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Towards inline ultrasonic characterisation of
battery slurry mixing: opportunities, challenges,
and perspectives

Yifei Yang,a Zhenyu Guo, b Yun Zhao,a Haobo Dong, c

Maria-Magdalena Titirici, b Frederic Cegla,a Valerie Pinfield d and Bo Lan *a

Inefficiencies in the slurry mixing stage are a major factor in high scrap rates in battery manufacturing, thus

hindering sustainable production. Current offline characterisation techniques for slurry microstructure and

rheology are slow and inadequate for closed-loop quality control or process optimisation. This review

evaluates ultrasound as a promising inline, non-invasive characterisation tool to address this crucial need.

We critically examine decades of developments and applications in ultrasonic evaluation techniques,

assessing their relevance and identifying challenges specific to the high-concentration, non-Newtonian

battery slurries. Key wave-slurry interaction mechanisms, including attenuation, wave speed, scattering, and

guided wave propagation, are discussed in the context of characterising microstructural features (e.g.

particle dispersion and agglomeration) and macroscopic rheological properties (e.g. viscosity and

viscoelasticity). To make full use of the crucial yet limited information accessible via ultrasound, we propose

a hybrid framework marrying ultrasonic and other offline data through physics-informed machine learning

for accurate and comprehensive property estimation. With the analyses and framework, this review points

to a clear path towards achieving robust inline monitoring and efficient optimisation of battery slurry

mixing.

Broader context
As the world transits to electrified transport and renewable energy systems, batteries have become a pillar of decarbonisation. However, underneath this rapid
growth lies a less visible problem: battery manufacturing is hindered by inefficiencies, with scrap rates in gigafactories exceedingly high. These inefficiencies
not only drive up costs but also undermine the environmental gains of clean energy technologies, by wasting critical materials and energy during production.
One of the key contributors to this issue is electrode slurry mixing, a foundational step that determines the structural and functional quality of battery
electrodes. Despite its significance, the optimisation of slurry mixing remains largely empirical, relying more on iterative trial-and-error from offline
characterisations, instead of precise, real-time feedback and control guided by physics or monitoring data. Addressing this problem is vital for reducing
industrial waste and increasing the reliability and affordability of battery technologies. This review makes the case for inline ultrasonic characterisation tools –
combined with physics-informed predictive modelling – to transform how battery slurries are evaluated and controlled. By advancing this field, we contribute to
a more sustainable, resource-efficient energy storage ecosystem that can meet the urgent demands of the environmental and climate crisis.

1 Introduction

In our society’s transition to clean energy, batteries are playing
a crucial role across sectors, with prominent examples includ-
ing the electrification of vehicles and transportation,1–3 and the

grid-scale energy storage4 for stabilising intermittent renewable
sources (e.g. solar and wind5). These vital applications spur phe-
nomenal demand for batteries. The most widely used type, Li-ion
batteries (LIBs),6–9 are projected to grow 27% annually and reach
manufacturing capacity of 4.7 to 6.8 TWh by 203010,11 (Fig. 1(a)),
with an estimated market value of 4$400 billion.10 Zinc- and
sodium-ion batteries are also expected to grow significantly to
reach respective market caps of $14.2312 and $1.84 billion13 by
then. However, the rapidly expanding manufacturing capacity is
known to suffer from high scrap rates: the manufacturing of LIB,
which is more established than other battery chemistries, have
typically 15–30% scrap rates in new gigafactories and B10% even
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after five years.14–16 The scraped materials have significant accu-
mulated values from their manufacturing histories – the cathode of
LIBs also contains precious metals (e.g. cobalt) which cause
environmental and societal issues to mine17–19 – and will require
further investments to recycle, which makes the scrap highly
costly.20–22 Each scrap percentage is estimated to cost $32 500 per
day and $10.8 M per year for just one 40-GWh factory.15 Therefore,
improving battery manufacturing efficiency and reducing the scrap
rates have substantial economical and environmental impacts.23,24

One battery manufacturing stage that has a critical influence
on the overall scrap rate is slurry mixing – the very first step in
electrode production. The rejection rate of slurry mixing itself is
1–2%, the second highest across all manufacturing steps;25 the

slurry product also heavily impacts the coating process,26 which
has the highest scrap rate at B5%,25,27 see Fig. 1(b). In
addition, the microstructures of the slurry has a deterministic
influence on the finished electrode morphologies and the
ultimate performance of the battery cells.28,29 Therefore, pre-
cise and efficient characterisation of the slurry properties is a
vital requirement,30 not only to ensure the quality of electrodes
and cells, but also to improve economic saving – by rejecting
flawed products early and preventing them from advancing
through the downstream processes. An ideal characterisation
technique should also allow easy integration to the production
line, to achieve real-time, dynamic, and closed-loop optimisa-
tion of manufacturing configurations.

Fig. 1 (a) Expected rapid growths in global Li-ion battery manufacturing capacity. Data sourced from International Energy Agency (IEA), World Energy
Investment 2023 – Overview and Key Findings,11 accessed 24 April 2025; (b) rejection rates across all manufacturing process. Replotted from data
reported in ref. 25, licensed under CC BY-NC-ND 4.0, no changes were made to the original data; (c) the overall scope of this article: to illustrate how
mixing configurations influence slurry properties, and how current open-loop optimisation – which relies on offline evaluations – can be improved by a
closed-loop approach with inline ultrasonic characterisation.
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Unfortunately, existing characterisation techniques are inade-
quate for such inspection requirements. This is largely due to the
inherent complexities of battery slurries, which stem from multi-
scale particulate interactions31 and the myriad of parameters
affecting slurry microstructure formation.32 As a result, a range
of characterisation and modelling techniques often have to be
employed in tandem, with each of them characterising one aspect
of the slurry properties. Examples include advanced imaging tech-
niques (e.g. scanning electron microscopy, SEM or cryo-SEM) for
particle sizes,33–35 rheometers for viscosity,36 and oscillatory shear
tests for viscoelasticity.37 However, most of these tests are expensive
(require sophisticated equipment38) and time-consuming (con-
ducted offline) to perform, and the aggregation of measurement
results to inform configuration optimisation is complex and empiri-
cal. Consequently, the control and optimisation of the slurry mixing
process is highly inefficient and complicated, ultimately contribut-
ing to persistently high scrap rates.

In this review paper, we present low-power ultrasound as a
strong prospect to provide inline characterisation of battery slurry
mixing. Ultrasound, being a mechanical wave, is perturbed by the
slurry medium (especially the suspended particles) as it propa-
gates, leading to quantifiable changes in wave behaviours, which
provides the physical foundation for the inverse characterisation
of the slurry properties.39,40 This is pursued in decades of devel-
opments and a rich body of work,40–47 which have established
rigorous theoretical frameworks and experimental capabilities to
evaluate slurry microstructures (e.g. particle size distribution) and
macroscopic properties (e.g. viscosity).39,40,48,49 As a result, ultra-
sonic techniques have enjoyed wide employment for the charac-
terisation of different colloidal dispersion systems across mineral
& mining,50,51 food,52,53 and pharmaceutical54,55 industries. Prac-
tically, ultrasound’s advantages include the abilities to penetrate
optically opaque systems, to operate across length scales, and to
be implemented inline with real-time responses – all of which are
highly desirable for monitoring battery slurry mixing.

To replicate such successes, however, is not without its chal-
lenges. For instances, the solid concentration in battery slurries are
much higher56 than the other typical slurry systems; the suspended
particles consist of multiple materials, e.g. soluble binder adsorbed
on particle surface rather than having a clear solid–liquid bound-
ary;57,58 the non-Newtonian continuous (fluid) phase presents diffi-
culties both for experiments59 and the inverse quantification of
properties such as viscosity.60 We identify comprehensive lists of
such research gaps and point out directions to potentially overcome
them. One potentially winning strategy, as will be discussed in
Section 5, could be to combine the information accessible by
ultrasound with predictive modelling, especially the emerging
physics-informed machine learning (PIML) frameworks,61 which
offers a powerful platform to incorporate not only the physical
layers of ultrasonic interactions with slurries, but also the offline
characterisation techniques, thus enabling a holistic estimation of
slurry microstructures and macroscopic rheological behaviours.

The overarching objective of this paper is, as plotted in
Fig. 1(c), to examine the unfulfilled needs for closed-loop
control of slurry mixing, and to propose ultrasound as a
potential solution. Note that throughout this paper, we use LIBs

as examples given their prominence, but the fundamental
principles of ultrasonic characterisation are general and equally
applicable to slurries in other systems, such as zinc- or sodium-
ion batteries and the next-generation, colloidal ink-based solar
panels (e.g. quantum dot62 and perovskite63), despite their
different chemistries and particle sizes. The sections are struc-
tured to serve the purpose: Section 2 examines the slurry mixing
process, with special focus on the important microstructure and
properties of slurries that require characterisation. Next, we review
the current state-of-the-art characterisation and modelling tools
and point out their advantages and shortcomings. Section 4 then
provides a general introduction to ultrasonic-based characterisa-
tion techniques, which spans from particle sizing from bulk wave
attenuation to viscosity measurement from guided waves. Finally,
we identify the research gaps to shifting existing knowledge within
the ultrasonic field towards battery slurry evaluation, and discuss
the potential directions to address them.

2 Battery slurry properties and mixing
configurations

Slurry-based wet processing is the dominant method for manu-
facturing LIB electrodes.64 It involves mixing and dispersing active
material (AM) particles, polymer binders, and conductive additives
(CA, most commonly carbon black) in a suitable solvent to produce
a homogeneous slurry. Anode slurries are often aqueous,65 with
graphite as the AM,7,66 and a combination of carboxymethyl
cellulose (CMC) and styrene-butadiene rubber (SBR) as the bin-
der;67 whereas in cathode slurries, the solvent is typically an
organic compound like N-methyl-2-pyrrolidone (NMP),65 AMs
lithium metal oxides (e.g. lithium cobalt oxide (LCO)6,68 or lithium
nickel cobalt manganese oxide (NMC)7,69), and the binder poly-
vinylidene fluoride (PVDF).70 Before mixing, binders are usually
pre-dissolved in the solvent to form a continuous phase that
supports the dispersion of AM and CA particles added subse-
quently. Each constituent plays a critical role: the AM particles
govern capacity, the CA ensures electron transport, and the binder
ensures mechanical integrity and adhesion to the current collector.

As the initial step in battery manufacturing, the mixing process
must produce a well-formulated dispersion that facilitates down-
stream fabrication stages and ultimately ensures the functional
performance of the cell. To achieve these, the slurries have to meet
stringent requirements in terms of microstructures at the particles
scale, as well as rheological properties at the bulk scale.

2.1 Key slurry property requirements

2.1.1 Microscopic – particle dispersion, homogeneity and
binder distribution. The ideal state of a battery slurry, regardless
of the AM particles (e.g. NMC vs. graphite) or the binder (e.g.
PVDF vs. CMC/SBR), is a homogeneous dispersion of particles,
with minimal presence of aggregates or agglomerations.71

Achieving this state requires overcoming inherent inter-particle
forces68 with sufficient energy during mixing and stabilising the
dispersion afterwards.72,73 The polymer binders should be evenly
spread over AM particle surfaces, effectively acting as both an
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adhesive glue and a cohesive network that ties the CA particles to
the AM,28 as depicted in Fig. 2(a). This state allows AM particles
in the electrode to have maximum accessibility to Li+ ions in
electrolyte, and the diaphanous percolated CA network ensures
efficient electron transportation,28 as shown in Fig. 2(b). Metrics
related to particle dispersion and distribution can therefore be
derived from this ideal state to indicate the slurry quality.

Slurry dispersion is commonly evaluated using particle size
distribution (PSD). A good slurry typically exhibits a narrow
peak centred around the median particle size. It is interdepen-
dent with spatial homogeneity: a broader PSD may arise from
increased polydispersity in insufficiently mixed slurries, due to
the presence of both small aggregates (e.g. of CA particles) and
large clusters (e.g. of AM agglomerations),74 see Fig. 2(c). Poorly
dispersed slurries can lead to electrode coating with uneven
spread of particles and exceedingly high localised packing
density (Fig. 2(d)), increasing the overall tortuosity and limiting
high-rate performances.75,76 The localised clusters also increase
the likelihood of defects, which accelerate capacity fading and
mechanical degradation during cycling.77

The distribution and morphology of binder and CA around
the AM particles is collectively referred to as the carbon/binder
domain (CBD).29 In a properly formed CBD, the polymer chains
adsorb onto AM particle surfaces, and their dangling ends form
entangled networks with the CA particles, known as bridging
flocculation,78 which stabilise the dispersion.79 The structure of
the CBD directly impacts the slurry’s macroscopic rheology,80

the drying efficiency of the coated film81 and performance of the
electrode.82 Achieving this optimal microstructure consistently
presents a challenge, as it is highly sensitive to the mixing
parameters29 and notoriously difficult to evaluate in situ,83

which is a motivation for the development of advanced char-
acterisation techniques such as ultrasound.

In addition, chemical interfacial interactions play an important
role in stabilising the suspension and influencing agglomeration at
molecular scales. One way to describe these interactions is through
zeta potential, which is a physical property measuring the
electrostatic charge on the surface of the dispersed particles.
A higher magnitude of zeta potential – positive or negative –
generally indicates stronger electrostatic repulsion between
particles and therefore a more stable slurry.84 Practically, there
may also exist microscopic metal particle contaminations due
to equipment-wear,85 though they are less common in stable
industrial manufacturing.

2.1.2 Macroscopic – rheology. Rheology describes the flow
and deformation behaviour of the slurry in response to external
stresses. These properties dictate the processability of the
slurry, particularly the coating process which subjects the
slurry to significant shear and extensional deformation.80 LIB
slurries are typically non-Newtonian fluids, and their complex
rheological behaviour reflects the interplay between the multi-
scale, complex microstructures of suspended particle networks
and polymer binders, which could rearrange, relax or break
down under stress.80,86

Viscosity measures a fluid’s resistance to deformation under
an applied shear stress. Most LIB slurries are exhibit shear
thinning, where viscosity decreases as the applied shear rate
increases.32 This behaviour is highly desirable: at low shear
rates, high viscosity helps maintain particle dispersion and
microstructural stability.32 Whereas at high shear rates, parti-
cularly during slot-die or blade coating, a low viscosity is crucial
for ensuring smooth, uniform film formation, reducing edge
defects and enabling efficient roll-to-roll manufacturing. The
transition between the viscosity regimes is fundamentally gov-
erned by the shear-induced alignment of particles and weakly
aggregated networks within the slurry.87

Fig. 2 Schematics of LIB-electrode slurry microstructures and resultant electrode morphologies. A desirable slurry microstructure with uniformly
dispersed particles and localised percolated networks (a) tends to form a favourable electrode morphology (b)28 while a poorly mixed slurry containing
small aggregates and large agglomerations (c) normally leads to electrodes with blocked pathways for ion and electron transportation (d).28
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Thixotropy, which describes the time-dependent viscosity
reduction under constant shear stress, and the gradual recovery
upon stress removal, is also commonly observed.88 Under sus-
tained shear of the coating process, the reduced viscosity aids
application; when the shear stops, the time-dependent recovery to
high viscosity is crucial for preventing excessive post-coating flow
or sagging and maintaining dimensional stability.37 Thixotropy
originates from the reversible breakdown and reformation kinetics
of the internal particle and binder networks.37,80,88

Viscoelasticity and yield stress are two additional key rheo-
logical properties, particularly important at low or intermediate
stress levels.37,86 Viscoelasticity refers to the viscous (liquid-like,
dissipating mechanical energy) and elastic (solid-like, storing
mechanical energy) behaviour of the slurry under deformation,
which is quantified by frequency-dependent storage (G0) and
loss (G00) moduli,37,89 respectively. Viscoelasticity reflects the
strength and relaxation dynamics of the internal network
structure.89 A suitable level of elasticity is required to maintain
suspension stability, and prevent defects like cracking or
delamination during coating and drying.80 Yield stress, by
contrast, is the threshold stress required to make a slurry flow,
and below this threshold, the slurry behaves like an elastic
solid.90 An appropriate yield stress helps prevent particle
settling during storage and maintains the shape of the coated
film.37,90

Finally, extensional rheology, which describes a slurry’s flow
behaviours under elongational deformation, is increasingly recog-
nised for its relevance in processes involving stretching or flow
convergence, such as slot-die coating, inkjet printing, and the pinch-
off dynamics during intermittent coating.91,92 Extensional properties
are sensitive to binder type and concentration, and cannot be
modelled accurately form shear rheology measurements.92

It is worth emphasising again that these macroscopic rheo-
logical behaviours are direct manifestations of the underlying
microstructures. The particle dispersion, homogeneity, binder
distribution and the overall connectivity of the CBD collectively
determine the slurry’s response to external stress. Therefore, to
achieve the desired macroscopic rheological profiles one needs
to control the slurry’s microstructures, and that in turn should
be done through careful formulation and mixing configuration.

2.2 Slurry mixing configurations

It is a complex undertaking to meet the desirable microstructural
and macroscopic rheological requirements consistently, across the
laboratory and industrial scales. The final state of the slurry is not
merely determined by its composition, but is critically dependent
on the employed mixing processes, which involves a myriad of
parameters, from heterogeneity in particle properties to the spe-
cific configurations of equipment.93,94 Therefore, successful slurry
formulation requires a process-sensitive approach, where mixing
parameters are carefully adapted and controlled according to the
intended material properties and slurry composition. This requires
a comprehensive understanding on the influence of the main
mixing configurations on the slurry microstructure and properties.
Here we cover a few representative configuration parameters, but it
is important to recognise that there are many more.

2.2.1 Equipment. The objective of mixing is to uniformly
refine the agglomerates and aggregates, and assemble the parti-
cle components into a desired microstructure – without dama-
ging the materials. There are broadly three categories of mixing
devices: hydrodynamic shear mixing (e.g. planetary mixers, knea-
ders), mill (e.g. disc, roller, and ball mills) mixing and ultrasonic
homogenisation, see Fig. 3(a). Hydrodynamic shear mixers relies
on fluid motion to generate shear stress and break down clusters.
Double planetary mixer, for example, can effectively achieve sub-
micron cluster sizes.95 Mill mixers, by contrast, rely on mechan-
ical impact and shear in the milling process. They can achieve
finer sizes than shear mixers,96 but the high-intensity mechanical
forces can damage the crystalline structures of the materials.
Ultrasonic homogenisation for battery slurry is still an active
research topic only in the early stages of industrial adoption. It
uses high-power ultrasound (not to be confused with low-power
ultrasound for inspection purposes) to generate localised shock
waves through acoustic cavitation to aid mixing,97 which is
energy efficient and effective for concentrated slurries, but it
poses risks of generating highly reactive free radicals and asso-
ciated chemical degradations, particularly in aqueous slurries.98

2.2.2 Mixing ratios. The solid concentration and mass ratio
of the components significantly impact slurry properties. Fig. 3(b)
shows an example of shear viscosity vs. solid concentration. It
reveals that there is an optimal window of solid concentration
(the shaded region), which ensures the stability of the slurry
structure against settling, while maintaining suitable rheological
behaviours.78 The mass ratio typically also has an optimal win-
dow. For instance, in the range of 0.4–1.0 wt%, polymer binder
would enable sufficient adhesion on AM surfaces while promoting
particle dispersion, whereas excessive polymers (41.0 wt%) result
in a solid-like gel structure (G0 4 G00) which reduces the slurry’s
processability, as demonstrated in Fig. 3(c).89

2.2.3 Component addition sequence. The sequence in
which constituent materials are added during mixing can strongly
affect slurry quality. For example, Lee et al.100 demonstrated that
for a LiCoO2/CB/PVDF cathode slurry, adding the NMP solvent in
multiple steps yielded better rheological properties and particle
dispersion, resulting in superior cycling stability and rate perfor-
mance, see Fig. 3(d). These findings were later corroborated by a
mesoscale model.101 Similarly, strong dependence on the mixing
sequence was also found for anode slurries.102

2.2.4 Mixing duration and intensity. Typical mixing pro-
cesses on a planetary mixer range from 2 to 6 hours, at speeds
between 1000 and 4000 rpm. While higher speed and extended
duration generally enhance particle dispersion, they could also
lead to overmixing, which may end up disrupting the optimal
microstructure of AM/CA clusters and damaging polymer bin-
ders, thus degrading battery performances.103,104

2.3 Summary and challenges for characterisation

The microstructures and macroscopic rheological properties of
battery slurries are profoundly influenced by a broad range of
mixing configuration parameters. Thus, the task of achieving
ideal slurry properties becomes the optimisation of manufac-
turing parameters, which is a formidable task given that there
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are hundreds of interdependent variables in the optimisation
space, and even subtle changes in the likes of particles for-
mulation or mixing strategy can yield considerable differences
in slurry property outcomes.

Fundamentally, the optimisation is an inverse problem, where we
seek process inputs that would yield desirable property outputs. This
could be helped by robust prediction of slurry behaviours. Theore-
tical or computational fluid dynamics tools have been employed to
study flow patterns, turbulence and mixing efficiency,105–107 but their
current formulations are generally ill-suited for the polydisperse,
non-Newtonian battery slurries, which are governed by particle–
particle interactions (these will require rheological modelling, to be
reviewed in Section 3). As a result, the optimisation largely falls back
on an iterative process through experimental characterisation.

In this context, accurate and rapid characterisation of slurry
properties becomes paramount, as it directly determines the effi-
ciency in each iterative step of the multi-dimensional optimisation
process. The next chapter is therefore dedicate to reviewing state-of-
the-art characterisation and modelling techniques. However, as will
be discussed, the majority of them are offline and thus inefficient.

3 State-of-the-art characterisation
techniques

Various haracterisations are carried out at various stages of
slurry mixing. Pre-mixing inspections primarily target incom-
ing material quality and impurities detection (e.g. metal

Fig. 3 Slurry mixing configurations and their effects on the slurry properties. (a) Schematics of several commonly used mixing devices. Reproduced with
permission from ref. 99. Copyright 2011, Elsevier Ltd. (b) Slurry viscosity with various solid contents (57.2–69.5 wt%). The shaded region (63.9–66.3 wt%)
indicates the optimal window of solid concentration which balances favourable rheological behaviours. Adapted from ref. 78. Copyright 2020, licensed
under CC BY-NC 3.0, Royal Society of Chemistry. (c). The complex modulus of anode slurries composed of 50 wt% graphite and varying concentration of
carboxymethyl cellulose (CMC). The shaded region (0.4–1.0 wt%) indicates the optimal binder ratio window where a balance between viscous and elastic
responses is maintained (G0 E G00), ensuring both particle dispersion and structural stability. Reproduced with permission from ref. 89. Copyright 2015,
Elsevier Ltd. (d) The effect of different mixing sequences (one-setp mixing and multi-step mixing) on the rheological properties and battery capacity
during cycling. Reproduced with permission from ref. 100. Copyright 2010, Elsevier Ltd.
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particles). Techniques range from sieving to remove large
aggregates in batch mixing, to applying magnetic fields for
removing ferromagnetic contaminants. Advanced characterisa-
tions like inductively coupled plasma optical emission or
various microscopies are sometimes employed to pinpoint the
impurities at smaller scales.108

During and after mixing, slurries are evaluated to ensure
conformance of specifications and to inform process optimisa-
tion. While limited real-time data on certain parameters can be
obtained from inline sensors (e.g. bulk viscosity, from pressure
dependence of rheological properties in a complex flow cell109,110

) during mixing or transport, comprehensive characterisations of
the slurry microstructures and macroscopic rheological proper-
ties rely most dominantly on offline techniques applied post-
mixing. Complementary to direct experimental evaluations, mod-
elling approaches are increasingly employed to elucidate the
relationships between slurry microstructure, rheology and the
mixing configurations, enabling more comprehensive and effi-
cient optimisation strategies.

3.1 Direct experimental characterisations

3.1.1 Microstructures. As reviewed previously, it is crucial
to characterise the key microstructural features of battey slur-
ries such as PSD, homogeneity and dispersion, binder and CA
networks, and surface chemistry, which are all dynamic and
evolve throughout the mixing process. Table 1 summarise the
existing techniques relevant to these characteristics, and Fig. 4
gives a graphic summary. It is important to recognise that these
properties are not isolated but often interdependent; for
instance, particle dispersion and aggregation behaviour both
reflect the level of homogeneity.

To assess PSD, laser diffraction is commonly used in indus-
try and research. It measures the angular intensity variations of
scattered light as a laser beam passes through a dispersed
particulate sample, since larger particles scatter light at smaller
angles relative to the laser beam.74 However, it struggles with
highly opaque systems such as battery slurries and requires
sample dilution, which would likely alter the microstructures.
Dynamic light scattering (DLS) is another technique which
offers finer resolution for nano-sized components. It measures
particle motion in dispersion systems based on Brownian
movement, where the energy transfer from particle–solvent
collisions has a greater effect on smaller particles, resulting
in higher speeds. DLS is limited to very dilute systems.111 In
practice, the Hegman gauge is a simple and rapid method to
estimate the largest size of agglomerates or particles, though it
lacks quantitative precision and is prone to user error.112

Advanced imaging techniques like SEM and cryo-SEM are
commonly used to visualise slurry morphology, particle disper-
sion, and binder distribution. SEM is typically performed on a
rapidly dried sample or on the finished electrode product,113

thus it only offers indirect inference of the slurry state, and it
struggles to resolve binders. Cryo-SEM preserves the slurry in a
near-native state by rapidly freezing the liquid slurry, and can
image binders more faithfully. Both techniques can achieve very
high spatial resolutions down to 5–10 nanometres, capturing

individual AM particles and CA networks.33,89 Coupled with
SEM, energy dispersive X-ray spectroscopy (EDS) enables pre-
cise, element-specific mapping across the sample, by detecting
characteristic X-rays and visualising how different components
are spatially distributed.114 Raman spectroscopy is another
technique used to evaluate slurry homogeneity, especially bin-
der distribution,115,116 given that most polymer binders contain
Raman-active functional groups and exhibit strong vibrational
modes. Quantitative dispersion information can be obtained
through image-based processing of these results, e.g. by analys-
ing contrast and pixel-intensity distributions in optical or SEM
images.117 Alternatively, analytical indices such as the Carbon
Black Dispersion Index (DICB) can be derived from laser diffrac-
tion data to decouple bimodal particle size information and
quantify the dispersion state.118

Understanding surface chemistry and interfacial properties
is also important. Zeta potential measurements provide
insights into the electrostatic repulsion or attraction between
components, which help infer binder adsorption affinity and
stabilisation mechanisms.119 Additionally, Fourier transform
infrared spectroscopy (FTIR) is another technique frequently
used to evaluate probe particle-binder interactions and polymer
structure formation, by detecting characteristic spectral shifts
of functional groups present in binder materials.120 Comple-
mentary to these, tensiometer technique (e.g. Wilhelmy plate or
sessile drop method) measures surface or interfacial tension
from the wetting force or droplet profile, providing insights on
slurry wetting, coating uniformity, and formulation-dependent
capillary effects.121

Furthermore, given the acknowledged link between slurry
microstructure and electrode morphology, some characterisations
are performed on the finished electrodes themselves. Techniques
such as X-ray computed tomography (CT),122 destructive focused
ion beam scanning electron microscopy (FIB-SEM)123 provide 3D
morphological information, including essential properties like
porosity and tortuosity. However, since there are multiple inter-
mediate steps – coating, drying, and calendaring – that can alter
final electrode properties, these evaluations are best treated as
complementary for slurry optimisation rather than direct charac-
terisation tools for the liquid slurries themselves.

3.1.2 Rheology. The macroscopic rheological properties
are normally evaluated in a practical sense, to deliver insights
on the processability and structural integrity of the slurries, and
directly inform the mixing process optimisation as well as the
subsequent coating and drying steps, as summarised in Table 2
and Fig. 5. Prior to rheological testing, bulk density and solid
content are often determined using pycnometry or vibrating-
tube densimeters, to evaluate the slurry’s mass-to-volume ratio
and solids loading.

Shear viscosity measurements are typically performed using
rotational rheometers, which measure the torque required to
rotate a specific geometry (parallel plates, cone-and-plate, or
concentric cylinders) with a small amount of slurry sample
placed in the gap. Simpler rotational viscometers (e.g. the Brook-
field type with an immersed spindle) are also often utilised (in
some cases inline26,140) for basic quality control. Alternatively,

Energy & Environmental Science Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
/2

02
6 

10
:4

6:
18

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ee03563e


18 |  Energy Environ. Sci., 2026, 19, 11–43 This journal is © The Royal Society of Chemistry 2026

slurry viscosity can be inferred using pressure difference mea-
surements over a known geometry, such in the transportation
pipes from the mixer to coater, where the pressure drop reflects
the flow resistance and the rheological behaviours of the
slurry.32,38 These tests typically cover a broad range of shear
rates, e.g. 0.1 to 1000 s�1,80,141 which are still limited compared to
real manufacturing processes, especially coating, given that shear
rates can range from 500 to 10 000 s�1 between research draw-

down and industrial reel-to-reel coaters.80 The experimental
results are typically fitted and extrapolated to give the responses
in the wider shear rate ranges.141

Thixotropy is usually also evaluated using rotational rhe-
ometers. Common methods include: step-shear rate tests (e.g.
the three-interval Thixotropy Test, 3iTT142), where the sample is
subjected to periods of contrasting shear rates in succession,
allowing the time-dependent recovery of viscosity or structure

Table 1 Characterisation techniques for slurry microstructure

Specification Techniques Working principles
Spatial
resolution Capabilities & limitations

Particle size PSDs
aggregates
agglomerates

Laser diffraction124 Measure the angular variation in
intensity of light scattered by a
particulate sample

PSD distribution
Sample volume in milliliters
Require sample dilution
Localised result

Dynamic light
scattering125

Measures fluctuations in scat-
tered light intensity caused by
Brownian motion of particles

Resolution to nanoscale
Sample volume in microliters
Require sample dilution
Localised result

Hegman gauge32 A stainless-steel block containing
grooves with graded slopes

Different sizes available
Qualitative not quantitative
Prone to human error
Small inspection scale

Homogeneity (particle
dispersion, binder
distribution)

SEM126 Use an electron beam to image
samples with a resolution down to
the nanometer scale

nm Elemental-wise spatial distribution
Resolution to microns
Sample preparation
Small inspection scale

Cryo-SEM89,127,128 Rapid freezing of liquid sample
for SEM

nm Near-native slurry state
Additional sample preparation
Localised results

EDS129,130 Measure the energy and intensity
of the X-rays emitted by a sample

mm Elemental-wise spatial distribution
Complex sample preparation
Small probing depth
Low sensitivity to light elements

Raman
spectroscopy115,131

Measure interaction of light with
the chemical bonds of a substance

1 mm in
depth

Binder distribution
Binder-AM interactions
Limited probing area and depth
Require strong Raman-active modes

Image-based dispersion
analysis117

Analyse contrast and pixel-
intensity distributions in optical/SEM
images to yield a dispersion index

mm Quantitative information
Sensitive to imaging quality/thresholding
Indirect measure (not particle size)

Analytical-based disper-
sion index (DICB)118

Decouples bimodal PSD informa-
tion from laser diffraction data to
quantify CB dispersion via math-
ematical analysis

Quantitative CB information
Tracks de-agglomeration progress
Sample preparation
Require pre-analytical results

Surface chemistry Zeta potential94,126 Measure the electrical potential at
the slipping plane of particles in a
suspension

Provide electrostatic information
Infer Stability mechanisms
Lack spatial details
Sensitive to condition (i.e. pH)

FTIR120,132 Measures characteristic spectral
absorptions of functional groups

B10 mm Identify specific functional groups
Monitor binder interactions
No spatial distribution
Sensitive to condition (i.e. moisture)

Tensiometer121 Measure surface or interfacial
tension from wetting force or
droplet profile

Interfacial tension and wettability
1 Useful for coating
No spatial mapping
Sensitive to evaporation and temperature

Electrode morphology X-CT133–135 Reconstruct 3D internal struc-
tures by measuring X-ray
attenuation through a sample

B1–10 mm 3D morphology – porosity and tortuosity
Indirect to slurry evaluation
Long scanning time
High equipment costs

FIB-SEM136,137 Combine ion beam milling with
electron imaging to visualize
high-resolution cross-sectional
microstructures

nm High-resolution cross-sectional imaging
Indirect to slurry evaluation
Destructive – sample ablation required
Limited field of view
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to be monitored; and hysteresis loop tests,88 by observing the
response hysteresis when the shear rate is continuously ramped
up and then immediately ramped down.

Oscillatory rheological tests are commonly use to probe the
viscoelasticity of battery slurries, by applying a small sinusoidal
shear strain or stress and measuring the response. Small ampli-
tude oscillatory shear (SAOS) is the most commonly reported
method, which is performed within the linear viscoelastic region
so that the responses are proportional to the applied deforma-
tion. SAOS gives the frequency-dependent energy storage mod-
ulus (G0) and the energy dissipation loss modulus (G00).143 The
magnitudes and frequency dependence of these moduli provide a
means to infer the internal network microstructures,78 and to
optimise formulation (e.g. by identifying the maximum solid
concentration the slurry can accommodate for optimal flow80).
In contrast, large amplitude oscillatory shear (LAOS) operates
beyond the linear viscoelastic region, inducing non-sinusoidal
responses and higher harmonics, which can infer yielding and
structural breakdown kinetics.144

As for yield stress, several test methods can be performed on
rotational rheometers. Flow curve data of shear stress as a

function of shear rate can be extrapolated to zero shear rate
using Herschel–Bulkley or Bingham models.80,129 Alternatively,
a stress ramp can be applied and the yield stress can be
identified as the stress value at which significant flow initiates,
often indicated by a sharp increase in strain or strain rate.145,146

Oscillatory amplitude sweeps can also indicate yielding stress,
where the storage modulus significantly deviates from linearity
or drops sharply, indicating network breakdown.90

The characterisation of extensional rheology presents sig-
nificant challenges. While techniques such as stop-flow
dripping-onto-substrate/capillary break-up rheometry (SF-DoS/
CaBER)147 can obtain reliable results,92 they require complex
experimental setup and high precision to capture rapid fila-
ment thinning and pinch-off dynamics,148 which are particu-
larly challenging for the highly viscous battery slurries.
Reynolds et al. developed a low-cost, miniaturised extensional
rheometer91 that overcomes the difficulties to enable rapid,
small-volume measurements, and reveals extensional beha-
viours not captured by shear tests, further underscoring the
importance for direct extensional measurements in slurry
optimisation.

Fig. 4 Schematic summary of microstructural characterisation techniques for battery slurry systems. (a) Particle sizes and PSDs: representative
examples of typical PSD results with bimodal or multimodal patterns obtained from laser diffraction or dynamic light scattering techniques. Left:
Reproduced with permission from ref. 72. Copyright 2008, Electrochemical Society. Right: Reproduced from ref. 138. Copyright 2020, licensed under CC
BY 4.0, Wiley-VCH (Chemistry Europe). (b) Slurry homogeneity: comparison between good and bad dispersions; (c) surface chemistry: representative
data from zeta-potential and FTIR measurements, which probe particle–binder interactions and surface functional groups. Left: Reproduced with
permission from ref. 94. Copyright 2016, Elsevier Ltd. Right: Reproduced from ref. 120. Copyright 2022, licensed under CC BY 4.0, Elsevier Ltd. (d)
Electrode morphology: cross-section imaging obtained from X-ray tomography. Reproduced from ref. 139. Copyright 2018, licensed under CC BY 4.0,
Electrochemical Society.
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3.2 From microstructures to rheology: predictive modelling

While the direct experimental characterisations provides essential
data on specific properties of the slurries, they typically cover
limited test conditions and do not fully capture the dynamic
interplay between structure and flow behaviour under all relevant
processing conditions. Predictive modelling approaches are
increasingly employed to bridge the gap and complement the
experimental techniques. The primary goal of such models is to
estimate the macroscopic rheological responses, relying not on
exhaustive physical testing but on the microstructure information
and fundamental laws.

For example, a widely used approach to quickly estimate
rheological behaviours is through empirical or semi-empirical
suspension models, which assume homogeneously dispersed,
rigid particles. Among the most widely used are the Herschel–
Bulkley equation36,37,152 to describe the shear stress with respect to
the non-Newtonian flow behaviours, and the Krieger–Dough-
erty79,80,153 (or Quemada154) model to relate viscosity to particle
volume fraction and maximum packing. In contrast, recent devel-
opments focus on capturing more comprehensive and accurate
microstructure specifications through micro-rheological modelling
or multi-scale simulations, while data-driven models provide
alternative avenues to establish correlations.

Physics-based micro-rheological modelling seeks to predict
bulk rheology such as viscosity flow curves, by explicitly

incorporating fundamental physical interactions within the
slurry. Two types of interactions are primarily considered:
inter-particle colloidal interactions (e.g. van der Waals attrac-
tion, steric hindrance, and electrostatic repulsion) and hydro-
dynamic interactions (e.g. shear-induced drag and Brownian
motion). The former are particularly significant for smaller
particles, such as carbon black in a slurry system, while the
later for large particles and aggregates. For example, Ma et al.87

developed a microrheological model for anode slurries, treating
viscosity as the sum of hydrodynamic interactions (captured
using Krieger’s formula) and structural contributions from
colloidal forces forming fractal aggregates and transient
networks157(Fig. 6(a)). The model showed good agreement with
experimental data across a range of slurry compositions and
carbon black contents.

Multi-scale simulation models offer a bottom-up computa-
tional approach to predict slurry behaviour across different
length and time scales. Coarse-grained molecular dynamics
(CGMD) and discrete element method (DEM) are two com-
monly used methods to simulate slurry structures, by explicitly
accounting for attractive and repulsive fields between the
particles, enabling the particle movements during dynamic
processes to be tracked.155 Duquesnoy et al.156 developed a
mechanistic CGMD model that incorporated realistic slurry
composition, including the mass AM-to-CBD ratio and the

Table 2 Characterisation techniques for slurry rheological properties

Specifications Testing approach Working principles Capabilities & limitations

Shear viscosity Rotational rheometry36 Measure torque as a function of angular
velocity

Steady shear flow response
Offline testing
Limited maximum shear rate

Thixotropy Rotational rheometry78,149 Measure viscosity in a time-dependent
controlled-shear-rate manner

Assess shear recovery behaviour
Offline testing
Long testing time

Viscoelasticity Small amplitude oscilla-
tion shear (SAOS)36,150

Apply small oscillatory strain and mea-
sure stress response

Slurry complex behaviours
Useful for process optimisation
Sensitive to local heterogeneity
Offline testing

Yield stress Large amplitude oscillation
shear (LAOS)145,146

Apply large oscillatory strain and identify
the G0 drop or G0, G00 crossover

Onset of non-linearity

Qualitative yielding behaviours
Data interpretation complexity
Offline testing

Rotational rheometry with
model fitting151

Shear rate sweep and fit stress-shear rate
curve to extract s0 (yield stress at zero
shear rate)

Quantitative yield stress
Additional model fitting
May suffer from wall slip at low shear

Rotational rheometry with
stress ramp test145,146

Apply stress ramp and monitor the point
where flow begins

Onset of yielding
Independent of model assumption
Sensitive to surroundings
Offline testing

Extensional
rheology

Capillary thinning
rheometry92

Monitor filament thinning dynamics
during capillary breakup

Direct relevance to coating
Sensitive to different compositions
Difficult to pinpoint the breakup point
No standardised machine
Low data repeatability

Filament stretching
rheometry91

Stretch a filament between plates and
measure extensional viscosity

Direct relevance to coating
Sensitive to different compositions
Sensitive to boundary conditions
Limited accessibility
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PSD, as displayed in Fig. 6(b). They then applied non-
equilibrium molecular dynamics (NEMD) to simulate the evo-
lution of slurry microstructure under defined shear and com-
puted the corresponding shear viscosity – see Fig. 6(c). Such
mechanistic framework provide a powerful platform for linking
microstructure to rheology, and can potentially be extended,
e.g. using DEM, to study thedrying and calendaring
processes.158 However, full multi-scale simulations are compu-
tationally demanding, their outputs can be used to train light-
weight surrogate models.

Data-driven models provide a powerful alternative to physics-
first approaches, aiming to correlate slurry microstructures or
formulation parameters with rheological properties, without resol-
ving all underlying physics explicitly. They leverage the extensive
availability of experimental data and rapid advancements in
machine learning (ML). A wide range of ML models, including
neural networks,159,160 random forests,161,162 and Gaussian
processes,163,164 have been explored for battery manufacturing

and characterisation, as summarised comprehensively in ref. 165.
Applying explainable ML techniques on battery slurries, Reynolds
et al.166 demonstrated that even small experimental datasets (o30
formulations) could be used to investigate the effects of AM, CA,
and binder concentrations on viscosity and electrode performance.
Liu et al.167 further showed that Gaussian regression enables not
only accurate prediction of electrode mass load, but also directly
quantification of the relative importance of mixing and coating
parameters. Additionally, in an effort to reduce reliance on large
experimental datasets, Duquesnoy et al.168 developed a hybrid
modelling framework, combining CGMD and NEMD simulations
with surrogate ML models to accelerate the inverse optimisation of
slurries under multiple constraints, achieving over tenfold
reduction in computation time without sacrificing predictive
accuracy. Together, these studies illustrate how data-driven
approaches can complement physical modelling and practical
process control, and support the predictive optimisation of battery
slurries and smarter manufacturing.

Fig. 5 Rheological characterisation of battery slurries, including (a) viscosity flow curve. Data extracted from ref. 71 and replotted by the authors. (b)
Thixotropic property. Data extracted from ref. 78 and replotted by the authors. (c) Viscoelasticity. Data extracted from ref. 71 and replotted by the authors.
(d) Yield stress obtained through model fitting. Reproduced with permission from ref. 86. Copyright 2024, Elsevier Ltd. (e) Yield stress obtained from
complex modulus. Data extracted from ref. 145 and replotted by the authors. (f) Extensional rheology obtained from capillary thinning setup. Reproduced
with permission from ref. 92. Copyright 2024, Elsevier Ltd. (g) Extensional rheology by filament stretching. Reproduced with permission from ref. 91.
Copyright 2022, Elsevier Ltd.
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3.3 Prospects for slurry characterisation

Whereas a broad array of experimental techniques and modelling
approaches aim at understanding battery slurry properties, the fact
that most are offline remains a significant challenge. This often
necessitates time-consuming sample preparation and provides
only intermittent snapshots of slurry quality, breaking down the
feedback loop to the parameter optimisation process.

Therefore, future characterisation strategies should ideally
integrate inline, real-time monitoring with predictive model-
ling. Inline sensors could provide agile, continuous data on key
slurry attributes, while robust models, informed by this real-
time data, could predict overall behaviour and reduce the need
for exhaustive offline characterisation of every property.

4 Ultrasonic characterisation of
slurries

Low-power ultrasound presents a compelling solution to the
inline monitoring requirements highlighted above. As men-
tioned, it has a long history of successful applications in the
mining, food, and pharmaceutical industries.50,52–54 Recent
reviews169,170 have emphasised the growing relevance of ultra-
sonic methods for the analyses of LIB life cycles, which reinforce

ultrasound’s credentials for characterising material properties
even at the slurry stage.

A thorough understanding of the state-of-the-art in ultra-
sonics is crucial to contextualise the proposed inline character-
isations. This section will therefore delve into the two aspects of
ultrasonic analysis: the characterisation of slurry microstruc-
tures and the measurement of macroscopic rheology. For each
aspect, we will first detail the established theoretical principles
and experimental methods, and then immediately highlight
the critical research gaps were these techniques to be applied to
the uniquely complex battery slurries. These sequential ana-
lyses will cumulatively build a comprehensive case for the new,
integrated framework presented in Section 5.

4.1 Fundamentals of ultrasound

4.1.1 Ultrasonic wave modes. Ultrasound refers to high-
frequency (420 kHz) sound waves, typically in the megahertz
(MHz) range for materials characterisation. They are classified
as either compressional (longitudinal) waves, where the particle
motion is parallel to the wave propagation direction, or shear
waves, where the two directions are perpendicular to each other,
as shown in Fig. 7(a) and (b). Compressional waves can travel
through both solids and fluids, while shear waves primarily

Fig. 6 (a) Schematics of polymer-coated carbon black particles and interparticle colloidal interactions, and primary carbon black particles assembled
into secondary aggregates connected into networks. Reproduced with permission from ref. 87. Copyright 2019, Elsevier Ltd. (b) Schematics of a
simulated slurry, where CBD and PSD of AM particles are considered and randomly placed. Reproduced from ref. 155. Copyright 2020, licensed under CC
BY 4.0, Wiley-VCH (Chemistry Europe). (c) The slurry microstructure evolution and associated viscosity (Z) during NEMD simulation were handled to
assess the slurry viscosity at a given shear rate (g). The last 1000 viscosity values from a single simulation are used as a vector to calculate an average value
(m) and a standard deviation (s). Reproduced from ref. 156. Copyright 2022, licensed under CC BY 4.0, Springer Nature.

Review Energy & Environmental Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
/2

02
6 

10
:4

6:
18

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ee03563e


This journal is © The Royal Society of Chemistry 2026 Energy Environ. Sci., 2026, 19, 11–43 |  23

propagate in solids and can only penetrate into viscous fluids in
micron-scale depths (depending on the fluid’s viscosity171).

Ultrasound interacts with the constituents of the slurry,
through mechanisms to be discussed later in Section 4.2,
leading to detectable behaviours such as changes in wave speed
and attenuation (reduction in wave amplitude per unit dis-
tance), and backscattering (noise-like signals scattered back to
the emitting transducer by suspended particles). The former
two properties can be mathematically expressed in the harmo-
nic wave equation, see Appendix A. The interactions are depen-
dent on the ultrasonic wavelengths (and frequency) and the
particle sizes in the slurry, and the characterisation of slurry
properties relies on precise experimental measurements of the
detectable changes, especially how they vary with frequency in a
broad spectrum.40,172

4.1.2 Experimental measurement setups. A typical ultraso-
nic measurement setup is illustrated in Fig. 8(a). An ultrasonic
pulser/receiver sends electrical pulses at high repetition rates
(hundreds of pulses per second) to the piezoelectric transducer,
which converts the pulses to propagating ultrasonic waves into
the sample. The receiving transducer converts incoming waves
into electrical signals for visualisation or storage. The propaga-
tion time through a mm-scale sample is in ms, enabling real-
time experiments.

Wave speed and attenuation in slurries are often measured
together, using the configurations shown in Fig. 8(b) and (c). In
through-transmission, the transmitting and receiving transdu-
cers are aligned coaxially on the opposite sides of the sample;
whereas in pulse-echo, a single transducer both transmits and
receives the ultrasonic signal from an acoustic reflector. The
acquired signals are then analysed in the frequency domain to
extract wave characteristics, due to the dispersive nature of
battery slurries (i.e. wave speed varies with frequency). Attenua-
tion is typically determined via ultrasonic attenuation spectro-
scopy (UAS),39,173,174 by comparing the frequency-domain
amplitude spectra from the slurry and a reference medium (e.g.

deionised water), as described mathematically in Appendix B.
These experimental setups and analyses (particularly UAS) are
central to ultrasonic characterisation of slurry microstructures.

A common setup for measuring backscattering is shown in
Fig. 8(d),175 which analyses the noise-like signals scattered back
by suspended particles. It commonly incorporates a delay line
on the transducer, to ensure that signal detection occurs in the
far field and that the backscattered signals are temporally
resolved from the initial transmission. Backscattering data are
usually interpreted statistically,176 with the maximum ampli-
tude (bmax) and time-dependent decay (b) sensitive to particle
size and concentration. However, the complexity introduced by
multiple scattering effects poses challenges to accurate data
interpretation.175

In addition to these bulk wave setups, guided waves are also
widely employed, especially for measuring viscosity and viscoe-
lasticity (to be discussed in Section 4.3), as illustrated in
Fig. 8(e). Guided waves are acoustic waves that propagate along,
and confined by, geometric features known as waveguides,
such as plates, pipes, or thin rods – a classic example is the
string in a tin-can phone. They are particularly sensitive to the
slurry properties in close proximity to the boundaries, and are
mainly used to characterise macroscopic rheology.

4.2 Ultrasonic characterisation of slurry microstructures

The microstructure of a slurry (e.g. PSD or concentration)
fundamentally governs most of its macroscopic properties and
behaviours (as established in Section 2), so they have thus been
a central focus for the ultrasonic characterisation of colloidal
suspensions in literature. Fundamentally, this is enabled by the
sensitivity of ultrasound to the nature of scatters and solid
concentration when working at long wavelength (i.e. wavelength c

suspended particle size). Examining how this characterisation works
is the objective of this section, and also core to the inline
monitoring of battery slurries proposed in this paper. Note that
this field has a huge volume of work, this section only provides a
snippet of research relevant to high-loading slurries; refer to e.g.
ref. 40 for a more comprehensive review.

4.2.1 Wave-slurry interactions: phenomenological mechan-
isms. Ultrasonic waves propagating through a slurry interact with
the suspended solid particles via several physical mechanisms,
which originate from the different material properties (e.g. den-
sity, compressibility, thermal conductivity) between the particles
and continuous phase (fluid), and can be summarised to five
primary mechanisms,40 as illustrated in Fig. 9. Their relevances
to battery slurries are discussed below.

Material substitution (Fig. 9(a)) is the simplest phenomenon,
referring to the effects on the propagating wave caused by the
suspended particles replacing the continuous fluid medium.
This is a dominant contributor to attenuation and velocity
changes (which can be approximated by a weighted average of
the two phases, after accounting for wave diffraction effects etc.)
in concentrated battery slurries with dense solid particles (e.g.
NMC and graphite).

Density contrast (Fig. 9(b)) between the solid particles and fluid
causes inertia differences, resulting in the particles resisting

Fig. 7 Ultrasound wave modes classification: (a) compressional (long-
itudinal) wave, whose particle motion is parallel to the wave propagation
direction and (b) shear wave, whose particle motion is perpendicular to the
wave propagation.
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acceleration and the fluid exerting a viscous drag on them – this
is known as visco-inertial effects – during the pressure oscilla-
tions of the wave. These lead to scattering, partial reflection, and
attenuation of the propagating ultrasound. In battery slurries,
this is highly relevant given the significant density contrast
between the phases.

Multipole resonances (Fig. 9(c)) occurs when the acoustic
wavelength becomes comparable to the particle size, causing
the particle to undergo resonant oscillations and act as a strong
multipole radiator. This leads to sharp attenuation peaks at
resonance frequencies. While well-mixed battery slurries have
typically 450 MHz particle resonances (assuming 1–10 mm
size), aggregates or agglomerates (10–100 mm) in the intermedi-
ate states can exhibit resonances within the commonly used
ultrasonic range (o20 MHz). This mechanism could be
exploited for monitoring clusters during mixing.

Compressibility and thermal contrasts (Fig. 9(d) and (e)).
Compressibility contrast stems from differences in bulk mod-
ulus between the particles and fluid, resulting in deformations
to different extents under acoustic pressure, and a monopole
radiation pattern from the particles. Thermal contrast can
induce attenuation as the local pressure fluctuations caused
by ultrasound result in cyclic temperature changes in both
particles and fluid, leading to thermal diffusion and energy

loss. However, in battery slurries, both effects are generally
minor, due to the low compressibility, mm sizes and high
thermal conductivity of most battery materials.

It is important to highlight that although the nominal solid
concentrations in battery slurries – typically 50–60 wt% (C20–25
vol%) for NMC cathode and 40–60 wt% (C25–40 vol%) for
graphite anode80 – are not exceptionally high, these slurries
exhibit pronounced, highly viscous non-Newtonian behaviours
primarily caused by the polymeric binders in the continuous
phase, which form entangled networks and adsorb onto particle
surfaces, dramatically increasing effective volume fraction and
inter-particle interactions. As such, they are substantially differ-
ent from simple suspensions which the classic research
(reviewed in the next subsection) are based upon, but instead
behave like a viscoelastic composite with both solid- and fluid-
like characteristics.

4.2.2 The forward modelling of ultrasonic behaviours.
Generally speaking, theoretical models incorporate the physical
mechanisms (multiple mechanisms often coexist in dense
slurries and are handled simultaneously) to solve a forward
problem: predicting the ultrasonic behaviours (wave speed,
attenuation and backscattering) based on known slurry char-
acteristics (e.g. PSD, concentration, and constituent material
properties). A primary focus is the frequency-dependent wave

Fig. 8 Experimental ultrasonic measurement configurations. (a) Electronical devices in a typical experimental setup; (b) the ultrasonic attenuation
spectroscopy with transducer arranged in through-transmission and (c) pulse-echo manners; (d) ultrasonic backscattering measurement. The left plot
shows the typical setup and the right plot (reproduced from ref. 175 with permission) a typical backscattered signal time trace; (e) ultrasonic guided wave
approach for macroscopic property measurement. The left plot shows a dip-stick setup and the right the typical time trace to evaluate viscosity-induced
attenuation (reproduced from ref. 177 licensed under CC BY-NC 4.0).
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attenuation coefficient a(f), which is sensitive to slurry micro-
structures and can arise from absorption (conversion of wave
energy to heat), scattering (redirection of wave energy) and
viscoelastic loss in the case of battery slurries. The classic
models typically start with the wave scattering/diffraction for
a single particle, followed by the assembly of these effects in a
volume of distributed scatterers. The final form is an explicit
expression of the total attenuation a(f) or wave speed, which
allow convenient validation against experiments.

In systems where the particles are spherical or can be
approximated as such, the seminal ECAH model (Epstein &
Carhart44 and Allegra & Hawley45) provides a rigorous way to
calculate the colloidal scattering coefficients, as detailed in
Appendix C. It explicitly include a non-propagating thermal waves
in addition to compressional and shear waves, and the scattering
coefficients for all wave modes are determined by enforcing
mechanical and thermal continuity at the interface through a
transition matrix. In practice, the compressional wave coefficient
is of primary interest, since it is easily detectable by a transducer.
In the assembly step, the original ECAH model adopted the
simplest single-scattering assumption, calculating the total
response as a linear summation of scattered waves by individual

particles,44,45,178 which was later shown to be inadequate to
capture the complex interactions in concentrated colloidal
systems.179,180 Nevertheless, it remains a foundational model
upon which many subsequent models are based.

As the solid concentration increase, multiple scattering, where
scattered waves from one particle interact with its neighbours
before reaching the detector, starts to dominate. This is accounted
for by multiple scattering models such as the classic Llyod/Berry
formulation181 and others based on ensemble averaging (e.g.
Fikioris and Waterman182), which extend ECAH to moderate
concentrations (B20 vol%). However, their accuracy diminishes
as the concentration further increases, due to the neglected direct
particle–particle and shear wave interactions.183–185 One advanced
approach suitable for 430 vol% solid loading is the multimode
multiple scattering model, developed by Luppé,186 Pinfield and
Forrester,187,188 Pinfield and Valier-Brasier189,190 and other work-
ers, which explicitly accounts for shear waves propagating through
the viscous fluid in the narrow gaps between adjacent particles. It
significantly alleviates the limitation of the ECAH/LB model and
gives accurate predictions at up to 35 vol% concentration.187,189,190

Another strategy for slurries with high solid loading is the core–
shell approach, which originated from physical shell-coated struc-
tures (see e.g. ref. 191 and 192). Anson and Chivers193 adapted it to
the ECAH framework for a spherical particle surrounded by a
concentric shell of the continuous phase. Boundary conditions are
enforced at both fluid–shell and shell–core interfaces to account for
near-field hydrodynamics. Later, Hipp et al.194 applied the core–shell
approach to derive effective propagation properties for a suspension
of particles, which was later validated experimentally195 for silica
slurries up to B40 wt% (25 vol%). This model appears relevant to
the binder-adsorbed AM particles in battery slurries. However, it has
limited capability to accommodate polydisperse (i.e. different-sized)
particles; its physical basis may not be as strong as the multiple
scattering theories, and its applicable concentration ranges have also
been superseded by the latter.

All models reviewed above are based upon ECAH, but alter-
native, independent ones also exist. Effective medium theories
(EMTs)184,196 treat the slurry not as a collection of discrete
scatterers but a composite continuum. The wave propagation is
described through homogenised properties, such as density,
compressibility, and viscosity, according to those of the consti-
tuent phases. Coupled-phase models (CPMs)197–199 model the
dynamic interactions between particle and fluid phases through
viscous drag and stress transfer mechanisms, and were shown to
approximate the significantly more complicated core–shell model
well, when the acoustic radius is small.200 Recently, Monte-Carlo
methods (MCMs) have emerged as a computational tool for
modelling ultrasonic attenuation in complex slurries.201–203 They
do so by tracking probabilistic paths of wave packets through the
particle field, naturally handling complex particle geometries,
polydispersity, and random spatial distributions. The incorpora-
tion of particle–particle interactions and effective medium cor-
rections enables accurate predictions up to 35–40 vol%.202

While much of the theoretical work has focused on attenua-
tion, the same fundamental mechanisms also govern ultrasonic
backscattering.175,204 Models have been adapted to predict the

Fig. 9 Leading interaction mechanisms between ultrasonic waves and a
suspended particle in a concentrated slurry.40 (a) Material substitution; (b)
density contrast; (c) multipole particle resonance (strong when incident
wave length matches resonance). Secondary mechanisms: (d) compres-
sibility contrast; (e) thermal contrast.
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statistical characteristics of the signal scattered back towards
the transmitter, which is particularly useful as it requires access
from only one side of the sample. Ultimately, these forward
models, which predict acoustic behaviours from known slurry
characteristics, provide the foundation for solving the inverse
problem: to determine unknown slurry microstructures from
the ultrasonically measured data.

4.2.3 The inverse characterisation of microstructures.
Ultrasound has been widely employed to characterise the solid
concentration, PSD, dispersion and homogeneity in suspension
systems. This inverse problem is typically solved through model-
based iterative fitting,205 by assuming a predefined particle size
distribution shape – commonly log-normal – and fitting key
parameters (i.e. mean and standard deviation) to the experi-
ments data. This section samples the relevant literature on
dense slurries; the actual applications likely far exceed what is
covered below, because many are proprietary to industrial
companies and thus not disclosed.40 It is worth pointing out

again that very few examples have a viscoelastic composite
structure similar to battery slurries.

most common characterisation of slurry microstructures is to
extract PSD and concentration using UAS, as shown in Fig. 10(a).
Good agreement of PSD results is demonstrated in Fig. 10(b)
between those obtained by ultrasonic attenuation and by a com-
mercial laser diffraction-based particle sizing instrument, for cases
of an oil-in-water emulsion and a low-concentration aqueous
suspension of glass beads.40 Hipp et al. also achieved similar
results on monidisperse silica suspensions and PTFE suspensions
of different particle sizes at different weight concentrations using
the core–shell model,195 shown in Fig. 10(c). Stolojanu and Pra-
kash characterised concentration and PSD in aqueous glass beads
slurry with up to 45 vol%.206 Bamberger and Greenwood used real-
time ultrasonic attenuation to monitor slurry concentration during
mixing,207 see Fig. 10(d). Falola et al. addressed the challenges and
respective importance of unknown physical properties,208 which is
relevant because some properties of battery slurry are unknown.

Fig. 10 The inverse characterisation of microstructures from UAS measurement. (a) The working principle of the inverse process; (b) PSDs obtained
from ultrasonic means compared to laser diffraction for oil-in-water emulsion and aqueous suspension of glass beads. Reproduced with permission from
ref. 40. Copyright 2005, Institute of Physics Publishing. (c) Particle sizes (d50) of different mono-disperse suspensions over a range of concentrations.
Reproduced with permission from ref. 195. Copyright 2002, American Chemical Society. (d) Concentration profile measurement of a settling flocculated
spheriglass dispersion at 40, 60, and 80 s measured by Acoustic Backscatter System (ABS). Reproduced with permission from ref. 209. Copyright 2012,
Elsevier Ltd.

Review Energy & Environmental Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
/2

02
6 

10
:4

6:
18

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ee03563e


This journal is © The Royal Society of Chemistry 2026 Energy Environ. Sci., 2026, 19, 11–43 |  27

Backscattering analyses are also used. Burgess et al. com-
pared optical & ultrasonic attenuation against backscattering
methods on high-level waste up to 40 wt%, and found good
agreements.210 Greenwood estimated PSD and density of a
slurry using backscattering from a solid interface.176 Weser
et al. demonstrated a strong correlation between backscattering
and particle concentration gradients, enabling real-time track-
ing of settling dynamics.175,204 Lombard used parameterised
backscattering coefficient to study the effects of shear-induced
anisotropic microstructures.211

Characterisation of homogeneity and dispersion can be
viewed as derivatives of the PSD characterisation, since aggre-
gation or flocculation of particles result in larger detectable
particle sizes. Cavegn et al. demonstrated that ultrasonic reso-
nances of the particles can sensitively trace the homogenisation
evolution of nanoparticulate pharmaceutical vehicles.212 Tonge
et al. used backscattering to study the flocculation in complex
waste and noted the importance of a priori system data on the
accuracy of the acoustic method.213 Fig. 10(d) shows the
concentration profiling of a settling flocculation measured
through backscattering, suggesting its capability of real-time
monitor of system homogeneity during dynamic process.209

4.2.4 Research gaps on characterising microstructures.
While ultrasonic characterisation of particle statistics are well-
established for various suspension systems, their successful
application to battery slurries requires addressing several impor-
tant research gaps, which arise from the unique and complex
microstructures of battery slurries.

The primary research gap is to incorporate the viscoelasticity of
the continuous phases. As highlighted in Section 4.2.1, the poly-
meric binders create a surrounding medium that can significantly
store and dissipate wave energy through frequency-dependent
relaxation mechanisms. Given that the way ultrasound interacts
with the suspended particles is fundamental to a scattering theory,
this is a notable difference from the Newtonian continuous phase
commonly assumed by the ECAH-based models44,45 and related
experimental work. Although models considering viscoelastic
particles214 or extending the ECAH model to viscoelastic
emulsions215 exist, the research gap is to develop or adapt
forward models that can adequately account for the specific
constitutive behaviour – which is conceptually not difficult and
could be achieved by using complex, frequency-dependent
material properties – and investigate the resulting interaction
mechanisms in battery slurries.

Further complexities arise from the inherent microstructures in
battery slurries. These include high solids concentration (B20–25
vol% for NMC cathode slurries, and B25–40 vol% for graphite
anode ones80), often near the validated limits of multiple scatter-
ing models. Additionally, the flake-like morphology of graphite
particles216 in anodes deviates from the spherical–particle assump-
tion and scattering behaviours in standard ECAH models. More-
over, the polydispersity of these slurries (i.e. they consist of
multiple particle species, and the AM and CA have vastly contrast-
ing sizes28,35) poses interesting problems for the classic models,
which in principle can accommodate multiple species, but it is
worth investigating whether important physics that is typically not

accounted for in these models (e.g. direct particle interactions,
entanglement) can be separated and determined from the ultra-
sonic data. These factors require extensions to ECAH models, or
alternative approaches like EMTs, CPMs, MCMs to better approx-
imate the ultrasonic wave propagation.

Finally, the efficacy of ultrasonic characterisation is highly
dependent on model parametrisation and the robustness of the
inversion algorithm. Forward models like ECAH require numer-
ous physical properties of the constituent phases, many of which
may be unknown or dependent on specific battery materials, and
such uncertainties can significantly affect the accuracy of forward
prediction and inversion. Mitigation methods include sensitivity
analyses to determine the most significant parameters,174,217 and
incorporating unknown properties in the fitting process,218 but
more systematic solutions are needed. Furthermore, extracting
the detailed microstructural information from the ultrasonic
attenuation spectra, which are often featureless, may pose an
inherently ill-posed problem prone to non-unique solutions. This
requires robust optimisation techniques and strategies to supple-
ment the input information, such as measurements over wider
frequency ranges, though this presents experimental and cost
challenges, particularly at higher (420 MHz) frequencies.40

The points above only considered a snapshot state of the
slurries as an isolated and static one, but the dynamic evolution
of slurry microstructure during mixing presents another set of
challenges and opportunities, particularly in tracking the pro-
gress towards the desirable homogeneous state. The size of
aggregates and agglomerates can be monitored as crucial
indicators of the dispersion process by exploiting the multi-
mode particle resonances:219 the typical 50–80 mm aggregates28

have resonant frequencies well within the 20 MHz working
range of common ultrasonic setups. Importantly, this approach
has already been proved effective in other industries.212,213

As an example, this may allow real-time evaluation of the
spatial binder distribution and the formation of the CBDs, which
are critical for electrode performance29,220 (see Section 2.1.1) but
are currently a significant challenge for direct characterisation,
even using offline techniques. The evolution of carbon-binder
network distribution, from initial aggregates to the evenly dis-
tributed state,114 would likely alter particle resonances and
viscoelasticity of the continuous phase, both of which can con-
tribute to detectable wave characteristics. As such, ultrasonic
indicators could be developed to track the effectiveness of binder
distribution and the overall maturation of the slurry CBD. This
represents a research opportunity to realise inline characterisa-
tion of one of the slurry’s most important yet elusive properties.

4.3 Ultrasonic measurements of macroscopic properties

Beyond microstructures, ultrasonic techniques hold promise for
the in situ determination of some macroscopic rheological proper-
ties of battery slurries, notably viscosity and viscoelasticity, which
are examined in this section, along with challenges and research
gaps for applications on battery slurries. Ultrasound cannot
directly access properties like yield stress or extensional rheology.

4.3.1 Viscosity. Viscosity quantifies a fluid’s resistance to
deformation under applied stress, particularly shear. There are
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two widely adopted ultrasonic techniques to estimate this
property: shear wave reflectometry and guided wave viscometer,
see Fig. 11(a) and (b).

Shear wave reflectometry relies on the principle of viscous
coupling at a solid–fluid interface. When a shear wave is incident
upon a solid–fluid interface from the solid side, part of its energy is
transmitted through to the fluid, resulting in amplitude drop and
phase shift to the reflected wave, which are dependent on the
fluid’s viscosity. The mathematical equations to calculate shear
viscosity from the measured complex reflection coefficient are
presented in Appendix D. Since originally proposed by Mason
et al.,221 this method has been widely adopted to measure various
fluids,48,222,223 including lubricant oils224 – see Fig. 11(c) – and many
other types of lubricant contacts.225 This technique generally works
better on high-viscosity fluids, since the reflection coefficients of
low-viscosity one are close to unity due to weak coupling, making
the small changes in amplitude and phase difficult to resolve.

Guided wave viscometries also exploit the viscous coupling of
the shear or torsional modes fundamentally. When a waveguide
(e.g. a dipstick) is immersed in the slurry, the propagating wave
leaks energy into the surrounding fluid, and the resultant attenua-
tion is quantitatively related to viscosity,226 see Fig. 11(e). Unlike
reflectometry, where shear rate is dictated by wave frequency and
amplitude, guided wave techniques offer additional control and
design space through waveguide geometry. Various configurations

have been demonstrated, including shear-horizontal waves in
dipsticks,227 torsional waves in rods,228,229 and Lamb waves in thin
sheets.60 Additionally, waveguides offer improved spatial sam-
pling, as they can be repositioned to probe viscosity at different
locations.

It is important to recognise that most of the above applica-
tions are for Newtonian fluids. For non-Newtonian battery slurries,
the goal is to characterise viscosity across a range of shear rates.
However, ultrasonic methods – reflectometry224 or guided wave-
based60,228 – consistently report lower viscosities than conventional
rheometers, as shown by comparisons between Fig. 11(c)–(f).
Several explanations have been proposed to reconcile the differ-
ences. Peretti et al.224 suggest that ultrasound probes high-
frequency, small-strain behaviour, equivalent to shear rates around
106 s�1, and rely on the Cox–Merz rule230 to relate complex
viscosity Z*(o) to steady-shear viscosity Z(_g). This interpretation
aligns with the lower values observed at higher shear rates for
shear-thinning fluids. In sharp contrast, however, Kazys et al.,60

using finite element modelling, estimated wave-induced shear
rates to be o1 s�1, attributing the low viscosity readings to
viscoelastic relaxation rather than high shear. These conflicting
interpretations highlight a key unresolved issue: the effective shear
rate in ultrasonic measurements remains ill-defined, and bridging
the gap between dynamic and steady-shear viscosity remains a
critical theoretical and practical challenge.

Fig. 11 Ultrasonic measurement approach for fluid viscosity. (a) An illustration of shear wave ultrasonic reflectometry (redrawn based on ref. 224); (b) a
schematic of a guided wave measurement setup in torsional mode (redrawn based on ref. 228); (c) and (d) a comparison of viscosity measured from
ultrasonic reflectometry and conventional rheometer for Newtonian-like lubricants and Non-Newtonian fluid respectively. Reproduced from ref. 224.
Copyright 2024, licensed under CC BY 4.0, Elsevier Ltd. (e) and (f) A comparison of viscosity measured from conventional rheometer and the torsional
waveguide probe for Newtonian fluid and Non-Newtonian fluid respectively. Reproduced from ref. 228. Copyright 2011, licensed under CC-BY-NC-ND
4.0, Institute of Electrical and Electronics Engineers.
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In addition, the UVP-PD (Ultrasound Velocity Profiling-
Pressure Drop) technique231,232 combines velocity profiles in
pipe flow with pressure drop measurements across a defined
length, to determine local shear rates and shear stresses, and
derive rheological properties. The method is well established
and has in fact been applied to monitor battery slurries during
post-mixing transport,38 but it is not suited for real-time
optimisation of the mixing process itself.

4.3.2 Viscoelasticity. Viscoelasticity characterises battery
slurry’s simultaneous liquid-like viscous and solid-like elastic
responses to external stress (note that all viscoelastic fluids are
non-Newtonian). As reviewed in Section 2, it originates from the
microstructures and influences the slurry’s stability and pro-
cessability in the coating and drying steps. The objective of
characterising viscoelasticity is to determine the frequency-
dependent moduli G0(o) (representing elastic energy storage),
and G00(o) (representing viscous energy dissipation).

Shear wave reflectometry can be extended to determine
viscoelastic properties. By propagating obliquely incident
shear-horizontal waves to an interface between a known and
the target materials, as in Fig. 12(a), G0 and G00 can be calculated
from the frequency-dependent magnitude and phase of reflec-
tions (see Appendix D). Alig et al.233 integrated digital signal
processing to Mason’s original method, enabling frequency- and
time-resolved measurements of the complex moduli of polymer
films during dynamic film formation and crystallization. Wang

et al.234 used this approach to track the evolution of G0 and G00

during cement paste hydration, where the moduli changed
significantly, as shown in Fig. 12(b). Rabbani and Schmitt235

applied it to measure the viscoelastic moduli and viscosity of
ultra-heavy non-Newtonian bitumen.

The more common ultrasonic characterisation of viscoelasticity
is through the frequency-dependent speed and attenuation of
propagating bulk elastic waves. One prominent application is
shear wave-based medical imaging, from the early work on
elastography236,237 which focused on the elastic storage modulus,
to the subsequent development of Shear wave Dispersion Ultra-
sound Vibrometry (SDUV) which incorporated viscosity.238,239 The
methodology is now widely used to measure viscoelasticity in
liver240 and other soft tissues.241 Beyond medical applications,
Larcher et al.242 used compressional wave speed and attenuation
to determine the complex modulus of asphalt across temperature
and frequency ranges, and Letang et al.243 combined through-
transmission compressional waves with shear wave reflectometry
to measure the moduli of wheat flour-water doughs.

These studies share similar fundamental procedures. The
first step is to select an appropriate wave mode and obtain its
frequency-dependent propagating parameters. Shear waves are
preferable where they exist (e.g. in soft tissues), since they are
directly linked to the viscoelastic moduli.237,239 For slurries,
which cannot sustain propagating shear waves, compressional
waves can be used instead, though they only offer indirect and

Fig. 12 Ultrasonic measurement approach for fluid viscoelasticity. (a) An illustration of obliquely incident ultrasonic shear wave reflectometry (redrawn
based on ref. 234); (b) G0, G00, and phase of shear modulus j as a function of elapsed time during cement paste hydration at 1 MHz for water-to-cement
ratio equals to 0.6. Reproduced with permission from ref. 234. Copyright 2010, Elsevier Ltd. (c) An illustration of guided shear horizontal surface acoustic
wave (SH-SAW) measurement setup (redrawn based on ref. 247); (d) changes in SH-SAW energy loss as a function of curing time for a 2 mm thick PMMA
coating, which is an indication of the viscoelasticity change. Reproduced with permission from ref. 247. Copyright 2001, American Chemical Society.
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less sensitive evaluations.242 To overcome this, guided wave modes
involving localised shear motion have been explored, for example
Lamb,244 Rayleigh,245 Love246,247 and shear horizontal248,249 waves,
especially the latter two types which are dominated by shear
motion. Fig. 12(c) demonstrates a guided shear horizontal surface
acoustic wave (SH-SAW) measurement setup and Fig. 12(d) shows
the changes of acoustic energy loss during dynamic curing pro-
cess, which serve as an indicator of the viscoelastic properties.
However, these waves propagate within the waveguide and its
vicinity, not the bulk of the slurry itself, making the waveguide
geometry critical for maximising shear interaction and sensitivity.
Limitations such as finite boundary conditions and mode overlap
must also be carefully considered.245

The second step involves selecting an appropriate viscoelas-
tic model. The choice should reflect the material’s expected
mechanical behaviour. While simple models like Voigt and
Maxwell are useful for medical ultrasound,239,250 they likely
cannot capture the complex, multi-timescale relaxation beha-
viour of battery slurries.80,86 The generalized Maxwell model
(GMM),251 which includes multiple Maxwell elements in paral-
lel, may offer a better fit, though the model complexity and
physical interpretability must be carefully balanced.252

Finally, the frequency-dependent experimental parameters
(e.g. wave speed and attenuation) are fitted to the chosen model
using numerical optimisation techniques, typically non-linear
least squares,245 to extract the viscoelastic parameters that best
describe the material.

Even though the reviewed techniques are well-established
for characterising viscoelasticity in soft tissues and various non-
Newtonian fluids, their effectiveness on battery slurries is not
guaranteed. This is partly due to the complex microstructures
of such slurries, and partly the inherent limitations of the
techniques themselves, such as sensitivity and robustness of
inversion. These challenges and associated research gaps for
measuring both viscosity and viscoelasticity are discussed next.

4.3.3 Research gaps on measuring macroscopic properties.
As mentioned in Section 4.3.1, a primary research gap is the
interpretation of ultrasonic and steady-state measurements of
dynamic viscosity in non-Newtonian slurries, where the under-
lying reasons for discrepancies remain unclear.228,235 It is
important to rigorously determine the shear rates that the
ultrasonic measurements actually probe, and the applicability
of empirical relationships like the Cox–Merz rule,230 which
attempts to correlate dynamic viscosity with steady-shear visc-
osity, needs systematic re-evaluation. However, regardless of
the outcome, it should be made clear that ultrasound can only
measure viscosity in a very limited shear rate range, determined
by its frequency, amplitude and waveguide geometry (for
guided waves), unlike rheometers which can operate within a
continuous and broad range of shear rates.

For viscoelasticity measurements, the selection of appropri-
ate wave modes remain crucial, given that battery slurries do
not support long-range propagation of shear waves. While
propagating compressional waves can be used,242 they are often
based on similar experimental setups with microstructural char-
acterisation and data (e.g. compressional wave attenuation

spectra). To fit both the microstructures and macroscopic rheology
with the same data is not ideal, as the sensitivity to each differs
and the inversion problems may become intertwined.

Shear wave reflectometry and guided waves can diversify the
ultrasonic data source and provide direct sensitivity to both
viscosity and viscoelasticity. In particular, guided wave sensors
offer design space (e.g. wave modes, waveguide geometries, and
frequencies) that should be systematically explored to optimise
their sensitivity, and to achieve more robust measurements of
parameters relevant to slurry processability. Thanks to their
different data sources, guided wave measurements also present
an opportunity to integrate their macro-rheological results to
the microstructural interpretation models for improved accu-
racy. For instance, the measured viscoelasticity could serve as
feedback or constraints of the continuous phase in the scatter-
ing models. However, a concern about these techniques is that
they are interface-based, and they primarily probe a thin slurry
layer adjacent to the surface of the sensor or waveguide.
Whether this thin-layer measurement is truly representative
of the bulk slurry properties needs further investigation, espe-
cially given the complex boundary conditions such as binder
attachment to surface or localised structuring near boundary.

For the modelling of viscoelasticity, while the GMM is suitable
for capturing the broad relaxation spectra of battery slurries, a
significant gap is to robustly parametrise and fit GMMs from
ultrasonic data. Determining the optimal number of Maxwell
elements to ensure both fitting accuracy and physical interpretabil-
ity is challenging,253 and development should focus on establishing
standard protocols and validation methods for these purposes.

It is also important to note that many ultrasonic measurements,
particularly those involving shear waves or guided waves, are
sensitive to not the viscosity itself, but often the product of density
and viscosity.254 Many of the viscosity measurements reviewed
previously assumed constant density, but this may not hold true
during battery slurry mixing. While density itself is not a rheologi-
cal property, it is important for accurately decoupling viscosity or
viscoelasticity. Thus, developing methods for simultaneous or
independent ultrasonic density measurement could be beneficial.

Finally, as an opportunity, the existing and to-be-developed
guided wave frameworks for the characterisations of viscosity
and viscoelasticity could find applications beyond slurry mix-
ing, in monitoring the coating and drying steps of electrode
manufacturing. The transition from a liquid slurry to a solid-
like porous electrode involves significant changes in viscoelas-
tic properties, which guided waves are well-suited to track,
potentially offering new avenues for inline quality control of
these critical downstream processes. In fact, there have already
been relevant experimental developments using air-coupled
ultrasound techniques.255,256

5 Perspectives on inline ultrasonic
monitoring of battery slurries

Towards the goal of reducing scrap in battery slurry mixing, an
inline characterisation technique serves two purposes: as a
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direct feedback mechanism for parameter optimisation during
production ramp-up, and as conformance assurance when
production is running at capacity. For both purposes, the
measurements should be conducted in situ, and ultrasonic
techniques presents notable advantages.

As reviewed, ultrasonic wave’s attenuation, velocity, and
backscattering are sensitive by microstructures; the evolution
from the initial state full of aggregates and agglomerates, to the
ideal state with evenly distributed binder and CA networks,
could likely result in detectable changes of ultrasound and thus
allow the evolution itself to be monitored. These are significant,
because such parameters are deterministic to downstream
product performances and yet elusive to existing techniques.
Moreover, ultrasonic instruments are easily available, non-
invasive, and well-suited for integration into industrial produc-
tion environments, offering a viable pathway toward real-time
monitoring.

Despite these advantages, several limitations constrain the
use of ultrasound as a standalone characterisation tool. These
include the research gaps already identified, and the fact that
ultrasound’s access to certain properties are limited and indir-
ect. For example, it struggles to capture specific microstruc-
tures (e.g. chemical surface interactions) and key macroscopic
rheological behaviours (e.g. viscosity at only limited shear rates,
extensional rheology, and yield stress), all of which are impor-
tant to evaluating slurry processability. Consequently, a new
strategy is needed to make full use of the valuable yet limited
information accessible by ultrasound.

5.1 Bridging microstructure and rheology with predictive
modelling

Since bulk rheological behaviour directly determine slurry
processability, and ultrasonic techniques are better suited for
inferring microstructural features than directly capturing rheo-
logical parameters, a logical approach is to use ultrasound for
inline microstructure characterisation, and feed the informa-
tion to predictive modelling (reviewed in Section 3.2) to esti-
mate the rheological properties. While different strategies
implement this workflow in various ways, they can generally
be grouped into three categories: physics-based models, multi-
scale simulations, and data-driven or machine learning (ML)
approaches.

5.1.1 Existing predictive frameworks. Physics-based models
can be integrated in two steps: initially, microstructural informa-
tion (e.g. PSD, concentration) is extracted from inline ultrasonic
data using the scattering or effective medium theories discussed
in Section 4.2.2. Subsequently, these parameters can serve as
inputs to the micro-rheological models (detailed in Section 3.2) to
predict macroscopic rheology, which can be further validated by
the limited ultrasonic viscosity and viscoelasticity data. However,
the primary challenge of this approach is the potential error
propagation: ill-posed ultrasonic characterisation of the slurry’s
microstructures (which result from the existing research gaps)
can compound uncertainties within the micro-rheological
models themselves (e.g. particle properties and the mechanistic
descriptions of interaction mechanisms). Consequently, while

this approach may yield useful trends, the overall predictive
accuracy is expected to be limited.

Multi-scale simulations such as CGMD and DEM (reviewed
in Section 3.2) provide a powerful framework to link funda-
mental particle interactions to rheology. However, this only
solves one step of the problem; full-field numerical simulations
(e.g. finite element methods) to link slurry microstructures to
bulk ultrasonic responses presents a significant technical chal-
lenge. This is primarily due to the extreme disparity in length
scales, from micron-scale scatterers to centimetre-scale propa-
gation domains, making this approach infeasible for real-time
or inline monitoring of slurries. A more practical route involves
using effective medium theories196 to approximate ultrasonic
behaviour in complex suspensions, and employing CGMD or
DEM simulations to generate synthetic microstructure–rheol-
ogy datasets for training physics-informed surrogate models
that bridge ultrasonic features and slurry states.168

Data-driven and ML models enable directly correlating ultra-
sonic features with the targeted rheological properties from large
datasets, potentially bypassing the intermediate step of explicit
microstructure inversion. Complex, non-linear relationships can
be captured this way. However, their successful application is
critically dependent on the availability of extensive, high-quality
calibration data257 linking ultrasonic responses to verified slurry
properties, and they share the general ML challenges of potential
overfitting and limited extrapolation capability beyond the training
data.258

5.1.2 Physics-informed ML models and PINNs. Physics-
informed ML models (PIML) frameworks address key limitations
of purely data-driven models by embedding physical knowledge
into the ML models.61 In simpler terms, rather than just learning
from data patterns alone, these models are also ‘taught’ by the
fundamental laws of physics relevant to the problem. Among them,
physics-informed neural networks (PINNs)259 are particularly pro-
mising for inline ultrasonic characterisation of battery slurries. A
PINN is a type of neural network that embeds physical laws (such
as the equations governing wave propagation or fluid dynamics)
directly into the neural network’s learning/training process, typi-
cally by expressing the residuals of governing equations or other
mathematical constraints as part of the loss function. This physics-
informed regularisation guides the learning process, and forces the
PINN’s predictions to be not just data-consistent, but physically
realistic. As a result, PINNs can effectively solve ill-posed inverse
problems and make robust predictions, even with sparse or noisy
experimental data. PINNs also gains great flexibility, and the
physical layer can integrate not only partial differential equations
(PDEs) like the wave equation, but also empirical relationships,
material constitutive models, or dynamic state-space equations.
These advantages have seen PINNs gaining widespread adoption
across physical sciences and engineering,260–262 including in
ultrasonics.263,264 Therefore, we believe that a combined approach
of inline ultrasonic measurements + PINN-based predictive model-
ling represents the best way forward, overcoming the limitations of
physics-only or purely data-driven models.

In the context of ultrasonic monitoring of battery slurries,
three key layers of physical knowledge can be integrated into a

Energy & Environmental Science Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
/2

02
6 

10
:4

6:
18

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ee03563e


32 |  Energy Environ. Sci., 2026, 19, 11–43 This journal is © The Royal Society of Chemistry 2026

PINN. First is the analytical wave propagation and scattering
models which links the slurry microstructures to ultrasonic
characteristics (attenuation, speed, and scattering), such as
ECAH, core–shell or effective medium theories, as discussed
in Section 4.2.2. Second, relationships between microstructure
and rheology, as described by empirical (e.g. Herschel–Bulk-
ley152 or Krieger–Dougherty153 equations) or micro-rheological
models87 can be incorporated to to predict rheological beha-
viours from the ultrasonically inferred or physics-constrained
microstructural state. A third layer can utilise direct correlations
between specific ultrasonic features (e.g. reflection coefficient)
and rheological parameters like viscosity and viscoelasticity.
Each physical layer in this multi-layer integration contributes
to the overall loss function of the PINN, so that the complex,
multi-domain relationships can be learnt, and predictions that
are both data-consistent and physically coherent can be pro-
duced. It is crucial to recognise that the fidelity of these
embedded physical layers is fundamental to the efficiency and
accuracy of the PIML/PINN model; as such, continued research
to advance the fundamental understanding and to bridge the
research gaps identified in Section 4 remains of paramount
importance.

There are also technical challenges facing such applications.
Potential limitations of PINNs61 include spectral bias against
high-frequency details crucial for fine microstructural charac-
terisation; difficulties in handling coupled multi-physics and
multi-scale inherent in the polydispersive slurries; and sensitiv-
ity to the noise and sparsity often present in inline experimental
data. Fortunately, the broader field of PIML is rapidly evolving,
with ongoing research providing potential remedies. For
instance, Fourier feature mapping or adaptive activation func-
tions can mitigate spectral bias,263,265 specialised architectures
like DeepM&M266 show promise for complex multiphysics and
geometries, and Bayesian PINNs267 offer robust uncertainty
quantification to handle data imperfections. Beyond these
direct PINN enhancements, the PIML landscape is rapidly
progressing through innovations such as operator learning
frameworks (e.g. DeepONets,268 Fourier Neural Operators269,270

), or Laplace operator,271 which learn mappings between func-
tion spaces. Thus, while PINNs currently represent a pertinent
and extensively researched methodology suitable for the com-
bined inline ultrasound + predictive modelling approach, even
more specialised and powerful tools may be on the horizon.

5.2 Roadmap to implementation

5.2.1 Model calibration and PINN training. The accuracy of
the proposed combined approach hinges on robust offline
calibrations, which can integrate state-of-the-art measurement
techniques, modelling insights, and physical laws into the
unified learning framework of PINNs.61,259 In practice, the
calibration process could start by preparing a matrix of slurry
formulations with systematically varying mixing configura-
tions, such as solid loading, binder content, mixing sequence
and duration. A good strategy to minimise the required number
of samples is the design of experiments method used in ref.
166. Each slurry sample undergoes ultrasonic measurements

under controlled conditions, alongside extensive offline char-
acterisations with the range of techniques as reviewed in
Section 3. The resulting dataset captures a detailed and com-
prehensive snapshot of each slurry’s microstructure–rheology-
ultrasound relationships.

The calibration dataset provide paired inputs and targets for
the PINN to learn mappings from real-world ultrasonic signals
to latent slurry properties, while remaining anchored by the
physical principles,263 see Fig. 13(a). The three physical layers are
embedded in the model through the construction of a composite
loss function, which typically includes terms that enforce agree-
ment with the empirical calibration data, as well as residual
penalties for violating the governing equations of ultrasonic wave
propagation and the constitutive relations of the slurry medium.
Such a structure ensures that the learning process remains con-
sistent with both data and physics, even when the former are
sparse or noisy.61,259 The PINNs can be trained on a combination
of simulated and experimental data,272 and an effective training
strategy is to first pre-train or constrain the PINN with physics
alone on a wide range of slurry states. This can be done by
predicting ultrasonic features from the physics models – once they
are developed to a state where they can capture the characteristics
of the battery slurries with high fidelity – across various micro-
structure parameters to create a synthetic dataset. The network will
learn a physics-valid, albeit rough, mapping from this step. Then
the PINNs can be fine tuned on real experimental data, which do
not need to cover all conditions densely, since the implemented
physics allow reliable interpolation.262 The result is a model that
accurately interpolates the real data and extrapolates to new
conditions allowed by physics.

Once trained, the PINN can be deployed as a surrogate model
to interpret incoming ultrasonic data in real time, delivering
estimations of slurry conformance, microstructure, and rheology.
Because the model has been trained to obey both experimental
observations and physical laws, it can provide robust predictions
with signal variability or partial data loss.61 The computation is
fast, since it is essentially a forward pass through the neural
network. The PINNs can also be adaptive, using the data accumu-
lated from continuous running to periodically re-train or update
the model and effectively construct a digital twin of the inspected
system.61 These advantages make it a feasible and robust option
for closed-loop optimisation and real-time monitoring of the
mixing process, as illustrated in Fig. 13(b).

It is worth highlighting the power of this PINN approach,
which lies in its ability to effectively incorporate the extensive
offline characterisation techniques. The fully trained PINN
serves effectively as an advanced data fusion tool for the rich
information gathered from all the offline measurements, and
the inline ultrasonic signals acting simply as real-time pointers
to the comprehensively characterised, multi-dimensional slurry
states. This is a sharp contrast to the purely physics-based
models, which infer the complex properties solely from ultra-
sonic signals and often face limitations due to the indirect
measurements and ill-posed nature of the relevant inversions.

5.2.2 Sensor selection and deployment. The inline ultra-
sonic monitoring system requires careful consideration of
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instrumentation and its integration to the process control of
slurry mixing. A key consideration is the choice of ultrasonic
transducers – their type, operating frequency and mode,40 and
each chosen transducer must be clearly tailored to measuring
its targeted slurry properties. The data fusion capabilities of
PINNs relax the stringency of the choices;61,259 in fact multiple
sensors are advantageous as input to PINNs over a single one, as
long as they deliver diverse data. For macroscopic rheological
properties, shear wave reflectometry uses pulse-echo setup with
broadband excitation,221 whereas guided wave viscometry require
careful design on the waveguide geometry.227,228 For microstruc-
tures, a balance should be sought between propagation length,
resolution, and sensitivity to the fundamental physical mechan-
isms at play. These are best implemented using broadband
transducers in the 1–20 MHz frequency range.40,172 One aspect
to be careful about battery slurries is that they normally have high
attenuation and thus short propagation distances at higher
frequencies,183 which necessitate narrow measurement gaps; but
the high viscosity can lead to sensor fouling in confined gaps.
Therefore, instrumentation must not only accommodate the
acoustic characteristics of the medium but also be mechanically
robust and easily cleanable.

The integration of ultrasonic sensors to the mixing devices must
ensure that the ultrasound path samples representative bulk mate-
rial. Backscattering measurements may be conducted through the
mixer’s wall, but attenuation sensors should be in direct contact with

the slurry and ideally embedded in the mixing vessel207 while
avoiding stagnant regions. Sensor mounting should also accommo-
date the need for mitigating sensor fouling, and be isolated from
mechanical movements and vibrations of the mixer components.
One important consideration is that temperature measurement
and compensation are essential to ultrasonic tests, as the wave
velocity and attenuation are sensitive to thermal perturbations.177

To integrate into process control systems, inline ultrasonic
measurements of microstructures and macro-rheology need to
be synchronised with the mixing operations and streamed to a
controlling unit. The inference model (PINNs as proposed here)
should operate within an acceptable latency level, and its
outputs, including viscosity estimates or dispersion quality
indicators, can then inform the decision making process and
used as input to closed-loop control strategies.38,110 These may
lead to real-time adjustments of mixing speed, duration, or
additive dosing, thus improving slurry product conformance
and batch-to-batch consistency, and transforming slurry mix-
ing from a heuristics-based process into a data-informed and
adaptive one that is anchored by real-time physical insight.

6 Summary and outlook

The soaring demand for batteries, which is pivotal in the global
transition to sustainable energy, is significantly hampered by

Fig. 13 Perspectives on inline monitoring of battery slurries using a combined ultrasonic monitoring + PINN-enabled prediction approach. (a)
Schematic of the proposed physics-informed neural network (PINN) architecture; (b) the vision of closed-loop optimisation and control of battery
slurry mixing enabled by the combined approach.
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manufacturing inefficiencies, particularly in the critical slurry
mixing stage. High scrap rates at this juncture are caused by the
reliance on slow, offline characterisation methods and the
resultant open-loop control, resulting in substantial material
waste, economic losses and environmental impacts. This paper
has critically examined the largely untapped potential of low-
power ultrasonic techniques to provide robust, inline monitor-
ing of battery slurry mixing, thereby addressing this pressing
industrial need.

We began by detailing the crucial microstructural character-
istics (e.g. particle size distribution, homogeneity, dispersion
and binder distribution), and macroscopic rheological beha-
viours (e.g. viscosity and viscoelasticity) that dictate slurry
processability and ultimate battery performance. The complex
interplay of numerous mixing parameters makes optimising
these properties a formidable challenge for the existing offline
characterisation tools, which impede rapid, data-driven feed-
back for process control. This review introduced the funda-
mentals of ultrasonics, and highlighted how the interactions
between waves and slurry constituents, manifested as changes
of wave speed, attenuation and scattering, can be used to
characterise the vital slurry parameters. Despite facing unique
challenges posed by battery slurries, such as high solids con-
tent, polydispersity, and the viscoelastic nature of the contin-
uous phase, ultrasound’s potential for inline microstructural
and limited rheological evaluation remains significant.

To overcome the limitations of ultrasound as a standalone
tool for battery slurries, and to bridge the gap between measur-
able ultrasonic parameters and the suite of desired macroscopic
rheological properties, we proposed a synergistic strategy. This
approach involves integrating inline ultrasonic data with pre-
dictive modelling frameworks, particularly physics-informed
neural networks (PINNs). By embedding the governing physical
laws of ultrasound-microstructure-rheology relationships into
the PINNs training process, and leveraging comprehensive off-
line calibration datasets and optimised instrumentation, this
methodology points to a clear pathway where real-time estima-
tion of slurry properties can be inferred from inline ultrasonic
data continuously. Once integrated to the control system, this
system can enable true closed-loop optimisation and dynamic
adjustments of configurations, heralding a leap towards more
efficient and sustainable battery manufacturing.

The implications of this combined ultrasound-PINN metho-
dology extend beyond wet LIB slurry mixing. For example, they
could be applied to monitoring the slurries of sodium- and zinc-
ion batteries, which are very similar to LIBs. Furthermore, as the
industry explores innovative manufacturing routes such as dry
electrode mixing,273 there are significant challenges in monitoring
the evolution of particulate blending and binder fibrillation. The
ultrasound-PINN framework offers a viable monitoring path: the
propagation of ultrasound can probe the evolving microstructure,
from the initial particulate powders274 to the final state of porous
solids,275,276 and PINNs can integrate the sensor data with the
complex physical models of particulate dynamics and polymer
fibrillation, for the inline monitoring and control of the process.
Finally, and equally excitingly, the challenges in optimising the

microstructures and rheology of battery slurries are mirrored in
the next-generation solar cells, where the quality of organic
photovoltaic,277 quantum dot,62 perovskite63 films is highly depen-
dent on the colloidal properties of their precursor inks, which are
of similarly high solid loading with polymer binders. This presents
an excellent opportunity for the proposed methodology to make
strong impacts on yet another renewable energy sector.

It is our firm belief that the fusion of inline ultrasonic
monitoring with physics-informed predictive modelling will
be instrumental to achieve closed-loop optimisation for battery
slurry mixing and contiguous manufacturing processes. This
review, by comprehensively outlining the problem landscape,
the significant promise of ultrasound, and the key research
challenges and opportunities, aims to lay a robust foundation
and coordinate further research towards realising this ambi-
tious yet critical objective for the future of energy storage
technology.
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