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Broader Context to Learning in Higher Dimensions: A Strategy for oo

Alloy Electrocatalyst Discovery

Vladislav A. Mints, Jack K. Pedersen, Gustav K. H. Wiberg, Jens Edelvang-Pejrup,
Divyansh Gautam, Kirsten M. &. Jensen, Jan Rossmeisl, Matthias Arenz

Achieving carbon-neutrality is one of the most pressing challenges society is facing. A
key step towards this goal is decarbonizing the chemical industry, which can be
achieved through electrochemical processes leveraging efficient catalysts. High
entropy alloys (HEAs), materials composed of at least five different elements, provide
a vast and largely unexplored library of potential catalysts. However, this sheer
number of possible HEA compositions makes it impossible to test them all, creating
the need for smart exploration strategies. Here, we present a top-down approach to
accelerate catalyst discovery. It starts with complex, multi-element alloy catalysts,
which iteratively are simplified by removing the least active components until the most
active composition is identified. The efficiency of this process arises from the fact that
studying many elements together also yields information of all the simpler alloys they
can form. We demonstrate this concept by studying Au-Ir-Os-Pd-Pt-Re-Rh-Ru alloys
for the oxygen reduction reaction and identifying that the most active catalysts are
composed of Au-Pd-Pt. This top-down approach offers a powerful new pathway for
identifying optimal catalysts for the low-carbon chemical industry.
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Broader Context

Achieving carbon-neutrality is one of the most pressing challenges society is facing. A key step
towards this goal is decarbonizing the chemical industry, which can be achieved through
electrochemical processes leveraging efficient catalysts. High entropy alloys (HEAs), materials
composed of at least five different elements, provide a vast and largely unexplored library of
potential catalysts. However, this sheer number of possible HEA compositions makes it
impossible to test them all, creating the need for smart exploration strategies. Here, we
present a top-down approach to accelerate catalyst discovery. It starts with complex, multi-
element alloy catalysts, which iteratively are simplified by removing the least active
components until the most active composition is identified. The efficiency of this process
arises from the fact that studying many elements together also yields information of all the
simpler alloys they can form. We demonstrate this concept by studying Au-Ir-Os-Pd-Pt-Re-Rh-
Ru alloys for the oxygen reduction reaction and identifying that the most active catalysts are
composed of Au-Pd-Pt. This top-down approach offers a powerful new pathway for

identifying optimal catalysts for the low-carbon chemical industry.
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Abstract DOl 10.1030/DSEV00356C.
In this work, we demonstrate the inversion of the classical bottom-up approach to drive the
discovery of improved energy conversion electrocatalysts top-down. Starting with complex
alloy catalysts of many constituents, we down-select to optimal materials by removing low-
performing elements from the alloy. The efficiency of this data-driven approach arises from
the fact that when studying many elements together in one material, information is also
obtained on the less complex alloys that contain fewer constituents. Therefore, the number
of experiments required to study the complex alloy is fewer than those needed for studying
all constituent alloys individually. In addition, this top-down approach allows for a new way
of comparing activity models constructed from experimental data with theoretical
simulations. We introduce the approach by studying the Au-Ir-Os-Pd-Pt-Re-Rh-Ru high
entropy alloy (HEA) composition space for the acidic oxygen reduction reaction (ORR). By
studying 200 compositions, we created a machine-learned activity model and provide
evidence that the model can predict the activity of underlying, less complex compositions that

are contained in the Au-Ir-Os-Pd-Pt-Re-Rh-Ru HEA composition space.

Introduction

Design strategies for improved energy conversion electrocatalysts typically follow a bottom-

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

up approach. Starting with simple, monometallic model systems of the most active element,
one or several additional elements are added creating bi-metallic or multi-metallic surfaces.

Thereby, the number of alloy constituents and the complexity of the catalyst are gradually

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:16 AM.

increased, and theory is used as a means to rationalize the observed catalyst performance?.

(cc)

For example, for the acidic ORR, one of the central electrocatalytic processes for energy
conversion, Pt is the element with the highest catalytic performance, and the majority of
research to identify improved ORR catalysts is rooted in experimental and theoretical studies
of Pt single-crystal surfaces?™. Well-defined bimetallic Pt-single crystals, polycrystalline Pt-
alloys, and Pt-alloy nanoparticles were studied in continuation of the early work
demonstrating promising performance> 0, Theoretical studies on these catalysts led to the
descriptor approach and the discovery of the scaling relations which put a hard limit on the
efficiency of ORR catalysts1¥12, The next level of complexity consists of ternary alloys, for
which presently studies are gradually appearing®3. However, it has been pointed out by Cantor

that in this approach to catalysis only the corners and edges of an, in principle,
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multidimensional composition space of catalytic materials are investigated4. Consequetitiyiroosace

in the last few years, the topic of HEA catalysts has gained significant attention'>1°,
Comprising at least 5 elements, HEAs offer an expansive and largely unexplored array of
extremely many compositions?. In addition, based on pioneer work, it was proposed that
HEA catalysts hold the key to overcome the limitations of state-of-the-art ORR
electrocatalysts and, e.g., break the scaling relations of the ORR?.. As such, there is a
probability of finding novel ORR catalysts in the multidimensional HEA composition space.
However, searching for the most active ORR catalyst in the form of nanoparticles using an
experimental approach requires efficient approaches due to the vast number of possible

compositions.

The “classical approach” for experimental studies, i.e., starting with well-defined catalysts,
and its combination with computational investigations originates from the times when data
availability and computational power were severely limited. Hence, in electrocatalysis there
was a preference to simplify models to one- or two-dimensional systems that can be
visualized and fitted with simple linear models. Nowadays, large data volumes and
computational power have become more accessible, which facilitates the use of machine
learning tools and DFT-based computational screenings in electrocatalysis??=2%. Machine
learning tools assist in the construction of multi-dimensional composition-activity models
which allows for studying complex HEA composition spaces?’-3°. Also, machine learning has
been demonstrated to assist in the characterization of HEAs and aid the search for the most
active catalyst composition31734, While these approaches are concerned with the fastest route
to obtain an optimal catalyst composition through accelerated search, our approach focuses
on extrapolating catalytic activities learned in the high dimension to sub-alloy composition
spaces, enabling comprehensive exploration of the compositional landscape without
investigating the sub-alloy spaces. Nevertheless, HEAs typically are studied first in their least
complex shape. As such, much of the HEA research is limited to quinary alloys while only a

fraction is exploring more complex HEAs.
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Fig. 1: Depiction of the benefit of multi-dimensional modeling. A, An artistic representation
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of the concept of multi-dimensional learning applied to this study. The layers in the amphora
represent different multi-dimensional spaces that can be constructed from 8 elements,
stacked based on their complexity. By looking through the top 8-element layer information
on all underlying multi-dimensional spaces is obtained, which allows to directly identify the
global most active three-element composition space. B, Modeled information density in
disordered alloys assuming 50 experiments in a 5-element space?’. (red) The number of
experiments required to achieve the same sample density as with 50 experiments in the 5-
element space (Supplementary Eq. 1-4). (blue) The number of experiments required to study

all possible 5-element combinations with 50 experiments that are part of a more complex


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ey00356c

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:16 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

EES Catalysis

Page 6 of 28

icle Online

alloy space (Supplementary Eg. 5). C, Summary of the alloy compositions,that WELE 2 eec

investigated.

Several studies have demonstrated that the most active HEA composition is not necessarily
found at the near-equimolar composition3>36, Therefore, in pursuit of the most active
catalyst, it is crucial to study entire composition spaces. Based on our previous computational
study, the number of experiments that are required to model a 5-element HEA composition
space for the ORR is approximately 50?7. According to the “curse of dimensionality”, this
number grows exponentially when more elements are included in the space (Fig. 1B,
Supplementary Note | and Supplementary Figs. 1,2). However, we argue that by starting with
a higher dimensional HEA composition space, all underlying 5-element HEA composition
spaces are automatically included in the study. Up to 11 elements, the number of experiments
required to study the combined high-dimensional HEA composition space is less than when
studying all 5-element HEA composition spaces separately. In addition, the latter do not
contain any information about HEAs with more than 5 components. This makes it more
favorable to study more elements together than limiting studies to fewer components in the

HEA.

Results and Discussion

Predicting 5-element compositions with 8-element experiments

We tested this hypothesis by constructing an experimental data-driven model of the 8-
element Au-Ir-Os-Pd-Pt-Re-Rh-Ru HEA composition space for the acidic ORR. The aim was to
demonstrate that this model not only contains the role of each of the eight elements for the
catalytic reaction but that it is also possible to approximate the optima of the underlying 56
5-element HEA composition spaces and estimate their activity. An artistic representation of
this new concept of “multi-dimensional learning” applied to this study is depicted in Fig. 1A,
while the workflow we employed to study the different HEA compositions, is outlined in Fig.

2A.

The ORR electrocatalysts were prepared by adopting a solvothermal synthesis route that

previously was shown to produce HEA nanocatalysts®’. In this synthesis, chloride-based metal
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precursor salts were dissolved in ethanol and heated at a pressure of 20 bar (setpgint),ff 30/ ozce
minutes in a microwave reactor. This produced agglomerated nanoparticles with crystallite

sizes larger than 5 nm. The precursor mixtures were selected using a grid that could be
dynamically extended32. In the end, 200 different nanoparticle compositions in the Au-Ir-Os-
Pd-Pt-Re-Rh-Ru space were synthesized, and 50 different compositions in the Au-Os-Pd-Pt-

Ru, Ir-Os-Pd-Pt-Ru, Ir-Os-Pt-Rh-Ru spaces each (Fig. 1C).

The compositions of the as-synthesized nanoparticles were evaluated with energy dispersive
X-ray spectroscopy (EDX). For selected samples their structure was analyzed with
transmission electron microscopy (TEM) and X-ray diffraction (XRD), the latter showing mixed
face-centered cubic (fcc) and hexagonal closed packed (hcp) phases in most of the samples
(Supplementary Figs. 3,4 and Supplementary Tables 1-5). The EDX compositions formed the
input for the machine-learned Gaussian processes (GP) (Supplementary Fig. 5 and

Supplementary Egs. 6,7).

Using the Pearson correlation coefficients (Supplementary Fig. 6) it is demonstrated that the
elements do not have any strong correlation with each other. Thus, all composition spaces
are sampled randomly. Upon inspecting the compositions, we observed that Re had an
average concentration of less than 3 atomic percent (at.%) in contrast to the expected 12 at.%

(Supplementary Fig. 7). Therefore, Re is mostly absent in the HEA particles and no conclusions

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

on its role could be made.
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We evaluated the ORR activity of the nanoparticles using a multi-electrode setup

(cc)

(Supplementary Fig. 8) in a “three-electrode configuration”. The multi-working electrode
allowed the simultaneous study of six catalytic films of the same catalyst. The measurements
started with a cyclic voltammogram (CV) between 0to 0.6 V vs. reversible hydrogen electrode
(RHE). From these measurements, the capacitance was extracted in the potential window of
0.3 to 0.5 V vs. RHE (Supplementary Figs. 9-12). This capacitance was used to normalize the
measured currents to correct for possible loading and surface area differences. After the CV,
the particles were oxidized at 1 V vs. RHE for 20 minutes, while the electrolyte was being
saturated with O,. Following, the potential was stepped down to 0.6 V vs. RHE with steps of

10 mV each lasting for 20 seconds.
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Fig. 2: Workflow and predictive performance of models. A, The workflow for data collection.
Starting with the microwave synthesis the obtained nanoparticles were characterized with
EDX and evaluated for the electrocatalytic ORR performance. The acquired data was used to
train Gaussian process models. B-E, Leave-one-out parity plots showing the measured ORR
current density plotted against the prediction of a Gaussian process regressor trained on all
samples except the sample being predicted for the Au-Ir-Os-Pd-Pt-Re-Rh-Ru 8-element model
(B), as well as the Au-Os-Pd-Pt-Ru (C), Ir-Os-Pd-Pt-Ru (D), and Ir-Os-Pt-Rh-Ru (E) 5-element
models. For the 5-element alloys a constant scaling factor was multiplied on the predicted
values (Supplementary Figs. 13-17). The measured current density is extracted from the
polarization curves at a potential of 0.60 V vs. RHE and divided by the mean capacitance in
the potential region from 0.30 to 0.50 V vs. RHE. A/F: amperes per farad. MAE: mean absolute

error in A/F.

With the obtained experimental data, we constructed GP models for the ORR activity-
composition relationship in each of the four composition spaces. The GP models correlated
the EDX compositions of the particles with the specific activity at 0.6 V vs. RHE measured at

quasi-steady-state conditions. The GPs were fitted with a radial basis function kernel with
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optimized length scales of 0.22, 0.25, 0.28, and 0.13 as well as a white noise kerneJwith A6isé, 5 e
values of 0.41, 0.47, 0.45, and 0.40 for Au-Ir-Os-Pd-Pt-Re-Rh-Ru, Au-Os-Pd-Pt-Ru, Ir-Os-Pd-Pt-
Ru, and Ir-Os-Pt-Rh-Ru respectively. These fitted length scales and noise levels indicate that
the composition-activity relationships in this work are explained by smooth mathematical
functions with relatively strong correlations between the activity of compositions with large
Euclidean distances between them. These length scales are comparable to the one observed
in our previous study?’ justifying the assumption that 50 experiments are required to study a
single 5-element space. Combined, these observations indicate that our studies of HEA
electrocatalysts require only a limited number of experiments to model the activity-

composition relationship.

The performance of the GP models was tested with the leave-one-out cross-validation
(LOOCV) (Fig. 2B-E). The 8-element model predicts the activities with a mean absolute error
(MAE) of 0.11 A/F and an R? of 0.53. Similarly, the mean absolute error can be used to evaluate
the prediction of 5-element spaces by the 8-element model. The 8-element model predicts
the Au-Os-Pd-Pt-Ru space with a MAE of 0.14 A/F and an R? of 0.20, whereas the LOOCV score
of the model itself is 0.13 A/F with an R? of 0.37. In this composition space, as indicated by
the histogram, 6 samples have an error larger than 10.31 A/F. These few samples exhibit high

leverage on the calculation of the MAE and R2. Removing these points from the calculation,

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

but not from the fitting, leads to an MAE of 0.1 A/F and an R? of 0.6 for both models

(Supplementary Fig. 13). The Ir-Os-Pd-Pt-Ru space was predicted with a MAE of 0.08 A/F and

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:16 AM.

an R? of 0.61, which is an improvement over the LOOCV score of 0.09 A/F and an R? of 0.42.

(cc)

Likewise, the Ir-Os-Pt-Rh-Ru space is predicted by the 8-element model with a MAE of 0.075
A/F and R? of 0.28 which is similar to the LOOCV score of 0.078 A/F and R? of 0.28. This
composition space is mostly inactive leading to a relatively flat activity landscape. As a result,
the GPR is struggling to find meaningful correlations. However, since this space is mostly

inactive, it is also of lesser interest for future works

For all the 8-element model predictions a multiplicative bias correction was applied to
account for systematic differences with the 5-element models (Supplementary Figs. 14-17).
As the bias correction is multiplicative, the projections of the 5-element spaces maintain their
landscapes. In other words, the absolute activity values change but the correlations that

influence the predictions as well as the positions of the optima are not altered. We therefore

8
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conclude that the 8-element model indeed learned a very similar landscape for the 5-glemignt; 2 eec

spaces as their corresponding 5-element models themselves in agreement to our hypothesis.

Extrapolating predictions to all 5-element subspaces

Using the 8-element model, we mapped out all possible optima of the 56 5-element HEA
composition spaces (Fig. 3A). These can be classified based on their maximum activity into
three classes. The first class has optima with an ORR activity below 0.6 A/F, making them ill-
suitable for catalytic applications. The second class has optima with activities between 0.6
and 0.8 A/F. Distinctively, these optima contain a combination of Pt with Pd or Au. The third
class, composed of optima with the highest ORR activity, is most interesting for catalytic

application. Their optima are composed of a combination of Pt, Pd, and Au.
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Analyzing the results in more detail, we investigated three 5-element maodels E3¢H 5 ee
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representing one of the three separate activity classes (Fig. 3B-G and Supplementary Fig. 18).
Starting with the low activity class, the Ir-Os-Pt-Rh-Ru model shows the existence of two
distinct activity optima at Osi13Pt33RhsgRus and Ir;;0s15Pt4:Ruz; (Fig. 3G). On the other hand,
the 8-element model predicts only a single optimum (Fig. 3D). As the ORR activity of the
compositions in this space is low, the GPR struggles to identify the major correlations in the
landscape. As a result, the optima predicted by both the 5-element and 8-element models
might be artificial. The Ir-Os-Pd-Pt-Ru model, which represents the middle activity class,
contains an optimum at Os3PdsgPtssRui4 (Fig. 3F). The 8-element model predicts a similar
optimum at Os;7Pd33Pts1Rug (Fig. 3C), which has an Euclidian distance of 11 at.% in Cartesian
coordinates. Finally, the Au-Os-Pd-Pt-Ru model representing the high active class predicts the
optimum at AuysPdssPtig (Fig. 3E), whereas the global optimum of the 8-element model is
Au,g0s11Pd;6Ptss (Fig. 3B). Further analysis, which is discussed below, shows that the Os
content has no distinct correlation to the ORR activity in these HEA catalysts. This suggests

that the Os in the global optimum of the 8-element model is an artifact.

Navigating a smooth composition-activity landscape

Using these GPR models, we can evaluate the approximate number of experiment required
for Bayesian optimization to optimize these composition spaces, see Fig 4. On average, 16
experiments are required to find the global optimum of the 8-element model. For the 5-
element models, it took 8 experiments for the Au-Os-Pd-Pt-Ru, 9 experiments for the Ir-Os-
Pd-Pt-Ru, and 13 experiments for the Ir-Os-Pt-Rh-Ru model. Thus, our optimization
experiments indicate that the number of experiments required to optimize a model does not
scale exponentially with increasing the complexity of the HEA composition space. The latter

would be the case for grid search studies according to the “curse of dimensionality”.
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Fig. 4: Number of experiments needed to obtain the optimal composition. A-D, Bayesian
optimizations of the number of compositions needed to obtain the optimal composition in
the 8-element Au-Ir-Os-Pd-Pt-Re-Rh-Ru composition space (A), as well as the 5-element Au-

Os-Pd-Pt-Ru (B), Ir-Os-Pd-Pt-Ru (C), and Ir-Os-Pt-Rh-Ru (D) composition spaces. The

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

optimization is performed on the GPR models of each composition space. Each of the 100

faint, grey lines represents an alloy activities identified by an individual Bayesian optimization

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:16 AM.

initialized with two randomly chosen compositions. The solid (dashed), black lines show the

(cc)

expectation (median) value of the highest absolute current density found after a given
number of samples. The number of samples needed for the median to reach 95% of the value
of the current density of the global optimum (i.e., the number of samples where 50% of the
optimizations are sufficiently close to the global optimum) are annotated to estimate the

number of experiments needed to find the global optimum.

The reason for this “milder” scaling is that the optimization algorithms depend mostly on the
complexity of the mathematical landscape. Therefore, we propose that if elements have a

minor contribution on the reaction, adding them to an optimization study will marginally
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increase the complexity of the mathematical landscape and correspondingly marginally, afféct;
the experimental demand. Consequently, optimizing HEA composition spaces with as many
elements as possible becomes even more beneficial, when in search of the most active

catalyst.

Assessing the activity in ternary Au-Pd-Pt composition space

In the following, we demonstrate how these highly dimensional, experimental data-driven
models can be used to analyze the contributions of the individual elements to the catalytic
activity. Using the 8-element model, we evaluated the correlations of the elements to the
ORR activity using SHapely Additive explanations (SHAP) (Fig. 5C)3°. The SHAP values show
that the element that has the largest positive influence on the ORR is platinum. This result
agrees with the established conclusion that Pt is the most active element for the ORR*%4%, The
next element that according to the SHAP analysis has a strong positive impact on the ORR is
Pd. Pd, similar to Pt, lies close to optimum in established ORR volcano plots and is being
investigated as a substitute for Pt**27%4, The final element that improves the ORR reaction
according to our analysis is Au. While Au itself is not very active for the acidic ORR*>%¢, its
alloys with Pt*48 and Pd*>>° have been reported previously to improve the ORR activity.
Together, these three elements are responsible for the optimum of this 8-element HEA
composition space. On the other hand, the SHAP analysis suggests that under the chosen
experimental conditions Ir, Ru and Rh are the “least important” elements to promote the
ORR. However, this does not concern possible stabilizing effects which were not evaluated
here. The analysis of Os shows only a weak correlation to the ORR. Therefore, its contributions
to the ORR activity have a large error margin, which explains its artificial presence in the 8-
element model optimum, see above. Lastly, Re, which was not fully incorporated in the alloy,
did not shows a correlation with the models prediction, indicating that it is mathematically a

harmless spectator.

13

Page 14 of 28

icle Online
00356C


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ey00356c

Page 15 of 28 EES Catalysis

View Article Online

DOI: lO.lO}S‘%EgEYOOSSGC

@)

©
02& Pt S
< Ir 30 ©
= Pd ®
0.4 <
“ Ru =5 'E
© Rh 20 @
06 @ o
L Au 15 &
T Os o
| 08 @ Re 10 =
\ - - = o . ; T S O
75 0 1 0 1.0 -0.2 0.0 0.2 E
Pt content (at.%) Pt content (at.%) SHAP value (impact on model output) 0 T}
Py *ﬁ“’l) ”\T\m\ﬁ‘m ) *;H\H:iﬁ\%
??\‘ 3 ety e 4)') S -‘QA)?\
y - b A 4
v N»x* ﬁ < A1) } < jﬂ:ﬁ ‘w?' ;
S Re ::,;} HOj
i O L <34 430 1y ¥

_ AuzPdssPtis AussPdisPtr Pt Au1Ptao

——= Pt(111) o
’l
4
& 14 ’
g /
Q r
!
< ¢
&
= -2 4
4
]
J
]
-3 T T T T T T
03 0.4 0.5 0.6 07 0.8 09 1.0

E (V vs. RHE)

Fig. 5: Highest activity found in the Au-Pd-Pt ternary subspace. A,B, ORR catalytic activities

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

in the Au-Pd-Pt composition space as predicted by the 5-element Au-Os-Pd-Pt-Ru model (A),

and with DFT simulations (B). The circular overlay in A corresponds to the GPR prediciton

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:16 AM.

certainty. The coloring of the DFT prediction has been normalized such that the optimum at

(cc)

Auy7PdssPtig in A is given the same color in B.The stars depict nanoparticle compositions that
have been additionally investigated using the rotating disk electrode (RDE). C, The influence
of the individual element concentrations on the catalytic activity of each experiment in the 8-
element model obtained with a SHAP analysis. D, Supporting experiments investigating
promising nanoparticle compositions using RDE experiments (Supplementary Figs. 19-33).
The measurements were carried out in 0.1 M H,S04, at 1600 RPM with a scan rate of 10 mV/s.
The kinetic current has been extracted using the Koutecky-Levich equation (Supplementary

Eq. 8).
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The experimental data-driven models derived from HEA studies allow a unique compatis8h; . ee

to computational studies. Typically, a close resemblance between the surfaces studied in
computational simulations and experimental studies is only achieved with well-defined
single-crystal surfaces and individual activities. By contrast, comparisons between data-driven
models and computational models reveal activity trends and bring a new quality to testing
the predictive power of computational simulations. In our specific case, the 8-element model
and the Au-Os-Pd-Pt-Ru model both agree that the most active subspace is Au-Pd-Pt. We
visualized the activity of the Au-Pd-Pt space in a ternary plot (Fig. 5A). We then performed
DFT calculations of this composition space and constructed an equivalent “theory-based”
activity model for the ternary Pt-Pd-Au composition space (Fig. 5B). This provides a visual
comparison between “theory-based” and experimental data-driven activity modeling. It is
seen that the experimental data-driven model exhibits an optimum at Au,;PdssPtis, with a
soft gradient towards the edges. The DFT model, on the other hand, shows a local optimum
at Auy1Pd;;Pt;, which is remarkably close to the experimentally predicted Au,;PdssPtis
optimum. However, the DFT model also calculates a global optimum at AusPts3 with even
higher ORR activity and a strong minimum at pure Au. Both this optimum and minimum are
located near the mono-metallic corners of the composition space. It is therefore important to
point out that the experimental data-driven models that are built to span a HEA composition
space lack data in the (typically known) corner and edge regions of the composition space. As
a result, data-driven models are unable to extrapolate to the vertices and binary regions,
which in statistical models is reflected in an increased prediction uncertainty. In the present
case, this leads to the observed discrepancy and highlights the power of combining

computational and experimental studies.

Based on the DFT calculations and the machine-learned model, we investigated the promising
3-element compositions, AuigPtss, AuisPdisPtzo and Auy7PdssPtis using the rotating disk
electrode (RDE) (Fig 5D and Supplementary Figs. 19-33). As a reference, Pt and Pd
nanoparticles and Pt(111) were used. In line with the work of Lankiang and co-workers*” and
the DFT calculations AuigPtgp is more active than pure Pt. However, the previously reported
global optimum of AuisPd1sPt70%” could not be confirmed, which may be attributed to the use
of H,SO, instead of HCIO,4 as electrolyte3. The predicted local optimum of Au,7PdssPtig did

show an activity higher than Pd but not as high as Pt. We attribute this to the difference in
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surface composition. In the dataset that the machine learning algorithm used, the,clas&st; 2 oec
datapoint to the local optimum is Au130sePdssPtisRuis (Supplementary Fig. 34).
Au130s6Pds3Pt14Ru13 has a high ratio of charge transferred to the hydrogen under potential
deposition region to the double region compared to the case of Au,7PdssPtis nanoparticles
(Supplementary Fig. 35). This indicates that in Au,;PdssPtig nanoparticles Au may have
segregated to the surface, which is catalytically less active for the ORR than Pt or Pd.
Therefore, while the machine-learned models predict that the Au,;PdssPtis composition has
a high probability of yielding an alternative catalyst, precise morphology engineering is
required to produce it. Last but not least, the influence of the capacity normalization was
investigated confirming Pt-Pd-Au as the most active combination (Supplementary Figs. 36 and

37).

Conclusions and outlook

We propose an inversion of the classical bottom-up approach to studying electrocatalysts.
Instead of gradually increasing the complexity of an electrocatalyst, we argue that catalytic
information is obtained more efficiently when starting from complex HEA composition
spaces. As a complex composition space contains information on all constituent catalysts with
fewer components, its optimum will correspond to the global optimum across all its sub-

spaces. In addition, the data can be used to produce a map of the optima of its different

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

subspaces and provides argumentation on which element combinations can be ignored in

later studies and which are worth investigating further. Furthermore, the experimental data-

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:16 AM.

driven activity models can be compared to “theory-based” activity models both testing the

(cc)

predictability of computational simulations with a new quality as well as offering to accelerate

catalyst discovery significantly.

We demonstrate this approach of a HEA discovery platform by studying the 8-elemental Au-
Ir-Os-Pd-Pt-Re-Rh-Ru composition space for the ORR using microwave-based nanoparticle
synthesis and multi-electrode electrochemical activity experiments. The Au-Ir-Os-Pd-Pt-Re-
Rh-Ru model mapped out effectively the optima of HEA spaces with fewer elements and
provided an analysis of the contributions of the individual elements to the catalytic activity.
As most contributing elements Pt, Pd and Au are identified. The highest activity is obtained
for a combination of all three elements and the comparison of the data-driven model and the
DFT model points towards highly active ternary Au-Pd-Pt compositions. However, the
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limitations of the regression models in constructing activity maps are also highlighf&d/oozce
Extensive extrapolations in data-driven models beyond experimentally sampled compositions
can lead to large uncertainties. Computational simulations can therefore accelerate the
catalyst discovery substantially, but also automated synthesis robots coupled to the
demonstrated accelerated electrocatalytic testing will allow experimental sampling of larger

areas of interest.
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