-single crystals, polycrystalline Pt-

alloys, and Pt-alloy nanoparticles were studied in continuation of the early work 

demonstrating promising performance5–10. Theoretical studies on these catalysts led to the 

descriptor approach and the discovery of the scaling relations which put a hard limit on the 

efficiency of ORR catalysts11,12. The next level of complexity consists of ternary alloys, for 

which presently studies are gradually appearing13. However, it has been pointed out by Cantor 

that in this approach to catalysis only the corners and edges of an, in principle, 
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multidimensional composition space of catalytic materials are investigated14. Consequently, 

in the last few years, the topic of HEA catalysts has gained significant attention15–19. 

Comprising at least 5 elements, HEAs offer an expansive and largely unexplored array of 

extremely many compositions20. In addition, based on pioneer work, it was proposed that 

HEA catalysts hold the key to overcome the limitations of state-of-the-art ORR 

electrocatalysts and, e.g., break the scaling relations of the ORR21. As such, there is a 

probability of finding novel ORR catalysts in the multidimensional HEA composition space. 

However, searching for the most active ORR catalyst in the form of nanoparticles using an 

experimental approach requires efficient approaches due to the vast number of possible 

compositions.

The “classical approach” for experimental studies, i.e., starting with well-defined catalysts, 

and its combination with computational investigations originates from the times when data 

availability and computational power were severely limited. Hence, in electrocatalysis there 

was a preference to simplify models to one- or two-dimensional systems that can be 

visualized and fitted with simple linear models. Nowadays, large data volumes and 

computational power have become more accessible, which facilitates the use of machine 

learning tools and DFT-based computational screenings in electrocatalysis22–28. Machine 

learning tools assist in the construction of multi-dimensional composition-activity models 

which allows for studying complex HEA composition spaces27–30. Also, machine learning has 

been demonstrated to assist in the characterization of HEAs and aid the search for the most 

active catalyst composition31–34. While these approaches are concerned with the fastest route 

to obtain an optimal catalyst composition through accelerated search, our approach focuses 

on extrapolating catalytic activities learned in the high dimension to sub-alloy composition 

spaces, enabling comprehensive exploration of the compositional landscape without 

investigating the sub-alloy spaces. Nevertheless, HEAs typically are studied first in their least 

complex shape. As such, much of the HEA research is limited to quinary alloys while only a 

fraction is exploring more complex HEAs.
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Fig. 1: Depiction of the benefit of multi-dimensional modeling. A, An artistic representation 

of the concept of multi-dimensional learning applied to this study. The layers in the amphora 

represent different multi-dimensional spaces that can be constructed from 8 elements, 

stacked based on their complexity. By looking through the top 8-element layer information 

on all underlying multi-dimensional spaces is obtained, which allows to directly identify the 

global most active three-element composition space. B, Modeled information density in 

disordered alloys assuming 50 experiments in a 5-element space27. (red) The number of 

experiments required to achieve the same sample density as with 50 experiments in the 5-

element space (Supplementary Eq. 1-4). (blue) The number of experiments required to study 

all possible 5-element combinations with 50 experiments that are part of a more complex 
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alloy space (Supplementary Eq. 5). C, Summary of the alloy compositions that were 

investigated.

Several studies have demonstrated that the most active HEA composition is not necessarily 

found at the near-equimolar composition35,36. Therefore, in pursuit of the most active 

catalyst, it is crucial to study entire composition spaces. Based on our previous computational 

study, the number of experiments that are required to model a 5-element HEA composition 

space for the ORR is approximately 5027. According to the “curse of dimensionality”, this 

number grows exponentially when more elements are included in the space (Fig. 1B, 

Supplementary Note I and Supplementary Figs. 1,2). However, we argue that by starting with 

a higher dimensional HEA composition space, all underlying 5-element HEA composition 

spaces are automatically included in the study. Up to 11 elements, the number of experiments 

required to study the combined high-dimensional HEA composition space is less than when 

studying all 5-element HEA composition spaces separately. In addition, the latter do not 

contain any information about HEAs with more than 5 components. This makes it more 

favorable to study more elements together than limiting studies to fewer components in the 

HEA.

Results and Discussion

Predicting 5-element compositions with 8-element experiments

We tested this hypothesis by constructing an experimental data-driven model of the 8-

element Au-Ir-Os-Pd-Pt-Re-Rh-Ru HEA composition space for the acidic ORR. The aim was to 

demonstrate that this model not only contains the role of each of the eight elements for the 

catalytic reaction but that it is also possible to approximate the optima of the underlying 56 

5-element HEA composition spaces and estimate their activity. An artistic representation of 

this new concept of “multi-dimensional learning” applied to this study is depicted in Fig. 1A, 

while the workflow we employed to study the different HEA compositions, is outlined in Fig. 

2A.

The ORR electrocatalysts were prepared by adopting a solvothermal synthesis route that 

previously was shown to produce HEA nanocatalysts37. In this synthesis, chloride-based metal 
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precursor salts were dissolved in ethanol and heated at a pressure of 20 bar (setpoint) for 30 

minutes in a microwave reactor. This produced agglomerated nanoparticles with crystallite 

sizes larger than 5 nm. The precursor mixtures were selected using a grid that could be 

dynamically extended38. In the end, 200 different nanoparticle compositions in the Au-Ir-Os-

Pd-Pt-Re-Rh-Ru space were synthesized, and 50 different compositions in the Au-Os-Pd-Pt-

Ru, Ir-Os-Pd-Pt-Ru, Ir-Os-Pt-Rh-Ru spaces each (Fig. 1C). 

The compositions of the as-synthesized nanoparticles were evaluated with energy dispersive 

X-ray spectroscopy (EDX). For selected samples their structure was analyzed with 

transmission electron microscopy (TEM) and X-ray diffraction (XRD), the latter showing mixed 

face-centered cubic (fcc) and hexagonal closed packed (hcp) phases in most of the samples 

(Supplementary Figs. 3,4 and Supplementary Tables 1-5). The EDX compositions formed the 

input for the machine-learned Gaussian processes (GP) (Supplementary Fig. 5 and 

Supplementary Eqs. 6,7). 

Using the Pearson correlation coefficients (Supplementary Fig. 6) it is demonstrated that the 

elements do not have any strong correlation with each other. Thus, all composition spaces 

are sampled randomly. Upon inspecting the compositions, we observed that Re had an 

average concentration of less than 3 atomic percent (at.%) in contrast to the expected 12 at.% 

(Supplementary Fig. 7). Therefore, Re is mostly absent in the HEA particles and no conclusions 

on its role could be made.

We evaluated the ORR activity of the nanoparticles using a multi-electrode setup 

(Supplementary Fig. 8) in a “three-electrode configuration”. The multi-working electrode 

allowed the simultaneous study of six catalytic films of the same catalyst. The measurements 

started with a cyclic voltammogram (CV) between 0 to 0.6 V vs. reversible hydrogen electrode 

(RHE). From these measurements, the capacitance was extracted in the potential window of 

0.3 to 0.5 V vs. RHE (Supplementary Figs. 9-12). This capacitance was used to normalize the 

measured currents to correct for possible loading and surface area differences. After the CV, 

the particles were oxidized at 1 V vs. RHE for 20 minutes, while the electrolyte was being 

saturated with O2. Following, the potential was stepped down to 0.6 V vs. RHE with steps of 

10 mV each lasting for 20 seconds.
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Fig. 2: Workflow and predictive performance of models. A, The workflow for data collection. 

Starting with the microwave synthesis the obtained nanoparticles were characterized with 

EDX and evaluated for the electrocatalytic ORR performance. The acquired data was used to 

train Gaussian process models. B-E, Leave-one-out parity plots showing the measured ORR 

current density plotted against the prediction of a Gaussian process regressor trained on all 

samples except the sample being predicted for the Au-Ir-Os-Pd-Pt-Re-Rh-Ru 8-element model 

(B), as well as the Au-Os-Pd-Pt-Ru (C), Ir-Os-Pd-Pt-Ru (D), and Ir-Os-Pt-Rh-Ru (E) 5-element 

models. For the 5-element alloys a constant scaling factor was multiplied on the predicted 

values (Supplementary Figs. 13-17). The measured current density is extracted from the 

polarization curves at a potential of 0.60 V vs. RHE and divided by the mean capacitance in 

the potential region from 0.30 to 0.50 V vs. RHE. A/F: amperes per farad. MAE: mean absolute 

error in A/F.

With the obtained experimental data, we constructed GP models for the ORR activity-

composition relationship in each of the four composition spaces. The GP models correlated 

the EDX compositions of the particles with the specific activity at 0.6 V vs. RHE measured at 

quasi-steady-state conditions. The GPs were fitted with a radial basis function kernel with 
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optimized length scales of 0.22, 0.25, 0.28, and 0.13 as well as a white noise kernel with noise 

values of 0.41, 0.47, 0.45, and 0.40 for Au-Ir-Os-Pd-Pt-Re-Rh-Ru, Au-Os-Pd-Pt-Ru, Ir-Os-Pd-Pt-

Ru, and Ir-Os-Pt-Rh-Ru respectively. These fitted length scales and noise levels indicate that 

the composition-activity relationships in this work are explained by smooth mathematical 

functions with relatively strong correlations between the activity of compositions with large 

Euclidean distances between them. These length scales are comparable to the one observed 

in our previous study27 justifying the assumption that 50 experiments are required to study a 

single 5-element space. Combined, these observations indicate that our studies of HEA 

electrocatalysts require only a limited number of experiments to model the activity-

composition relationship.

The performance of the GP models was tested with the leave-one-out cross-validation 

(LOOCV) (Fig. 2B-E). The 8-element model predicts the activities with a mean absolute error 

(MAE) of 0.11 A/F and an R2 of 0.53. Similarly, the mean absolute error can be used to evaluate 

the prediction of 5-element spaces by the 8-element model. The 8-element model predicts 

the Au-Os-Pd-Pt-Ru space with a MAE of 0.14 A/F and an R2 of 0.20, whereas the LOOCV score 

of the model itself is 0.13 A/F with an R2 of 0.37. In this composition space, as indicated by 

the histogram, 6 samples have an error larger than l0.3l A/F. These few samples exhibit high 

leverage on the calculation of the MAE and R2. Removing these points from the calculation, 

but not from the fitting, leads to an MAE of 0.1 A/F and an R2 of 0.6 for both models 

(Supplementary Fig. 13). The Ir-Os-Pd-Pt-Ru space was predicted with a MAE of 0.08 A/F and 

an R2 of 0.61, which is an improvement over the LOOCV score of 0.09 A/F and an R2 of 0.42. 

Likewise, the Ir-Os-Pt-Rh-Ru space is predicted by the 8-element model with a MAE of 0.075 

A/F and R2 of 0.28 which is similar to the LOOCV score of 0.078 A/F and R2 of 0.28. This 

composition space is mostly inactive leading to a relatively flat activity landscape. As a result, 

the GPR is struggling to find meaningful correlations. However, since this space is mostly 

inactive, it is also of lesser interest for future works

For all the 8-element model predictions a multiplicative bias correction was applied to 

account for systematic differences with the 5-element models (Supplementary Figs. 14-17). 

As the bias correction is multiplicative, the projections of the 5-element spaces maintain their 

landscapes. In other words, the absolute activity values change but the correlations that 

influence the predictions as well as the positions of the optima are not altered. We therefore 
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conclude that the 8-element model indeed learned a very similar landscape for the 5-element 

spaces as their corresponding 5-element models themselves in agreement to our hypothesis.

Extrapolating predictions to all 5-element subspaces

Using the 8-element model, we mapped out all possible optima of the 56 5-element HEA 

composition spaces (Fig. 3A). These can be classified based on their maximum activity into 

three classes. The first class has optima with an ORR activity below 0.6 A/F, making them ill-

suitable for catalytic applications. The second class has optima with activities between 0.6 

and 0.8 A/F. Distinctively, these optima contain a combination of Pt with Pd or Au. The third 

class, composed of optima with the highest ORR activity, is most interesting for catalytic 

application. Their optima are composed of a combination of Pt, Pd, and Au.

Page 10 of 28EES Catalysis

E
E

S
C

at
al

ys
is

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

0/
20

26
 9

:5
8:

16
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5EY00356C

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ey00356c


10

Fig. 3: Optima in composition spaces. A, Optimal compositions for ORR in all the 56 five-

element composition spaces contained in the 8-element composition space as predicted by 

the 8-element model in a 5 at.% grid scan of the composition space. The three investigated 5-

element HEAs are highlighted in red. B-G, Most active compositions of 5-element HEAs shown 

as pseudo-ternary plots with the molar concentrations summed for three of the elements. 

Predictions by the 8-element model (B-D), and the individual 5-element models (E-G) for Au-

Os-Pd-Pt-Ru (B and E), Ir-Os-Pd-Pt-Ru (C and F), and Ir-Os-Pt-Rh-Ru (D and G).  The optimal 

predicted compositions in each composition are annotated in red. Confidence intervals for B-

G are shown in Supplementary Fig. 18.
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Analyzing the results in more detail, we investigated three 5-element models each 

representing one of the three separate activity classes (Fig. 3B-G and Supplementary Fig. 18). 

Starting with the low activity class, the Ir-Os-Pt-Rh-Ru model shows the existence of two 

distinct activity optima at Os13Pt33Rh49Ru5 and Ir22Os15Pt42Ru21 (Fig. 3G). On the other hand, 

the 8-element model predicts only a single optimum (Fig. 3D). As the ORR activity of the 

compositions in this space is low, the GPR struggles to identify the major correlations in the 

landscape. As a result, the optima predicted by both the 5-element and 8-element models 

might be artificial. The Ir-Os-Pd-Pt-Ru model, which represents the middle activity class, 

contains an optimum at Os3Pd38Pt45Ru14 (Fig. 3F). The 8-element model predicts a similar 

optimum at Os17Pd33Pt41Ru9 (Fig. 3C), which has an Euclidian distance of 11 at.% in Cartesian 

coordinates. Finally, the Au-Os-Pd-Pt-Ru model representing the high active class predicts the 

optimum at Au27Pd55Pt18 (Fig. 3E), whereas the global optimum of the 8-element model is 

Au28Os11Pd26Pt35 (Fig. 3B). Further analysis, which is discussed below, shows that the Os 

content has no distinct correlation to the ORR activity in these HEA catalysts. This suggests 

that the Os in the global optimum of the 8-element model is an artifact. 

Navigating a smooth composition-activity landscape

Using these GPR models, we can evaluate the approximate number of experiment required 

for Bayesian optimization to optimize these composition spaces, see Fig 4. On average, 16 

experiments are required to find the global optimum of the 8-element model. For the 5-

element models, it took 8 experiments for the Au-Os-Pd-Pt-Ru, 9 experiments for the Ir-Os-

Pd-Pt-Ru, and 13 experiments for the Ir-Os-Pt-Rh-Ru model. Thus, our optimization 

experiments indicate that the number of experiments required to optimize a model does not 

scale exponentially with increasing the complexity of the HEA composition space. The latter 

would be the case for grid search studies according to the “curse of dimensionality”.
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Fig. 4: Number of experiments needed to obtain the optimal composition. A-D, Bayesian 

optimizations of the number of compositions needed to obtain the optimal composition in 

the 8-element Au-Ir-Os-Pd-Pt-Re-Rh-Ru composition space (A), as well as the 5-element Au-

Os-Pd-Pt-Ru (B), Ir-Os-Pd-Pt-Ru (C), and Ir-Os-Pt-Rh-Ru (D) composition spaces. The 

optimization is performed on the GPR models of each composition space. Each of the 100 

faint, grey lines represents an alloy activities identified by an individual Bayesian optimization 

initialized with two randomly chosen compositions. The solid (dashed), black lines show the 

expectation (median) value of the highest absolute current density found after a given 

number of samples. The number of samples needed for the median to reach 95% of the value 

of the current density of the global optimum (i.e., the number of samples where 50% of the 

optimizations are sufficiently close to the global optimum) are annotated to estimate the 

number of experiments needed to find the global optimum.

The reason for this “milder” scaling is that the optimization algorithms depend mostly on the 

complexity of the mathematical landscape. Therefore, we propose that if elements have a 

minor contribution on the reaction, adding them to an optimization study will marginally 
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increase the complexity of the mathematical landscape and correspondingly marginally affect 

the experimental demand. Consequently, optimizing HEA composition spaces with as many 

elements as possible becomes even more beneficial, when in search of the most active 

catalyst.

Assessing the activity in ternary Au-Pd-Pt composition space

In the following, we demonstrate how these highly dimensional, experimental data-driven 

models can be used to analyze the contributions of the individual elements to the catalytic 

activity. Using the 8-element model, we evaluated the correlations of the elements to the 

ORR activity using SHapely Additive explanations (SHAP) (Fig. 5C)39. The SHAP values show 

that the element that has the largest positive influence on the ORR is platinum. This result 

agrees with the established conclusion that Pt is the most active element for the ORR40,41. The 

next element that according to the SHAP analysis has a strong positive impact on the ORR is 

Pd. Pd, similar to Pt, lies close to optimum in established ORR volcano plots and is being 

investigated as a substitute for Pt4,42–44. The final element that improves the ORR reaction 

according to our analysis is Au. While Au itself is not very active for the acidic ORR45,46, its 

alloys with Pt47,48 and Pd49,50 have been reported previously to improve the ORR activity. 

Together, these three elements are responsible for the optimum of this 8-element HEA 

composition space. On the other hand, the SHAP analysis suggests that under the chosen 

experimental conditions Ir, Ru and Rh are the “least important” elements to promote the 

ORR. However, this does not concern possible stabilizing effects which were not evaluated 

here. The analysis of Os shows only a weak correlation to the ORR. Therefore, its contributions 

to the ORR activity have a large error margin, which explains its artificial presence in the 8-

element model optimum, see above. Lastly, Re, which was not fully incorporated in the alloy, 

did not shows a correlation with the models prediction, indicating that it is mathematically a 

harmless spectator.
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Fig. 5: Highest activity found in the Au-Pd-Pt ternary subspace. A,B, ORR catalytic activities 

in the Au-Pd-Pt composition space as predicted by the 5-element Au-Os-Pd-Pt-Ru model (A), 

and with DFT simulations (B). The circular overlay in A corresponds to the GPR prediciton 

certainty. The coloring of the DFT prediction has been normalized such that the optimum at 

Au27Pd55Pt18 in A is given the same color in B.The stars depict nanoparticle compositions that 

have been additionally investigated using the rotating disk electrode (RDE). C, The influence 

of the individual element concentrations on the catalytic activity of each experiment in the 8-

element model obtained with a SHAP analysis. D, Supporting experiments investigating 

promising nanoparticle compositions using RDE experiments (Supplementary Figs. 19-33). 

The measurements were carried out in 0.1 M H2SO4, at 1600 RPM with a scan rate of 10 mV/s. 

The kinetic current has been extracted using the Koutecky-Levich equation (Supplementary 

Eq. 8).
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The experimental data-driven models derived from HEA studies allow a unique comparison 

to computational studies. Typically, a close resemblance between the surfaces studied in 

computational simulations and experimental studies is only achieved with well-defined 

single-crystal surfaces and individual activities. By contrast, comparisons between data-driven 

models and computational models reveal activity trends and bring a new quality to testing 

the predictive power of computational simulations. In our specific case, the 8-element model 

and the Au-Os-Pd-Pt-Ru model both agree that the most active subspace is Au-Pd-Pt. We 

visualized the activity of the Au-Pd-Pt space in a ternary plot (Fig. 5A). We then performed 

DFT calculations of this composition space and constructed an equivalent “theory-based” 

activity model for the ternary Pt-Pd-Au composition space (Fig. 5B). This provides a visual 

comparison between “theory-based” and experimental data-driven activity modeling. It is 

seen that the experimental data-driven model exhibits an optimum at Au27Pd55Pt18, with a 

soft gradient towards the edges. The DFT model, on the other hand, shows a local optimum 

at Au21Pd72Pt7, which is remarkably close to the experimentally predicted Au27Pd55Pt18 

optimum. However, the DFT model also calculates a global optimum at Au7Pt93 with even 

higher ORR activity and a strong minimum at pure Au. Both this optimum and minimum are 

located near the mono-metallic corners of the composition space. It is therefore important to 

point out that the experimental data-driven models that are built to span a HEA composition 

space lack data in the (typically known) corner and edge regions of the composition space. As 

a result, data-driven models are unable to extrapolate to the vertices and binary regions, 

which in statistical models is reflected in an increased prediction uncertainty. In the present 

case, this leads to the observed discrepancy and highlights the power of combining 

computational and experimental studies.

Based on the DFT calculations and the machine-learned model, we investigated the promising 

3-element compositions, Au10Pt90, Au15Pd15Pt70 and Au27Pd55Pt18 using the rotating disk 

electrode (RDE) (Fig 5D and Supplementary Figs. 19-33). As a reference, Pt and Pd 

nanoparticles and Pt(111) were used. In line with the work of Lankiang and co-workers47 and 

the DFT calculations Au10Pt90 is more active than pure Pt. However, the previously reported 

global optimum of Au15Pd15Pt7047 could not be confirmed, which may be attributed to the use 

of H2SO4 instead of HClO4 as electrolyte3. The predicted local optimum of Au27Pd55Pt18 did 

show an activity higher than Pd but not as high as Pt. We attribute this to the difference in 
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surface composition. In the dataset that the machine learning algorithm used, the closest 

datapoint to the local optimum is Au13Os6Pd53Pt14Ru13 (Supplementary Fig. 34). 

Au13Os6Pd53Pt14Ru13 has a high ratio of charge transferred to the hydrogen under potential 

deposition region to the double region compared to the case of Au27Pd55Pt18 nanoparticles 

(Supplementary Fig. 35). This indicates that in Au27Pd55Pt18 nanoparticles Au may have 

segregated to the surface, which is catalytically less active for the ORR than Pt or Pd. 

Therefore, while the machine-learned models predict that the Au27Pd55Pt18 composition has 

a high probability of yielding an alternative catalyst, precise morphology engineering is 

required to produce it. Last but not least, the influence of the capacity normalization was 

investigated confirming Pt-Pd-Au as the most active combination (Supplementary Figs. 36 and 

37).  

Conclusions and outlook

We propose an inversion of the classical bottom-up approach to studying electrocatalysts. 

Instead of gradually increasing the complexity of an electrocatalyst, we argue that catalytic 

information is obtained more efficiently when starting from complex HEA composition 

spaces. As a complex composition space contains information on all constituent catalysts with 

fewer components, its optimum will correspond to the global optimum across all its sub-

spaces. In addition, the data can be used to produce a map of the optima of its different 

subspaces and provides argumentation on which element combinations can be ignored in 

later studies and which are worth investigating further. Furthermore, the experimental data-

driven activity models can be compared to “theory-based” activity models both testing the 

predictability of computational simulations with a new quality as well as offering to accelerate 

catalyst discovery significantly. 

We demonstrate this approach of a HEA discovery platform by studying the 8-elemental Au-

Ir-Os-Pd-Pt-Re-Rh-Ru composition space for the ORR using microwave-based nanoparticle 

synthesis and multi-electrode electrochemical activity experiments. The Au-Ir-Os-Pd-Pt-Re-

Rh-Ru model mapped out effectively the optima of HEA spaces with fewer elements and 

provided an analysis of the contributions of the individual elements to the catalytic activity. 

As most contributing elements Pt, Pd and Au are identified. The highest activity is obtained 

for a combination of all three elements and the comparison of the data-driven model and the 

DFT model points towards highly active ternary Au-Pd-Pt compositions. However, the 
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limitations of the regression models in constructing activity maps are also highlighted. 

Extensive extrapolations in data-driven models beyond experimentally sampled compositions 

can lead to large uncertainties. Computational simulations can therefore accelerate the 

catalyst discovery substantially, but also automated synthesis robots coupled to the 

demonstrated accelerated electrocatalytic testing will allow experimental sampling of larger 

areas of interest.
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