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Broader context statement

Perovskite-silicon tandem solar cells have surpassed the efficiency of single-junction
devices. While most research efforts have optimized the perovskite top cell and its
interfaces, the silicon bottom cell has remained relatively underexplored even though it
plays a crucial role on the overall device performance. Our study finds that nanoscale
surface roughness originating from the top layers of the bottom cell and transferred to
the recombination junction significantly influences key processes such as self-
assembled monolayer anchoring, perovskite crystallization, and interface quality. The
deposition of and plasma treatments on hydrogenated nanocrystalline silicon layers, by
altering the nanoscale surface roughness of textured silicon surfaces, yielded improved
fill factors and higher device efficiencies. Our approach complements existing strategies
focused on perovskite optimization and introduces a new design parameter for tandem
solar cells. In addition, gained insights are broadly relevant to silicon heterojunction and
other crystalline silicon technologies that employ similar thin-film layers. Our work on
engineering the nanoscale surface morphology enables more efficient and scalable
tandem architectures as well as supports the accelerated adoption of high-performance
photovoltaics.
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ABSTRACT

The monolithic integration of perovskite top cells on textured crystalline silicon enables
efficient tandem devices with strong prospects for large-scale applications. Such integration
has primarily relied on state-of-the-art recombination junctions, which typically comprise
transparent conductive oxides and molecular self-assembled monolayer (SAM) contacts.
However, the potential influence of bottom cell nanoroughness, which may vary based on
specific processing routes and technologies, has received far less attention. Here, we
systematically engineered the top surface nanoroughness of silicon heterojunction solar cells
to examine its impact on monolithic perovskite-silicon tandem solar cells. We employed two
approaches: (i) varying the thickness of (n)-type hydrogenated nanocrystalline silicon ((n)nc-
Si:H) layers or (ii) applying a plasma treatment using a hydrogen and carbon dioxide gas
mixture before the deposition of (n)nc-Si:H layers. Both methods enhanced the conductivity
and crystallinity of (n)nc-Si:H layers and increased the surface nanoroughness, with plasma
treatment enabling the efficient realization of distinct nanoroughness in thin (n)nc-Si:H (15-
nm-thick) layers. Our results reveal that the surface nanoroughness imposed by (n)nc-Si:H
layers influences the SAM anchoring, leading to increased work function shifts and improved
SAM/perovskite interface quality, thereby impacting the overall tandem device performance.
Notably, tandem devices incorporating higher-nanoroughness bottom cells achieved increased

fill factors, dominating the observed tandem efficiency enhancements, with a peak efficiency

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

of 32.6% enabled by a 30-second-long plasma treatment.
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Introduction

Perovskite-silicon tandem solar cells offer the prospect of achieving high power conversion
efficiencies (PCEs) beyond the theoretical single-junction limitations at an affordable cost. To
realize this potential, efforts have largely focused on optimizing the perovskite top cells,
including optoelectronic engineering of interfaces.!”” Particular attention has been given to the
recombination junction, which typically involves transparent conductive oxides (TCO) and
self-assembled monolayer (SAM) charge-selective contacts, onto which the perovskite layers
are directly deposited.®1® On the other hand, achieving high-performance tandems also

requires careful consideration of the silicon bottom cell.

In silicon heterojunction (SHJ) bottom cells used for solution-processed perovskite-silicon
tandem devices, various (n)-type Si layers (acting as electron transport layers in the bottom cell
and hereafter referred to (n)-layers) have been implemented. The most commonly used are
hydrogenated amorphous silicon ((n)a-Si:H),!!'"2? nanocrystalline silicon ((n)nc-Si:H)!0-23-26
and oxygen-alloyed layers ((n)nc-SiO,:H).2’2 Among these, nc-Si:H-based layers exhibit
more favorable optoelectronic properties,3*4 enabling their widespread use in state-of-the-art
industrial single-junction SHJ solar cells.?34%47 When properly optimized for tandem devices,
nc-Si:H-based layers also enhance light coupling into the c-Si absorber by improving refractive
index matching at the interfaces between the subcells.*¥-° Notably, nc-Si:H-based layers are
mixed-phase materials composed of nanocrystals embedded within an amorphous matrix.>!-5?
The top surfaces of crystal grains in nc-Si:H-based layers can adopt different morphologies,
often dome-shaped, which give rise to surface nanoroughness.>>~’ Such surface morphologies
of nc-Si:H-based layers can be explained by the cone-kinetics model,*® where sparsely formed
nanocrystal nuclei grow nearly isotropically (crystalline phase) and faster than the surrounding
amorphous matrix (amorphous phase),® whose slower growth ‘clips’ the expanding
nanocrystals into dome-shaped features. Because this morphology is governed by the growth-
rate ratio between the two phases, variations in film thickness and deposition parameters (e.g.,
doping, plasma frequency or alloy composition) can alter the resulting surface morphology.6%-66
Due to the substrate-dependent growth characteristics of nc-Si:H-based layers,>! strategies that
modify the substrate surface to enable prompt nucleation of nanocrystals ¢7-70 are also expected
to affect the surface roughness of these layers. Even though surface morphology strongly

affects the SAM anchoring and, in turn, solution-processed perovskite film quality,'%71-73 the
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specific effect of nc-Si:H-induced bottom cell surface nanoroughness on overall tandem device

performance has often been overlooked.

Here, we investigate how the surface nanoroughness of textured c-Si bottom cells, originating
from variations in (n)nc-Si:H thin films, influences the performance of monolithic perovskite-
silicon tandem solar cells. We tailored the (n)nc-Si:H nanoroughness by (i) adjusting the
thickness of the (n)nc-Si:H layers and (ii) applying plasma treatment using a hydrogen (H,)
and carbon dioxide (CO,) gas mixture for varying durations prior to (n)nc-Si:H layer
depositions. We found that systematic variation of the plasma treatment duration allows for
controlled variation of the surface nanoroughness of textured c-Si bottom cells, which
promoted improved tin-doped indium oxide (ITO)/hole transport layer (HTL)/perovskite

interfaces and ultimately enhanced tandem device performance.
Results and discussion

We fabricated perovskite-silicon tandem solar cells using bottom cells based on two different
thicknesses of (n)nc-Si:H layers: ~15 nm (Type-1) and 25 nm (Type-2) (Figure 1A). Although
the single junction performance for these bottom cells exhibited comparable open circuit

voltage (Voc) and fill factor (FF) values (Figure S1), the tandem performance differed

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

significantly (Figure 1B). The V¢ of the two types of tandem devices varied by more than

30 mV, which is larger than the variations attributed to recombination junction TCO
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differences.!® Also, the tandems based on the 15-nm-thick (n)nc-Si:H layer (Type-1) yielded

FF values as low as 73.1 £ 3.7%. To assess the role of underlying layer morphology on device

(ec)

homogeneity, we investigated long-range thin-film heterogeneities, such as pin holes as shown
in Figure S2, using photoluminescence (PL) imaging. Type-1 tandems exhibited several
localized dark regions, indicative of shunt pathways (red circles in Figure 1C). Considering
that all perovskite sub-cell processing parameters were identical, these features cannot be
attributed to variations in the perovskite deposition itself. We therefore performed cross-
sectional scanning electron microscopy (SEM) analysis to examine the perovskite absorber and
(n)nc-Si:H/TCO in the same images. The analysis revealed apparent (n)nc-Si:H morphology
differences between Type-1 and Type-2 devices. In particular, tandems incorporating the 25-
nm-thick (n)nc-Si:H layer (Type-2) exhibited a more clearly defined silicon nanocrystalline

domain structure.!0:53-56
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Figure 1. A The schematic of the monolithic perovskite-silicon tandem device, B the V¢ and
FF of the fabricated tandem devices featuring different bottom cells, with Type-1 and Type-2
based on 15-nm-thick and 25-nm-thick (n)nc-Si:H layers, respectively, C the PL images and
cross-sectional SEM micrographs of respective devices. Note that Type-1 features 10-nm-thick

ITO and Type-2 has 5-nm-thick IZO as the interconnecting and rear TCO layers.
Tuning the surface nanoroughness of (n)nc-Si:H layers

We first investigated the formation of surface nanoroughness by depositing (7)nc-Si:H layers
with thicknesses ranging from ~15 nm to 70 nm on textured c-Si wafers coated with (i)a-Si:H
layers. This approach aimed at achieving SHJ device-relevant growth of (n)nc-Si:H layers,
considering their substrate-dependent growth characteristics.”* As the thickness of (7)nc-Si:H
increases, the nanoroughness on textured c-Si wafers also increases (Figure S3). We attribute
this to increased crystallinity of the deposited films, as evidenced by a gradual decrease in
activation energy (E,), increments of dark conductivity (o4), and enhanced crystalline phase
signals in the Raman spectra (Figure S4).59-93 However, thicker (n)nc-Si:H layers require

longer deposition times and lead to increased infrared absorption, resulting in higher parasitic
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losses in the bottom cell and consequently reduced short-circuit current density (Jsc) values in
perovskite-silicon tandem devices (Figures S5 and S6). To mitigate this, we alternatively
employed a plasma treatment using a mixture of H, and CO, gases prior to the (n)nc-Si:H
deposition. This method, reported to generate pre-formed nanocrystal seeds that facilitate
subsequent crystal growth,” is expected to be particularly effective in minimizing the
amorphous incubation phase through the rapid nucleation of nanocrystals. The possible
mechanisms responsible for the generation of pre-formed nanocrystal seeds may be associated
with the mixed CO, and H, plasma, which generates increased strained bonds’®’® and
promotes hydrogen-driven reorganization in a-Si:H, 6%-79-82 thereby enabling the formation of
nanocrystal seeds. Furthermore, hydrogen-dominated CO, and H, plasma conditions’ can
induce H, plasma-driven chemical transport®3#4 and CO, plasma-induced oxidation of the
reactor walls®4, collectively creating plasma environments having higher effective H, to SiHy

dilution that favor the pre-formation of nanocrystal seeds.

For the plasma treatment process, (n)nc-Si:H layer thickness was fixed at 15 nm while the
plasma treatment duration was systematically varied (Figure 2). Increasing the plasma
treatment duration led to progressively enhanced surface nanoroughness (Figure 2A). Even a
15-second-long plasma treatment exhibits the first signs of nanoroughness formation,

characterized by densely distributed nanoscale protrusions emerging on the pyramid surfaces.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Extending the plasma treatment duration to 60 seconds led to the formation of aggregated

crystalline grains, evidenced by the appearance of larger, spherical surface features.’*¢ For
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comparison, the surface morphology of the sample with a 6-nm-thick (n)a-Si:H layer, as shown

(ec)

in Figure S7, displays relatively negligible surface nanoroughness. To further assess
nanoroughness on textured substrates, we performed Atomic Force Microscopy (AFM) on c-
Si with various (n)-layers (Figure S8). The overall morphological changes observed by AFM
are consistent with those identified in SEM micrographs. However, quantitative roughness
analysis and high-fidelity nanoscale interpretation were hindered by the pronounced pyramidal
texture of the c-Si wafers, cantilever-facet angle limitations, and associated measurement
artefacts. Although not explicitly investigated in this study, it is worth noting that different nc-
Si:H-based layers, such as (n)nc-SiO,:H layers and (p)nc-Si:H-based layer stacks,®>¢ can
exhibit distinct morphological, electrical, and structural properties depending on their thickness
and the plasma treatment duration, highlighting the necessity to understand material-specific

behavior for device integration (Figures S9, S10, and S11).
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Figure 2. A The SEM micrographs of textured c-Si samples with 15-nm-thick (7)nc-Si:H
layers having plasma treatments (PT) of different durations applied prior to (n)nc-Si:H layer
depositions as shown in schematics of the stacks on the left (top and bottom rows displaying
top and cross-sectional images, respectively). B The activation energy (£,) and dark
conductivity (g4) of (n)nc-Si:H layers with thicknesses of 40 and 15 nm, and C the Raman
spectra and crystalline fraction (F¢) of 40-nm-thick (n)nc-Si:H layers having plasma treatments
of different durations applied prior to (n)nc-Si:H layer depositions, deposited on 10-nm-thick
(7)a-Si:H-coated glass substrates. Raman spectra of 15-nm-thick (n)nc-Si:H layers are shown
in Figure S12. Although films deposited on flat glass substrates differ from those on textured
c-Si wafers, they adequately approximate material properties relevant to device integration.
Note, as the green laser (Aj.er = 514 nm) has a penetration depth of a few hundred nanometers
in the studied (n)nc-Si:H layers, their crystalline fraction is underestimated due to non-
negligible signals from the 10-nm-thick (i)a-Si:H layer underneath. D The schematic of the

symmetrical n-n device stack used for contact resistivity (p.) and lifetime (measured prior to
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metallization) measurements. E The extracted p. of (n)-type contact stack (including a space-
charge layer inside the (n)c-Si bulk, (i)a-Si:H, (n)-layers (stacks), ITO and Ag) and F the
effective minority carrier lifetime (z.¢r) values for samples featuring 15-nm-thick (n)nc-Si:H
layers, without or with a 2-nm-thick (n)a-Si:H capping layer, as a function of plasma treatment
duration. The p. and 7.4 of samples featuring the 6-nm-thick (n)a-Si:H layers are added in
Figures E and F for comparisons. G The reflectance spectra of (7)a-Si:H-coated (6-nm-thick)
textured samples featuring 15-nm-thick (n)nc-Si:H + 2-nm-thick (n)a-Si:H layers ((n)-layers)
with varied durations of plasma treatments. The reflectance spectrum of the sample with a 6-

nm-thick (n)a-Si:H layer is added in Figure G as a reference.

We then examined the electrical and microstructural properties of the (n)nc-Si:H layers. Unlike
the gradual improvements of electrical properties observed with increasing (n)nc-Si:H layer
thickness (Figure S4), 40-nm-thick layers treated with just 15 seconds of plasma treatment
showed a sharp decrease in £, from 336 meV to 41 meV and notable increments of g4 from 3.6
x 10" S/cm to 4.8 S/cm, as well as improved crystallinity (Figures 2B and 2C). Notably, the
15-nm-thick layers also exhibited a conductivity boost from 3.6 x 10-3 S/cm to 0.6 S/cm upon
15 seconds of plasma treatment applied before (n)nc-Si:H deposition, comparable to that of a

100-nm-thick (n)nc-Si:H layer (Figure S4).7

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

We assessed the effect of plasma treatments on charge transport by measuring the contact

resistivity (p.) of (n)-type contact stacks (Figures 2D and 2E). Unlike the p. that showed little
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variation and remained around 90 mQ-cm? when changing (n)nc-Si:H thicknesses (Figure

(ec)

S13), plasma treatments durations up to 30 seconds reduced the p. from around 88 mQ-cm? to
79 mQ-cm?, while a 60-second-long treatment caused an increase of p to around 89 mQ-cm?,
likely due to the formation of thicker interfacial oxide layers (Figure S14).4° On the other hand,
we found that plasma treatments degraded the passivation quality of the samples, potentially
due to dehydrogenation of the underlying (i)a-Si:H layers (Figure 2F).”> As discussed
previously, exposure to a CO, plasma introduces oxygen and alters the local bonding
environment within the a-Si:H layer, promoting bond breaking and structural rearrangement.
Such treatment has been shown to increase structural disorder and may generate a significant
amount of non-bonded hydrogen within the amorphous network and eventually leading to
dehydrogenation.”’¢ Besides, CO, plasma was also reported to form interface dipole that
impede electron collection.” An optimized hydrogen plasma treatment improves (i)a-Si:H

passivation by driving hydrogen to the c-Si/(7)a-Si:H interface to saturate dangling bonds and
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by creating a hydrogen-rich layer with increased formation of monohydrides and some
polyhydrides at internal surfaces associated with larger voids that serve as reservoirs for further
defect passivation.?¥°! In the mixed CO, and H, plasma treatment, these competing
mechanisms coexist, and despite improved field-effect passivation, introduced by the
overlaying more conductive (n)nc-Si:H (see Figure 2B),*' the CO,-induced degradation
remains dominant (Figure 2F). To mitigate this, we introduced a 2-nm-thick (n)a-Si:H capping
layer on top of the (n)nc-Si:H layer. The introduction of the (n)a-Si:H layer may supply
additional hydrogen at the c-Si/(7)a-Si:H interface, passivating dangling bonds and improving
the interface quality (See Supporting Information, Figure S15). Further experiments
quantifying the hydrogen content in the (i)a-Si:H layer and at the c-Si/(i)a-Si:H interface are
needed to verify this hypothesis. As seen from Figure 2F, this additional (n)a-Si:H layer
improved the effective carrier lifetime (z.¢r) across all samples without altering the surface
morphology induced by the underlying (n)nc-Si:H layer (Figure S16). Furthermore, the
capping layer reduced the passivation deterioration caused by the sputtering-induced damage
during ITO deposition.®¢ It is well known that passivation degradation at the c-Si/a-Si:H
interface can occur during TCO sputtering due to ion bombardment damage®” or plasma
luminescence.”>** An (n)a-Si:H layer, which more effectively mitigates ion penetration (for
example, oxygen ions®®% ) and absorbs more high-energy photons, can therefore better
preserve passivation quality after TCO sputtering compared with (7)nc-Si:H layers. However,
the additional (n)a-Si:H slightly increased the p., presumably due to its lower g4 and higher £,
(>200 meV) than (n)nc-Si:H layers.?6:% Still, this slight increase of p, is considered acceptable
for efficient charge carrier transport, given the reduced light intensity reaching the bottom cell
in tandem devices and the one-dimensional current flow through the contact in the tandem
cell.?7?8 Qverall, samples in which (n)nc-Si:H layers having plasma treatments prior to their
depositions, with and without (n)a-Si:H capping layer, show statistically lower p. as compared
to the (n)a-Si:H-only counterparts. Moreover, as shown in Figure 2G, a longer plasma
treatment duration resulted in a gradual reduction in reflectance, particularly at shorter
wavelengths, compared to the case of 6-nm-thick (n)a-Si:H, evidencing the formation of
enhanced surface nanoroughness of (n)nc-Si:H layers.”” A similar trend was observed after
depositing a 10-nm-thick ITO layer (Figure S17), confirming the persistence of this optical
behavior. Despite the higher nanoroughness of samples with thicker (n)nc-Si:H layers, no
significant reduction in reflection was observed (Figure S18). Furthermore, depositing a 10-
nm-thick ITO layer on top of the (n)nc-Si:H layer resulted in a more apparent surface

nanoroughness across all samples, despite the overall surface morphology is still governed by
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the underlying (n)nc-Si:H layers (see Figures 2A and S17 for plasma treatment duration series
and Figure S3 for (n)nc-Si:H thickness series). It is worth noting that TCO properties, such as
surface morphology, mobility, carrier concentration, and work function can be affected by the
underlying Si layers and the choice of TCO layers.5>7> These TCO properties collectively
influence the effectiveness of the recombination junction, in conjunction with the adjacent
layers. While in this study, SEM analysis shows no discernible morphological differences
between 10-nm-thick ITO layers deposited on (n)a-Si:H and (n)nc-Si:H layers (see Figure S3B
and Figure S16B). Moreover, no difference in work function is observed for ITO layers
deposited on (n)a-Si:H and (n)nc-Si:H layers (discussed in the following section). Therefore,
we expect only a limited influence of the (n)-layers on 10-nm-thick ITO properties under our
processing conditions, although further studies are required to gain deeper insights into this
aspect. Due to the pronounced passivation loss and the increased p. observed with a 60-second

plasma treatment, such a condition was excluded from subsequent tandem cell experiments.

Impact on SAM deposition and perovskite film formation

We first analyzed surface energy by measuring a solution contact angle of HTL-SAM on
textured c-Si wafers coated with ITO layers and different (n)-layers, since SAM anchoring

changes the wettability of the surface. The sample with a 6-nm-thick (n)a-Si:H layer exhibited

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

the lowest contact angle (~70°), while the 15-nm-thick (n)nc-Si:H sample showed a higher
value of ~85° (Figure 3A). Applying plasma treatments prior to the (n)nc-Si:H deposition

Open Access Article. Published on 10 January 2026. Downloaded on 1/20/2026 2:52:28 AM.

further increased the contact angle to more than 100°, lowering the surface energy. Thicker

(ec)

(n)nc-Si:H layers also exhibited increased contact angles (Figure S19). Next, we investigated
the impact of the same parameters on the work function shift (AWF) for (n)nc-Si:H/ITO/SAM
stacks. We included SAMs in this analysis as they induce charge dipoles at the TCO interface,
resulting in a AWF that enhances the charge selectivity.!? Kelvin probe measurements on (7)nc-
Si:H/ITO stacks with various (n)-layers revealed similar WF values (~4.61-4.62 ¢V) (Figure
3B). After SAM deposition as used in our device fabrication, we found systematic WF shifts
towards higher values, with larger AWF observed for those with higher contact angle values
and greater surface nanoroughness (Figure 3C).”> Given that AWF scales with the dipole
surface density,!% this suggests that the molecular packing of SAMs is influenced by the

underlying surface nanoroughness.!?
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Figure 3. A Contact angle values after HTL-SAM deposition on textured c-Si wafers featuring
various plasma treatment (PT) durations on (n)nc-Si:H layers with 10-nm-thick ITO. The
dashed lines in the plot represent the contact angles of samples with 6-nm-thick (n)a-Si:H and
15-nm-thick (n)nc-Si:H layers. B Valence band maximum (VBM) and WF values, and C AWF
of (n)-layer/ITO/SAM (stack) with various plasma treatment durations before and after SAM
deposition. D Cross-sectional SEM micrographs and azimuthally integrated intensity of the
(100) reflection from GIWAXS measurements (Figure S20). E QFLS (Au) images of
perovskite films deposited on different (n)-layer/ITO/SAM stacks without and with plasma
treatment. The SEM micrograph of the sample featuring the (n)a-Si:H layer is shown in Figure

S21.

As surface tension force can influence the perovskite grain formation, we examined (n)nc-Si:H
conditions, modulated by plasma treatment duration, on the overlying perovskite morphology

(Figure 3D).!1%1 Cross-sectional SEM images show that all samples exhibited complete
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perovskite coverage, while the film with 30-second-long plasma treatment displayed slightly
larger and more uniformly distributed grains. GIWAXS measurements show that among the
different plasma treatment durations, the 30-second-long plasma treatment condition produced
the most pronounced preferential 45° orientation of the (100) reflection relative to the surface
of the substrate (Figure 3D), which is known to improve carrier mobilities and photovoltaic
performance.!0%193 To gain further insights into the optoelectronic quality of perovskite films,
we carried out absolute PL imaging. Perovskites deposited on textured silicon with extended
plasma treatment duration exhibited higher PL intensity compared to 6-nm-thick (n)a-Si:H and
15-nm-thick (n)nc-Si:H (Figure S22) and a more uniform quasi-Fermi level splitting (QFLS,
Ap), with a value of 1290 meV for 30-second plasma treatment (Figure 3E), indicating reduced
non-radiative recombination. By controlling plasma treatment duration, the surface properties
of (n)-layers can be tuned to simultaneously enhance perovskite film formation and its

electronic interfacial quality on textured silicon substrates.
Performance of perovskite-silicon tandem solar cells

The J-V characteristics of tandem devices are presented in Figure 4. Compared to devices with
a 6-nm-thick (n)a-Si:H layer, which exhibited relatively lower Voc (~1920 mV) and FF (~
68%), the one endowed with 15-nm-thick (n)nc-Si:H layer effectively mitigates the shunting

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

behavior in devices using the (n)a-Si:H layer, resulted in V¢ and FF values of ~1945 mV and

~75%, respectively (Figure 4A). These differences are primarily attributed to the higher WF

Open Access Article. Published on 10 January 2026. Downloaded on 1/20/2026 2:52:28 AM.

shift after SAM deposition (Figure 3C) associated with increased nanoroughness when

implementing a 15-nm-thick (n)nc-Si:H layer. Besides, the lower p. of 15-nm-thick (n)nc-Si:H-

(ec)

based contact stacks as compared to 6-nm-thick (n)a-Si:H-based contact stacks (Figure 2E)
may also contribute to higher FF values in tandem devices featuring the (n)nc-Si:H layer.
Adding a 2-nm-thick (n)a-Si:H capping layer on the 15-nm-thick (n)nc-Si:H layer slightly
improves Vo of tandem solar cells, likely due to enhanced passivation quality of such (n)-layer
(Figure 2F and Figure S23B).8¢ For tandem devices having a 15-second-long plasma treatment,
although their bottom cell precursors exhibited slightly higher median iV (Figure S23B) and
better SAM/perovskite interface and perovskite film quality (Figure 3) compared to the ones
without plasma treatment, the resulting tandem devices showed only a marginal increase in
median V¢, remaining largely comparable overall between these two conditions. Furthermore,
a 30-second-long plasma treatment resulted in reduced bottom cell precursors iVpc by

approximately 15 to 20 mV relative to samples with 15-second-long plasma treatment, however,
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this difference is expected to be less pronounced in tandem devices due to reduced illumination
for bottom cell. Besides, this loss in bottom cell can be further partially compensated by the
improved SAM/perovskite interface quality and perovskite film quality (Figure 3).
Consequently, the final tandem devices having a 30-second-long plasma treatment exhibit
improved FF, and only a slightly reduced median V¢ that is not significantly different from
the other samples. As expected, Jsc values remain comparable across all samples (Figures 4B
and 4C). Finally, we achieved efficiencies up to 32.6% by applying a plasma treatment duration

of 30 seconds for 15-nm-thick (n)nc-Si:H with 2-nm-thick (n)a-Si:H layers.
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Figure 4. A The J-V parameters of perovskite-silicon tandem solar cells with varying (n)-layers
(stacks), namely, 6-nm-thick (n)a-Si:H layer, 15-nm-thick (n)nc-Si:H layer without plasma
treatment (labeled as (n)nc-Si:H), and 15-nm-thick (n)nc-Si:H + 2-nm-thick (n)a-Si:H layer
stack with varied durations of plasma treatment. B The J-V characteristic of best devices for
each (n)-layer (stack), and C EQE spectra of respective tandem solar cells. The EQE spectrum
of the tandem device with the (n)a-Si:H layer is shown in Figure S24.
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Conclusions

In this work, we have presented a new perspective for advancing high-efficiency perovskite-
silicon tandem solar cells by demonstrating the critical role of bottom cell surface
nanoroughness in device performance. In silicon bottom cells, nanoroughness can be tuned
either by varying the thickness of (n)nc-Si:H layers or by applying a plasma treatment utilizing
a hydrogen and carbon dioxide gas mixture for different durations prior to their depositions.
These approaches modify not only the optoelectronic and microstructural properties of the (n)-
layers but also the surface morphology of textured c-Si bottom cells. Increased nanoroughness
leads to higher contact angles and larger AWF after SAM deposition, which results in improved
HTL/perovskite interface quality. Our approach via optimizing plasma treatment enables
efficient control of surface morphology, allowing thin (n)nc-Si:H layers to achieve high surface
nanoroughness, reducing process time and enhancing tandem cell performance compared to
their thicker counterparts without plasma treatment. Our results highlight c-Si bottom cell
surface morphology control as a powerful yet underexplored strategy for further improving
perovskite-silicon tandem solar cells and accelerating their industrialization, with broader
implications for various nc-Si:H-based layers already employed in industrial SHJ solar cell

production and other c-Si solar cell technologies.
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Experimental details

Fabrication of c-Si bottom cells and contact resistivity samples

4-inch, (n)-type float-zone (FZ) silicon wafers with a thickness of 260 - 280 um were utilized
for bottom cell fabrication. A double-sided random pyramid texture with submicron features
(averaging below 1 um in height) was formed through wet chemical etching in a 0.5% KOH
solution at 77 °C, employing a TS41 additive. Subsequently, the wafers underwent a standard
RCA cleaning protocol at 75 °C, first in an RCA1 solution (NH4,OH:H,0,:H,0 = 1:1:6) to
remove organic contaminants and then in an RCA2 solution (HCI:H,0,:H,O = 1:1:6) to
eliminate metallic impurities. Following a hydrofluoric acid (HF) (0.55%) dipping, wafers
were loaded into a multi-chamber radio-frequency (RF, 13.56 MHz) or very-high-frequency
(VHF, 40.68 MHz) plasma-enhanced chemical vapor deposition (PECVD) cluster tool
(Elettrorava S.p.A.). PECVD depositions started with (i)a-Si:H/(n)-layer (stack).86°1 After a
brief vacuum break, the wafers were flipped for subsequent deposition of (i)a-Si:H/(p)nc-
Si0,:H/(p)nc-Si:H layer stack.®>°! By default, an optimized hydrogen plasma treatment (HPT)
was applied after the deposition of (i)a-Si:H layers,®® optionally followed by a plasma
treatment (PT) using a hydrogen and carbon dioxide gas mixture. Subsequently, 10-nm-thick
tin-doped indium oxide (ITO) layers were symmetrically deposited via a RF magnetron
sputtering (Polyteknic AS) tool at room temperature. The wafers were then annealed in air at
180 °C for 5 minutes. A geometrical factor of 1.7 was applied to adjust the deposition time for
textured surfaces relative to flat substrates. Local rear contacts were formed using screen-
printed Ag grid lines with a width of ~60 pm and a spacing of ~0.9 mm. These contacts were
sintered by annealing the wafers at 200 °C for 15 minutes in a box furnace. Afterwards, a 200
nm MgF, film was thermally evaporated to form a rear reflector. The rear contact was then
finalized with a 120 nm layer of sputtered Ag, followed by an annealing step at 200 °C for 10
minutes in ambient air to recover any sputtering-induced damage. Finally, the wafers were
laser-cut into 2.2 x 2.2 cm? square pieces for integration into tandem solar cell structures.

For contact resistivity measurements, symmetrical Si thin-films and TCO layers, as previously

described, were deposited, followed by annealing in air at 180 °C for 5 minutes. The samples
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were then completed with 500 nm of thermally evaporated Ag on both sides (Provac
PROS500S).

Fabrication of perovskite top-cells for tandem devices

The Si bottom cells were subjected to UV-Ozone treatment for 700 seconds and were modified
by 2PACz (TCI) with a solution using 1 mg/mL concentration in ethanol and spin coating at
5000 rpm for 30 seconds, followed by post-annealing at 100 °C for 10 minutes in N, filled
glove box. 1.7 M Csg5FAgsMAg15Pb(Iy745B1¢255); perovskite precursor solution, which
delivers 1.68 eV optical band gap, was prepared by using mixing FAI, MABr, Csl, Pbl,, and
PbBr; in a solvent of DMF:DMSO with a volume ratio of 4:1. The perovskite films were spin-
coated at 2000 rpm for 45 seconds, then the spinning is accelerated to 7000 rpm for the last 8
seconds. 200 pL chlorobenzene was dropped to the substrates at the start of this acceleration.
After the rotation ceased, the substrates were transferred onto a hotplate of 100 °C and were
annealed for 20 minutes. Following perovskite deposition, 1,3-propane diammonium iodide
(PDALI) surface treatment was applied to regulate the surface potential at the perovskite/Cgg
interface using a previously reported recipe.'® To displace contact between the Cgo and
perovskite layers, we employed ~1 nm of evaporated LiF. As an electron transport layer (ETL),
12-nm-thick Cgy was evaporated, then 10-nm-thick SnO, was deposited by Picosun atomic
layer deposition (ALD) tool by following the same recipe in our previous works.!? Front IZO

contacts were sputtered from a 3-inch IZO ceramic target on top of the SnO, through a shadow

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

mask. The thickness of the front IZO was 40 nm. Ag finger with a thickness of 500 nm was
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thermally evaporated using a high-precision shadow mask with a deposition rate of 2 A/s.

Concluding the tandem devices, 100 nm MgF, was thermally evaporated as an anti-reflection

(ec)

layer with a deposition rate of 1 A/s (Plasmaterials, 99.9%). To ensure the precise thicknesses
of Cgo, IZO, and LiF, spectroscopic ellipsometry is used for calibration. The evaporation rate
and thickness of each experiment were monitored by quartz crystal microbalance sensors. All
thermal evaporation processes were performed on the Angstrom EvoVac thermal evaporation
system. All chemicals were used without further purification.

Tandem solar cell performance analysis

In-house current-voltage (J—V) measurements were conducted using a Wavelabs Sinus 220
LED-based solar simulator. For spectrum calibration, a Fraunhofer ISE-certified calibration
cell is used, and no spectral mismatch factor was applied in the process. The area of
illumination for the devices was precisely 1.04 cm?, determined by a laser-cut shadow mask
coated with black paint. The device measurements were carried out at a scan speed of 150 mV

s7!. The external quantum efficiency (EQE) measurements were conducted using PV-Tools
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LOANA equipment. When measuring perovskite top cells, the tandem devices were light-
biased by IR LEDs (930 nm). In the case of measuring silicon bottom cells, the tandem devices
were light-biased by a blue LED (440 nm) to saturate the subcells. All device characterizations
were conducted under ambient air conditions with a relative humidity (RH) of approximately
50-60%.

Absolute PL imaging

To exclude the influence of environmental factors such as humidity and oxygen, we
encapsulated the samples in a nitrogen glove box. The PL spectra of the samples were collected
using a hyperspectral imaging system coupled to a microscope with 2 nm spectral resolution
(Photon etc. IMA). Samples were excited using 405 nm laser at ~1 sun illumination condition
(before the measurement, the power density of the laser was adjusted with a reference
perovskite solar cell) to calculate the quasi-Fermi level splitting (QFLS, Ap). Home-built
MatLab code using the relation reported earlier was employed to calculate the Ap.!%

PESA

Photoelectron spectroscopy in air (PESA) measurements were performed using a Riken AC-2
setup equipped with a UV light source. The valence band maximum (VBM) was determined
by linearly fitting of ground and photoemission signal from the samples that are prepared as
for device fabrication.

Kelvin Probe

Kelvin probe measurements, a standard gold tip with diameter 2 mm was used within an inert-
atmosphere glovebox at room temperature. The WF of the tip was first calibrated against a
clean gold reference (WFy, = 5.1 €V — CPD,,). The sample WF was then determined using
WFgample = WFgip + CPDgample, €nsuring values are referenced to the absolute vacuum level.
Measurements used an SPS040 instrument with a 50 mV amplitude, 90 Hz frequency, 13.5
kHz scan rate, 30 averages per point, and a gain of 4.

Kelvin Probe Force Microscopy (KPFM)

A Multimode AFM from Digital Instruments (Veeco Metrology Group), fitted with a Bruker
scanning head, was used to conduct topographic imaging and surface potential measurements
in ambient air at room temperature. The measurements were carried out using an SCM-PIT V2
AFM tip, based on an RFESP-75 AFM probe coated with a Platinum-Iridium (Ptlr) reflective
layer. The tip was composed of antimony-doped silicon with a resistivity between 0.01 and
0.025 Q cm. It had a rectangular shape with a nominal resonant frequency of 75 kHz and a

spring constant of 4 N m™'. Amplitude-modulated KPFM was employed, where the surface
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topography was first recorded in tapping mode during the initial scan, followed by surface
potential mapping in a second pass.

Grazing-incidence wide-angle X-ray scattering (GIWAXS)

GIWAXS measurements were carried out on an Anton-Paar Saxspoint 2.0 with a Primux 100
microfocus source with Cu-K,, radiation (A = 1.5406 A) and a Dectris Eiger R 1M 2D Detector.
Measurements were taken at a sample-detector distance of 121 mm.

Scanning electron microscopy (SEM)

Hitachi Regulus 8230 was used for SEM analysis of textured c-Si samples with silicon thin-
films and ITO layers. Images were acquired at 5 kV. The morphology of perovskite films on
textured Si was analyzed using an in-house FEI Helios Nanolab G3 UC DualBeam SEM.
Images were acquired at 2 kV, to minimize beam-induced damage to the perovskite film while
ensuring adequate resolution and contrast, using the TLD detector. Samples, prepared from the
active area, were mounted on silver paste, and no additional conductive coating was applied.
Characterization bottom cells and contact resistivity samples

Spectroscopic ellipsometry (SE) (M-2000DI system, J.A. Woollam Co., Inc.) was employed
for extracting the optical constants and the thickness of thin-film layers deposited on glass
substrates (Corning Eagle XG). Temperature-dependent dark current-voltage (I-V)
measurements with temperature sweep from 130 °C to 60 °C were conducted to determine the

dark conductivity (g4) and activation energy (E,). For these measurements, samples featuring

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

300-nm-thick Al strips were evaporated onto doped layers on glass substrates. Raman

spectroscopy (Renishaw inVia Micro-Raman Microscopy) equipped with a green laser (Ajz5er =
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514 nm) was deployed for obtaining the Raman spectra of doped Si thin-film layers. The
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photoconductance lifetime tester (Sinton WCT-120) was used to monitor the passivation
quality of samples during their fabrication. Additionally, the resistivity of symmetric samples
was obtained via dark /-7 measurements using Kelvin probe contacts and a Keithley 2601B
source measure unit. The method as described in previous work was used for extracting the
contact resistivity (p.).%°> The PerkinElmer Lambda 1050 system was used to measure the
wavelength-dependent reflectance (R) of the testing samples, and to reflect device-relevant
conditions, samples with 10-nm-thick ITO layers were annealed at 180 °C for 5 minutes in an
air atmosphere.

Atomic Force Microscopy (AFM)

HORIBA OmegaScope AFM operated in tapping mode, equipped with a NANOSENSORS

PPP-NCHR cantilever featuring a guaranteed AFM tip radius of curvature < 10 nm, was used
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for assessing the nanoroughness of the textured c-Si samples featuring different (n)-layers

(stacks) studied in this work.
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