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Broader context statement

Perovskite-silicon tandem solar cells have surpassed the efficiency of single-junction 
devices. While most research efforts have optimized the perovskite top cell and its 
interfaces, the silicon bottom cell has remained relatively underexplored even though it 
plays a crucial role on the overall device performance. Our study finds that nanoscale 
surface roughness originating from the top layers of the bottom cell and transferred to 
the recombination junction significantly influences key processes such as self-
assembled monolayer anchoring, perovskite crystallization, and interface quality. The 
deposition of and plasma treatments on hydrogenated nanocrystalline silicon layers, by 
altering the nanoscale surface roughness of textured silicon surfaces, yielded improved 
fill factors and higher device efficiencies. Our approach complements existing strategies 
focused on perovskite optimization and introduces a new design parameter for tandem 
solar cells. In addition, gained insights are broadly relevant to silicon heterojunction and 
other crystalline silicon technologies that employ similar thin-film layers. Our work on 
engineering the nanoscale surface morphology enables more efficient and scalable 
tandem architectures as well as supports the accelerated adoption of high-performance 
photovoltaics.
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ABSTRACT

The monolithic integration of perovskite top cells on textured crystalline silicon enables 

efficient tandem devices with strong prospects for large-scale applications. Such integration 

has primarily relied on state-of-the-art recombination junctions, which typically comprise 

transparent conductive oxides and molecular self-assembled monolayer (SAM) contacts. 

However, the potential influence of bottom cell nanoroughness, which may vary based on 

specific processing routes and technologies, has received far less attention. Here, we 

systematically engineered the top surface nanoroughness of silicon heterojunction solar cells 

to examine its impact on monolithic perovskite-silicon tandem solar cells. We employed two 

approaches: (i) varying the thickness of (n)-type hydrogenated nanocrystalline silicon ((n)nc-

Si:H) layers or (ii) applying a plasma treatment using a hydrogen and carbon dioxide gas 

mixture before the deposition of (n)nc-Si:H layers. Both methods enhanced the conductivity 

and crystallinity of (n)nc-Si:H layers and increased the surface nanoroughness, with plasma 

treatment enabling the efficient realization of distinct nanoroughness in thin (n)nc-Si:H (15-

nm-thick) layers. Our results reveal that the surface nanoroughness imposed by (n)nc-Si:H 

layers influences the SAM anchoring, leading to increased work function shifts and improved 

SAM/perovskite interface quality, thereby impacting the overall tandem device performance. 

Notably, tandem devices incorporating higher-nanoroughness bottom cells achieved increased 

fill factors, dominating the observed tandem efficiency enhancements, with a peak efficiency 

of 32.6% enabled by a 30-second-long plasma treatment.

Keywords: perovskite-silicon tandem solar cell, silicon bottom cell, nanoroughness, 

nanocrystalline silicon, self-assembled monolayer.
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Introduction

Perovskite-silicon tandem solar cells offer the prospect of achieving high power conversion 

efficiencies (PCEs) beyond the theoretical single-junction limitations at an affordable cost. To 

realize this potential, efforts have largely focused on optimizing the perovskite top cells, 

including optoelectronic engineering of interfaces.1–7 Particular attention has been given to the 

recombination junction, which typically involves transparent conductive oxides (TCO) and 

self-assembled monolayer (SAM) charge-selective contacts, onto which the perovskite layers 

are directly deposited.8–10 On the other hand, achieving high-performance tandems also 

requires careful consideration of the silicon bottom cell.

In silicon heterojunction (SHJ) bottom cells used for solution-processed perovskite-silicon 

tandem devices, various (n)-type Si layers (acting as electron transport layers in the bottom cell 

and hereafter referred to (n)-layers) have been implemented. The most commonly used are 

hydrogenated amorphous silicon ((n)a-Si:H),11–22 nanocrystalline silicon ((n)nc-Si:H)10,23–26 

and oxygen-alloyed layers ((n)nc-SiOx:H).27–29 Among these, nc-Si:H-based layers exhibit 

more favorable optoelectronic properties,30–45 enabling their widespread use in state-of-the-art 

industrial single-junction SHJ solar cells.33,46,47 When properly optimized for tandem devices, 

nc-Si:H-based layers also enhance light coupling into the c-Si absorber by improving refractive 

index matching at the interfaces between the subcells.48–50 Notably, nc-Si:H-based layers are 

mixed-phase materials composed of nanocrystals embedded within an amorphous matrix.51,52 

The top surfaces of crystal grains in nc-Si:H-based layers can adopt different morphologies, 

often dome-shaped, which give rise to surface nanoroughness.53–57 Such surface morphologies 

of nc-Si:H-based layers can be explained by the cone-kinetics model,58 where sparsely formed 

nanocrystal nuclei grow nearly isotropically (crystalline phase) and faster than the surrounding 

amorphous matrix (amorphous phase),59 whose slower growth ‘clips’ the expanding 

nanocrystals into dome-shaped features. Because this morphology is governed by the growth-

rate ratio between the two phases, variations in film thickness and deposition parameters (e.g., 

doping, plasma frequency or alloy composition) can alter the resulting surface morphology.60–66  

Due to the substrate-dependent growth characteristics of nc-Si:H-based layers,51 strategies that 

modify the substrate surface to enable prompt nucleation of nanocrystals 67–70 are also expected 

to affect the surface roughness of these layers. Even though surface morphology strongly 

affects the SAM anchoring and, in turn, solution-processed perovskite film quality,10,71–73 the 
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specific effect of nc-Si:H-induced bottom cell surface nanoroughness on overall tandem device 

performance has often been overlooked. 

Here, we investigate how the surface nanoroughness of textured c‑Si bottom cells, originating 

from variations in (n)nc-Si:H thin films, influences the performance of monolithic perovskite-

silicon tandem solar cells. We tailored the (n)nc-Si:H nanoroughness by (i) adjusting the 

thickness of the (n)nc‑Si:H layers and (ii) applying plasma treatment using a hydrogen (H2) 

and carbon dioxide (CO2) gas mixture for varying durations prior to (n)nc‑Si:H layer 

depositions. We found that systematic variation of the plasma treatment duration allows for 

controlled variation of the surface nanoroughness of textured c-Si bottom cells, which 

promoted improved tin-doped indium oxide (ITO)/hole transport layer (HTL)/perovskite 

interfaces and ultimately enhanced tandem device performance.

Results and discussion

We fabricated perovskite-silicon tandem solar cells using bottom cells based on two different 

thicknesses of (n)nc-Si:H layers: ~15 nm (Type-1) and 25 nm (Type-2) (Figure 1A). Although 

the single junction performance for these bottom cells exhibited comparable open circuit 

voltage (VOC) and fill factor (FF) values (Figure S1), the tandem performance differed 

significantly (Figure 1B). The VOC of the two types of tandem devices varied by more than 

30 mV, which is larger than the variations attributed to recombination junction TCO 

differences.10 Also, the tandems based on the 15-nm-thick (n)nc-Si:H layer (Type-1) yielded 

FF values as low as 73.1 ± 3.7%. To assess the role of underlying layer morphology on device 

homogeneity, we investigated long-range thin-film heterogeneities, such as pin holes as shown 

in Figure S2, using photoluminescence (PL) imaging. Type-1 tandems exhibited several 

localized dark regions, indicative of shunt pathways (red circles in Figure 1C). Considering 

that all perovskite sub-cell processing parameters were identical, these features cannot be 

attributed to variations in the perovskite deposition itself. We therefore performed cross-

sectional scanning electron microscopy (SEM) analysis to examine the perovskite absorber and 

(n)nc-Si:H/TCO in the same images. The analysis revealed apparent (n)nc-Si:H morphology 

differences between Type-1 and Type-2 devices. In particular, tandems incorporating the 25-

nm-thick (n)nc-Si:H layer (Type-2) exhibited a more clearly defined silicon nanocrystalline 

domain structure.10,53–56 
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Figure 1. A The schematic of the monolithic perovskite-silicon tandem device, B the VOC and 

FF of the fabricated tandem devices featuring different bottom cells, with Type-1 and Type-2 

based on 15-nm-thick and 25-nm-thick (n)nc-Si:H layers, respectively, C the PL images and 

cross-sectional SEM micrographs of respective devices. Note that Type-1 features 10-nm-thick 

ITO and Type-2 has 5-nm-thick IZO as the interconnecting and rear TCO layers.

Tuning the surface nanoroughness of (n)nc-Si:H layers  

We first investigated the formation of surface nanoroughness by depositing (n)nc‑Si:H layers 

with thicknesses ranging from ~15 nm to 70 nm on textured c‑Si wafers coated with (i)a‑Si:H 

layers. This approach aimed at achieving SHJ device-relevant growth of (n)nc‑Si:H layers, 

considering their substrate-dependent growth characteristics.74 As the thickness of (n)nc-Si:H 

increases, the nanoroughness on textured c-Si wafers also increases (Figure S3). We attribute 

this to increased crystallinity of the deposited films, as evidenced by a gradual decrease in 

activation energy (Ea), increments of dark conductivity (σd), and enhanced crystalline phase 

signals in the Raman spectra (Figure S4).60–63 However, thicker (n)nc‑Si:H layers require 

longer deposition times and lead to increased infrared absorption, resulting in higher parasitic 
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losses in the bottom cell and consequently reduced short-circuit current density (JSC) values in 

perovskite-silicon tandem devices (Figures S5 and S6). To mitigate this, we alternatively 

employed a plasma treatment using a mixture of H2 and CO2 gases prior to the (n)nc‑Si:H 

deposition. This method, reported to generate pre-formed nanocrystal seeds that facilitate 

subsequent crystal growth,75 is expected to be particularly effective in minimizing the 

amorphous incubation phase through the rapid nucleation of nanocrystals. The possible 

mechanisms responsible for the generation of pre-formed nanocrystal seeds may be associated 

with the mixed CO2 and H2 plasma, which generates increased strained bonds76–78  and 

promotes hydrogen-driven reorganization in a-Si:H, 60,79–82 thereby enabling the formation of 

nanocrystal seeds. Furthermore, hydrogen-dominated CO2 and H2 plasma conditions75 can 

induce H2 plasma-driven chemical transport83,84 and CO2 plasma-induced oxidation of the 

reactor walls84, collectively creating plasma environments having higher effective H2 to SiH4 

dilution that favor the pre-formation of nanocrystal seeds.

For the plasma treatment process, (n)nc-Si:H layer thickness was fixed at 15 nm while the 

plasma treatment duration was systematically varied (Figure 2). Increasing the plasma 

treatment duration led to progressively enhanced surface nanoroughness (Figure 2A). Even a 

15-second-long plasma treatment exhibits the first signs of nanoroughness formation, 

characterized by densely distributed nanoscale protrusions emerging on the pyramid surfaces. 

Extending the plasma treatment duration to 60 seconds led to the formation of aggregated 

crystalline grains, evidenced by the appearance of larger, spherical surface features.53–56 For 

comparison, the surface morphology of the sample with a 6-nm-thick (n)a-Si:H layer, as shown 

in Figure S7, displays relatively negligible surface nanoroughness. To further assess 

nanoroughness on textured substrates, we performed Atomic Force Microscopy (AFM) on c-

Si with various (n)-layers (Figure S8). The overall morphological changes observed by AFM 

are consistent with those identified in SEM micrographs. However, quantitative roughness 

analysis and high-fidelity nanoscale interpretation were hindered by the pronounced pyramidal 

texture of the c-Si wafers, cantilever-facet angle limitations, and associated measurement 

artefacts. Although not explicitly investigated in this study, it is worth noting that different nc-

Si:H-based layers, such as (n)nc-SiOx:H layers and (p)nc-Si:H-based layer stacks,85,86 can 

exhibit distinct morphological, electrical, and structural properties depending on their thickness 

and the plasma treatment duration, highlighting the necessity to understand material-specific 

behavior for device integration (Figures S9, S10, and S11).
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Figure 2. A The SEM micrographs of textured c-Si samples with 15-nm-thick (n)nc-Si:H 

layers having plasma treatments (PT) of different durations applied prior to (n)nc-Si:H layer 

depositions as shown in schematics of the stacks on the left (top and bottom rows displaying 

top and cross-sectional images, respectively). B The activation energy (Ea) and dark 

conductivity (σd) of (n)nc-Si:H layers with thicknesses of 40 and 15 nm, and C the Raman 

spectra and crystalline fraction (FC) of 40-nm-thick (n)nc-Si:H layers having plasma treatments 

of different durations applied prior to (n)nc-Si:H layer depositions, deposited on 10-nm-thick 

(i)a-Si:H-coated glass substrates. Raman spectra of 15-nm-thick (n)nc-Si:H layers are shown 

in Figure S12. Although films deposited on flat glass substrates differ from those on textured 

c-Si wafers, they adequately approximate material properties relevant to device integration. 

Note, as the green laser (λlaser = 514 nm) has a penetration depth of a few hundred nanometers 

in the studied (n)nc-Si:H layers, their crystalline fraction is underestimated due to non-

negligible signals from the 10-nm-thick (i)a-Si:H layer underneath. D The schematic of the 

symmetrical n-n device stack used for contact resistivity (ρc) and lifetime (measured prior to 
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metallization) measurements. E The extracted ρc of (n)-type contact stack (including a space-

charge layer inside the (n)c-Si bulk, (i)a-Si:H, (n)-layers (stacks), ITO and Ag) and F the 

effective minority carrier lifetime (τeff) values for samples featuring 15-nm-thick (n)nc-Si:H 

layers, without or with a 2-nm-thick (n)a-Si:H capping layer, as a function of plasma treatment 

duration. The ρc and τeff of samples featuring the 6-nm-thick (n)a-Si:H layers are added in 

Figures E and F for comparisons. G The reflectance spectra of (i)a-Si:H-coated (6-nm-thick) 

textured samples featuring 15-nm-thick (n)nc-Si:H + 2-nm-thick (n)a-Si:H layers ((n)-layers) 

with varied durations of plasma treatments. The reflectance spectrum of the sample with a 6-

nm-thick (n)a-Si:H layer is added in Figure G as a reference. 

We then examined the electrical and microstructural properties of the (n)nc‑Si:H layers. Unlike 

the gradual improvements of electrical properties observed with increasing (n)nc‑Si:H layer 

thickness (Figure S4), 40-nm-thick layers treated with just 15 seconds of plasma treatment 

showed a sharp decrease in Ea from 336 meV to 41 meV and notable increments of σd
 from 3.6 

× 10-4 S/cm to 4.8 S/cm, as well as improved crystallinity (Figures 2B and 2C). Notably, the 

15-nm-thick layers also exhibited a conductivity boost from 3.6 × 10-5 S/cm to 0.6 S/cm upon 

15 seconds of plasma treatment applied before (n)nc-Si:H deposition, comparable to that of a 

100-nm-thick (n)nc-Si:H layer (Figure S4).75 

We assessed the effect of plasma treatments on charge transport by measuring the contact 

resistivity (ρc) of (n)-type contact stacks (Figures 2D and 2E). Unlike the ρc that showed little 

variation and remained around 90 mΩ·cm2 when changing (n)nc-Si:H thicknesses (Figure 

S13),  plasma treatments durations up to 30 seconds reduced the ρc from around 88 mΩ·cm2 to 

79 mΩ·cm2, while a 60-second-long treatment caused an increase of ρc to around 89 mΩ·cm2, 

likely due to the formation of thicker interfacial oxide layers (Figure S14).40 On the other hand, 

we found that plasma treatments degraded the passivation quality of the samples, potentially 

due to dehydrogenation of the underlying (i)a-Si:H layers (Figure 2F).75 As discussed 

previously, exposure to a CO2 plasma introduces oxygen and alters the local bonding 

environment within the a-Si:H layer, promoting bond breaking and structural rearrangement. 

Such treatment has been shown to increase structural disorder and may generate a significant 

amount of non-bonded hydrogen within the amorphous network and eventually leading to 

dehydrogenation.75,76 Besides, CO2 plasma was also reported to form interface dipole that 

impede electron collection.87 An optimized hydrogen plasma treatment improves (i)a-Si:H 

passivation by driving hydrogen to the c-Si/(i)a-Si:H interface to saturate dangling bonds and 
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by creating a hydrogen-rich layer with increased formation of monohydrides and some 

polyhydrides at internal surfaces associated with larger voids that serve as reservoirs for further 

defect passivation.88–91 In the mixed CO2 and H2 plasma treatment, these competing 

mechanisms coexist, and despite improved field-effect passivation, introduced by the 

overlaying more conductive (n)nc-Si:H (see Figure 2B),31 the CO2-induced degradation 

remains dominant (Figure 2F). To mitigate this, we introduced a 2-nm-thick (n)a-Si:H capping 

layer on top of the (n)nc-Si:H layer. The introduction of the (n)a-Si:H layer may supply 

additional hydrogen at the c-Si/(i)a-Si:H interface, passivating dangling bonds and improving 

the interface quality (See Supporting Information, Figure S15). Further experiments 

quantifying the hydrogen content in the (i)a-Si:H layer and at the c-Si/(i)a-Si:H interface are 

needed to verify this hypothesis. As seen from Figure 2F, this additional (n)a-Si:H layer 

improved the effective carrier lifetime (τeff) across all samples without altering the surface 

morphology induced by the underlying (n)nc-Si:H layer (Figure S16). Furthermore, the 

capping layer reduced the passivation deterioration caused by the sputtering-induced damage 

during ITO deposition.86 It is well known that passivation degradation at the c-Si/a-Si:H 

interface can occur during TCO sputtering due to ion bombardment damage92 or plasma 

luminescence.93,94 An (n)a-Si:H layer, which more effectively mitigates ion penetration (for 

example, oxygen ions86,95 ) and absorbs more high-energy photons, can therefore better 

preserve passivation quality after TCO sputtering compared with (n)nc-Si:H layers. However, 

the additional (n)a-Si:H slightly increased the ρc, presumably due to its lower σd and higher Ea 

(>200 meV) than (n)nc-Si:H layers.86,96 Still, this slight increase of ρc is considered acceptable 

for efficient charge carrier transport, given the reduced light intensity reaching the bottom cell 

in tandem devices and the one-dimensional current flow through the contact in the tandem 

cell.97,98 Overall, samples in which (n)nc-Si:H layers having plasma treatments prior to their 

depositions, with and without (n)a-Si:H capping layer, show statistically lower ρc as compared 

to the (n)a-Si:H-only counterparts. Moreover, as shown in Figure 2G, a longer plasma 

treatment duration resulted in a gradual reduction in reflectance, particularly at shorter 

wavelengths, compared to the case of 6-nm-thick (n)a-Si:H, evidencing the formation of 

enhanced surface nanoroughness of (n)nc-Si:H layers.99 A similar trend was observed after 

depositing a 10-nm-thick ITO layer (Figure S17), confirming the persistence of this optical 

behavior. Despite the higher nanoroughness of samples with thicker (n)nc-Si:H layers, no 

significant reduction in reflection was observed (Figure S18). Furthermore, depositing a 10-

nm-thick ITO layer on top of the (n)nc-Si:H layer resulted in a more apparent surface 

nanoroughness across all samples, despite the overall surface morphology is still governed by 
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the underlying (n)nc-Si:H layers (see Figures 2A and S17 for plasma treatment duration series 

and Figure S3 for (n)nc-Si:H thickness series). It is worth noting that TCO properties, such as 

surface morphology, mobility, carrier concentration, and work function can be affected by the 

underlying Si layers and the choice of TCO layers.63,73 These TCO properties collectively 

influence the effectiveness of the recombination junction, in conjunction with the adjacent 

layers. While in this study, SEM analysis shows no discernible morphological differences 

between 10-nm-thick ITO layers deposited on (n)a-Si:H and (n)nc-Si:H layers (see Figure S3B 

and Figure S16B). Moreover, no difference in work function is observed for ITO layers 

deposited on (n)a-Si:H and (n)nc-Si:H layers (discussed in the following section). Therefore, 

we expect only a limited influence of the (n)-layers on 10-nm-thick ITO properties under our 

processing conditions, although further studies are required to gain deeper insights into this 

aspect. Due to the pronounced passivation loss and the increased ρc observed with a 60-second 

plasma treatment, such a condition was excluded from subsequent tandem cell experiments.

Impact on SAM deposition and perovskite film formation

We first analyzed surface energy by measuring a solution contact angle of HTL-SAM on 

textured c-Si wafers coated with ITO layers and different (n)-layers, since SAM anchoring 

changes the wettability of the surface. The sample with a 6-nm-thick (n)a-Si:H layer exhibited 

the lowest contact angle (~70°), while the 15-nm-thick (n)nc-Si:H sample showed a higher 

value of ~85° (Figure 3A). Applying plasma treatments prior to the (n)nc-Si:H deposition 

further increased the contact angle to more than 100°, lowering the surface energy. Thicker 

(n)nc-Si:H layers also exhibited increased contact angles (Figure S19). Next, we investigated 

the impact of the same parameters on the work function shift (ΔWF) for (n)nc-Si:H/ITO/SAM 

stacks. We included SAMs in this analysis as they induce charge dipoles at the TCO interface, 

resulting in a ΔWF that enhances the charge selectivity.10 Kelvin probe measurements on (n)nc-

Si:H/ITO stacks with various (n)-layers revealed similar WF values (~4.61-4.62 eV) (Figure 

3B). After SAM deposition as used in our device fabrication, we found systematic WF shifts 

towards higher values, with larger ΔWF observed for those with higher contact angle values 

and greater surface nanoroughness (Figure 3C).73 Given that ΔWF scales with the dipole 

surface density,100 this suggests that the molecular packing of SAMs is influenced by the 

underlying surface nanoroughness.10 
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Figure 3. A Contact angle values after HTL-SAM deposition on textured c-Si wafers featuring 

various plasma treatment (PT) durations on (n)nc-Si:H layers with 10-nm-thick ITO. The 

dashed lines in the plot represent the contact angles of samples with 6-nm-thick (n)a-Si:H and 

15-nm-thick (n)nc-Si:H layers. B Valence band maximum (VBM) and WF values, and C ΔWF 

of (n)-layer/ITO/SAM (stack) with various plasma treatment durations before and after SAM 

deposition. D Cross-sectional SEM micrographs and azimuthally integrated intensity of the 

(100) reflection from GIWAXS measurements (Figure S20). E QFLS (Δµ) images of 

perovskite films deposited on different (n)-layer/ITO/SAM stacks without and with plasma 

treatment. The SEM micrograph of the sample featuring the (n)a-Si:H layer is shown in Figure 

S21.  

As surface tension force can influence the perovskite grain formation, we examined (n)nc-Si:H 

conditions, modulated by plasma treatment duration, on the overlying perovskite morphology 

(Figure 3D).101 Cross-sectional SEM images show that all samples exhibited complete 
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perovskite coverage, while the film with 30-second-long plasma treatment displayed slightly 

larger and more uniformly distributed grains. GIWAXS measurements show that among the 

different plasma treatment durations, the 30-second-long plasma treatment condition produced 

the most pronounced preferential 45° orientation of the (100) reflection relative to the surface 

of the substrate (Figure 3D), which is known to improve carrier mobilities and photovoltaic 

performance.102,103 To gain further insights into the optoelectronic quality of perovskite films, 

we carried out absolute PL imaging. Perovskites deposited on textured silicon with extended 

plasma treatment duration exhibited higher PL intensity compared to 6-nm-thick (n)a-Si:H and 

15-nm-thick (n)nc-Si:H (Figure S22) and a more uniform quasi-Fermi level splitting (QFLS, 

Δµ), with a value of 1290 meV for 30-second plasma treatment (Figure 3E), indicating reduced 

non-radiative recombination. By controlling plasma treatment duration, the surface properties 

of (n)-layers can be tuned to simultaneously enhance perovskite film formation and its 

electronic interfacial quality on textured silicon substrates.

Performance of perovskite-silicon tandem solar cells

The J-V characteristics of tandem devices are presented in Figure 4. Compared to devices with 

a 6-nm-thick (n)a-Si:H layer, which exhibited relatively lower VOC (~1920 mV) and FF (~ 

68%), the one endowed with 15-nm-thick (n)nc-Si:H layer effectively mitigates the shunting 

behavior in devices using the (n)a-Si:H layer, resulted in VOC and FF values of ~1945 mV and 

~75%, respectively (Figure 4A). These differences are primarily attributed to the higher WF 

shift after SAM deposition (Figure 3C) associated with increased nanoroughness when 

implementing a 15-nm-thick (n)nc-Si:H layer. Besides, the lower ρc of 15-nm-thick (n)nc-Si:H-

based contact stacks as compared to 6-nm-thick (n)a-Si:H-based contact stacks  (Figure 2E) 

may also contribute to higher FF values in tandem devices featuring the (n)nc-Si:H layer. 

Adding a 2-nm-thick (n)a-Si:H capping layer on the 15-nm-thick (n)nc-Si:H layer slightly 

improves VOC of tandem solar cells, likely due to enhanced passivation quality of such (n)-layer 

(Figure 2F and Figure S23B).86 For tandem devices having a 15-second-long plasma treatment, 

although their bottom cell precursors exhibited slightly higher median iVOC  (Figure S23B) and 

better SAM/perovskite interface and perovskite film quality (Figure 3) compared to the ones 

without plasma treatment, the resulting tandem devices showed only a marginal increase in 

median VOC, remaining largely comparable overall between these two conditions. Furthermore, 

a 30-second-long plasma treatment resulted in reduced bottom cell precursors iVOC by 

approximately 15 to 20 mV relative to samples with 15-second-long plasma treatment, however, 
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this difference is expected to be less pronounced in tandem devices due to reduced illumination 

for bottom cell. Besides, this loss in bottom cell can be further partially compensated by the 

improved SAM/perovskite interface quality and perovskite film quality (Figure 3). 

Consequently, the final tandem devices having a 30-second-long plasma treatment exhibit 

improved FF, and only a slightly reduced median VOC that is not significantly different from 

the other samples. As expected, JSC values remain comparable across all samples (Figures 4B 

and 4C). Finally, we achieved efficiencies up to 32.6% by applying a plasma treatment duration 

of 30 seconds for 15-nm-thick (n)nc-Si:H with 2-nm-thick (n)a-Si:H layers. 

Figure 4. A The J-V parameters of perovskite-silicon tandem solar cells with varying (n)-layers 

(stacks), namely, 6-nm-thick (n)a-Si:H layer, 15-nm-thick (n)nc-Si:H layer without plasma 

treatment (labeled as (n)nc-Si:H), and 15-nm-thick (n)nc-Si:H + 2-nm-thick (n)a-Si:H layer 

stack with varied durations of plasma treatment. B The J-V characteristic of best devices for 

each (n)-layer (stack), and C EQE spectra of respective tandem solar cells. The EQE spectrum 

of the tandem device with the (n)a-Si:H layer is shown in Figure S24. 
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Conclusions

In this work, we have presented a new perspective for advancing high-efficiency perovskite-

silicon tandem solar cells by demonstrating the critical role of bottom cell surface 

nanoroughness in device performance. In silicon bottom cells, nanoroughness can be tuned 

either by varying the thickness of (n)nc-Si:H layers or by applying a plasma treatment utilizing 

a hydrogen and carbon dioxide gas mixture for different durations prior to their depositions. 

These approaches modify not only the optoelectronic and microstructural properties of the (n)-

layers but also the surface morphology of textured c-Si bottom cells. Increased nanoroughness 

leads to higher contact angles and larger ΔWF after SAM deposition, which results in improved 

HTL/perovskite interface quality. Our approach via optimizing plasma treatment enables 

efficient control of surface morphology, allowing thin (n)nc-Si:H layers to achieve high surface 

nanoroughness, reducing process time and enhancing tandem cell performance compared to 

their thicker counterparts without plasma treatment. Our results highlight c-Si bottom cell 

surface morphology control as a powerful yet underexplored strategy for further improving 

perovskite-silicon tandem solar cells and accelerating their industrialization, with broader 

implications for various nc-Si:H-based layers already employed in industrial SHJ solar cell 

production and other c-Si solar cell technologies.
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Experimental details

Fabrication of c-Si bottom cells and contact resistivity samples

4-inch, (n)-type float-zone (FZ) silicon wafers with a thickness of 260 - 280 µm were utilized 

for bottom cell fabrication. A double-sided random pyramid texture with submicron features 

(averaging below 1 µm in height) was formed through wet chemical etching in a 0.5% KOH 

solution at 77 °C, employing a TS41 additive. Subsequently, the wafers underwent a standard 

RCA cleaning protocol at 75 °C, first in an RCA1 solution (NH4OH:H2O2:H2O = 1:1:6) to 

remove organic contaminants and then in an RCA2 solution (HCl:H2O2:H2O = 1:1:6) to 

eliminate metallic impurities. Following a hydrofluoric acid (HF) (0.55%) dipping, wafers 

were loaded into a multi-chamber radio-frequency (RF, 13.56 MHz) or very-high-frequency 

(VHF, 40.68 MHz) plasma-enhanced chemical vapor deposition (PECVD) cluster tool 

(Elettrorava S.p.A.). PECVD depositions started with (i)a-Si:H/(n)-layer (stack).86,91 After a 

brief vacuum break, the wafers were flipped for subsequent deposition of (i)a-Si:H/(p)nc-

SiOx:H/(p)nc-Si:H layer stack.85,91 By default, an optimized hydrogen plasma treatment (HPT) 

was applied after the deposition of (i)a-Si:H layers,86  optionally followed by a plasma 

treatment (PT) using a hydrogen and carbon dioxide gas mixture. Subsequently, 10-nm-thick 

tin-doped indium oxide (ITO) layers were symmetrically deposited via a RF magnetron 

sputtering (Polyteknic AS) tool at room temperature. The wafers were then annealed in air at 

180 ℃ for 5 minutes. A geometrical factor of 1.7 was applied to adjust the deposition time for 

textured surfaces relative to flat substrates. Local rear contacts were formed using screen-

printed Ag grid lines with a width of ~60 µm and a spacing of ~0.9 mm. These contacts were 

sintered by annealing the wafers at 200 ℃ for 15 minutes in a box furnace. Afterwards, a 200 

nm MgF2 film was thermally evaporated to form a rear reflector. The rear contact was then 

finalized with a 120 nm layer of sputtered Ag, followed by an annealing step at 200 ℃ for 10 

minutes in ambient air to recover any sputtering-induced damage. Finally, the wafers were 

laser-cut into 2.2 × 2.2 cm² square pieces for integration into tandem solar cell structures.

For contact resistivity measurements, symmetrical Si thin-films and TCO layers, as previously 

described, were deposited, followed by annealing in air at 180 °C for 5 minutes. The samples 
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were then completed with 500 nm of thermally evaporated Ag on both sides (Provac 

PRO500S).

Fabrication of perovskite top-cells for tandem devices

The Si bottom cells were subjected to UV-Ozone treatment for 700 seconds and were modified 

by 2PACz (TCI) with a solution using 1 mg/mL concentration in ethanol and spin coating at 

5000 rpm for 30 seconds, followed by post-annealing at 100 °C for 10 minutes in N2 filled 

glove box. 1.7 M Cs0.05FA0.8MA0.15Pb(I0.745Br0.255)3 perovskite precursor solution, which 

delivers 1.68 eV optical band gap, was prepared by using mixing FAI, MABr, CsI, PbI2, and 

PbBr2 in a solvent of DMF:DMSO with a volume ratio of 4:1. The perovskite films were spin-

coated at 2000 rpm for 45 seconds, then the spinning is accelerated to 7000 rpm for the last 8 

seconds. 200 μL chlorobenzene was dropped to the substrates at the start of this acceleration. 

After the rotation ceased, the substrates were transferred onto a hotplate of 100 °C and were 

annealed for 20 minutes. Following perovskite deposition, 1,3-propane diammonium iodide 

(PDAI2) surface treatment was applied to regulate the surface potential at the perovskite/C60 

interface using a previously reported recipe.104 To displace contact between the C60 and 

perovskite layers, we employed ~1 nm of evaporated LiF. As an electron transport layer (ETL), 

12-nm-thick C60 was evaporated, then 10-nm-thick SnO2 was deposited by Picosun atomic 

layer deposition (ALD) tool by following the same recipe in our previous works.10 Front IZO 

contacts were sputtered from a 3-inch IZO ceramic target on top of the SnO2 through a shadow 

mask. The thickness of the front IZO was 40 nm. Ag finger with a thickness of 500 nm was 

thermally evaporated using a high-precision shadow mask with a deposition rate of 2 Å/s. 

Concluding the tandem devices, 100 nm MgF2 was thermally evaporated as an anti-reflection 

layer with a deposition rate of 1 Å/s (Plasmaterials, 99.9%). To ensure the precise thicknesses 

of C60, IZO, and LiF, spectroscopic ellipsometry is used for calibration. The evaporation rate 

and thickness of each experiment were monitored by quartz crystal microbalance sensors. All 

thermal evaporation processes were performed on the Angstrom EvoVac thermal evaporation 

system. All chemicals were used without further purification. 

Tandem solar cell performance analysis 

In-house current-voltage (J–V) measurements were conducted using a Wavelabs Sinus 220 

LED-based solar simulator. For spectrum calibration, a Fraunhofer ISE-certified calibration 

cell is used, and no spectral mismatch factor was applied in the process. The area of 

illumination for the devices was precisely 1.04 cm2, determined by a laser-cut shadow mask 

coated with black paint. The device measurements were carried out at a scan speed of 150 mV 

s−1. The external quantum efficiency (EQE) measurements were conducted using PV-Tools 
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LOANA equipment. When measuring perovskite top cells, the tandem devices were light-

biased by IR LEDs (930 nm). In the case of measuring silicon bottom cells, the tandem devices 

were light-biased by a blue LED (440 nm) to saturate the subcells. All device characterizations 

were conducted under ambient air conditions with a relative humidity (RH) of approximately 

50-60%. 

Absolute PL imaging 

To exclude the influence of environmental factors such as humidity and oxygen, we 

encapsulated the samples in a nitrogen glove box. The PL spectra of the samples were collected 

using a hyperspectral imaging system coupled to a microscope with 2 nm spectral resolution 

(Photon etc. IMA). Samples were excited using 405 nm laser at ∼1 sun illumination condition 

(before the measurement, the power density of the laser was adjusted with a reference 

perovskite solar cell) to calculate the quasi-Fermi level splitting (QFLS, Δµ). Home-built 

MatLab code using the relation reported earlier was employed to calculate the Δµ.105

PESA

Photoelectron spectroscopy in air (PESA) measurements were performed using a Riken AC-2 

setup equipped with a UV light source. The valence band maximum (VBM) was determined 

by linearly fitting of ground and photoemission signal from the samples that are prepared as 

for device fabrication.

Kelvin Probe

Kelvin probe measurements, a standard gold tip with diameter 2 mm was used within an inert-

atmosphere glovebox at room temperature. The WF of the tip was first calibrated against a 

clean gold reference (WFtip = 5.1 eV – CPDAu). The sample WF was then determined using 

WFsample = WFtip + CPDsample, ensuring values are referenced to the absolute vacuum level. 

Measurements used an SPS040 instrument with a 50 mV amplitude, 90 Hz frequency, 13.5 

kHz scan rate, 30 averages per point, and a gain of 4.

Kelvin Probe Force Microscopy (KPFM)

A Multimode AFM from Digital Instruments (Veeco Metrology Group), fitted with a Bruker 

scanning head, was used to conduct topographic imaging and surface potential measurements 

in ambient air at room temperature. The measurements were carried out using an SCM-PIT V2 

AFM tip, based on an RFESP-75 AFM probe coated with a Platinum-Iridium (PtIr) reflective 

layer. The tip was composed of antimony-doped silicon with a resistivity between 0.01 and 

0.025 Ω cm. It had a rectangular shape with a nominal resonant frequency of 75 kHz and a 

spring constant of 4 N m⁻¹. Amplitude-modulated KPFM was employed, where the surface 
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topography was first recorded in tapping mode during the initial scan, followed by surface 

potential mapping in a second pass.

Grazing-incidence wide-angle X-ray scattering (GIWAXS)

GIWAXS measurements were carried out on an Anton-Paar Saxspoint 2.0 with a Primux 100 

microfocus source with Cu-Kα1 radiation (λ = 1.5406 Å) and a Dectris Eiger R 1M 2D Detector. 

Measurements were taken at a sample-detector distance of 121 mm.

Scanning electron microscopy (SEM)

Hitachi Regulus 8230 was used for SEM analysis of textured c-Si samples with silicon thin-

films and ITO layers. Images were acquired at 5 kV. The morphology of perovskite films on 

textured Si was analyzed using an in-house FEI Helios Nanolab G3 UC DualBeam SEM. 

Images were acquired at 2 kV, to minimize beam-induced damage to the perovskite film while 

ensuring adequate resolution and contrast, using the TLD detector. Samples, prepared from the 

active area, were mounted on silver paste, and no additional conductive coating was applied.

Characterization bottom cells and contact resistivity samples

Spectroscopic ellipsometry (SE) (M-2000DI system, J.A. Woollam Co., Inc.) was employed 

for extracting the optical constants and the thickness of thin-film layers deposited on glass 

substrates (Corning Eagle XG). Temperature-dependent dark current-voltage (I-V) 

measurements with temperature sweep from 130 ℃ to 60 ℃ were conducted to determine the 

dark conductivity (σd) and activation energy (Ea). For these measurements, samples featuring 

300-nm-thick Al strips were evaporated onto doped layers on glass substrates. Raman 

spectroscopy (Renishaw inVia Micro-Raman Microscopy) equipped with a green laser (λlaser = 

514 nm) was deployed for obtaining the Raman spectra of doped Si thin-film layers. The 

photoconductance lifetime tester (Sinton WCT-120) was used to monitor the passivation 

quality of samples during their fabrication. Additionally, the resistivity of symmetric samples 

was obtained via dark I–V measurements using Kelvin probe contacts and a Keithley 2601B 

source measure unit. The method as described in previous work was used for extracting the 

contact resistivity (ρc).85 The PerkinElmer Lambda 1050 system was used to measure the 

wavelength-dependent reflectance (R) of the testing samples, and to reflect device-relevant 

conditions, samples with 10-nm-thick ITO layers were annealed at 180 ℃ for 5 minutes in an 

air atmosphere. 

Atomic Force Microscopy (AFM)

HORIBA OmegaScope AFM operated in tapping mode, equipped with a NANOSENSORS 

PPP-NCHR cantilever featuring a guaranteed AFM tip radius of curvature < 10 nm, was used 
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for assessing the nanoroughness of the textured c-Si samples featuring different (n)-layers 

(stacks) studied in this work. 
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