

EES Batteries: opening the first issue of 2026

Cite this: *EES Batteries*, 2026, **2**, 10

Ungyu Paik †

DOI: 10.1039/d6eb90001a

rsc.li/EESBatteries

Dear readers,

As we open the pages of the first issue of *EES Batteries* in 2026, we mark a significant milestone: the first full anniversary of our journey. Since our first publications in January 2025, the journal has evolved from a promising new platform into a vibrant hub for the battery community. The research published over the past year has been nothing short of remarkable. We have witnessed a dynamic shift from theoretical exploration to practical application, ranging from high-tech battery science to sustainable battery recycling technologies. By publishing over 100 articles from researchers across various countries, *EES Batteries* has successfully established itself not just as a repository of data, but as a crucible where discovery-driven science meets the rigorous demands of cutting-edge applications.

Navigating the post-pandemic era, the battery landscape has faced turbulence. While the demand for electrification remains undeniable, the past year brought unexpected hurdles: shifting trade policies, geopolitical complexities, and a recalibration of investment momentum. It is easy to view these developments solely as setbacks. However, this situation presents a new dimension of challenge for our community. History has shown

that when economic and political barriers rise, science must build bridges. The constraints we face today, whether in supply chain scarcity or cost pressure, are the catalysts that drive our most creative innovations.

Therefore, the advancement of battery science is about securing the way future societies will survive and thrive. Looking ahead, our batteries will be the heartbeat of a transformed world. Battery technologies will be required to support a growing range of applications beyond electric vehicles and grid storage. These include next-generation mobility and automation, as well as emerging autonomous systems such as humanoid robots and urban air mobility, specifically electric vertical take-off and landing (eVTOL) vehicles. Collectively, these applications impose distinct and often competing requirements on battery performance. Meeting these diverse requirements will depend not on incremental improvements alone, but on deeper scientific understanding that enables purpose-driven battery design for future technologies.

This brings us to our mission for 2026. *EES Batteries* seeks to promote purpose-driven research aligned with the changing paradigm of energy storage. Therefore, going beyond basic

science alone, we specifically encourage interdisciplinary studies that bridge fundamental science and industrial relevance, integrating emerging tools such as AI-driven discovery and circular economy principles. Ultimately, we aim to support scientific breakthroughs that go beyond technical benchmarks to contribute to building a more sustainable and resilient society.

The rapid establishment of *EES Batteries* would have been impossible without the unwavering support of our community. I am deeply grateful to our Associate Editors, Editorial and Advisory Board members, and the dedicated team at the Royal Society of Chemistry. Most importantly, I thank our authors and our reviewers, whose rigorous and constructive feedback acts as guardian to our scientific integrity. As we embark on this new year, it is worth remembering that every graph, every figure, and every equation we publish contributes to a more resilient and sustainable world. I invite researchers across academia, industry, and policy to join us as authors, reviewers, and readers in shaping the next phase of battery science and energy storage research.

Best regards,
Prof. Ungyu Paik
Editor-in-Chief, *EES Batteries*

