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Unsupervised and few-shot segmentation in
photovoltaic electroluminescence images for
defect detection via a novel enhanced iterative
autoencoder with simple implementation
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Photovoltaic electroluminescence (PVEL) imaging captures material-level degradation in PV modules

and offers high-resolution input for machine learning (ML) models to perform automated fault detection

and health evaluation, reducing reliance on manual inspection. It is expected to have a simple and

efficient defect detection ML model to achieve accurate segmentation for the fine-featured

identification of defects in fabricated PV modules. This study proposes a novel enhanced iterative

autoencoder (EI-AE), a completely new model that differs fundamentally from existing approaches

which rely directly on classical ML models for defect detection. The proposed EI-AE, which for the first

time introduces an iterative mechanism into the traditional AE framework, features a simple yet effective

architecture and achieves accurate unsupervised pixel-level segmentation of all defect types using only

normal PVEL images. In addition, few-shot learning can be realized by extending the unsupervised EI-AE

with a small number of annotated masks, allowing more detailed functional defect detection while

mitigating background interference. Theoretical proof demonstrates the benefits of the proposed EI-AE

in improving defect detection compared to the conventional AE. Experimental results further validate its

superiority, showing consistently better performance across multiple pixel-level metrics and

outperforming both widely used unsupervised and few-shot baseline approaches.

Broader context
Photovoltaic (PV) systems are expanding rapidly worldwide, making reliable and cost-effective maintenance increasingly important. PV electroluminescence
(PVEL) imaging provides high-resolution visual data that reveal material-level degradation in PV modules. These images are particularly valuable for machine
learning (ML)-based automated fault detection and health assessment, reducing reliance on manual inspection. Achieving accurate segmentation of minute
defects in fabricated PV modules requires a defect detection model that is both simple and efficient. This study presents an enhanced iterative autoencoder
(EI-AE), a fundamentally new model that, for the first time, incorporates an iterative mechanism into the conventional AE framework. Unlike existing methods
that rely directly on classical ML architectures, EI-AE features a simple yet effective design capable of performing fully unsupervised, pixel-level segmentation of
all defect types using only normal PVEL images. Furthermore, by extending the unsupervised EI-AE with a small set of annotated masks, the framework
supports few-shot learning, enabling more detailed functional defect identification while suppressing background interference.
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1 Introduction

Photovoltaic electroluminescence (PVEL) imaging is a non-
destructive technique for assessing PV module quality,1 reveal-
ing microscopic defects such as microcracks, inactive areas,
broken fingers, shunts, and soldering issues that are often
undetectable by visual inspection. It enables early detection
of hidden defects during manufacturing, installation, or opera-
tion, supporting quality assurance, performance prediction,
and reliability assessment.2 Due to the large volume and
complexity of PVEL data, manual inspection is inefficient and
error-prone, making automated defect detection algorithms3

essential for large-scale, reliable, and real-time assessment.4

Machine learning (ML) can automatically detect defects in
PVEL images by learning complex patterns,4,5 outperforming
conventional image processing.6,7 While most ML methods
address defect detection,8–13 advanced approaches perform
defect segmentation to localize defective regions, as illustrated
in Fig. 1. ML has been applied to (i) correlating defects with
power output,14,15 (ii) detecting defects before lamination,16,17

(iii) enhancing image quality,18,19 and (iv) identifying defects in
assembled modules.8,20–22 PVEL images of assembled PV mod-
ules contain rich spatial and intensity information that reflects
subtle material and manufacturing defects, making them
highly suitable for automated analysis.8 To identify defects in
PVEL images of finished PV modules, three types of defect
detection ML approaches can be utilized: (i) image-level binary
and multi-class classification, (ii) bounding box-based object
localization, and (iii) segmentation. This work focuses on the
defect identification of fabricated PV modules, and adopts
segmentation23 for pixel-level localization of complex defects
to support automated EL image inspection.

Although image-level binary/multi-class classification is the
most basic ML method for EL image defect detection, it
assumes that all defect categories are fully defined and
mutually exclusive. Convolutional neural networks (CNNs)
dominate both tasks,8–10 employing architectures such as
VGG16,11–13 high-resolution network (HRNet),9,10,24 and the
combination of ResNet152, Xception, and coordinate attention
(CA).25 Feature enhancement and model compression are
achieved via the incorporation of histogram of oriented gradi-
ents (HoG)12 and knowledge distillation13 into VGG16.
The current multi-class classification efforts mainly rely on

CNN,20,26–36 support vector machine (SVM),26,30 and random
forest (RF).30,37 In addition, transfer learning with compact
architectures has been adopted to utilize pre-trained
features,29 while architectural combinations33 and particle
swarm optimization (PSO)35 further enhance accuracy and
reduce model complexity. Other approaches include modified
VGG19,28 unsupervised clustering,27 generative adversarial net-
work (GAN)-based augmentation,32 fuzzy logic integration,34

and defect localization by YOLO.36 Unlike classification, bound-
ing box methods detect multiple defects per module. Fusion of
Faster regions with CNN features (R-CNN) and region-based
fully convolutional network (R-FCN) outputs based on intersec-
tion over union (IoU) consistency improves accuracy and
reduces false detections.21 Incorporating a complementary
attention network (CAN) into a Faster R-CNN’s region proposal
network further enhances defect extraction.5 Mask R-CNN with
a ResNet-101-FPN backbone detects fourteen defect types.38

However, the classification and bounding box-based defect
localization tasks are often limited in providing detailed spatial
information, which segmentation can overcome by delivering
pixel-level defect mapping for precise assessment.

For the segmentation task, two paradigms can be utilized:
(1) approaches that use a separate feature extractor followed by
a segmentation procedure,22,39–41 and (2) end-to-end segmenta-
tion networks.42–46 Classification networks, such as ResNet1840

and ResNet50,22,41 can serve as backbone feature extractors,
with their outputs passed to a segmentation head, such as
autoencoder (AE)39 and DeepLabv3,41 for pixel-wise prediction.
Instead of performing explicit segmentation, a ResNet-50
trained for classification is used to generate intermediate
activation maps,22 whose spatial responses are interpreted as
segmentation.

End-to-end segmentation networks are task-optimized for
accurate, dense defect detection of PVEL images. A GAN is used
to produce more realistic reconstructions of normal samples
through adversarial training.42 However, GANs often suffer
from training instability and typically require larger datasets,
which limit their practicality in industrial settings. Different
encoder–decoder NN architectures are also explored in PVEL
image defect detection, including standard U-Net,44,46 U-Net
with an attention mechanism,43 PSPNet46 and DeepLabv3+.46

Multiple combinations of encoder and decoder networks are
explored,45 which are Mobile-net, ResNet, VGG-net, and U-net

Fig. 1 PVEL image acquisition and machine learning-based defect segmentation.
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for the encoder part, while U-net, FCN-net, PSP-net, and SegNet
for the decoder part. In addition, wavelet analysis is used to
handle non-stationary textures in the segmentation of PVEL
images,47 while K-Net has been used as a baseline method in
segmentation tasks.48

Nevertheless, the current studies on defect detection of
PVEL images using end-to-end segmentation networks are still
in the stage of direct use of classical NN models or their simple
combinations. These approaches often lack adaptability to
subtle or complex defect patterns, especially in cases involving
irregular morphology or background interference. To address
this limitation, a novel enhanced iterative autoencoder (EI-AE)
is proposed in this study to achieve simple and accurate
unsupervised defect segmentation of PVEL images using only
normal samples during training. The proposed EI-AE utilizes
U-Net49 as encoder and decoder blocks, while iterative
operations50 are implemented in each encoder and decoder to
significantly (i) expand function space constraints (enhancing the
ability to generalize from normal PVEL image patterns), (ii)
prevent defect memorization (avoiding the model from incorrectly
learning and reconstructing latent defects in normal-looking
PVEL images), and (iii) improve multi-scale information represen-
tation (accurately detecting defects of varying sizes in PVEL
images). In addition, by incorporating a multi-image fusion
structure, the proposed EI-AE can be adapted to detect more
specific defects using a few-shot approach with only a limited
number of annotated functional defect masks.

2 Description of datasets

In this work, we use the photovoltaic electroluminescence
anomaly detection (PVEL-AD) dataset,51 which comprises

36 543 near-infrared images (11 353 good images) of solar cells
featuring various internal defects and heterogeneous back-
grounds. The dataset includes one defect-free category and 12
distinct defect types, namely black cores, corner defects, cracks
(non-star), finger interruptions, fragments, horizontal disloca-
tions, printing errors, scratches, short-circuit defects, star
cracks, thick lines, and vertical dislocations (two images of
each category are shown in Fig. 2). The PVEL-AD dataset, with
its long-tail distribution of defect types, provides a challenging
while realistic benchmark for evaluating unsupervised and few-
shot learning approaches. It is particularly well-suited for
testing models (e.g. the proposed EI-AE), which performs
segmentation using only normal samples, and can be extended
with limited annotations to detect rare functional defects,
addressing the annotation bottleneck in practical PV quality
inspection.

Furthermore, to evaluate the segmentation performance
under different settings of our proposed EI-AE, we manually
annotated two types of segmentation masks (Mask A and Mask
B) based on this dataset. All defects are captured in Mask A
without explicitly defining the defect categories, while four
specific defect types are annotated in Mask B. These additional
annotations allow a more comprehensive assessment of seg-
mentation accuracy and robustness.

2.1 All defect masks (Mask A)

In this setting, 30 masks are labelled for all observed defects,
encompassing both functional and non-functional defects
(18 images are shown in Fig. 3, while others are put in SI-S2).
This comprehensive annotation strategy serves two main pur-
poses. First, by including every visible defect, regardless of its
specific impact on solar cell performance, we ensure that the

Fig. 2 Defect categories in the used PVEL-AD dataset: (a) black cores, (b) corner defects, (c) cracks (non-star), (d) finger interruptions, (e) fragments, (f)
horizontal dislocations, (g) printing errors, (h) scratches, (i) short-circuit defects, (j) star cracks, (k) think lines, and (l) vertical dislocations.
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segmentation model learns to detect a broad range of defect
patterns. This coverage is especially relevant in real-world
manufacturing contexts, where even minor or cosmetic defects
(e.g., scratches or tiny surface inconsistencies) may indicate
underlying process issues. Second, the inclusive nature of this
mask annotation provides a more holistic evaluation of a
model’s capacity to identify and localize any deviation from
the nominal appearance. Consequently, the ‘‘All defects’’ mask
allows for a thorough assessment of segmentation perfor-
mance, highlighting the robustness of the proposed EI-AE in
scenarios where defect types or severities vary widely.

2.2 Functional defect masks (Mask B)

In this setting, only defects that directly impact device perfor-
mance are considered. Specifically, we use the bounding boxes
provided by the PVEL-AD dataset to manually annotate high-
resolution 438 masks within the testing set, targeting only
functional defects. Although the PVEL-AD dataset51 contains
12 types of defects, four major categories, including cracks
(non-star), finger interruptions, scratches, and star cracks, are
utilized and manually annotated in this study to demonstrate
the effectiveness of the proposed EI-AE. In addition, three
representative images from each annotated category are shown
in Fig. 4, while the remaining annotated images are provided in
SI-S3.

By refining the coarse bounding-box labels into pixel-precise
segmentations, this annotation process ensures that our eva-
luations concentrate on those defects most critical to PV
module reliability. Consequently, this approach enables an
in-depth assessment of model performance in detecting and
characterizing functionally significant defects, thereby facilitat-
ing more targeted strategies for quality control in smart man-
ufacturing processes.

3 Proposed enhanced iterative
autoencoder (EI-AE)

In this study, we propose a novel EI-AE unsupervised learning
method for simple defect detection of PVEL images. The space
of the PVEL input image can be expressed as I C Rh�w�c,
where h, w, and c indicate the height, width, and number of
channels, respectively. For the defect detection task, a training
set Xtrain includes i normal EL images without abnormalities,

while a test set Xtest consists of t defective EL images, where
Xtrain = {x1,x2,. . .,xi}, Xtest = {x1,x2,. . .,xt}, and x A I. The
learning objective aims to develop a model capable of perform-
ing pixel-level segmentation to detect defective regions within
test images Xtest.

3.1 Conventional autoencoder (AE)

Since the focus of this study is on 2D PVEL images, a traditional
widely used convolutional AE for defect detection is first
introduced in this section,52,53 following with its challenge
explanations in high-precision defect identification.

A convolutional AE is trained to minimize the reconstruction
error Lrecon. on normal samples as:

Lrecon: ¼
1

n

Xn
i¼1

xi � ~xik kp; (1)

where n is the number of samples, 8�8p refers to the cp norm
(typically p = 1, Manhattan norm or p = 2, Euclidean norm), and
x̃i denotes the reconstruction of the input image xi,
expressed as:

x̃i = fD(fE(xi)), (2)

where fD is the encoder network (I - Z) that processes the
input image to obtain a latent representation Z (ZC Rh0�w0�c0,
h0 o h, w0 o w, c0 Z c); fE is the decoder network (Z - I),
which takes the latent representation Z produced by the enco-
der and reconstructs the input image. A deep convolutional AE
with depth N can be represented as:

FAE(x) = fD1
(fD2

(. . .fDN
(fEN

(. . .fE2
(fE1

(x)))))). (3)

Moreover, the parameters of each encoder and decoder block

are given by xfE1 ; xfE2 ; . . . ; xfEN

n o
and xfD1

; xfD2
; . . . ; xfDN

n o
,

respectively.
However, traditional AEs face several critical limitations

when applied to industrial PVEL image defect detection:
(1) With a limited number of normal EL images, the AE is

prone to overfitting, resulting in poor generalization.54

Although the training objective minimizes the reconstruction
loss as eqn (1), the network will memorize training examples
when the training set Xtrain is small:

fD(fE(xi)) E xi, 8xi A Xtrain. (4)

Fig. 3 All defect masks by manual annotation (Mask A).
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Since anomalies are absent in training, the model fails to
generalize to unseen test samples Xtest e Xtrain, making it
unreliable for defect detection.

(2) When a high representation capacity is present in the
latent space, the AE reconstructs both normal and defective
samples accurately, making defect detection ineffective.55 If the
encoder fE maps inputs to a high-capacity latent space Z, then
for any input x, an expressive decoder can reconstruct it
perfectly:

zi = fE(xi), xi E fD(zi), (5)

Since defective data points xanom, are also mapped to similar
latent representations, their reconstructions remain accurate:

8xanom � fD(fE(xanom))8p E 0 (6)

This contradicts the assumption that anomalies should have
high reconstruction errors and thus reduces the effectiveness of
defect detection.

(3) A standard AE reconstructs anomalies in a single resolu-
tion scale, lacking multi-scale feature extraction, which limits
their ability to differentiate complex anomalies from normal
variations.56,57 The single encoding-decoding operation is
expressed as:

x̂i = fD(fE(xi)). (7)

resulting in a failure in capturing hierarchical features. Since
normal variations can exist at multiple scales (e.g., subtle
texture differences, cell pattern shifts, and illumination
changes in PVEL images), the single-pass AE may fail to
distinguish them from true anomalies, leading to misclassifi-
cations in anomalies.

3.2 Enhanced iterative autoencoder (EI-AE)

To address the potential issues of the conventional AE in the
defect detection of PVEL images discussed in Section 3.1, this
study proposes a novel EI-AE (Fig. 5) that utilizes iterative

computation to achieve multi-step compression and recon-
struction, improving parameter sharing and network represen-
tation capabilities. To be specific, the proposed EI-AE consists
of two key stages: (i) a iterative compression encoder, and (ii) an
iterative reconstruction decoder. These components jointly
enhance function space constraints, prevent defect memoriza-
tion, and improve multi-scale information representation, out-
performing the conventional AE. This section presents the
network architecture description of the proposed EI-AE, along
with a detailed explanation of its improvements.

3.2.1 Iterative compression stage. The iterative compres-
sion stage, illustrated in the purple box of Fig. 5, reduces the
resolution of the input PVEL image stepwise through N

iterative iterations, while 5 iterations are used in this model.
A modified U-Net is implemented as an encoder in the

compression stage by replacing the output layer of the standard
U-Net with a convolutional layer with kernel size 2 and stride 2,
so that the spatial dimensions (height and width) of the
original input are reduced by half. This process is similar to
the encoder in a standard AE, where the input is compressed in
the compression layer.

However, unlike a standard AE, our approach employs
a modified U-Net (U-Net-E) that iteratively refines the encoding
process through N self-iterations within the encoder, continu-
ously compressing the input into a lower-dimensional repre-
sentation while sharing a common encoder fE with para-
meters nfE

:

S( j)
ItC = fE(S( j�1)

ItC ;nfE
), j A {1,2,3,. . .,N}, (8)

where S(0)
ItC = x indicates the original input image, and the

spatial dimensions are reduced in each iteration. The shared
encoder fE: I j�1 ! I j transforms the input from one resolution

level to a lower one, where I i � Rh=2j�w=2j�c. The compression
depth is limited to a maximum of N = 5 for 1024 � 1024 input
images, as further downsampling leads to excessively small
feature maps and prevents the model from functioning.

Fig. 4 Functional defect masks by manual annotation (Mask B): (a) cracks (non-star), (b) finger interruptions, (c) scratches, and (d) star cracks.
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3.2.2 Iterative reconstruction stage. The green-filled box of
Fig. 5 shows the iterative reconstruction stage, which starts from
the most compressed representation S(N)

ItC in the iterative com-
pression stage. Similar to the U-Net-E in the encoder, we also
modify a standard U-Net to a new U-Net (U-Net-D) by replacing the

output layer with a transposed convolution (deconvolution) layer
with a kernel size of 2 and a stride of 2, upsampling the low-
dimensional features back to the original input size.

Multiple self-iterations are performed in the new decoder
to progressively upsample the low-dimensional features into

Fig. 5 Network framework of the proposed EI-AE for the defect detection of PVEL images.
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high-dimensional representations, through N iterative itera-
tions using a shared decoder fD with parameters nfD

:

S(k)
ItR = fD(S(k�1)

ItR ;nfD
), k A {1,2,3,. . .,N}, (9)

where the final compressed image is represented as S(0)
ItR = S(N)

ItC ,
and the spatial dimensions are gradually restored to the
original resolution. The shared decoder fD: IN�kþ1 ! IN�k
maps data from a lower resolution level to a higher one. By
performing N iterative reconstruction, the defective image will
be reconstructed to their normal state S(N)

ItR . Moreover, by
successively subtracting the reconstructed normal images S(k)

ItR

from the input defective images in the test set Xtest, defect
maps can be generated:

1

N
XN

k¼1
X test � S

ðkÞ
ItR

� �2
) defect maps 1: (10)

However, the current defect maps reflect all the defects (dark
regions) in the PVEL images, which may not be ideal for
industrial detection in specific scenarios. In practice, industrial
detection often aims to focus on critical failures, such as
significant cracks, fingers and scratch, while ignoring less
significant defects. Simply subtracting the reconstructed nor-
mal image from the defective image results in the extraction of
both true anomalies and background clutter (false positive). To
prioritize true defects, multi-image fusion detection is further
used, which can selectively emphasize significant anomolies
while minimizing the impact of background-induced noise in
the final defect maps. The implementation details are provided
in the following section.

3.2.3 Multi-image fusion detection. Two sub-tasks are
separately conducted in the multi-image fusion detection fra-
mework: (1) image fusion using only pseudo masks that simu-
late structural or visual perturbations, and (2) image fusion
incorporating both pseudo masks and functional defect masks
(described in Section 2.2). The former enables self-supervised
learning by introducing synthetic disruptions to guide feature
extraction, while the latter uses a small number of ground-truth
(GT)-like functional defect masks to further enhance the mod-
el’s capability in recognizing real-world PV panel anomalies
under a few-shot learning setting.

The reconstructed N images and the input image (in total
N + 1 images in each set) are fed into a 3D U-Net (U-Net-Seg),
as shown in the red concatenation paths of Fig. 5 and can be
expressed as:

X test � Sk
ItR;pseudo; k 2 f1; 2; 3; . . . ;Ng

) defect maps 2; and (11)

X test � ðSk
ItR;pseudo þ S l

ItR;trueÞ; k 2 f1; 2; 3; . . . ;Ng;

l 2 f1; 2; 3; . . . ;Lg ) defect maps 3
(12)

for the sub-tasks 1 and 2, respectively, where L indicates the
number of real functional defect mask l. Compared to the
conventional 2D network, a 3D U-Net incorporates temporal
sequence modeling,58 allowing the input of N reconstructed

images instead of a single one. This approach enhances struc-
tural consistency throughout the reconstruction process. The
detailed configurations of pseudo masks and real functional
defect masks are provided in Section 4.1.

3.2.4 Theoretical validation of advantages
Enhancement of constraints in function space (advantage 1).

The forward pass of the conventional deep AE with N encoder
and decoder blocks is given by eqn (3) that FAE(x) =
fD1

(fD2
(. . .fDN

(fEN
(. . .fE2

(fE1
(x)))))). It shows each encoder block fEi

and decoder block fDi
has its own corresponding parameters

xfEi and xfDi
. However, the proposed EI-AE uses a shared

encoder fE and a shared decoder fD, each applied N times:

FEI-AE(x) = f (k)
D (f ( j)

E (x)) = f (N)
D (f (N�1)

D

(. . .f (1)
D (f (N)

E (f (N�1)
E (. . .f (1)

E (x)))))), (13)

FEI-AE C FAE, (14)

where the proof is provided in S1.1 of the SI.
In addition, shared parameters nfE

and nfD
are present in the

shared encoder fEi
and decoder fDi

, respectively. Through gra-
dient accumulation during backpropagation, the parameter
sharing enforces constraints that ensure scale consistency:

iterative image compression:

@FEI-AEðxÞ
@xfE

¼
XN
j¼1

@f
ðN Þ
D ðf ðN ÞE ðxÞÞ
@f
ð jÞ
E ðxÞ

� @f
ð jÞ
E ðxÞ
@xfE

; (15)

iterative image reconstruction:

@FEI-AEðxÞ
@xfD

¼
XN

k¼1

@f
ðkÞ
D f

ðN Þ
E ðxÞ

� �

@xfD
: (16)

The gradients are computed for all iterations and then
combined, guiding the learning process to ensure that the
parameters learned by the model remain consistent across all
layers. This forces the model to learn representations that are
consistent in the function space, thereby avoiding overfitting to
any particular scale.

Such analysis demonstrates that the function space in the
proposed EI-AE is strictly smaller than that of the conventional
AE, further effectively limiting its capacity to memorize arbi-
trary defect patterns.

Prevention of defect memorization (advantage 2). First, normal
and defective image sets are defined as Xnorm and Xanom,
respectively. The iterative architecture can be interpreted as
utilizing regularization R(FEI-AE) on Xnorm to step-by-step
enforce consistency, ensuring stable feature representation
across N iterations:

RðFEI-AEÞ ¼
XN

j¼1;k¼1
f
ðkÞ
D f

ð jÞ
E ðxÞ

� �
� f

ðk�1Þ
D f

ð j�1Þ
E ðxÞ

� ����
���2: (17)

The expected reconstruction error for defective EL images in
the proposed EI-AE, given by the expectation ExAXanom

and
bounded below by:
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ExAXanom
[8x � f(N)

D (f(N)
E (x;xfE

);xfD
)8] Z c�min(d(Xnorm,Xanom)),

(18)

where min(d(Xnorm,Xanom)) refers to the minimum distance
between normal and defective distributions, and c is a positive
constant (c 4 0) that is a function of the number of iterations
N.

This sets a lower bound on the reconstruction error for
anomalies, demonstrating that the used iterative architecture
effectively prevents memorizing defective patterns without
sacrificing the reconstruction of normal data. The detailed
explanation is provided in S1.2 of the SI.

Improvement of multi-scale information representation (advan-
tage 3). The iterative architecture with N-step can capture
multi-scale information with improved scale consistency. Start-
ing from the iterative reconstruction stage S(k)

ItR = f(k)
D (f(N)

E (x)), the
mutual information Info(�;�) between N reconstructions is:

Info(S(k)
ItR;x) Z Info(SI

(k�1)
ItR ;x), (19)

where the original input x increases monotonically with k. In
addition, due to the same iterative operation in each step, the
incremental information gain at each step is approximately a
constant for normal PVEL images:

InfoðSðkÞItR; xnormÞ � InfoðSðk�1ÞItR ; xnormÞ
InfoðSðk�1ÞItR ; xnormÞ � InfoðSðk�2ÞItR ; xnormÞ

� const:; (20)

but this consistency breaks down for defective images, hence

InfoðSðkÞItR; xanomÞ � InfoðSðk�1ÞItR ; xanomÞ
InfoðSðk�1ÞItR ; xanomÞ � InfoðSðk�2ÞItR ; xanomÞ

aconst: (21)

Therefore, the proposed EI-AE inherently captures hierarch-
ical information through iterative operation, allowing it to
differentiate between normal and defective patterns. A detailed
theoretical explanation can be found in S1.3 of the SI.

4 Experimental verification
4.1 Training details

Our network consists of two main components: EI-AE and U-
Net-Seg. The EI-AE is responsible for reconstructing a clean
version of the input image by eliminating defects, while U-Net-
Seg performs pixel-level segmentation to localize defects based
on the reconstruction results.

4.1.1 EI-AE (iterative process). The EI-AE is trained using a
reconstruction loss defined in eqn (1), which minimizes the c1

distance between the input image and its reconstructed output.
During training, we apply multiple pseudo masks to the input
image, each masking a different region to simulate missing or
abnormal areas. Despite the masked input, the model is
supervised to reconstruct the full, unmasked original image,
thereby learning to restore normal content from incomplete or
corrupted observations.

4.1.2 U-Net-Seg for multi-image fusion. The U-Net-Seg
module is designed to detect defective regions by analyzing
reconstruction discrepancies. To construct the input, multiple

binary masks are applied to the same input image, simulating
various occlusions. Each masked image is independently
passed through the EI-AE, resulting in five reconstructed
images. These reconstructions are expected to inpaint the
masked regions using normal-context priors learned during
training. The original masked image, together with the five
reconstructions, are concatenated along the channel dimen-
sion, forming a 6-channel image. This procedure is repeated for
three input instances (e.g., from different views or frames), and
their 6-channel representations are concatenated to form a
final input tensor of size 18 � h � w, which is interpreted as
a 3D volume of size h � w � 18.

The U-Net-Seg network processes this 3D volume and out-
puts a single-channel prediction of shape h � w � 1, which is
subsequently flattened to a 2D defect score map. The network is
supervised using a pixel-wise c1 loss between the predicted
output and the GT mask, where pixels with value 1 indicate
known defective regions. These ground truth masks are derived
from the binary masks used for input corruption, guiding the
model to focus on regions where the reconstruction deviates
from expected normal patterns. In addition, 142 real functional
defect masks (1.25% of good images) from the datasets
described in Section 2.2 are included to achieve few-shot
learning. These real masks will help U-Net-Seg selectively focus
on the true defects.

4.1.3 Evalulation metrics. Five different evaluation metrics
are used for assessing pixel-wise defect detection performance,
comprising (i) three pixel-level metrics: pixel-wise area under
the receiver operating characteristic curve (P-AUROC),59 pixel-
wise average precision (P-AP),60 and pixel-wise F1 score (P-F1)60;
(ii) two regional-level metrics: area under the per-region overlap
curve (AUPRO),61 and area per-region overlap (A-PRO).61

P-AUROC measures the model’s ability to distinguish
between normal and defective pixels across all threshold
values. P-AP is calculated as the area under the precision–recall
(PR) curve, reflecting the trade-off between precision and recall.
P-F1 is defined as the harmonic mean of precision and recall at
the optimal threshold, providing a single-value summary of
detection accuracy.

AUPRO evaluates detection performance across varying false
positive rates by measuring how well predicted regions cover
ground-truth defects. A-PRO calculates the proportion of
ground-truth regions correctly detected, considering a predic-
tion successful if the intersection over union (IoU) exceeds a
predefined threshold (0.3 in this study).

4.2 Experiment 1 – unsupervised detection of all defects (No
U-Net-Seg)

4.2.1 Overall performance comparison. Based on eqn (10),
the proposed EI-AE performs segmentation of all defects under
the unconditional defect detection scenario (corresponding
to defect Maps 1 in Fig. 5). This enables direct pixel-level
localization of defects that all defects are treated uniformly as
defects, without imposing specific conditional constraints. In
addition to the proposed EI-AE, four classic segmentation net-
works (AE,52 EdgeRec,62 DRAEM,63 and U-Net49) are trained to
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demonstrate the superiority of EI-AE in fully unsupervised
defect segmentation of PVEL images. It should be mentioned
that AE, EdgRec, and DREAM are classic unsupervised segmen-
tation networks that operate without any labelled data, whereas
U-Net requires either pseudo labels or true labels (142 images
from Mask B – Section 2.2) to perform segmentation.

Fig. 6 (segmentation maps) and Table 1 (metrics) illustrate
the comparison results, obtained by directly computing pixel-
wise differences between the reconstructed images and their
original counterparts. For performance evaluation, the GT is
defined using the full defect masks (Mask A) as described in
Section 2.1. Although EI-AE achieves slightly lower P-AP
(0.6434) and P-F1 (0.6739) compared to DRAEM (0.7248 and
0.7206 respectively), it consistently outperforms all baseline
methods in the remaining three metrics: P-AUROC (0.8800),
AUPRO (0.4074), and A-PRO (0.8557). These results indicate
that EI-AE provides stronger global discrimination capability
and better robustness in identifying true functional defects
across diverse pixel regions, while DRAEM tends to focus more

on pixel-level differences, which may lead to higher precision in
localized areas but lower overall consistency and generalization
performance. The performance of the conventional AE is poor-
est because the model tends to take a shortcut during recon-
struction by simply copying the input to the output. As a result,
it also learns to reconstruct the defects, making it difficult
to distinguish them from normal regions [eqn (5) and (6)].
In general, the results demonstrate the strong generalization
capability of the proposed EI-AE in scenarios that demand
comprehensive detection of diverse defect types in PVEL
images.

4.2.2 Incremental reconstruction performance of proposed
EI-AE. Since the proposed EI-AE relies on iterative operations to
progressively capture fine-grained defect details in PVEL
images, restore anomaly images to their normal counterparts,
and subsequently obtain anomaly segmentation, it is essential
to validate its incremental reconstruction performance. Fig. 7
(four images with highly severe defects) visually illustrates the
enhancement in reconstruction quality across five iterative
stages, effectively demonstrating the model’s ability to gradu-
ally capture and restore complex details. Defects within the
data are incrementally diminished through successive recon-
struction steps, highlighting the model’s proficiency in identi-
fying and progressively mitigating defective features.

Notably, the maximum feasible compression depth is N = 5,
as it represents the limit imposed by the 1024 � 1024 input
resolution and the downsampling factor of two per stage.
Beyond this depth, the feature maps shrink to sizes below
32 � 32, potentially resulting in loss of spatial context, mis-
alignment in the decoder, and numerical instability due to
over-compression.

Fig. 6 Segmentation results of all defects using unsupervised defect detection (Experiment 1).

Table 1 Comparison of pixel-level metrics across different methods in
Experiment 1

Methods P-AUROC P-AP P-F1 AUPRO A-PRO

AE (unsupervised) 0.5772 0.2002 0.3757 0.0239 0.0212
EdgRec (unsupervised) 0.5448 0.2687 0.3099 0.1515 0.4060
DRAEM (unsupervised) 0.8596 0.7248 0.7206 0.1251 0.8202
U-Net (unsupervised) 0.5349 0.2449 0.3096 0.1232 0.3104
U-Net (few-shot)a 0.7571 0.5379 0.6207 0.1625 0.6939
EI-AE (unsupervised) 0.8800 0.6434 0.6739 0.4074 0.8557

a U-Net is trained with functional defect masks (Mask B) to enable few-
shot segmentation.
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4.3 Experiment 2 – unsupervised defect detection using U-Net-Seg

By incorporating a segmentation head (referred to the multi-
image fusion module, U-Net-Seg) and introducing annotated
defect masks, the proposed EI-AE model is able to detect more
specific defects in PVEL images. The test images are selected
from the ‘‘Crack (non-star)’’ category in Mask B, as shown in
Fig. 4(a), for evaluating the performance of all networks.

Fig. 8 presents the segmentation results obtained by fusing
the input image with five piecewise recovery images as input to
U-Net-Seg, where only pseudo masks are used during training
[eqn (11)]. Table 2 presents the quantitative comparison of
different unsupervised methods for the ‘‘Crack (non-star)’’
category. The proposed EI-AE achieves the best overall perfor-
mance, with the highest scores in P-AUROC (0.8868), AUPRO
(0.6297), and A-PRO (0.8814), indicating superior pixel-wise discri-
mination and region-level defect localization. While P-AP (0.1428)
and P-F1 (0.2076) are slightly lower than those of the U-Net baseline
(0.2503 and 0.3355, respectively), EI-AE maintains a better balance
across all metrics. This suggests that EI-AE avoids overfitting to local
noise and generalizes better in complex surface defect scenarios.
Although the integration of U-Net-Seg in the conventional AE
significantly improves its performance, it still falls short of EI-AE,
confirming the critical role of the embedded iterative operation in
enhancing defect localization and suppression of irrelevant features.

4.4 Experiment 3 – few-shot defect detection using U-Net-Seg

In the third experiment, true masks (functional defect masks –
Mask B) are also included in the training process of the

proposed EI-AE, in addition to the pseudo masks. A total of
142 real functional defect masks are randomly selected from
the category groups of finger interruptions, scratches, and star
cracks, while the non-star crack category group is used to
evaluate the network performance.

Despite comprising only 1.25% of the good images, the
inclusion of true masks contributes to improved prediction
accuracy and more precise defect segmentation with reduced
background interference [Fig. 9(e)], as demonstrated in the
comparison of EI-AE results in Experiment 2 [Fig. 8(h)]. An
accuracy improvement of 3.04% is achieved in the few-shot
setting (P-AUROC: 0.9138), compared to the baseline without
few-shot learning (P-AUROC: 0.8868).

Table 3 compares the performance of AE, U-Net, and the
proposed EI-AE in a few-shot defect segmentation setting. In
terms of P-AUROC, EI-AE achieves the highest score of 0.9138,
outperforming AE (0.8586) and U-Net (0.7923), indicating
improved defect segmentation at the pixel level. For P-AP, EI-
AE reaches 0.3425, which remains higher than that of U-Net
(0.2870) and noticeably better than that of AE (0.2098), suggest-
ing better precision–recall trade-off. The P-F1 of EI-AE is 0.4208,
significantly higher than that of AE (0.3054) and slightly higher
than that of U-Net (0.4205), reflecting more accurate segmenta-
tion boundaries. In terms of region-aware metrics, EI-AE also
demonstrates competitive performance, achieving an AUPRO of
0.7576, slightly lower than that of AE (0.7916) but significantly
higher than that of U-Net (0.5446). Similarly, the region-wise
A-PRO of EI-AE reaches 0.8185, exceeding that of U-Net (0.6852)
and only marginally lower than that of AE (0.8193). These

Fig. 7 Step-by-step reconstruction (iterative 1 to iterative 5) in the proposed EI-AE.
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results confirm the effectiveness of the enhanced iterative
structure in improving segmentation accuracy and robustness
with limited supervision.

To further illustrate how accuracy varies with different
sampling sizes in the few-shot setting, we conduct an addi-
tional experiment testing 1-, 10-, and 50-shot scenarios, respec-
tively. As shown in Table 4, the 1-shot case performs worse than
the unsupervised one (0.8868) because a single labelled sample
provides insufficient and potentially misleading supervision,
disrupting the model’s originally stable feature representation.
However, as the number of shots increases, the accuracy
improves rapidly and approaches saturation at 50-shot, demon-
strating the model’s strong few-shot learning capability.

5 Implications and challenges in
real-world manufacturing

The spatial distribution and trends of defects detected by the
proposed EI-AE can be correlated with specific PV panel

manufacturing steps (e.g., wafer cutting, cell soldering, encap-
sulation, lamination, or module assembly), serving as an effec-
tive quality control tool across various production stages.
Moreover, the obtained defect maps can be integrated with
statistical process control or optimization frameworks to quan-
titatively assess the impact of manufacturing parameters,
enabling engineers to identify critical process stages and proac-
tively guide process improvements.

There are also some major challenges in practical deploy-
ment. First, building a larger set of high-quality PV-EL defect-
free and defective images remains a challenge, especially for
emerging PV materials such as perovskite and CIGS. Secondly,
the current implementation does not explicitly distinguish
defect types; integrating a dedicated classifier model would
be a promising yet non-trivial step toward enabling automatic
defect categorization. Lastly, in real production lines where PV
panels may exhibit variations in shape, orientation, and layout,
developing a model robust to such variations is still an
open challenge. The proposed EI-AE paves the way for the

Table 2 Comparison of pixel-level metrics across different methods in Experiment 2

Methods P-AUROC P-AP P-F1 AUPRO A-PRO

AE (unsupervised) 0.5108 0.0034 0.0074 0.5508 0.1512
AE (unsupervised with U-Net-Seg)a 0.8135 0.0651 0.1659 0.5508 0.7641
EdgRec (unsupervised) 0.6175 0.0068 0.0226 0.2534 0.4635
DRAEM (unsupervised) 0.6666 0.0491 0.1110 0.3368 0.5676
U-Net (unsupervised) 0.7353 0.2503 0.3355 0.4226 0.4985
EI-AE (unsupervised)a 0.8868 0.1428 0.2076 0.6297 0.8814

a Segmentation head (U-Net-Seg) is included in the conventional AE and the proposed EI-AE.

Fig. 8 Segmentation results using unsupervised defect detection (Experiment 2).
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development of more robust and adaptive models capable of
handling these practical complexities.

6 Conclusion

Given that current PVEL anomaly detection methods predo-
minantly apply classical segmentation networks with limited
adaptability to subtle or complex defects, this study proposes a

novel EI-AE framework to achieve more precise defect segmen-
tation of complex anomalies in PV modules. Instead of relying
on implementation-complex architectures, a simple yet effec-
tive iterative structure is adopted, introducing a small number
of iterative steps within each encoder and decoder block to
support effective deep feature extraction. Moreover,
the proposed multi-image fusion structure concatenates the
original inputs with all recovered images generated during
the iterative process, achieving more precise segmentation of
specific anomalies in PVEL images while using only a limited
number of real labels.

Three experiments, including (1) unsupervised detection of
all defects, (2) unsupervised detection with segmentation head,
and (3) few-shot detection with segmentation head, progres-
sively demonstrate the superior performance of the proposed
EI-AE over conventional methods. The proposed EI-AE reduces
the need for extensive labelled data, making it highly suitable
for large-scale PV module inspection in industrial settings. Its
simple design and adaptability to complex defects also support
efficient deployment in real-world manufacturing and main-
tenance scenarios.
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Table 3 Comparison of pixel-level metrics across different methods in
Experiment 3

Methods P-AUROC P-AP P-F1 AUPRO A-PRO

AE (few-shot with U-Net-Seg)a 0.8586 0.2098 0.3054 0.7916 0.8193
U-Net (few-shot) 0.7923 0.2870 0.4205 0.5446 0.6852
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a Segmentation head (U-Net-Seg) is included in the conventional AE
and the proposed EI-AE.

Table 4 Comparison of pixel-level AUROC of proposed EI-AE under
different few-shot scenarios in Experiment 3

Methods
EI-AE
(1-shot) (%)

EI-AE
(10-shot) (%)

EI-AE
(50-shot) (%)

EI-AE
(142-shot) (%)

P-AUROC 74.5 88.6 91.5 91.4
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