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Can blue-green infrastructure mitigate
waterborne infection risks through recreational
activities in densely urbanized waterways?

J. Petrucci, *a J. Derx, ch R. Sommer, dh J. F. Schijven, e

H. Müller-Thomy, fg S. Dorner, a J. Jalbert b and F. Bichai a

Combined sewer overflows (CSOs) release pathogens into urban recreational water bodies and pose a threat

to water quality, ecosystems, and public health. This risk is expected to increase with climate change, as

more frequent and intense rainfall events are likely to exacerbate the number of overflows. Exposure to

contaminants from CSOs can cause waterborne diseases, underscoring the need for effective stormwater

management strategies. Blue-green infrastructure (BGI) offers a sustainable solution to mitigate the adverse

impacts of CSOs while enhancing urban resilience through multiple co-benefits. This study combines

hydrologic modeling with quantitative microbial risk assessment (QMRA) to assess the potential of BGI

implementation strategies ranging from 0% to 50% of converted impervious surfaces, to mitigate the impacts

of climate change on the microbiological quality and safety of urban rivers used for recreation downstream

of CSOs. A strategy involving increased storage capacity by 28000 m3 was also considered to compare its

performance in terms of risk reduction with BGI implementation. The approach was applied to an Austrian

urban river catchment frequently used for recreational activities such as swimming, wading, and playing.

Three planning horizons were analyzed – baseline (C20), near-term future (NTF) and long-term future (LTF).

Results show that BGI reduces the probability of infection across all seasons, with the highest benefit

observed in summer when recreational water use peaks. For Cryptosporidium, the 95th percentile infection

risk in a worst-case scenario (i.e., children swimming in the river) is reduced, when adding 50% of BGI, by

0.4 log10 for the C20 period, 0.5 log10 for the near-term future, and 0.6 log10 for the long-term future,

demonstrating the potential of BGI to improve the safety of recreational waters under changing climate.

1 Introduction

Adequate urban water quality is critical for recreation,
drinking water, and irrigation. Combined sewer overflows
(CSOs) occur when the drainage system exceeds its capacity
during rainfall or snowmelt events, discharging untreated
wastewater into streams1–3 posing significant public health
risks.4–7 At the European Union scale, the estimated annual
volume of CSO was approximately 5.7 × 103 million cubic
meters, highlighting the important impact of urban
stormwater discharges on receiving water bodies.8

Climate change is expected to intensify precipitation,
increasing the frequency of CSOs in North America and
Europe by 2100, with the potential to release higher
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Water impact

This study demonstrates how blue-green infrastructure (BGI) can reduce infection risks from combined sewer overflows in recreational urban water. By
integrating hydrologic modeling with microbial risk assessment under climate change scenarios, it provides actionable evidence for sustainable stormwater
management. The findings support BGI adoption to enhance urban water safety in a warming climate.
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concentrations of pathogens into urban waterways leading to
public health concerns for recreational activities such as
swimming.9–11 Increased CSO frequency, combined with
changes in pathogen loads, water temperature, and flow
regimes, may exacerbate contamination downstream
CSOs.9,10,12–14 Derx, Müller-Thomy9 projected CSO volumes to
increase 21–53% by 2100 in Europe, intensifying public
health risks.

Summer is a period when people are more inclined to
enjoy water bodies for recreational activities: more people are
swimming and for longer periods that could lead to an
increased risk of exposure.13 However, it is also the time
when the number of CSOs can be the highest because of
intense summer precipitation.15,16 The impact of CSOs is
more severe during this period, as in Europe, for example, it
typically coincides with low flow regimes.17,18 Swimming in
unmonitored sites after CSOs can expose people to
undetected pathogens, highlighting the need to ensure safe
swimming water quality.

Access to waterways for recreation in urban areas provides
multiple benefits enhancing citizens' quality of life and
health.19 With climate change increasing temperatures and
heatwaves frequency by 2050, mitigating CSOs is crucial to
protect swimming water quality and reduce health risks, as
rising heat is expected to worsen morbidity and mortality
across Europe.20,21 Greening strategies can help reduce heat
impacts and associated health risks.22–25 While many cities
are located near water, these blue spaces are often not fully
integrated into urban planning, and their public health
benefits are frequently overlooked by planning authorities.26

Research has shown that water environments offer benefits
for health and well-being by reducing heat stress, promoting
physical activity, encouraging social interaction, and
facilitating relaxation,27–29 making safe access essential for
both mental and physical health.

Blue-green infrastructure (BGI) offers a solution for urban
water quality by promoting integrated stormwater
management through infiltration and evapotranspiration.30,31

BGI mitigates CSO impacts and microbial contamination by
capturing and filtering runoff,1,32,33 while also providing co-
benefits such as reducing heat islands and improving urban
environments.31,34–38 By protecting recreational water areas,
especially during hot summer months, BGI can help ensure
safe and enjoyable spaces for aquatic activities.13,39 To date it
is unclear if how bioretentions affect recreational water safety
in the receiving river water downstream CSO discharge.40

Quantitative microbial risk assessment (QMRA) is widely
used to estimate health risks from waterborne pathogens,
including those released during sewage overflows.9,41–44 The
QMRA method also allows comparing different management
strategies.41–43 European studies show measurable
gastrointestinal illness (GI) risks from recreational exposure
after rainfall and CSOs, with virus posing the highest
risk.9,41,44 Timm, Luther44 estimated viral GI illness risks
between 0.9% and 2.6%, and lower but non-negligible risks
for Cryptosporidium (0.014%) and Giardia (0.0084%). Derx,

Müller-Thomy9 projected up to 8% infection risk per
exposure under future scenarios, highlighting the need for
mitigation.

This study evaluates the effectiveness of BGI in reducing
infection risks during recreational use of river water
downstream of CSO discharges using QMRA modeling. While
earlier studies examined BGI effects on pathogen loads from
runoff or diffuse pollution,45,46 its potential to reduce CSOs
and ensure recreational water safety at urban swimming sites
under climate change remains unexplored. Our approach
integrates hydrological modeling with QMRA, extending the
framework of Derx, Müller-Thomy9 by incorporating BGI.
Rainfall time series from regional climate models are
downscaled to sub-daily scales and used in personal
computer storm water management model (PCSWMM) to
simulate CSO discharges, pathogen concentrations, and river
flows under historical and future climate scenarios based on
bias-corrected ÖKS15 projections.47

2 Method

Fig. 1 presents an overview of the methodology developed in
this study.

The PCSWMM urban hydrological model simulated CSO
discharges and pathogen concentrations, while a separate 1D
river model accounted for upstream runoff and river flow.
Combined microorganism data were used to calculate
downstream infection risks across seasons (winter, spring,
summer, autumn) and three planning horizons: reference
(C20, 1971–2000), near-term future (NTF, 2021–2050), and
long-term future (LTF, 2071–2100) following Derx, Müller-
Thomy.9 Bioretention was modeled from 0% to 50% in 5%
increments, alongside a recently implemented storage
measure at the study site. Bioretention are small depressions
with a surface area determined by the drainage catchment,
which capture some of the runoff from roofs, streets, and
walkways.30,31,48

2.1 Study site description and data

The study area is a river catchment in Vienna, Austria, with a
population of about 148 000 people. The river originates west
of Vienna and receives inflows from several tributaries. It is
primarily fed by runoff from urban and forested flysch areas.
The sewer system is modeled using a PCSWMM sewer system
sharing the same catchment area, proportions of land use
and topographic gradients as the real study site, and real
rainfall data from the study site. Fig. 2 shows a schematic
representation of the studied area.

Although not officially a swimming site, the river is used
year-round for recreation and serves during summer to
refresh through activities like playing and wading.

2.2 Climate scenarios

For the climate impact analysis, we used the bias-corrected
ÖKS15 projections,47,49 based on regional climate models
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(RCMs) from the EURO-CORDEX initiative, which in turn are
based on global climate models (GCMs) from the CMIP5
framework.50 ÖKS15 includes 13 GCM–RCM combinations
for each of the RCP4.5 and RCP8.5 scenarios. Of the 26
total combinations, five were removed due to significant
underestimation of rainfall in Eastern Austria (study region),
and due to missing data.47 This results in 21 GCM–RCM
combinations that were applied in the study by Derx,
Müller-Thomy.9 For this study, from the 21 model runs, we
selected three climate scenarios (C63, C73, C77, see SI S1

material for the complete list) which reflected the full range
of possible increases in future infection risks (marked as
coloured dots in Derx, Müller-Thomy,9 Fig. 7). The study by
Derx, Müller-Thomy9 indicated that infection risk variability
was greater across different seasons than across climate
scenarios or rainfall disaggregation implementations. In
total, thirty implementations of the disaggregated rainfall
time series were applied for each planning horizon (C20,
NTF, and LTF). For CMIP6 no regional climate model
results were available for Austria when we conducted the
study. However, although differences between climate
periods C20, NTF and LTF are studied, the focus of the
manuscript is on the impact on BGI and its effectiveness on
reduction of infection risks. Using CMIP6 instead of CMIP5
would probably change the numbers of the results, the
shown impact of BGI will remain the same – so the main
message is still valid.

Disaggregated rainfall time series are used to increase the
temporal resolution of climate-projected rainfall data,
making them suitable for use in hydrological models. In this
study, daily rainfall time series from the three selected
climate scenarios were disaggregated to 5 minute intervals
using the micro-canonical cascade model, selected for its
proven performance in previous studies51–53 as suggested in
Derx, Müller-Thomy.9 These disaggregated rainfall time series
were then applied to the artificial sewer system model and
the rainfall-runoff model.

Fig. 1 Conceptual diagram of the approach adopted in the study.

Fig. 2 Schematic study area with hydrological and urban hydrological
model domain.
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2.3 Artificial sewer system

To represent the urban drainage system, an artificial
sewage system was used. This is a common approach for
evaluating the impacts of rainfall datasets on CSO volumes
when complete field data for modeling are lacking.54

Moreover, artificial systems are often used to validate
synthetic rainfall inputs as the one generated by the
disaggregation.55 The artificial sewage system used in this
study, is adapted from Müller and Haberlandt,54 and was
modified to represent the hydrological characteristics of the
study area to ensure the modeled and observed overflow
events matched (see SI S2). The model is not an exact
sewer network replica, but an artificial sewer network
evaluated on monitored concentrations of enterococci,
Giardia and Cryptosporidium in the river during 2018–2021
when CSOs and floods occurred.9,54 Households in the
model area connect to a combined sewer system meaning
both runoff and sanitary water are in the same conduits.
Sub-catchment widths were set based on actual dimensions,
ranging from 400 to 3000 m, and surface slopes varied
between 1.4% and 7.3%, with a mean of 4.1%, derived
from a digital terrain model. The imperviousness was
adjusted during calibration. It ranged from 50% to 100%
(mean 81%), while conduit lengths ranged from 100 to
6000 m, totaling 31.3 km after calibration. A retention tank
with a volume of 40 280 m3 was included to store
combined wastewater and stormwater when the treatment
plant reaches capacity. Once exceeded, the overflow is
discharged into the receiving water via CSOs.
Microorganisms enter the sewer only via dry-weather flow
Cdry [# L−1]. All the initial parameters are adjusted as
proposed in Derx, Müller-Thomy.9 The parameters can be
found in the SI S2. The urban hydrological simulations
were run continuously to avoid any a priori assumptions
about which rainfall extremes could trigger CSOs or the soil
moisture conditions preceding rainfall events. This setup
allows the model to realistically represent hydrological
responses during intense rainfall events.

2.4 Rainfall-runoff model (HBV)

The runoff from the river catchment was simulated hourly
using a distributed rainfall-runoff model.56 The model
domain area is 199 km2, with a spatial resolution of 1 km
× 1 km. The model was calibrated using hourly rainfall and
temperature data, with parameters first assigned by
hydrologic response units (HRUs) and then adjusted by
comparing simulated and observed runoff (1990–2018; NSE
= 0.51–0.93, overall NSE = 0.77; see SI S5 for details the
training period is the first year (1990)). The calibrated
model was then used to simulate the C20, NTF, and LTF
planning horizons. Disaggregated rainfall time series were
applied as spatially uniform input, with observed air
temperature data from the Hohe Warte meteorological
station during the C20 period.9

2.5 BGI implementation scenarios

Bioretention was modeled using the low impact development
(LID) control editor in PCSWMM.57–59 Selected for its small
size suitable for densely built areas and its proven
effectiveness in managing CSO quantity and quality,
bioretention is among the most widely implemented LID
practices.1,32,60–62

Bioretention design parameters and soil characteristics
were derived from literature and case studies1,32,58,63 due to
the lack of site-specific data. This literature-based approach,
commonly used in similar studies, enables evaluation of
system performance within a local context. Bioretention
systems consist of several layers. Precipitation and runoff
infiltrate the soil and gravel layer, then exit via evaporation,
further soil infiltration, underdrain flow to the sewer, or
surface outflow redirected to the sewer. Detailed model
configurations, parameter values (SI S3, Fig. S3-1) and details
on the calculations for adjusting the parameters are provided
in the SI S3.

Bioretention implementation strategies were based on the
assumption that different percentages of impervious surfaces
could be converted to bioretention, in a way that preserves
the original surface functionality—for example, roads remain
drivable and sidewalks remain accessible—while effectively
reducing runoff.31 Therefore, only a subset of the impervious
surfaces was hydrologically connected to the bioretention
systems. Specifically, only 30% of the impervious area was
routed to the bioretention via runoff. The value of 30%
represents an estimate of the fraction of impervious surfaces
whose runoff can realistically be routed to bioretention
systems, considering functional constraints such as drivable
roads and accessible sidewalks (vs. water from roofs). It
approximates the portion of runoff that can be treated,
consistent with urban hydrology studies and design
guidelines emphasizing a realist design rather than complete
connectivity of impervious areas.31,63,64 To assess the impact
of bioretention implementation on infection probability, we
incrementally added bioretention areas ranging from 5% to
50%, exceeding the threshold of 18% suggested by
Furchtlehner, Lehner65 in order to explore optimistic future
scenarios for resilient cities. Although the MELCC31

stormwater management guide recommends bioretention
areas covering 5 to 10% of the impervious catchment area,
the CSA W200:18 standard for designing bioretention systems
suggests surfaces ranging from 10 to 20% of the impervious
area of the watershed.66 Thus, our study builds on these
guidelines, extending the range of bioretention
implementation even further to assess a broader spectrum of
potential outcomes.

2.6 QMRA

The following sections details the QMRA modelling process
of (1): identifying pathogens and their sources (hazard
identification) (2); tracking their transport and fate to and
within waterbodies, which can result in human exposure
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when swimming (exposure assessment) (3); assessing
pathogen infection risks through dose–response modeling
and (4) characterising the risk by comparing the results to
the health target.

The background concentration in the river and the
ingested volume are represented by Gamma distributions to
capture variability and quantify risk.9,67,68 For both
parameters, we consider a random value from the gamma
distribution for each time step of 1 hour. In this study, we
adapted a derived program coded in Python from Schijven,
Derx68 to perform the QMRA.

2.6.1 Hazard identification. In this case study, a hazardous
situation arises from heavy rainfall causing a CSO, leading to
a high concentration of pathogenic microorganisms in a
swimming area. Enterococci serve as an indicator of fecal
contamination.69,70 Their elevated levels in freshwater or
marine environments suggest the presence of fecal matter
and, consequently, the potential occurrence of pathogenic
microorganisms originating from fecal sources.69 In addition,
two reference pathogens were used, Cryptosporidium and
Giardia, since they are protozoa that significantly contribute
to waterborne disease outbreaks.71 In Canada, in the United
States and in Europe, Giardia is the most frequently reported
protozoan in water for recreation.72–74 Giardia and
Cryptosporidium are also reference pathogens identified by
the USEPA.42 The concentration in the river (Criver) after a
CSO is calculated as described in eqn (1):

Criver ¼ CCSO·QCSO

Qriver
þ Criver;bg·obs (1)

where Criver [count per l] is the microbial concentration in
river water, CCSO [count per l] is the simulated microbial
concentration in the CSO discharge, QCSO [m3 s−1] in the
simulated CSO discharge, Qriver [m

3 s−1] is the river discharge
and Criver,bg·obs [count per l] is the microbial background
concentration in river water. CCSO and QCSO are obtained
through PCSWMM simulation (section 2.2). Qriver is obtained
from the rainfall runoff model (section 2.3) and Criver,bg·obs is
an estimation of the background concentration of
Cryptosporidium, Giardia or enterococci. The background
concentration of Giardia is modeled using a Gamma
distribution with parameters (0.3, 1.2), resulting in a mean of
0.36 cysts per l (SI S4, Table S4-1). Similarly, Cryptosporidium
follows a Gamma distribution with parameters (0.6, 0.9) and
a mean of 0.54 oocysts per l, while enterococci is modeled
with parameters (0.27, 1500, 6) and a mean of 405 particles
per l (SI S4, Table S4-1). The enterococci concentration was
estimated from the E. coli concentrations obtained through
the PCSWMM model by multiplying the E. coli values by a
factor of 0.278 (ref. 69, 75 and 76) which was the ratio of the
mean concentrations of enterococci and E. coli observed in
raw wastewater by Derx, Müller-Thomy.9 The Gamma
distribution is appropriate for this context, as it effectively
models non-zero background concentrations and ensures
positive values.

2.6.2 Exposure assessment. Exposure assessment evaluates
the likelihood of ingesting pathogens during recreational
activities, with swallowed water volume depending on activity
type, duration, and age. For this risk assessment, the dose
(D) is calculated based on the pathogen concentration in the
river and the Gamma-distributed volume (V, in liters) of water
swallowed per person per swimming event: men (r = 0.45, λ =
60), women (r = 0.51, λ = 35), and children (r = 0.64, λ = 58)
and the respective averages of 27 ml, 17.85 ml and 37.12
ml.67,68 Here, r is the shape parameter and λ the scale
parameter of the Gamma distribution. The expected
swallowed volume is calculated as r × λ. A lower r means a
more skewed distribution, capturing the variability in
ingestion volumes across the population. The scale
parameter λ stretches or compresses the distribution,
affecting the average volume and variability of water ingested
while swimming. In this study, we considered children as the
worst-case scenario.

The risks of infection per person and exposure event are
calculated assuming that recreation takes place directly
downstream of the sewage emission. The ingested dose (D)
during recreational use is calculated with eqn (2):

D = Criver × V (2)

where D is the ingested dose, Criver is the concentration in
the river calculated with eqn (1) and V [m3] is the swallowed
volume during a swimming event depending on the type of
swimmer (men, women, children).

Note that the time elapsed between the end of the
overflow event and swimming was not explicitly considered.
The probability of infection at an hourly resolution was
calculated and then the risk was averaged over the entire
season or year (more information can be found in the SI
section S8, Fig. S8-1). To reflect seasonal variations in
exposure probability, infection risks were weighted by
seasonal factors: 0.01 for winter, 0.1 for spring and
autumn, and 1 for summer.9 The seasonal factor is at its
lowest in winter and moderate in spring and autumn since
people are least inclined to go swimming during those
seasons but can practice other activities and can be
exposed to contaminated water by playing, or when walking
dogs taking baths in the river. While a more detailed
approach using survey-based exposure data—such as that
employed by Sterk, de Man13—could have been used, we
opted for this simplified method to avoid introducing
additional complexity that could mask the effects of climate
change and of the addition of bioretention. Alternatively,
exposure could be modeled more realistically based on
periods when recreational water contact is more likely to
happen. For example, during warmer months or when
water temperatures exceed a certain threshold.

2.6.3 Dose–response. To calculate the risk of infection per
person and exposure event, we used dose–response models.
For Cryptosporidium the risk of infection (Pinf) was calculated
using the hypergeometric dose–response model:
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Pinf,Cryptosporidium(D) = 1−1F1(α, α + β, D) (3)

where Pinf is the probability of infection per swimming event,
α is 0.3, β is 1.1 and 1F1 is the confluent hypergeometric
function77 and D is calculated with eqn (2).

For Giardia the exponential dose–response model was
used with r = 0.02:78

Pinf,Giardia(D) = 1 − e−rD (4)

where Pinf is the probability of infection per swimming event
and D is calculated with eqn (2).

Eregno, Tryland41 found that the probability of infection
is highest on the first day following a rainfall event, decreases
on the second day, and then declines more gradually up to
the third day. This suggests that pathogens remain present in
surface waters for an extended period after a CSO event.
While few people are likely to swim during rainfall itself,
recreational activities often resume within hours or days
following the event—at a time when exposure risk may still
be high. Our study accounts for this by evaluating infection
probabilities on an hourly basis over a 30 year period,
capturing both short-term and long-term exposure patterns.
This approach also allows assessing cumulative risks over a
full swimming season,42 which is relevant for informing
public health recommendations. Furthermore, while
regulated beaches may have closure protocols, many people
swim in informal or unmonitored locations, where no such
guidelines exist.

2.6.4 Risk characterization. The final step of the QMRA
process involved calculating the concentrations of
enterococci, Cryptosporidium, and Giardia in the swimming
site, as well as the risks of infection per person and exposure
event (Cryptosporidium, and Giardia). These calculations were

done at hourly intervals under climate change conditions,
both with and without the implementation of BGI.

3 Results
3.1 Hydrological model results

For the results of the urban hydrological model, we
categorized CSO events into three ranges based on the
discharge flow rate: <1.0 m3 s−1 (low range), 1.0–1.5 m3 s−1

(medium range), and >1.5 m3 s−1 (high range). Fig. 3 shows,
on the one hand, the variation in overflow volume with the
effects of climate change and, on the other hand, the effects
of adding BGI for the three planning horizons (C20, NTF,
LTF) and for four implementation strategies. Fig. 3 also
shows the variability between the three selected climate
scenario (C63, C73, C77).

Fig. 3 shows the fraction of 5 min time steps with CSOs
for the three defined categories. The fraction of time steps
with CSO increases in the future (NTF, LTF) compared to the
reference period C20, with a more pronounced increase
observed under the LTF than the NTF, and for larger CSOs
(greater than 1.5 m3 s−1). For the strategy without BGI,
compared to the C20 planning horizon, we found that for
CSO < 1.0 m3 s−1, the number of time steps increased by
10% for the NTF planning horizon and by 15% for the LTF
planning horizon. For medium CSOs (1.0 < discharge rate >

1.5 m3 s−1), the fraction of time steps with CSO in the NTF
and the LTF respectively increase by 14% and 30%. For CSO
> 1.5 m3 s−1, the fraction of time steps with CSO increases by
25% (NTF) and 53% (LTF). These changes are consistent
across all BGI scenario implementations (SI S6, Fig. S6-1). In
the climate scenario C77 (SI S6, Fig. S6-1) we observed a
significant increase (95% to 227%) in the fraction of
simulation 5 min time steps during which CSO occur

Fig. 3 Fraction of simulation 5 min time steps with CSOs [%] for the C20, NTF and LTF (y-axis) for different percentages of BGI (0%, 5%, 30%, 50%)
implementation. CSOs are differentiated for discharges of (a) <1.0 m3 s−1, (b) 1–1.5 m3 s−1 and (c) >1.5 m3 s−1. Red diamonds show the mean, boxes
the 25th and 75th percentiles, whiskers the 5th and 95th percentile, and black horizontal lines the median values (results are for all the climate
scenarios). C20 (blue) in the reference period, NTF (turquoise) is the near-term future period and LTF (brown) is the long-term future period.
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especially for medium and large CSO flowrates (1–1.5 m3 s−1

and >1.5 m3 s−1). The increase in the fraction of time steps
likely indicates a rise in total overflow volume. A higher
fraction of time steps means that CSOs are active for longer
durations, implying greater water discharge. This effect is
more pronounced for large CSO events (>1.5 m3 s−1), where
the relative increase is nearly three times larger compared to
small events (<1.0 m3 s−1). Although the fraction of time
steps does not directly quantify overflow volume, the
combination of longer CSO duration and higher discharge
rates strongly suggests an overall increase in overflow
volumes.

Results show that the implementation of BGI is effective
to reduce CSOs duration under current and future climate
conditions (Fig. 3). These results are also consistent across
the three tested climate scenarios. The data demonstrate
that the implementation of BGI has a more significant
effect on larger overflows (>1.5 m3 s−1), with reductions in
volumes reaching up to 76% with the highest BGI
implementation strategy (SI S6, Table S6-1). For example, in
the case of CSOs >1.5 m3 s−1, without BGI, the fraction of
time steps with CSO is 2.28, but with 50% BGI, it can be
reduced to 0.54 (SI S6, Table S6-1). In contrast, the impact
of BGI is less pronounced for smaller overflows (<1.0 m3

s−1), where the maximum reduction is 63% in the same
planning horizon (C20). However, the impact of BGI is
attenuated by climate change, with reductions being less
significant in the LTF scenario compared to the C20
scenario. For instance, in the LTF scenario, for CSOs >1.5
m3 s−1, the maximum reduction with 50% BGI is 71%,
compared to 76% in the C20 planning horizon (SI S3, Table
S3-1). Indeed, the effectiveness of BGI decreases with rising
temperatures and extreme climatic events, suggesting that
additional adaptive management strategies will be required
to maintain these benefits over the long term and mitigate
the effects of overflows under future climate change
scenarios. These results highlight that increasing levels of

BGI implementation (from 0% to 50%) leads to greater
CSO volume reduction, particularly for larger events. The
implementation of BGI at 30% is projected to significantly
reduce the frequency of future CSOs compared to scenarios
with C20 and no BGI implementation.

Table 1 shows statistics of CSOs, river flows and mixing
ratios during all seasons with and without BGI
implementation for the three periods (reference period C20,
NTF and LTF).

According to the results, the river runoff [m3 s−1] is
highest in spring, and lowest in autumn in all periods
(Table 1). The mean annual river runoff increases relative to
C20 by 8 to 20% under the NTF and the LTF. In comparison
to C20, the river runoff increases from 4 to 20% for the NTF,
and from 12 to 35% for the LTF over different seasons. The
mean mixing ratio between CSO and river discharges (Qcso/
Qriver) shows an increase under both the NTF and the LTF
scenarios relative to C20, indicating a stronger increase of
CSO discharges than in river runoff. Across all seasons, CSO
flows increase during both the NTF and the LTF periods
compared to the C20 baseline.

When comparing the strategy without BGI and with a 50%
level of BGI implementation, CSO discharges decrease by
59% to 76%, and the mixing ratio decreases from 70% to
86% for both future planning horizon (NTF, LTF) over
different seasons. Changes in river flow due to BGI are
presumably small and were thus not considered in the
rainfall-runoff model.

3.2 Microbial river water quality and infection risks during
recreational use

Without BGI, the dilution of microorganisms in river water
results in mean concentrations of Cryptosporidium at 3.91
oocysts per L, Giardia at 31.65 cysts per L, and enterococci at
1.54 × 105 CFU L−1 downstream of CSO discharges under the
C20 scenario, across all seasons (SI S7, Fig. S7-1),

Table 1 Mean values of CSO discharge rates, river flows and mixing ratios over the complete simulation time without BGI and with 50%-BGI
implementation (climate scenario no C73)

Scenario Season
River runoff
[m3 s−1]

0% 50%

Qcso [m
3 s−1]

Mixing
ratio Qcso [m

3 s−1]
Mixing
ratio

C20 Yearly average 2.08 0.12 0.03 0.03 0.01
Winter 2.00 0.11 0.05 0.03 0.01
Spring 2.93 0.12 0.02 0.04 <0.01
Summer 2.11 0.13 0.03 0.04 0.01
Autumn 1.27 0.11 0.04 0.03 0.01

NTF Yearly average 2.25 0.15 0.04 0.05 0.01
Winter 2.15 0.14 0.07 0.05 0.02
Spring 3.04 0.16 0.03 0.07 0.01
Summer 2.54 0.20 0.04 0.07 0.01
Autumn 1.27 0.09 0.03 0.02 <0.01

LTF Yearly average 2.49 0.17 0.04 0.06 0.01
Winter 2.69 0.17 0.07 0.06 0.02
Spring 3.34 0.19 0.03 0.08 0.01
Summer 2.51 0.19 0.04 0.06 0.01
Autumn 1.42 0.13 0.05 0.04 0.01
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highlighting the effectiveness of BGI in improving water
quality.

The highest concentrations occur during winter, which
may be explained by the fact that river flow is generally at its

Fig. 4 Mean concentration of Giardia [cysts per l] for the climate scenario no C73 per season. The mean concentration in river water is calculated
over 30 years of simulation time for the C20 (NTF and LTF periods results are in the SI S7, Fig. S7-1).

Fig. 5 Mean Giardia infection risks [%] per person and exposure event during recreational use of river water calculated over 30 years of simulation
time for the C20, NTF and LTF periods as function of BGI implementation (continuous lines). Diamonds represent the probability of infection when
additional storage is added, and for the corresponding percentage of BGI required to achieve the same reduction in infection risk. Red line and
dots represent the maximum suggested implementation. Note that the scale of the y axis is different for each season.
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lowest during this period, while background concentrations
is stable across seasons. Results also indicate that overflow
volumes tend to be higher in winter, likely due to reduced
infiltration rates during colder months, which further affects
flow and pollutant loading dynamics.63,79 Without accounting
for snow accumulation, runoff is estimated to be higher and
infiltration lower (Gougeon et al., 2023 (ref. 63)). Since
snowpack processes are not explicitly simulated, PCSWMM
likely overestimates winter runoff by treating precipitation as
direct rainfall rather than snow accumulating on the ground.
Consequently, runoff (and overflow volumes) may be
overestimated in winter and underestimated during the
spring snowmelt period, potentially influencing the modeled
overflow volumes and seasonal patterns.

During the C20 period, concentrations with 50% BGI
implementation are reduced by 0.74 log (81%) for
enterococci, 0.53 log (71%) for Cryptosporidium, and 0.72 log
(81%) for Giardia compared to 0% BGI. For the planning
horizon C20 we observed that the greatest reductions are in
in autumn (Fig. 4) and the same applied for NTF and LTF
planning horizon (results not shown, SI S7, Fig. S7-1).
However, as the percentage of BGI increases, the additional
reduction in concentration becomes less significant. This
diminishing effect highlights the saturation point of
treatment potential: BGI are primarily implemented on
impervious surfaces like roads and parking lots. Once a
substantial portion of these target areas is equipped with
bioretention systems, the remaining surfaces either already

Table 2 Percentage of change in the mean infection risk [%] by season by time period without BGI (0%) and with 50% BGI implementation and the
effectiveness of the measure in reducing infection risks in % and log10 units. Higher reduction is green and lower reduction is red
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support natural infiltration or contribute minimally to runoff.
As a result, further expansion of BGI yields diminishing
returns, since the main sources of contaminated runoff have
already been addressed. Additionally, bioretention systems
only treat runoff from ground-level impervious surfaces
(e.g., streets and parking lots), and not from rooftops.
Consequently, they capture only a portion of the total runoff
from both impervious and permeable surfaces. In PCSWMM,
this phenomenon is modeled by specifying which surfaces
are subject to treatment (see section 2.4). The point at which
diminishing returns become evident varies based on the
microorganism, climate period, and season, typically
occurring between 20% and 40% BGI implementation. The
results under all the climate scenarios and for enterococci
and Cryptosporidium can be found in the SI S7, Fig. S7-1.

We calculated the probability of infection per person and
exposure event during recreational use of river water as a
function of BGI implementation percentage (ranging from
0% to 50%) for two reference pathogens, Giardia and
Cryptosporidium, across all seasons (Fig. 5, Table 2). Since the
parameter enterococci is a fecal indicator, we did not
calculate the probability of infection.

Fig. 5 shows the relationship between BGI implementation
percentage and mean infection risk per person per exposure
event. We found a non-linear decreasing trend. The most
substantial reductions in infection risk occur with the initial
increments of BGI, while additional implementation leads to
gradually smaller improvements. This reflects a pattern of
diminishing returns, as shown in Fig. 5, and highlights the
strategic value of prioritizing BGI implementation in high-
risk areas to maximize public health benefits. Fig. 5 also
shows that only around 3% of BGI implementation is needed
to reach the same reduction in the probability of infection as
is obtained with an additional storage of 28 000 m3. Results

for all three tested climate scenarios (see section 2.3) can be
found in the SI (S7, Fig. S7-2). All results follow the same
trend: the infection risk decreases with the implementation
of BGI over the three simulated periods.

For both reference pathogens, the highest variation is
observed during autumn for the NTF period. There is less
variation observed during winter and spring, indicating that
the impact of BGI is less significant during these two
seasons. This is because the soil remains frozen in winter
and becomes saturated with water in spring from snowmelt,
leading to reduced infiltration during these periods63,80 and
on the contrary in warm seasons, low flows can limit dilution
effects leading to higher infection risks.81 Across all periods,
the effect of BGI is significant, with reductions ranging from
69% to 91% (0.67 to 1.02 log). To confirm that the reduction
is statistically significant, we used the two-proportion Z-test.
This statistical method assesses whether the difference
between the proportions of two groups is significant. A
Z-value greater than 1.96 indicates statistical significance at
the 5% level. In our analysis, all reductions were statistically
significant, with Z-values ranging from 3 to 47.

To investigate the upper percentile of the infection risk,
we evaluated the cumulative probabilities for Cryptosporidium
and Giardia during the C20, NTF and LTF periods without
BGI and with the highest BGI implementation (50%) (Fig. 6).

Fig. 6 demonstrates the effectiveness of bioretention
implementation. The 95th percentile infection risks range
from 0.09% in winter to 6.51% per person and exposure
event in summer for C20 and increase by 0.1–0.2 log10 in the
future for Cryptosporidium. The 95th percentile infection risks
range from 0.07% in winter to 4.62% per person and
exposure event in summer for C20 and increase by 0.2–0.3
log10 in the future for Giardia. During all seasons, we observe
a decrease in probability of infection with the addition of

Fig. 6 Cumulative probability distributions of the 95th r percentile infection risks [% per person and exposure event] for Cryptosporidium and
Giardia during recreational use in the river downstream of sewage emissions from CSOs over 30 years of simulation time for the C20, NTF and LTF
for the climate scenario no C73 (full lines: no BGI, dotted lines: 50% BGI implementation).
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BGI. For example, in the summer, i.e., when people are most
likely to swim and practice recreational water activities, the
reduction in probability of infection for Cryptosporidium for
the C20, NTF and LTF periods are 0.4 log10, 0.5 log10 and 0.6
log10 respectively (all the results can be found in the SI S7,
Fig. S7-3). The impact of BGI seems more pronounced for
Giardia than for Cryptosporidium. This difference may be
explained by several factors, including differences in
pathogen behavior and environmental persistence, and
removal efficiency in bioretention systems.72,82 The greater
effectiveness of BGI for Giardia compared to Cryptosporidium
may be explained by differences in their physical and
hydrological behavior. Giardia cysts are larger than
Cryptosporidium oocysts, making them more likely to be
removed through physical filtration in porous media like
bioretention systems.82 Cryptosporidium, on the other hand,
is more resistant to drying and can remain suspended in
water for longer periods, reducing the effectiveness of
physical removal processes such as sedimentation and
infiltration. In the case of our study, this difference can be
explained by the fact that the Giardia concentration is
initially higher in the sanitary water, due to the modeling in
PCSWMM (SI S2, Table S2-2).

4 Discussion
4.1 Integrating BGI in climate change adaptation

This study presents a novel probabilistic–deterministic model
to assess climate change impacts and the effectiveness of BGI
in improving microbiological river water quality and
recreational safety downstream of CSOs. For the first time, it
addresses whether BGI can reduce infection risk for
swimmers, highlighting its potential for urban water
management and co-benefits.

BGI systems are effective for urban water management,
but also to provide various co-benefits, such as maintaining
aquatic and terrestrial habitats, and reducing heat
islands.31,37,83 BGI also has a positive impact on the quality
of a community's living environment. This type of
landscaping contributes to health and well-being.84 The
introduction of BGI can help reduce the health risks
associated with swimming due to CSOs discharge, but also
further improve the overall health of communities through
promoting an active lifestyle and reducing heat islands,
although such benefits can be more difficult to assess
quantitatively. Disability-adjusted life years (DALY) could also
be estimated for these additional health co-benefits in urban
communities, which could enable a fairer comparison
between the costs and benefits of BGIs versus grey
infrastructure.

Combined sewer overflows (CSOs) are major contributors
to degraded urban water quality, leading to habitat
deterioration, higher drinking water treatment costs, and
reduced recreational value.85,86 Reducing CSOs would bring
many benefits for the community including health,
environmental, economic and social benefits.87–91 First, as

demonstrated in this paper, a reduction in CSOs can reduce
the probability of infection for swimmers downstream from
CSO structures, providing safe recreational water for the
population. Eregno, Tryland41 reported gastrointestinal
illness risks from 0.06–1.6% for Giardia and 0.4–1.8% for
Cryptosporidium, consistent with our current estimates of
1.4% and 1.6%, respectively—values within the WHO's
acceptable range (WHO, 2003). Under future climate
conditions (LTF), the risk rises to 2% for Giardia and
Cryptosporidium, exceeding the WHO target (19 cases per
1000 swimmers), indicating a potential public health concern
in the context of climate change. Given the projected rise in
gastrointestinal illness risk under future climate, BGI
represents a proactive, long-term strategy to reduce
contamination at the source. It complements traditional
public health measures and helps maintain acceptable
recreational water quality.

Furthermore, although CSOs may represent a small
fraction of the total annual wastewater discharge, they
contribute disproportionately—between 30% and 95%—to
the annual load of various pollutants.87,88 Thus, reducing
CSOs can enhance water quality and protect aquatic
ecosystems.17 The results show a significant reduction in
CSO volumes when adding BGI infrastructure (Fig. 3). The
reduction ranges from 16% to 76% for C20, 15% to 68% for
NTF, and 11% to 71% for LTF. The greater the
implementation of BGI, the larger the reduction in CSO
volumes. These findings are consistent with previous studies
that have highlighted the effectiveness of BGIs in controlling
overflows.1,32,92,93 For instance, Autixier, Mailhot32 found that
CSO volume reductions with bioretention cells ranged from
13% to 62%. Other studies that used a variety of BGI types
showed that CSO volume attenuation could range from 50%
to 99%, depending on the deployment strategy and the
specific mechanisms of each technology.1,94

Our results show that implementing BGI can mitigate
climate change impacts by reducing CSO volumes, consistent
with previous studies.94 However, its effectiveness diminishes
under future conditions: in the LTF planning horizon, CSO
(>1.5 m3 s−1) reductions reach 71% with 50% BGI, compared
to 76% in the C20 planning horizon. Similar performance
reductions due to climate change have been reported for
bioretention95–98 Climate change will induce an increase in
rainfall as reported by Haslinger, Breinl99 which will alter the
water balance in bioretention systems, highlighting the need
to update design standards Spraakman, Martel.100 Our
results show higher precipitation across all seasons and
planning horizons (C20, NTF, LTF), consistent with
projections for Central Europe101,102 and observed increases
of 8–22% for NTF and 15–33% for LTF in high-intensity,
long-duration events,9 which correspond with the observed
increase in CSO discharge. While BGI can reduce CSO
volumes, their runoff retention capacity may decline under
future rainfall intensity–duration–frequency shifts and higher
soil saturation, underscoring the need for adaptive designs.98

Such strategies include increasing soil layer depth, storage
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layer depth, or the surface area of bioretention cells,103,104

integrating hybrid gray-green systems, or using real-time
control technologies to optimize retention.98,105,106 Plant
selection can further enhance hydrologic services and system
resilience.107 Together, these adaptive approaches provide a
framework to maintain the risk-reduction benefits of BGI in
urban rivers under evolving climate scenarios.

The method developed in this study can also be applied to
evaluate microbiological water quality by analyzing simulated
concentrations of fecal indicators in the river. In our study
area, the simulated mean concentrations of enterococci (SI
S7, Fig. S7-1) correspond to microbiological water quality
category D, indicating a greater than 10% risk of
gastrointestinal illness (GI) according to WHO guidelines for
recreational water quality.70 However, the implementation of
50% BGI improves water quality to category C, reducing the
GI risk to 5–10%, thereby demonstrating the positive impact
of BGI on water quality. This reduction in GI risk is expected
to translate into a proportional decrease in the burden of
disease expressed as disability-adjusted life years (DALYs), as
demonstrated in Timm, Luther44 who identified a
relationship between microbial water quality categories, GI
incidence, and associated DALYs in recreational water
environments. The DALY concept provides a complementary
tool to the QMRA for evaluating and comparing health risks
arising from a specific environment for a specific population
and behaviour and for comparing with other health risks of
daily life.44

The results highlight significant benefits of BGI for water
quality but show that effectiveness per converted impervious
surface declines beyond 20–40% coverage. Beyond this
threshold, additional improvements are marginal, suggesting
that further expansion may be less efficient. Interestingly,
Ghodsi, Zahmatkesh108 found that implementing BGI—
including bioretention cells, vegetative swales, infiltration
trenches, and permeable pavement—on less than 1% of the
catchment surface still reduced runoff volumes by
approximately 14% under various climate change scenarios.
This highlights the potential for small-scale but strategically
placed BGI interventions to achieve measurable impact.
Together, these findings are valuable for decision-makers
aiming to maximize water quality benefits while optimizing
resources and minimizing spatial and financial limits.

4.2 Study limitations

Despite these promising outcomes, certain limitations of the
study must be acknowledged. The approach presented in this
paper can be applied to other urban river settings by using
site-specific historical rainfall time series with high temporal
resolution and regional climate models. However, in the
developed method, BGI was not implemented following a
strategic plan; rather, the same percentage of
implementation was applied uniformly across all urban
catchments. In practice, BGI is often deployed
opportunistically rather than strategically, leading to

inefficient resource allocation and limiting benefits.109,110 To
maximize effectiveness, a more strategic approach is
recommended. Planning tools such as the spatial suitability
analysis tool (SSANTO) that consider multiple objectives and
stakeholder preferences can help identify the most strategic
locations for BGI.110,111 For example, studies using the
SSANTO tool to design BGI implementation strategies
showed that distributing BGI to achieve target rates of
impervious surface conversion—while prioritizing areas with
higher suitability scores and allocating fewer interventions in
lower-suitability zones—can enhance bioretention
performance and maximize sector-specific resilience,
highlighting the benefits of strategic, context-sensitive
implementation.112,113 Future applications should integrate
such prioritization methods alongside a calibrated urban
hydrological model to optimize BGI placement and maximize
its effectiveness.

The current method does not incorporate snowmelt into
the urban hydrological model, unlike the study by Gougeon,
Bouattour63 conducted in Quebec, where snow is a significant
factor impacting runoff and the occurrence of CSOs.
Although cold climates are not directly addressed in this
study, future research and planning should consider winter
conditions. Snowfall events, snow accumulation, and
snowmelt must be taken into account to more accurately
estimate the full potential of bioretention systems during
snowy periods, when snow can significantly affect runoff.63

Yet, for infection risk assessments through recreational uses,
colder periods are generally less relevant due to a lower
likelihood of exposure, as fewer people swim in cold weather.

This study focused on bioretention as a representative
type of BGI due to their widespread use62 and well-
documented hydraulic and pollutant removal
performance.32,94,114 While this choice limits direct
comparison with other BGI types as suggested in Joshi, Paulo
Leitão,1 the methodology developed here is adaptable and
could be applied to assess other BGI solutions such as green
roofs by adjusting key model parameters (e.g., retention
capacity, infiltration rate, contributing area). While this study
uses a simplified bioretention cell representation to estimate
the performance of BGI, we acknowledge that individual
system performance can vary widely depending on site-
specific conditions such as soil type, maintenance, and
design. As such, results at the catchment scale should be
interpreted as indicative rather than predictive. Further
studies incorporating spatial heterogeneity and real-world
implementation constraints would help refine these
projections.

In this study, we worked with the CMIP5 framework
because for CMIP6 no regional climate model results were
available for Austria when we conducted the study. While
CMIP6 models exhibit higher spatial resolution and
improved representation of climate processes compared to
CMIP5 models,115 the impact of using CMIP5 is unlikely to
significantly alter the conclusions regarding BGI's impact on
mitigating the infection risks, as both CMIP5 and CMIP6
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ensembles indicate similar increases in precipitation and
streamflow, with comparable spatial variability.116 Recent
studies concluded that projected changes in mean annual
precipitation and hydrological response are broadly
consistent between CMIP5 and CMIP6 (ref. 116 and 117)
uncertainty in QMRA model inputs—such as microbial
concentrations, treatment efficiency, and environmental
conditions—can significantly impact risk estimates and
overall model outputs.118,119 Uncertainty increases during
extreme events like heavy precipitation, affecting pathogen
levels and treatment effectiveness. We addressed variability
using three climate scenarios and multiple BGI
implementation scenarios, capturing a wide range of
outcomes. Background concentrations and ingested volumes
were modeled with gamma distributions, varying over time to
reflect inherent variability and provide a fuller risk
assessment. However, QMRA risk estimates depend heavily
on dose–response relationships, and common indicators like
E. coli and enterococci may not always accurately represent
specific pathogen risks. Their presence may not correlate
with harmful pathogens due to variations in environmental
persistence, dilution effects, and differences in microbial
characteristics.120–122 Extrapolating E. coli or enterococci
concentrations to estimate pathogen levels can, therefore,
introduce further uncertainty. To enhance the accuracy of
health risk assessments in this study, we directly integrate
Cryptosporidium and Giardia into the PCSWMM model, as
detailed in section 2.2. We also conducted a simple linear
sensitivity analysis by varying the background concentration
in river (C0) and the pathogen concentration from the CSO
events by ±50% to evaluate the impact on infection risk for
Giardia and Cryptosporidium we found out that the dominant
source of infection risk differs between pathogens. Giardia
infection risk is mainly driven by CSO discharges due to their
high concentrations, while Cryptosporidium risk transitions
from CSO to background sources as BGI mitigates CSO flows
(details in SI S9).

4.3 Future research

The high-resolution precipitation time series for the
hydraulic and hydrologic model were disaggregated from
climate model data using a cascade model with stationary
parameters. Ebers, Schröter102 introduced a cascade model
with temperature-dependent parameters that produces more
intense future precipitation events. Future research should
incorporate this non-stationary approach and combine it with
spatial disaggregation to better capture climate variable
correlations.

The method is developed for a specific pathogen group
(protozoa), which restricts the scope of the risk assessment.
As part of the QMRA for recreational waters, the US
Environmental Protection Agency (EPA) selected eight
reference pathogens.123 These pathogens were chosen due to
their involvement in many non-foodborne waterborne
illnesses in the United States, their representativeness

regarding the behavior and transport of other waterborne
pathogens of concern, and their confirmed presence in
recreational waters as well as human and animal excreta.123

Expanding the method to include multiple pathogen groups
would provide a more comprehensive assessment of
microbiological water quality risks and improve the
robustness of the model. Norovirus is one of the most
common viral causes of both outbreaks and sporadic cases of
gastroenteritis and represents a predominant health risk in
recreational waters.42,124,125 Its presence—and the impact of
BGI implementation on its mitigation—could be assessed
using the same methodology developed in this study,
leveraging E. coli outputs from PCSWMM modelling. E. coli is
typically found at higher concentrations than Norovirus in
both sewage and environmental waters.126–128 In untreated
sewage effluent, E. coli levels can be nearly nine times greater
than those of Norovirus. In environmental waters, this ratio
decreases, ranging from approximately 1.2 to 1.9 depending
on salinity, as E. coli degrades more rapidly under saline
conditions. These ratios can serve as conservative conversion
factors for estimating Norovirus concentrations—and the
associated health risks—when only E. coli data are available.
In this study we decided to concentrate on Cryptosporidium
and Giardia, since they are protozoa that significantly
contribute to waterborne disease outbreaks,71 and also
because we had data on their background concentrations in
the river, allowing us to estimate these with a Gamma
distribution and include them in our QMRA.

5 Conclusions

The novelty of this research lies in validating that BGI can
serve as an effective mitigation measure for the public health
challenges posed by the increased occurrence of CSOs under
climate change. The study demonstrates the integration of
BGI scenarios (0–50% of impervious surfaces) into a coupled
discharge-based hydrodynamic and QMRA framework over a
30 year simulation period, providing a probabilistic,
temporally explicit evaluation of infection risks in urban
recreational waters. Our results show that even small BGI
implementations (≈3%) can achieve reductions in infection
probability comparable to large storage interventions (28 000
m3), offering a cost-effective alternative for urban water
management. This integrated approach not only supports
evidence-based risk assessment but also provides a practical
decision-support tool for planners and policymakers to
design and prioritize CSO mitigation strategies, maximize
public health benefits, and enhance urban resilience under
future climate conditions. Investing in measures to prevent
CSOs is essential for enhancing sustainable recreational
water safety. Future research can build on this approach by
applying it to emerging pathogens and contaminants, as well
as incorporating comprehensive cost–benefit analyses to
compare various CSO reduction strategies and include
different BGI types, e.g. as proposed for the sponge-city
concept. Furthermore, studies could refine resilience
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frameworks to develop targeted BGI implementation
scenarios that strengthen urban resilience and public health
protection. This includes adapting planning-support tools to
strategically place BGI, maximizing their effectiveness in
reducing overflows, improving stormwater management, and
communicating their multiple functions and benefits.
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