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With the widespread application of lithium-ion batteries, thermal safety and state monitoring have

emerged as critical issues that hinder the advancement of high-energy-density battery systems. Faced

with the above challenges, multidimensional sensing technologies such as gas, pressure, temperature,

imaging, and sound have been explored for critical alerts. But the effect is not satisfactory. For instance,

traditional temperature sensing technologies, constrained by localized measurement hysteresis and

insufficient spatial resolution, struggle to rapidly and in real-time capture the dynamic evolution of internal

thermal anomalies in batteries. In contrast, electrochemical impedance spectroscopy (EIS) serves as a

non-invasive diagnostic technique that elucidates internal electrochemical–thermal coupling mecha-

nisms through frequency response analysis. This approach paves the way for innovative paradigms in

thermal state monitoring and health management of lithium battery systems. The present paper systema-

tically reviews the latest advancements in EIS technologies pertaining to battery safety, focused on analyz-

ing innovations in impedance measurement chips and devices, impedance data processing algorithms,

and impedance-based intelligent applications. Our primary objective is to promote the implementation

and widespread adoption of high-reliability, low-cost battery management systems utilizing alternating

current (AC) impedance.

Broader context
As the global energy system undergoes an unprecedented transition toward electrification, lithium-ion batteries have emerged as a critical technology for inte-
grating renewable energy and enabling electric mobility. This energy transition has exposed key flaws in existing battery safety frameworks, as traditional
monitoring methods are unable to effectively address the complex interplay between electrochemical kinetics and thermodynamics under large-scale con-
ditions. Different from traditional single-temperature sensing, Electrochemical Impedance Spectroscopy (EIS) enables timely warnings of safety issues
because it provides wide-band and high-precision kinetic information from bulk to interfaces. The emergence of chip-level EIS measurement solutions and
impedance deconvolution technologies based on DRT is driving a shift in safety measures from reactive responses to a predictive battery health ecosystem.
These advancements have profound implications for expanding secondary battery applications, optimising fast-charging protocols, and achieving safe battery
architectures.

1. Introduction

The global energy infrastructure is at a critical juncture, facing
the challenges of surging electricity demand and increasingly
severe environmental pollution issues. Although fossil fuels
still dominate the current primary energy supply, related

carbon neutrality regulations and policies have significantly
spurred an unprecedented expansion of renewable energy.1,2

Meanwhile, the levelized cost of electricity (LCOE) for solar
and wind power is gradually decreasing, coupled with rapid
breakthroughs in energy storage technology, enabling renew-
able energy projects to achieve scalable profitability for the
first time. As a result, global green capital is rapidly converging
towards the renewable energy sector.3

With the rapid development of new energy technologies,
lithium-ion batteries, as the current representative energy
storage medium, have seen substantial expansion in both
demand scale and application scenarios.4–6 Although the battery
systems demonstrate excellent performance metrics in terms of
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energy/power density,7 cycle life,8 and capacity retention,9 the
thermal safety issues under different operating conditions,10 par-
ticularly the severe consequences induced by thermal runaway,11

impose more stringent technical requirements on the accompa-
nying safety management systems. For practical applications,
current energy storage systems have established a multimodal
collaborative safety monitoring framework, utilizing information
such as temperature, pressure, gas, SOC, and crack formation as
early warning indicators, supplemented by multidimensional
sensing technologies.12–14 Usually, Battery Management Systems
(BMSs) can effectively prevent and provide early warnings for
safety risks due to mechanical and electrical abuse by means of
electrical signal-based voltage monitoring, over-voltage protec-
tion, current limiting, balancing, and disconnection.15–18

However, there is currently no highly reliable method to provide
safety warnings for thermal abuse.11,19 The problem of thermal
abuse has become increasingly severe due to significant temp-
erature differences between the inside and outside of the
battery, which are not only difficult to monitor but also have hys-
teresis effects. Moreover, common temperature monitoring
methods struggle to balance cost and efficiency. Thermistors are
low-cost but have a slow thermal response and limited accuracy;
thermocouples provide high-precision measurements and have a
rapid thermal response, but they are expensive and susceptible
to noise interference;20 resistance temperature detectors (RTDs)
face challenges such as large size and manufacturing difficulties.
New temperature sensing techniques, such as Fiber Bragg
Grating (FBG) sensors,21–23 in spite of being compact and poten-
tially integrable within the battery, still face considerable chal-
lenges regarding feature analysis and the onboard application of
optical signals. Furthermore, conventional monitoring of
voltage, current, and even pressure and gas offers limited assist-
ance for real-time temperature monitoring.

In contrast, the impedance characteristics of batteries
exhibit a strong correlation with temperature over a wide temp-
erature range. In most thermal abuse scenarios, the changes
in relevant impedance characteristics are notably pronounced
and generally occur earlier than the onset of thermal runaway.
In addition, within the battery module, issues such as connec-
tor aging,24 contamination,25 and looseness can be monitored
through DC resistance measurements, while problems like
battery aging, localized lithium plating, and electrolyte cor-
rosion can be evaluated through AC impedance measure-
ments. Due to the need for a certain amplitude of current in
DC resistance measurement, it can also be equivalently rep-
resented by AC impedance around 1 kHz, thus standardizing
DC resistance acquisition into AC impedance measurement. It
is essential to emphasize that, given the current trend of
increasing capacity in individual battery cells, the welding
impedance between the cell and the tab has become compar-
able to the internal resistance of the battery unit itself, and the
safety risks from the connection should not be ignored.

In summary, the current temperature sensors and the
associated integration challenges pose an urgent need for
non-invasive thermal safety monitoring methods.26 Faced with
the above demands, Electrochemical Impedance Spectroscopy

(EIS) might provide a new approach, not only for temperature
detection inside batteries but also for other safety monitoring
of batteries.27 EIS has attracted increasing attention in evaluat-
ing electrode performance, diagnosing kinetic mechanisms,
and monitoring the operating state of LIBs. Therefore, review
articles on battery impedance continue to emerge. These
reviews are mainly concentrated on the following aspects.

(1) Fundamental concepts. Orazem et al. presented EIS as a
transfer function technique applied to electrochemical
systems.28 Lazanas et al. gave a tutorial for EIS from the theore-
tical background, the principles, and applications in detail.29

(2) Theoretical models. Single et al. took planar electrodes
as an example to derive a physics-based impedance model in
which a SEI is considered.30 Chen et al. also reviewed how to
model porous electrodes and how to apply the developed
models to LIBs.31

(3) Fast measurement. Wang et al. reviewed the impedance
measurement for onboard battery management.32

(4) Typical applications. Mc Carthy et al. reviewed how to
use EIS to estimate SOC, SOH, and temperature for LIBs.33 Qu
et al. briefly reviewed how to probe process kinetics using EIS
of batteries.34 Iurilli et al. reviewed how to characterize and
model the aging phenomena using EIS of LIBs.35 Hu et al.
gave a critical review on rapidly developing impedance tech-
niques for degradation and aging investigation of LIBs.36

(5) Broad range introductions. Concentrated on EIS, Vivier
et al. systematically reviewed model development, measure-
ment model analysis, and model interpretation in terms of the
proposed reaction mechanism.37 Du et al. reviewed impedance
definition, impedance acquisition, impedance analysis, and
impedance application for LIBs.38 Meddings et al. critically
assessed impedance measurement, calibration, interpretation,
validation, and equivalent circuit models, all of which are
applied to commercial LIBs.39

Although there are abundant literature reviews on impe-
dance spectroscopy, most of them were focused on basic con-
cepts, theoretical models, rapid testing, typical applications,
and broad range introductions. Up to now, there is a lack of a
systematic review on testing methods, testing safety, testing
nonlinearity, data validation, and data interpretation. The
above contents are the premise and foundation in impedance
data-driven battery safety monitoring and intelligent diagno-
sis. In view of this, this work reviews the technological closed-
loop of innovative impedance applications from measurement
to processing to implementation. In detail, this work reviews
these technological frontiers as follows:

(1) Classify various impedance measurement methods and
devices, focusing on two mass-produced impedance measure-
ment chips, and analyze their application prospects.

(2) Review recent advancements in impedance data acqui-
sition, validation and interpretation, and evaluate the applicability
and inherent technical limitations of various methodologies.

(3) Discuss impedance-based safety management such as
SOC/SOH monitoring and temperature estimation, and investi-
gate physics-informed thermal models and data-driven neural
networks.
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2 Measurement of impedance
spectra
2.1 Basic knowledge of impedance measurement

Due to the strongly nonlinear and time-varying characteristics
of lithium-ion batteries (LIBs), small-signal perturbation is
commonly employed for AC impedance measurement. By
applying small-amplitude multi-frequency AC excitation
signals40 near the operating point, the system response
satisfies the fundamental assumptions of causality (response
solely caused by excitation), linearity (response approximately
proportional to excitation), stability and boundedness (finite
excitation energy and bounded response frequency range).
Under these conditions, the battery’s voltage or current
response is measured synchronously. To express the impe-
dance concept with the imposed time-domain excitation and
response signals, the complex phasor method is typically
employed. Via Fourier transform analysis at the specific fre-
quency ω, the AC current excitation and voltage response
signals are converted into their complex phasor represen-
tations: Δİ( jω) = Iejϕi and ΔU̇( jω) = Uejϕu where I and U rep-
resent the magnitudes, and ϕi and ϕu denote their respective
phase angles. The complex impedance at frequency ω is then
calculated from the ratio of these phasors:

ZðjωÞ ¼ ΔİðjωÞ
ΔU̇ðjωÞ ¼

Iejϕi

Uejϕu
: ð1Þ

This formula directly provides both the magnitude and
phase information of the complex impedance Z( jω), enabling
the construction of detailed Nyquist plots for battery character-
ization. These plots effectively capture the kinetics of charge
transfer reactions and conform to the causal constraints
required by the Kramers–Kronig relations, thereby providing a
reliable basis for the non-destructive evaluation and diagnosis
of LIBs.

The typical impedance measurement is primarily sorted
into two modes based on excitation signals: galvanostatic (con-
stant current) and potentiostatic (constant potential). In large-
scale battery modules, the galvanostatic mode is predomi-
nantly adopted due to advantages in current control stability
and ease of realization.41 The predominant perturbation signal
in EIS measurement is single-frequency sinusoidal excitation,
whose key advantage lies in its highly concentrated power
spectral density enabling a superior signal-to-noise ratio (SNR)
and inherent noise rejection. However, it suffers from pro-
longed measurement durations and strong dependency on
DAC module precision during waveform generation. To reduce
the EIS measurement period and simplify excitation signal
generation, the research focus has shifted from frequency
sweep to novel strategies including multi-sine, multi-pulse,
step signals, PRBSs42 and so on. These approaches leverage
time-frequency domain transformations to achieve parallel
multi-frequency high-gain measurements with optimized
noise suppression. The characteristics and implementation of

these innovative methods will be discussed in detail in the
subsequent sections.

Besides, the typical Nyquist plot of LIBs usually exhibits
four characteristic regions from high to low frequencies, i.e.
parasitic inductance, SEI medium, charge transfer and solid–
liquid diffusion, respectively. In the high-frequency region, the
intersection with the real axis can be quantified as ohmic re-
sistance, which includes contributions from electrolyte ionic
conductivity, current collector contact, and separator resis-
tance. The mid-to-high frequency semicircle represents the
impedance of the solid-electrolyte interphase (SEI). A stable
SEI layer manifests as a small, consistent semicircle, while
repeated cycling often enlarges this feature due to SEI thicken-
ing or crack formation. In the mid-to-low frequency range, the
semicircle corresponds to charge transfer resistance at the
electrode surface. A larger semicircle diameter suggests slug-
gish reaction kinetics, which may stem from degraded active
materials, insufficient electrolyte wetting, or reduced catalytic
activity.43 At the lowest frequencies, the inclined line reflects
lithium-ion diffusion dynamics. This region is sensitive to the
particle size, porosity, solid/electrolyte diffusion coefficient,
and ion transfer number, with deviations in slope often indi-
cating inhomogeneous diffusion or phase separation.44,45

2.2 Challenges of impedance measurement

The effectiveness of EIS modules in analyzing LIBs relies on
their ability to perform long-term measurements accurately.
However, module-level implementation faces four major chal-
lenges: inter-cell crosstalk causing signal contamination, DC
bias-induced nonlinear distortion in measurements, contact
resistance compromising impedance data reliability, and high-
frequency noise from advanced excitation signals degrading
measurement accuracy.46 Whether adopting a centralized or
distributed architecture, inherent trade-offs involving cost,
complexity, robustness, and measurement bandwidth must be
considered when addressing these issues. Each system con-
figuration presents specific limitations: centralized systems are
prone to DC bias and contact resistance effects, whereas dis-
tributed systems47 may encounter constraints in excitation
signal amplitude, crosstalk interference, and increased costs.48

Furthermore, under dynamic operating conditions, additional
polarization interference can arise, necessitating high-pre-
cision synchronous acquisition techniques to isolate artifacts
and ensure measurement accuracy.49

L. H. J. Raijmakers et al. and NXP Semiconductors50 noted
this issue over time, revealing the crosstalk interference
mechanism in multi-cell synchronous impedance measure-
ments of battery packs (i.e. higher crosstalk at higher frequen-
cies) through experimental and modeling approaches. This
crosstalk originates from electromagnetic coupling between
cells and can be expressed using the transfer function
H*

22ðjωÞ ¼ H22ðjωÞ þ H21ðjωÞI1ðjωÞ=I2ðjωÞ, which is very similar
to the mutual inductance between coils. Importantly, their
research also showed that crosstalk impedance is independent
of battery temperature and SOC, simplifying both modelling
and compensation. To address crosstalk, the perturbation fre-
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quencies of adjacent cells can be set to slightly different
values. However, this prolongs the overall measurement period
and is typically only applicable to distributed EIS systems.48

Although most EIS systems could eliminate crosstalk com-
ponents by embedding transfer function matrices in impe-
dance algorithms, it remains challenging to obtain such
matrices in multi-cell coupling scenarios.50,51

The DC bias in impedance measurements fundamentally
manifests as an external representation of system nonlinearity,
arising from dynamic coupling between operating current and
perturbation signals.46,52,53 Experimental results suggest that
when the DC component exceeds fivefold the AC perturbation
amplitude (Idc/Iac > 5), it induces significant Warburg impedance
distortion (low-frequency phase angle deviation up to ±7°).54

This effect is particularly pronounced during the discharge, exhi-
biting impedance variation rates 2–3 times higher than charging
states.54 To better compensate/reject the DC bias effect, the non-
linear decay characteristics of the Li-ion diffusion coefficient DLi+

need to be considered, along with a compensation formula that
takes into account the enhancement of concentration polaris-
ation coupled with harmonic mixing.

Whether using laser welding or ultrasonic welding, it relies
on the contact resistance between busbars and battery terminals/
tabs. In EIS measurement systems, only the approach to solder
the FPC flexible circuit boards close to the battery tabs (clamped
between collector bars and battery lugs) can be considered vir-
tually free from contact resistance effects. These contact resist-
ances from common welding methods have been extensively
reported and are summarized in Table 1, where they are com-
pared in magnitude to the ohmic resistance of high-capacity bat-
teries. The contact resistance of connectors may vary with
pressure during soldering, contact area, and surface roughness.
It can also increase as a result of fatigue caused by continuous
vibration. Usually, it is difficult to predict these variations.
Currently, they are roughly classified as components of ohmic re-
sistance or as components of resistive/inductive coupled inter-
ference. A uniform mean compensation is usually applied during
impedance measurements according to the following formula:

ReðZÞcomp ¼ ReðZÞmeas þMre � f þ Rpar ð2Þ

ImðZÞcomp ¼ ImðZÞmeas þMim � f þ Ipar: ð3Þ

In the above contact resistance correction for EIS measure-
ment, Re(Z)comp and Im(Z)comp denote the corrected real and
imaginary parts, respectively; Re(Z)meas and Im(Z)meas rep-
resent the measured real and imaginary parts, respectively; Mre

and Mim are the inductive compensation coefficients for the
real and imaginary parts, respectively; f is the frequency; and
Rpar and Ipar are the resistive compensation terms for the real
and imaginary parts,47 respectively.

Finally, multi-sine perturbation and PRBS methods have
become integral components of contemporary battery AC
impedance measurement techniques, offering significant
improvements in both speed and accuracy for impedance
spectra. These approaches are particularly valuable for on-
board and real-time applications where conventional fre-
quency-sweep methods are impractical due to time con-
straints. A multi-sine signal can typically be expressed as:

x½k� ¼
XNf

n¼1

An cosð2πf0kδtþ φnÞ: ð4Þ

The superimposed multi-sine configuration maintains a
relatively uniform power distribution across the frequency
points of interest, resulting in lower noise amplification.
Although multi-sine perturbation signals are gaining increas-
ing recognition, the superposition of multiple signals may
induce nonlinear distortion, which results in technical chal-
lenges in signal generation. To achieve better results, Kallel
and Kanoun’s multi-sine method enhances measurement per-
formance by 78% time reduction (from 1440 s to 315 s) and
84% stability improvement (from 201.21 ppm to 31.70 ppm)
through frequency/crest factor optimization.58 This method
holds significant practical implications because it improves
the stability of multi-sinusoidal impedance measurement by
introducing a virtual excitation time interval that merely dis-
turbs with no measurement under dynamic conditions, repla-
cing the original static relaxation time. In addition, optimiz-
ation methods for multi-sine perturbation signals also include
the evolutionary role-playing game theory (ERPGT) based
phase optimization,58 the crest factor optimization using the
bee swarm algorithm,59 and the genetic algorithm-based
phase optimization.60 These advanced computational methods
have substantially improved the performance of multi-sine
measurements, making them particularly suitable for centra-
lized EIS applications (Fig. 1).61

Compared to multi-sine signals, PRBSs exhibit an approxi-
mately uniform power spectral density over the measured fre-
quency range and have some high-frequency harmonic gain
beyond the measurement band, thereby resulting in increased
intrinsic noise and complexity in design/decoding signals. In
spite of the above challenges, advantages such as hardware
compatibility and multi-frequency acquisition make them one
of the most important research directions for fast impedance
measurement. Related technological innovations include
third-order ternary sequences,62 which improve low-frequency
performance while reducing injection amplitudes; discrete
interval binary sequences (DIBSs)42 that eliminate spectral

Table 1 Comparison between the contact resistance of common sol-
dering methods and the ohmic resistance of high-capacity batteries

Type Method Resistance

Welding Resistance spot welding55 0.167 mΩ
Ultrasonic welding55 0.169 mΩ
Laser beam welding55 0.130 mΩ
Soldering55 0.080 mΩ
Ultrasonic welding56 0.250 mΩ
Press contact(min)57 0.050 mΩ

Battery LF304 EVE energy 304 A h ≤0.160 mΩ
LF160 EVE energy 160 A h ≤0.210 mΩ
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leakage and amplify target frequency energy by 4–8 times; and
post-processing algorithms incorporating filtering techniques
such as Gaussian filters,63 moving average filters63 and so on.
In order to speed up the practical implementation of PRBSs, a
unified evaluation framework is urgently required for these
technological innovations.

Fig. 2 gives a brief summary of section 2.2.

2.3 Impedance measurement methods

This section summarizes various AC impedance measurement
methods and the corresponding devices for lithium-ion bat-
teries. Compared with specialized laboratory electrochemical
workstations, these devices exhibit lower cost, faster measure-
ment, higher portability, and better compatibility with BMS
architectures, though with generally slightly inferior accuracy.
These methods are divided into two categories: centralized EIS
and distributed EIS.

2.3.1 Centralized EIS. The centralized EIS system exhibits
significant advantages due to their robust perturbation
current, which help to effectively capture impedance character-
istics related to high-capacity lithium batteries. These systems
also achieve the comparison of internal consistency of bat-
teries by current amplitudes maintained at a uniform level.
However, the centralized EIS system is susceptible to inter-

ference from external noise signals. Currently, research studies
mainly focus on vehicle applications, and given the prevalent
implementation of front-end DC–DC/DC–AC circuits, more
investigations target passive excitation perturbation under
various circuit configurations. Table 2 summarizes relevant
methods and devices for centralized EIS measurement.

The current research mainly focuses on electric vehicle
charger OBCs, electric vehicle front-end DC–DC converters,
and DC–AC inverters under three-phase motor backgrounds,
with the corresponding passive excitation AC impedance
measurement introduction schemes designed, which matches
well the actual battery peripheral circuit situation. The related
scheme incurs almost no additional cost, as it can be
implemented using an existing DSP controller and BMS.
However, switching tube-based PWM control strategies for gen-
erating the perturbation signal also produce triangular wave
noise approximating half of the switching frequency, which is
inherently present in the circuit while simultaneously impos-
ing restrictions on the highest-frequency disturbances. For
application scenarios, switching frequencies of 10 kHz, 20
kHz, and 40 kHz correspond to the possible limiting disturb-
ance frequencies of 2 kHz, 4 kHz, and 8 kHz, or even lower.69

Next, the three scenarios of electric vehicle charger OBCs,
electric vehicle front-end DC–DC converters, and DC–AC inver-
ters are discussed separately. (i) For the on-board charger, the
introduction of excitation signals can help monitor the over-
charging of batteries. However, a large charging current bias
requires compensation of the measured low-frequency impe-
dance in order to achieve a high-precision impedance
measurement. (ii) For the front-end converter, the introduction
of excitation signals can help to enhance dynamic thermal
management for batteries. But due to power fluctuations, exci-
tation signals need to be accelerated and a certain rest time
should be reserved in order to achieve a high-precision impe-
dance measurement for batteries. (iii) For the three-phase
motor, the introduction of impedance measurement needs to
ensure no impact on motor torque and electromagnetic power.
Due to the nonlinearity caused by motor magnetic saturation,
low-frequency excitation disturbances require larger currents,
which bring larger AC ohmic losses while also requiring

Fig. 1 Schematic of the impedance spectra of LIBs based on small-
signal perturbation measurement.36

Fig. 2 Four challenges of impedance measurement.
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reasonable disturbance current amplitudes to be designed for
the corresponding equipment.75,77 In short, these three scen-
arios have their own advantages and problems to be solved.

Additionally, attention should also be paid to selecting suit-
able control algorithms for specific control implementation.
Although open-loop configurations combined with filtering
elements (LC hardware filtering or DFT software filtering) can
achieve sinusoidal perturbations for impedance measure-
ments across battery terminals in certain scenarios, it is
difficult for practical applications to maintain stable pertur-
bation amplitudes and to avoid nonlinear distortion. The
above difficulty significantly impedes the algorithm implemen-
tation in practical applications. Currently, perturbation
schemes in various DC–DC circuits include half-bridge, full-
bridge, DAB, TAB, and n-stage hybrid configurations, which
predominantly employ conventional PI control strategies.
Despite these strategies being effective in stabilizing routine
DC, they might amplify noise for higher-frequency measure-
ment due to the PI controller resonance under larger pertur-
bation amplitude conditions. In order to address the above
challenge, it is necessary to implement advanced control strat-
egies such as PR controllers (enhancing specific frequency
band tracking accuracy through resonant peaks) or d/q-axis
transformation (converting AC quantities to DC quantities for
decoupled control),69,75 aiming at expanding the frequency
response bandwidth and improving the measurement pre-
cision in the high-frequency range.

Besides, multi-sine perturbation and PRBS-like algorithms
can significantly improve impedance measurement speed,61,73

which are of great significance in monitoring the battery state.
A better understanding of section 2.3.1 can be realized by

viewing the diagram in Fig. 3.
2.3.2 Distributed EIS. A distributed EIS system offers dis-

tinct advantages in battery diagnostics mainly because this
architecture can generate AC perturbation signals with
minimal interference ripple noise, and at the same time it can
effectively compensate for inductive/resistive couplings.

Furthermore, the distributed EIS system can intelligently prior-
itize specific cells for targeted monitoring in practical appli-
cations, which offers a possibility to rapidly identify defective
cells through screening protocols. However, the one-to-one cor-
respondence between perturbation units and cells results in a
significant scaling cost associated with peripheral circuitry
when monitoring multi-cell battery packs.

Table 2 A summary of centralized EIS methods and devices

Front-end circuit Control algorithm Range/amplitude Time Error Battery

TAB DC–DC Phase shift control64 0.1–200 Hz/20 A — — 350 V pack 2p
DAB PI/closed-loop65 0.1–500 Hz/2 A — RMSE 4% 8 A h 6s1p
Boost ACMC/DIBS66 0.1 Hz–1 kHz/100 mA — ±1.7% 1.2 A h/2 A h
DC–DC Step/DFT67 10 Hz–9 kHz/0.2 C — <3% 2.6 A h 3s1p
DC–DC Multi-sine/FIBC61 0.1 Hz–1 kHz/0.75 A 150 s <3.2% 150 W Fuel cell
DC–DC FFT68 0.1 Hz–5 kHz/5 A 81 s 5.6 mΩ 40 A h 3s1p
PCC DC–DC PI + PR/closed-loop69 1 Hz–2 kHz/2 A — — Fuel cell stack
DC—DC Three-level/PI70 0.1 Hz–2 kHz/0.4 A — — 20 A h 6s1p
DC–DC Interleaved converter71 0.1–100 Hz/0.1 A — 3.85% 9 A h 12 V
DC–DC DP control72 0.1 Hz–25 kHz/50 mA 59.2 s 1.61% 3.35 A h
Full-bridge DRBS/FFT73 0.1–800 Hz/0.1 C 10.13 s ≈3.5% 3.5/10/50 A h
Full-bridge Phase shift/dual-loop74 0.1 Hz–1 kHz/— — — 48 V 365 A h
DC–AC Dual d/q decouple75 0.1 Hz–10 kHz/0.5 A 300 s <5 mΩ 3 A h 8s1p
NFC DC–AC Multi-sine/PI76 0.01 Hz–4 kHz/— — — 800 V 2.6 A h
DC–AC PI/LCL53 0.1–500 Hz/400 mA — <4.5% 8 A h 12s1p
DC–AC PI + PR77 1–50 Hz/— — — 2.9 A h 8s1p
Active S-Transform78 0.1 Hz–1 kHz/0.2–1.4 A cm−2 — <6% 90 kW fuel cell

Fig. 3 A summary of centralized EIS scenarios and control
strategies.65,75
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The history of the distributed EIS system is not short in aca-
demic and industrial practice. The disturbance design of this
system ranges from small DC–DC circuits79 to equalization
circuits,80–82 and subsequently from an on-board BMS83 to the
chip-level.84 Although there are differences in development
methods and technical routes, the above efforts have collec-
tively promoted the technological maturity and commercial
application of the distributed EIS system.

It should be noted that the on-board acquisition of AC
impedance is straightforward. A high-precision DAC function-
ality or switching control algorithm is required for integrated
circuits or modules to generate and amplify various current
perturbation waveforms through basic external components. A
high-precision analog front-end (AFE) or equivalently
expressed as an ADC can synchronously acquire voltage
signals. The basic computational unit is capable of analyzing
AC perturbation signals and calculating the single-frequency
impedance. While these functional modules have been
embedded into most microcontroller units (MCUs), practically,
it is still a notable challenge to achieve fast impedance acqui-
sition for lithium batteries with a low cost. The challenge is
rooted in error analysis and compensation under multi-fre-
quency perturbations, the synchronous control of voltage and
current sampling, fast impedance calculation with noise
reduction, and noise suppression and filtering control in
measurement circuits. Usually, it is challenging to ensure the
measurement accuracy of milliohm-level impedance that truly
reflects the internal characteristics of the battery without prior
design, specifically for AC impedance measurement. Currently,
there are two commercially available distributed EIS chips for
lithium batteries: the AD5941 chip from Analog Devices Inc.85

and the DNB1168 chip from Datang NXP Co., Ltd.86 Unlike the
bulky and expensive potentiostats and electrochemical work-
stations, these chip-level solutions have fewer peripheral com-
ponents, a smaller on-board size, and a lower cost.

The AD5941 high-precision low-power analog front-end
measurement chip integrates a 16-bit successive approxi-
mation ADC (with dual sampling rates of 800 kSPS and 1.6
MSPS), a 12-bit high-speed DAC, a potentiostatic biasing
module, a DFT-based AC impedance data processing engine
and so on.85 The company’s related products include AD5933
(an earlier-generation product featuring a 12-bit ADC AFE),
AD5940 (with different packaging), CN0510 (a single-cell EIS
measurement system based on the AD5941 chip), and
ADuCM35587 (a system-in-package chip incorporating a Cortex-
M3 core processor and the same AFE as AD5941). Besides, the
newly launched battery pack management chip ADBMS2970
also supports EIS and boasts up to 20 voltage measurement
channels.88 If these specifications are validated, the first pack-
level management chip with AC impedance modules will
become true for lithium batteries. The application case of the
AD5941 chip in related battery research is shown in Fig. 4.

In the official reference design for CN0510, the sinusoidal
excitation signal is first generated using an on-chip waveform
generator and 12-bit high-speed DAC, then amplified through
an external Darlington transistor configuration, and finally

applied to the battery. Before being routed to the ADC input
pin for voltage measurement, the perturbation voltage is
amplified using the gain amplifier AD8694, and parasitic
capacitance is eliminated through the ADG636 multiplexer.
After the amplitude and phase are extracted with the DFT
module, battery impedance is calculated according to the cali-
bration resistor Rcal:

85

Żm ¼ V̇ Zm

V̇ Rcal

� �
� Rcal: ð5Þ

In other designs, in addition to modifying the original
mechanical and circuit structure, Wu et al.89 incorporated a
differential amplifier, AD830, to construct a broadband con-
stant current source with DC servo loop, generating a pertur-
bation current signal with enhanced precision. Based on the
above architecture, Tran et al.90 developed a Qt-based inter-
face. David Bill et al.91 further integrated the system into the
Arduino framework for developing AD5941 across various
MCU platforms. All the above innovations have greatly pro-
moted the progress of AC impedance measurement
technology.

DNB1168 represents a cell-level battery management system
based on the EIS monitoring functionality embedded in the
integrated circuit. This chip integrates an on-chip temperature
sensor for thermal monitoring except for voltage monitoring,
SPI daisy-chain communication, cell balancing operations,

Fig. 4 The application cases of the AD5941 chip. (a and b) Official case
CN0510;85 (c) portable EIS device;89 (d) cost-effective EIS device;90 and
(e) IoT-enabled device.91
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and so on.86 Featuring a 14-bit ADC architecture, it
implements current perturbation signals through external
battery balancing circuits from 7.5 mHz to 7.8 kHz. The dedi-
cated low-frequency noise suppression circuitry further
enhances impedance measurement accuracy. For practical
applications, flexible printed circuit (FPC) interconnects are
adopted to enable direct contact with the cell negative term-
inal and busbar. This configuration not only improves the
measurement precision of both temperature and impedance
but also eliminates conventional sampling wires and connec-
tors. Within the Datang NXP product family, EIS solutions
include DNB1101 – optimized for energy storage systems –

whereas DNB1168 targets vehicular environments with
AEC-Q100 automotive-grade certification.86 The relevant
specific details are shown in Fig. 5.

The DNB1168 series supports SPI daisy-chaining with
differential I/O interfaces, enabling single-chain expansion up
to 250 chips while maintaining stable communication with
minimal electromagnetic interference. Current academic
reports primarily focus on the official evaluation boards of the
DNB1168 series, with limited documentation on optimized
improvements.47,92–94 Nevertheless, partial production deploy-
ment has been achieved in industrial applications.

Definitely, distributed EIS solutions extend beyond the two
aforementioned chips. For example, Young-Nam Lee et al.95

developed EIS measurement systems using custom AFEs,
FPGAs, and STM32 microcontrollers; Luigi Mattia et al.83

implemented EIS battery pack measurements through FPGA
and a battery management chip, L9963E; Bliss G. Carkhuff

et al.96 designed a Battery Internal Temperature Sensor-based
BMS (BITS-BMS). Currently, the distributed EIS system mostly
combines an on-chip internal signal generator and DAC to
generate sinusoidal excitation signals. In the future, it is poss-
ible to generate multi-sine signals and PRBS-like signals with
the corresponding processing algorithms for faster impedance
measurement in practical applications.

3 Interpretation of impedance
spectra
3.1 Acquisition of impedance spectra

For on-board battery impedance measurement based on
single-frequency or multi-frequency perturbations, a low-pass
or band-pass filter is used to smoothen the waveforms due to
the limited resolution and conversion rate of the waveform
generator. However, there is no ideal filter in reality; residual
high-frequency noise, phase noise, and spectral leakage, all of
them together will complicate the acquisition of AC impedance
from voltage/current signals in the time domain. Accurate and
efficient impedance extraction algorithms can significantly
reduce measurement time and computational cost, thereby
facilitating the development of its applications.

Currently, the two widely used impedance extraction algor-
ithms are the multiplier scheme and the Fourier transform
scheme. The multiplier scheme serves single-frequency sinu-
soidal perturbation and has quite a lot of advantages such as
low computational cost, fast processing speed, and easy pro-
gramming implementation. In addition, it can effectively sup-
press random white noise. However, when confronted with sig-
nificant harmonic noise, its processing capability is insuffi-
cient, and if the temporal processing is not synchronized, it
can introduce additional noise. The voltage response Vac to an
injection current iac = a0sin(ωt ) is expressed using the follow-
ing equation:97,98

Vac ¼ a0 ZðωÞj j sinðωtþ ϕðωÞÞ
þ
X
m

am sinðmωtþ ϕmÞ þ NðtÞ ð6Þ

where |Z(ω)| and ϕ(ω) represent the modulus and initial phase
angle of AC impedance Z(ω), respectively; am and ϕm denote
the amplitude and initial phase angle of harmonic inter-
ference, respectively; and N(t ) indicates random interference
noise. Then, the real and imaginary parts of the impedance
Z(ω) can be obtained:

ReðωÞ ¼ 1
T

ðT
0
VacðtÞ sin ωtdt ð7Þ

ImðωÞ ¼ 1
T

ðT
0
VacðtÞ cos ωtdt: ð8Þ

Usually, the integral of random noise is assumed to be
zero. If the harmonic interference can be neglected, substitut-
ing eqn (5) in eqn (6) and (7) yields:97

Fig. 5 Relevant details of DNB1101/DNB1168.47,86 (a) Chip connection
schematic diagram; (b and c) official demo.

EES Batteries Review

© 2026 The Author(s). Published by the Royal Society of Chemistry EES Batteries, 2026, 2, 80–102 | 87

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
1/

20
26

 3
:5

8:
08

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5eb00153f


ReðωÞ � a0jZðωÞjcos ϕðωÞ ð9Þ

ImðωÞ � a0jZðωÞjsin ϕðωÞ: ð10Þ
Eqn (8) and (9) indicate that under low harmonic inter-

ference conditions the real and imaginary parts of the impe-
dance can be accurately obtained through the multiplier
scheme based on the voltage signal in the time domain.

In contrast, the Fourier transform approach has undergone
numerous methodological improvements during its develop-
ment, such as Fast Fourier Transform (FFT), Short-Time
Fourier Transform (STFT),99 and Variable Window Fourier
Transform. With these technical improvements, the Fourier
transform approach not only can handle single-frequency dis-
turbance but also acts as the basis for analyzing multi-fre-
quency disturbance. The most significant feature of this
approach is to effectively suppress high-frequency noise and
accurately extract single-frequency impedance. Furthermore,
high-efficiency Fourier transform embedded in various kernel
modules has improved processing speed in practical appli-
cations. In FFT-based EIS measurement,100 the aliased battery
current yI(t ) combines DC offset, multi-frequency sinusoidal
disturbances, and random noise. The resulting voltage
response yV(t ) shares this structure. Both signals undergo
Hanning windowing and optimization-based preprocessing
before Fourier transform to derive YI(ω) and YV(ω). Impedance
is then calculated as Z(ω) = YV(ω)/YI(ω), where the Hanning
window mitigates spectral leakage in embedded systems.

yIðtÞ ¼ I0 þ
X10
n¼1

In sinð2πfntþ ϕInÞ þ NIðtÞ ð11Þ

yVðtÞ ¼ V0 þ
X10
n¼1

Vn sinð2πfntþ ϕVn
Þ þ NVðtÞ ð12Þ

wHanningðnÞ ¼ 0:5 1� cos 2π n
N

� �� �
; 0 � n � N � 1

0; otherwise

�
: ð13Þ

The Fourier transform has inherent limitations, as it
extracts the frequency components from the given signal but
discards the specific time location. In addition to various win-
dowing techniques, wavelet transform and S-transform have
been developed to address the above limitations. These
approaches introduce innovative basis functions, leading to
the discrimination of frequency characteristics in impedance
extraction. Li et al.101 utilized the Complex Morlet Wavelet
Transform (CMWT) to acquire and reconstruct impedance
spectra in the frequency range of 0.1 Hz to 1 kHz. This method
takes ∼28 seconds and achieves average phase and amplitude
errors of 2.6% and 0.7%, respectively. Geng et al.102 employed
Airy wavelet transform and Short Inverse Repeated Binary
Sequence (SIRBS) injection to acquire impedance spectra in 10
seconds and achieved an average error of less than 1%.
Besides, Yuan et al.78 used the S-transform to achieve fast cal-
culation of impedance spectra. Under square wave excitation,
the average relative error is less than 3%. Compared with the
Morlet wavelet transform, S-transform saves 95% of computed

time. In spite of excellent performance, these algorithms are
still far away from practical application due to their complex
implementations and computational requirements.

Other innovations in impedance acquisition include the
filter design based on second-order generalized integrators
(SOGIs)103 and digital lock-in amplifiers (DLIAs) that incorpor-
ate second-order Hilbert transforms,104 among others. These
specialized designs can enhance the accuracy of impedance
acquisition and reduce overall measurement time, and at the
same time, they demonstrate strong feasibility in hardware
implementation.

3.2 Validation of impedance spectra

Usually, the Kramers–Kronig transformation is used to assess
the quality of the measured impedance data. The specific for-
mulas are defined as follows:105

Z′ðωÞ ¼ 2
π
P
ð1
0

ω′Z′′ðω′Þ
ω2 � ω′2

dω′ ð14Þ

Z′′ðωÞ ¼ � 2ω
π

P
ð1
0

Z′ðω′Þ
ω2 � ω′2

dω′ ð15Þ

where P denotes the Cauchy principal value. Eqn (13) and (14)
indicate that as long as the conditions of linearity, stability,
causality and boundedness conditions are not violated, the
real and imaginary parts of impedance spectra can be trans-
formed into each other. The significant deviation from the
Kramers–Kronig transformation might be attributed to the
presence of nonlinear or non-stationary factors in the measure-
ment process.

However, in practical impedance measurements, the
limited frequency range will introduce inaccurate boundary
initial values for the Kramers–Kronig transformation and will
directly affect the validation accuracy. Additionally, to ensure
the validation of the Kramers–Kronig transformation, the
measurement density of the impedance spectra over the given
frequency range must be high enough. To simplify the calcu-
lation, the linear Kramers–Kronig transformation (LKK) takes
the place of the aforementioned validation. LKK is achieved by
generalized linear equivalent circuit models, such as R//C par-
allel configurations, to approximately assess the measurement
error through fitting errors. The relevant formulas are
expressed as follows:106

ZðωÞ � ẐLKKðωÞ ¼ R0 þ
XN
i¼1

Ri

1þ jωCiRi
ð16Þ

where R0 denotes the ohmic resistance, while Ri and Ci rep-
resent the resistance and capacitance in each RC parallel
element, respectively. In spite of the easy use for LKK, there
may be overshoot and noise caused by an excessive number of
RC elements due to the pre-defined equivalent circuit. To
address this issue, at least two methods are presented. One is
the iterative LKK,105,107 which gradually increases the number
of series RC components to avoid excessive order; the other is
Tikhonov-regularized LKK (rLKK),108 which introduces a regu-
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larization penalty term to suppress noise in practical appli-
cations. In addition, constant phase elements (CPEs) and
similar structures are also adopted in LKK. Although their
impedance approaches infinity as the frequency tends to zero,
which does not comply with the Kramers–Kronig relations,
they may still fully adhere to the rules within the measurement
range.109

The Kramers–Kronig transformation is very sensitive to vio-
lations of causality and stability, but it may have poor feedback
regarding violations of linear conditions.110–114 Using numeri-
cal simulations, Hirschorn et al.115 revealed that the nonlinear
response in electrochemical systems originates from the poten-
tial dependence of faradaic processes. Their findings highlight
that the Kramers–Kronig relation can only be used to evaluate
nonlinear behavior in systems with relatively high ohmic resis-
tance. In other cases, the relation is not very sensitive. They
define the ratio Rt,obs/Re and the characteristic frequency ft.
When the ratio Rt,obs/Re is small and the characteristic fre-
quency ft is below or close to the lower limit of the measure-
ment range, nonlinear errors exceeding 4% violate the K–K
relation. When these conditions are not met, the K–K relation
is less sensitive to nonlinear errors.116

ft ¼ 1
2πRt;obsCdl

1þ Rt;obs

Re

� �
: ð17Þ

Some other studies117,118 have also demonstrated the afore-
mentioned findings and have assessed the linearity of real
impedance spectra experimentally. The nonlinear responses
were quantitatively evaluated with respect to sensitivity for
three methods: Lissajous figures, total harmonic distortion
(THD), and the Kramers–Kronig relationship. It was found
experimentally that nonlinear distortion mainly occurs at mid
to low frequencies, specifically below the frequency ft.
Lissajous figures show that nonlinear distortion is primarily
manifested as changes in the shape and symmetry of the
figures; however, it is a challenge for this method to determine
the boundary points of nonlinearity. Regarding THD, random
noise can be quantified through small perturbation harmonic
analysis, but due to the heavy computation burden, it is
difficult to establish accurate and universal numerical stan-
dards. In the experimental evaluation of the latter paper118 for
a nonlinear response of 20 mVrms, the low-frequency Lissajous
figure exhibited a distorted elliptical shape, and the low-fre-
quency THD showed a significant increase exceeding 4%. In
contrast, the Kramers–Kronig relationship was satisfied. It is
only when the perturbation amplitude exceeds 60 mVrms do
those violations of the Kramers–Kronig relationship occur due
to its low sensitivity to nonlinearity.

Certainly, for single-frequency perturbation, the nonlinear
effect can be mitigated by reducing the perturbation amplitude
and applying data analysis techniques.40 However, for multi-
frequency perturbation, the measurement sensitivity to non-
linear effects is markedly reduced, while the influence of
amplitude limitation is concurrently weakened. The lack of
visualization of Lissajous figures, the decrease in Kramers–

Kronig validation sensitivity, and the increase in total harmo-
nic distortion with ambiguous nonlinear characteristics collec-
tively make the nonlinear assessment complex for multi-fre-
quency perturbation. Furthermore, for the onboard impedance
applications, verification after electrochemical measurement
often fails to ensure that the battery state operating point is
not affected by external interference. The study112 revealed the
potential invalidity of the Kramers–Kronig relationship for
multi-sinusoidal perturbation, while THD analysis might
amplify the parasitic nonlinearity from the external measure-
ment artifact. The optimized Kramers–Kronig transformations
or THD analysis combined with the device properties may be a
feasible method for assessing the nonlinearity for multi-fre-
quency perturbation in the future.

3.3 Analysis of impedance spectra

3.3.1 Analysis based on impedance models. Impedance
characteristics are usually analyzed based on battery impe-
dance models, mainly including electrochemical models and
equivalent circuit models (ECMs). The electrochemical model
consists of partial differential equations (PDEs) with initial
and boundary conditions and involves electrode reaction kine-
tics and mass transport processes, where numerical methods
are used to resolve impedance models.119 In contrast, the equi-
valent circuit model is simple and easy to use due to its phe-
nomenological characteristics. A recent breakthrough and
development in electrochemical models is primarily in two
directions: one is the physical–chemical coupling mecha-
nism119 and the other is to optimize the numerical
solution.120

Regarding the development of electrochemical models, the
research focus has gradually evolved from the early Single
Particle Model (SPM)120 to a multi-scale coupling framework.
For instance, the Pseudo-Two-Dimensional Model (P2D)121

enables dynamic simulation of solid–liquid phase reactions by
integrating porous electrode theory, while the Transmission
Line Model (TLM)122 proposes an equivalent circuit descrip-
tion property for porous electrodes. Additionally, the classical
Doyle–Fuller–Newman (DFN)123 model establishes a unified
analysis framework from particles to electrodes to cells.
Moreover, Huang et al.124 summarized the theoretical frame-
work for the impedance response of porous electrodes.
Similarly, Bai et al.119 unified the DFN-like model under
various physical scenarios using the complex phasor method
in order to analyze the competitive mechanisms of charge
transfer reactions. These developments and progress greatly
improve the understanding of charge transfer reactions in
batteries.

Regarding the computational efficiency of electrochemical
models, model reduction techniques have been introduced,
such as the extended single particle model, polynomial
approximations, and Padé approximations.125 These tech-
niques allow for the typical impedance characteristics under
specific conditions without sacrificing key dynamic character-
istics. With the rapid development of computing power,
electrochemical models have been increasingly applied in
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various application scenarios. For example, the PyBaMM
(Python Battery Mathematical Modeling) tool126 employs a
modular architecture design and matrix optimization tech-
niques, reducing the basic computation time of traditional
SPM, DFN models, and other physical–chemical coupling
models to the millisecond level. It can be foreseen that electro-
chemical models will become increasingly accessible and com-
prehensively applied, extending from academic research to
industrial applications.

Regarding the ECM method, the current focus is on how to
optimize model structures and improve the reliability of para-
meter identification. In order to optimize the ECM structure,
Warburg circuit elements are introduced to facilitate the tran-
sition from integer-order to fractional-order models. AI-based
algorithms can be used to improve reliability and to accelerate
the speed of parameter identification for ECMs. Table 3 sum-
marizes the latest research development of ECMS. Some
typical ECM structures expressed in circuit description codes
(CDCs) are shown in Fig. 6.

Fitting impedance data to ECMs usually adopts the
complex nonlinear least-squares algorithm and mainly relies
on manually-operated platforms such as EQIVCT, ZView,
ZSimpWin,129 and PyEIS. The fitting accuracy generally
depends on manually defined initial values and parameter
locking procedures. With the rapid development of intelligent
technologies, programming methods such as Python and
MATLAB have accelerated automatic parameter identification,
but their accuracy is still inferior to manual recognition in
complex scenarios.

It must be emphasized that ECMs fail to characterize the
intricate physicochemical processes in lithium-ion batteries,
thereby limiting their practical applications. Luckily, the para-
meterization methodology marks a solid step forward in
deeply understanding battery impedance characteristics.119

3.3.2 Analysis based on impedance deconvolution. It is not
easy for us to quantitatively identify the parameters with
physicochemical interpretability from the measured impe-
dance spectra. Analyses of Nyquist plots or other graphical
methods cannot reveal precise physicochemical meanings but
some very general trends. The ECM-based method phenomen-
ologically explains electrochemical processes; however this
method requires a predefined circuit model. Consequently,
prior knowledge-independent impedance reconstruction has

attracted growing attention. Among various reconstruction
methods, the distribution of relaxation time (DRT) technique
seems to be the most widely used.137

In essence, DRT analysis is to deconvolve frequency-domain
data into time-domain relaxation time distribution functions
g(τ). The logarithmic form of this function can be expressed as
γ(τ) = τg(τ). This expression enhances spectral resolution and
electrochemical process separability. Its most prevalent math-
ematical expression is given as follows:138

Zðf Þ ¼ Ro þ Rp

ð1
0

gðτÞ
1þ i2πf τ

dτ ð18Þ

Zðf Þ ¼ Ro þ Rp
Ð1
0

γðln τÞ
1þi2πf τ d ln τ ð19Þ

where Ro denotes the ohmic resistance, Rp denotes the total
polarisation impedance, τ = RC denotes the time constant of
the RC parallel circuit, and g(τ) conforms to a normal distri-
bution with

Ð1
0 gðτÞdτ ¼ 1.

For non-ideal or fractional-order model elements such as
Warburg elements and constant phase elements (CPEs), they
can only be approximated by connecting in series a number of
aggregate RC elements with different time constants and
polarization strengths. For the inductance L parameter, with
the time constant defined as t, it can be studied in generalized
DRT (gDRT).139,140

Fig. 6 Some typical equivalent circuit models for EIS data analysis.127

Table 3 The method summary of equivalent circuit models for lithium ion batteries

Ref. Model structure (CDC) Fitting error Identification method Application scenario

128 Various circuits — CNLS EQIVCT/manually
129 Various circuits Chi-squares 10–3 < χ2 < 10–2 130 CNLS ZsimpWin/manually
131 26 equivalent circuits — CNLS Python environment
132 R(QR)W(LR) Fmin < 10–3 PRO Optimization
130 Selected by machine learning Chi-squares 10–2 < χ2 < 10–1 130 GOA Automated processing
133 LR(QR)(QR)W RMSE < 0.05 GSK Dynamic conditions
134 LR(QR)(QR)W RMSE 2.30% Neural network Automatic identification
135 CR(QR) Success rate 0.875 Neural network Automatic identification
127 LR(QR)(Q(RW)) MAPE 2.87% Machine learning AR-ECM/dynamic
136 VR(CR)(CR) Min RMSE 4.893 × 10–3 INFO OCV estimation
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From the mathematical perspective, DRT has similar pro-
perties to radial basis function expansion, and therefore can
be compared and analyzed with common Fourier and Laplace
transforms. The comparison results of the three transforms
are shown in Table 4.

For DRT techniques, the exponential decay function e−t/τ as
the central mathematical model is used to describe the relax-
ation dynamics. However, the non-orthogonal basis function
in DRT leads to the limitation in signal decomposition.
Different from the orthogonal bases in Fourier transform, the
inversion transform process is essentially a pathological
inverse problem because there is a certain linear correlation
between the basis groups of the exponential function in DRT.
Therefore, it is difficult to fully deconvolute the exponential
decay components corresponding to different time constants τ
with the finite frequency-domain data, and the multiple inver-
sions in the solution space might lead to a non-unique recon-
struction for the relaxation time distribution function g(τ).

To address the aforementioned challenges, regularization
methods (e.g., Tikhonov regularization,141 ridge regression,142

neural networks, etc.) are introduced to constrain the solution
space and incorporate additional conditions through physical
prior knowledge. The regularization method could stabilize
inversion results and enhance resistance to noise interference.

However, this method potentially suppresses the contribution
of signals with negative features. As a result, rigorous vali-
dation is necessary to prevent erroneous data interpretation
due to regularization parameters. Most recently, the Bayesian
probabilistic method was combined with the regularization
method in order to improve back-convolution and confirm the
optimal number of decoded peaks through prior knowledge
and weighting matrices.142 Nevertheless, these attempts
require a trade-off between computational complexity and
physical interpretation, and cannot overcome the theoretical
bottleneck due to the lack of orthogonality. Nowadays, the tra-
ditional inversion transforms for DRT are shifting toward
machine learning-assisted inversion algorithms. In the above
intelligent inversion, deep neural networks are used to learn
the implicit features of relaxation processes, which are just the
limitations of traditional basis functions.

Table 5 summarizes various DRT decoding technologies
with respect to the optimization method, fitting error, and
application scenario.

Other deconvolution methods such as the Distribution of
Capacitive Time (DCT)154 and the Distribution of Differential
Capacity (DDC)145,155 have also regained attention. DCT first
converts impedance data into admittance data, while DDC
transforms complex impedance data into complex capacitance

Table 4 Comparison of the three common transformations

Characteristic DRT Fourier transform (FT) Laplace transform (LT)

Base function type Exponential decay function e−t/τ Complex exponential e−jωt Damped complex exponential e−st

Parameter space Discrete relaxation time τ Real frequency ω Complex frequency s = σ + jω
Orthogonality Nonorthogonal basis function Orthogonal basis function Nonorthogonal basis function
Integral kernel
structure

Kðω; τÞ ¼ 1
1þjωτ K(t,ω) = e−jωt K(t,s) = e−st

Complex plane
coverage

Positive real axis τ Imaginary axis (σ = 0) Right half of the complex plane (σ > σ0
convergence)

Inversion property Conditionally unique (regularization-
dependent)

Unique definite solution Unique within the convergence region

Numerical stability Sensitive to noise (require regularization) Stability relies on signal
truncation

High stability (damping factor suppresses
noise)

Application scenario EIS data processing Frequency domain analysis System stability analysis

Table 5 Comparison of various DRT decoding technologies for EIS

Ref. DRT basic method Optimization method Fitting error Application scenario

142 Ridge regression Frequency analysis — Optimize regularization parameter
143 Tikhonov regularization Shape factor co-analysis MAE < 0.425 Optimize regularization parameter
144 Tikhonov regularization Total outlier assessment — Quality-indicator-based preprocess
145 — DRT/DDC symmetry analysis — Analyse the causes of pseudo-peaks
146 Hyper-λ algorithm/hierarchical

Bayesian
Dual inversion framework/
PFRT

— Dual regression-classification framework/DRT
valuation

147 Hierarchical Bayesian Hyperparameter optimization — Bayesian estimation
148 Gaussian process Hyperparameter optimization Probabilistic method
149 Loewner framework Linear systems theory — Without the regularization procedure
150 FFT-based DRT — εγ = 2.04 ×

10–4
Time-domain DRT extraction

151 DNN/deep-DRT Neural network
deconvolution

— Break the limits of regularisation

152 DNN-DRT Neural network
deconvolution

εγ;DNN � εγ;RR For negative peak deconvolution

153 ANN-DRT ANN-assisted prediction R2 0.9667 Only predict different DRT data
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data. Subsequently, the same deconvolution operations as
DRT are conducted to obtain the corresponding distribution
functions. The formula expressions of related technologies are
as follows:

DCT : Yðf Þ ¼ 1=Zðf Þ

YDCTðf Þ ¼ i2πfC0 þ G0 þ
ðþ1

�1
γDCTðlog τÞd log τ

ð20Þ

DDC : CðωÞ ¼ QðωÞ
UðωÞ ¼

IðωÞ
jωUðωÞ ¼

1
jωZðωÞ

CDDCðωÞ ¼
ð1
0

γDDCðτÞ
1þ jωτ

dτ
ð21Þ

where C0 and G0 in the DCT formulation are the capacitance
and conductance of the initial boundary,154 the additional fre-
quency-independent component C0 is directly omitted in DDC,
as it produces only a Dirac shock response δ under the voltage
step, which is unobservable and does not affect the analysis of
complex capacitance spectra.155

To complement the shortcoming of DRT technology, DCT
and DDC are proposed, as defined above. Impedance spectra
do not always converge at low frequencies, for example, solid–
liquid diffusion impedance spectra for batteries. In this situ-
ation, DRT fails; however both DCT and DDC can directly
deconvolute successfully. In addition, there is inherent sym-
metry between DRT and DDC methods, which includes the
symmetry of the circuit structure, spectrum, deconvolution
algorithm, and deconvolution results.145 Our understanding of
the relaxation time characteristics for batteries is still limited.
Both DCT and DDC technologies can help us obtain more
accurate relaxation time distribution functions and deepen our
understanding of impedance reconstruction operations.

In summary, the distribution of relaxation time is very valu-
able, but it is still a challenge how to precisely deconvolute
impedance spectra and how to exactly understand the decon-
voluted results. Artificial intelligence assisted deconvolution
techniques may provide better solutions to deconvolute impe-
dance spectra and better understand the deconvoluted results.

4 Applications of impedance spectra
4.1 Battery state estimation

In order to fully utilize energy storage systems while ensuring
their safety, their state estimation becomes crucial. Among the
various states of batteries, the State of Charge (SOC) and the
State of Health (SOH) might be the most important. The SOC
can indicate the remaining capacity of the battery and prevent
overcharging or over-discharging, and the SOH can indicate
capacity degradation and identify deterioration patterns.

For the current battery management systems, the esti-
mation of the SOC mainly relies on the compensated Coulomb
counting method, and the estimation of the SOH mainly
depends on the capacity degradation model. The compen-
sation methods for SOC estimation typically include OCV
model approaches or terminal voltage calibration at the end of

discharge, rooted in the SOC–OCV mapping relationship. The
degradation model methods for SOH estimation are based on
the impedance characteristics. Therefore, incorporating impe-
dance spectra into state estimation is beneficial for the com-
pensation of the Coulomb counting method and the construc-
tion of health indicators by improving the data-driven
algorithm.

Table 6 gives a brief summary of SOC estimation and SOH
prediction based on impedance spectra. It should be noted
that most of the state estimation algorithms reported in the lit-
erature have not been validated in practical battery manage-
ment systems. In detail, both accuracy and universality of the
reported state estimation algorithms also need to be strictly
verified in embedded environments.

There are still some differences in the estimation frame-
work between the SOC and SOH. SOC estimation mainly aims
at improving the accuracy of Coulomb counting by the real-
time compensation based on circuit models. In contrast, SOH
estimation aims at extracting health features from historical
operational data based on the data-driven method. This differ-
ence is rooted in the fact that the SOC can rely on Coulomb
counting results as a real-time baseline with inherent confi-
dence, while SOH estimation lacks a similar real-time data
anchor. In terms of methodology, SOC solutions emphasize
lightweight algorithms for data processing and compensation,
while SOH implementation requires extra computational
resources for pattern recognition across battery datasets. In
addition, SOC estimation requires a more stringent temporal
resolution and is more sensitive to deviations of the identified
parameters than SOH estimation.

In order to establish a stable mapping relationship between
impedance features and the SOC for batteries, it is necessary
to identify or extract impedance characteristics that are
strongly correlated with the SOC but independent of the SOH,
temperature, and other factors. However, AC impedance not
only is a comprehensive reflection of the complex and coupled
physicochemical processes inside batteries, but also extremely
sensitive to the SOC. Therefore, it is difficult to standardize
and generalize impedance characteristics to estimate the SOC
and SOH of batteries. The open-circuit voltage (OCV) compen-
sation method for SOC estimation affects the SOH, tempera-
ture, and relaxation processes. In contrast, impedance-based
SOC estimation still has significant potential for application
and accuracy advantages. With Pearson’s r correlation matrix
analysis on the LCO battery, Mc Carthy et al.157 demonstrated
that the impedance imaginary part at 10 Hz and the impe-
dance real part at 2 Hz are very sensitive to the SOC.
Furthermore, Buchicchio et al.159 demonstrated that it is poss-
ible to estimate the SOC with a very sparse impedance spectra,
and also demonstrated the potential application of lightweight
machine learning algorithms. To some extent, impedance fea-
tures can replace the OCV-based compensation methods for
SOC estimation. Moreover, incorporating impedance character-
istics into the OCV method can improve the accuracy of SOC
estimation. If the impedance characteristics of fractional-order
impedance models are incorporated, better SOC estimation
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results can be obtained because fractional-order models are
closer to the physical reality of batteries. For example, Chen
et al.162 and Zeng et al.163 used fractional-order and Kalman
filtering methods to significantly reduce the root mean square
error of the SOC estimation results.

In early stages of impedance-based SOH estimation for bat-
teries, researchers extracted initial features from raw impe-
dance spectra based on the integer-order circuit model. Later,
in order to derive more universal and widely applicable fea-
tures, which can resist interference from other variables to a
certain extent, complex fractional-order impedance models
combined with DRT techniques are applied in machine learn-
ing algorithms and neural network models to extract impe-
dance features. For example, Li et al.171 constructed an equi-
valent circuit model with additional capacitance to improve
the accuracy of impedance fitting and SOH estimation with
Gaussian Process Regression (GPR). Kim et al.172 used DRT to
extract effective features, and train a compact Convolutional
Neural Network (CNN) in embedded micro neural processing
units. In spite of fewer parameters, their model demonstrated
performance comparable to more complex models. Qian
et al.173 used a Gradient Boosting Decision Tree algorithm
combined with Simplified Time Scale Information (STI) for
data-driven SOH estimation, obtained strongly correlated STI
features from raw data, multiple ECM structures, and DRT
data, and finally achieved an average error of 1.36%. Obregon
et al.169 employed convolutional autoencoders (CAEs) to auto-
matically extract features from impedance data, and sub-
sequently, they used Deep Neural Networks (DNNs) to estimate
the SOH, and finally, they achieved a maximum RMSE of
1.29% for test batteries. Fig. 7 summarizes four kinds of
model frameworks for SOH estimation. The results suggest
that most data-driven methods achieve excellent performance.
These above frameworks improve the accuracy and applica-
bility of SOH estimation, but a series of practical issues need
further consideration, such as scale, computing power, and
real-time. Currently, most data-driven state estimation models

use uncorrelated features, whereas impedance spectra can
reflect some intrinsic connections of physics. It is believed
that the Physical Information Neural Network (PINN) estab-
lished based on relevant features might promote better devel-
opment of data-driven SOH estimation.174

Despite promising accuracy, data-driven SOC/SOH esti-
mation faces four implementation barriers. First, complex
models exceed the computational limits of affordable hard-
ware, preventing real-time use. Second, models trained on
limited datasets fail to generalize across battery types and
aging conditions. Third, scarce full-lifecycle data hinder robust
validation. Finally, slow multi-frequency EIS measurements
conflict with real-time operational needs. Overcoming these
requires lightweight algorithms, standardized datasets, and
faster impedance techniques to bridge lab and practical
applications.

4.2 Battery temperature estimation

It is insufficient to monitor the surface temperature of bat-
teries for their diverse application scenarios. Therefore, it is
crucial to detect the temperature inside batteries for ensuring
their safe operation and long-term cycle life. In order to obtain
reliable temperature inside the battery, researchers often use
temperature estimation based on electrical signals or thermal
models, where AC impedance and DC resistance play an
important role. Temperature has a substantial impact on
charge transfer reactions in the battery and, in turn, the evol-
ution trend of charge transfer reactions with respect to temp-
erature can be reflected by impedance spectra. Regarding
impedance-based temperature estimation, early research is
mainly focused on single frequency characteristics or ECM
characteristics, while current research emphasizes the inte-
gration of impedance data with machine learning models and
thermal models. Relevant studies for impedance-based temp-
erature estimation are summarized in Table 7.

The single frequency impedance method aims to identify
the feature which is not sensitive to parameters such as the

Table 6 Summary of impedance-based estimation of SOC and SOH for lithium-ion batteries

Ref. Type Estimation method Estimation error Scenario

156 SOC Impedance Track algorithm compensated Coulomb counting — Embedded application
157 SOC Pearson’s r correlation matrix analysis GOF 0.917 Theoretical analysis
158 SOC Linear regression model and Gaussian process regression <3.8% Initial projections
159 SOC Low-complexity machine learning based on the ECM Accuracy 93.9% Online application
160 SOC Random forest combined with convolutional neural networks R2 0.9926 Small sample prediction
161 SOC Fractional-order hysteresis thermoelectric coupling model <2.5% Wide temperature scene
162 SOC Fractional-order adaptive square-root cubature Kalman filter MAE < 0.5% BMS application
163 SOC Fractional-order multi-innovation unscented Kalman filter RMSE 0.28% BMS application
164 SOH Fractional order modelling and analysis of relaxation effects RMSE < 1% Empirical method
165 SOH Deep neural network transfer learning (DNN-TL) R2 0.9683 Data-driven scenario
166 SOH 1 kHz data interpolation and correlation analysis PE 0.241% Quick application
167 SOH The ratio between the real part of 0.99 Hz and 1.976 Hz MAPE 4.46% Quick application
168 SOH Automatic relevance determination and Gaussian process — Data-driven scenario
169 SOH Convolutional autoencoder and deep neural network RMSE 1.29% Unsupervised application
170 SOH Deep neural network transfer learning (DNN-TL) MSE 0.1117 Prospective assessment
171 SOH ECM with an added capacitor/Gaussian process regression RMSE 1.77% BMS application
172 SOH DRT-CNN and gradient-weighted class activation mapping R2 0.9883 Embedded application
173 SOH Simplified timescale information method and DRT RMSE 1.36% Real-time application
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SOC and SOH but sensitive to temperature. Due to the lack of
the ability to fully decouple impedance spectra, extensive
thermal tests are conducted to identify the relevant features.
Furthermore, we cannot exclude all other environmental inter-
ferences in a compensatory manner.119 Correlation analysis is
usually used to select parameters for temperature estimations.
For example, Pearson correlation coefficients or Spearman
rank correlation indices can be used to assess the linear or
monotonic relationships between impedance characteristics
and temperature. The selected parameters require a sensitivity

analysis to quantify the temperature impact on them. For the
identified feature parameters, application evaluation must be
conducted under normal operating conditions to avoid poten-
tial influences from the testing environment. Because different
batteries may have different formulations and materials, temp-
erature estimation based on a single feature often lacks uni-
versality. The successful temperature estimation method for a
certain type of battery may result in significant estimation
errors when applied to other types of batteries. Ezahedi
et al.179 conducted a correlation analysis on a 70 A h large-

Fig. 7 Summary of four kinds of model frameworks for SOH estimation. (a) ECMC;171 (b) DRT-CNN;172 (c) STI-GBDT;173 and (d) CAE-DNN.169

Table 7 A summary of temperature estimation methods based on EIS

Ref. Type Estimation method Estimation error Temperature range

175 Feature The real part at 10.3 kHz/Arrhenius equation fitting MAPE < 2.5 K 0–30 °C/transient
176 Feature 10\50\100 Hz phase shift/impedance matrix analysis — −10/20/50 °C
177 Feature 200 Hz impedance data/parametric fitting RMSE 1.41 °C 10–55 °C
48 Feature 133 and 630 Hz impedance data/Monte Carlo simulations MAPE ± 1 °C −20–50 °C
178 Feature Zero-crossing frequency fzero/Newton–Raphson method MAE 1.2 °C −20–50 °C
179 Feature 10 Hz impedance data/Pearson correlation coefficient RMSE 0.79 °C 0–60 °C
180 Feature SEI layer impedance phase/DRT-based frequency selection RMSE < 1% −10–50 °C
181 Feature The imaginary part at 600\800\1000 Hz/Arrhenius-like function RMSE < 2.19 °C −10–60 °C
182 Feature 850 mHz–3.15 kHz EIS data/least squares estimator RMSE < 0.6 °C −20–20 °C
183 Feature The imaginary part at 26.83\273.27\377.45 Hz/GPR RMSE < 1.12 °C 10–50 °C
184 Model Voltage, current, and EIS data/multi-layer perceptron model MAPE 1.086 °C 0–30 °C
185 Model EIS data/DRT and six machine learning methods MAE < 0.319 °C 0–30 °C
186 Model EIS data/artificial neural networks (ANNs) ΔT = 1 K 10–60 °C
187 Model Voltage, current, and EIS data/LSTM-RNNs RMSE < 0.46 °C −20–50 °C
188 Model Voltage, current, and the 215 Hz data/coupled electrothermal model RMSE 0.23% 8–30 °C
189 Model Voltage, current, and the pulse test/second-order RC ETCM MAE 3.09% 15–45 °C
190 Model Rohm\Rct\τd\Rth\τth parameters/electrothermal model MAPE ≤ 0.68 °C 0–50 °C
191 Model Internal resistance/two-step resistance transfer algorithm (RTA) MAPE < 1.515 °C 10–50 °C
192 Model EIS data/fractional-order ECM and Kalman filter MAPE < 1.5 °C −30–80 °C
193 Model Resistance entropy thermal model/digital twin framework MAE < 0.73 °C 25–45 °C
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capacity battery and found a high sensitivity to temperature at
5–25 Hz and 250–1000 Hz and a low sensitivity to SOC/SOH at
10/20/25 Hz. The Gaussian regression model based on AC
impedance at 10 Hz achieved an outstanding RMSE of 0.79 °C.

The core purpose of integrating impedance data into
machine learning and thermal models is to construct a non-
linear and multi-physics field framework for predicting temp-
erature. Combining the impedance sensitivity with the non-
linear modelling capability of machine learning algorithms,
and at the same time, fusing the knowledge constraints from
thermodynamic models, they can to some extent address the
limitations of the dimensional perception of a single impe-
dance feature. Regarding technical implementation, machine
learning can be used to establish the nonlinear mapping
relationship between impedance and temperature through
supervised learning, and partial decoupling of interference
factors can also be achieved through unsupervised learning.
Regarding the electro-thermal coupled model, it mainly
involves the ECM, full-order thermal model,194 reduced-order
lumped model, and thermal ECM. Among the above models,
the single-cell thermal sub-model based on the lumped para-
meter model might be the most extensively used.188

Regarding machine learning, Liu et al.184 extracted features
of ECMs with Pearson analysis and principal component ana-
lysis. Based on inductance L, charge-transfer resistance Rct,
and double layer CPE parameters Y0, n0, they established mul-
tiple linear regression, Gaussian process regression, and multi-
layer perceptron models. Chen et al.185 used DRT to extract
impedance features and found that the deconvoluted results
have fewer outliers and are more stable models than the orig-
inal impedance. Both Ströbel et al.186 and Zheng et al.187 vali-
dated the feasibility in using neural network models to esti-
mate temperature. The ANN model constructed by the
former186 was concise, fast, and effective, while the latter187

utilized operando impedance characteristics for real-time
temperature estimation based on a long short-term memory
recurrent neural network. Different from the classical static
EIS, operando dynamic EIS was performed under the relaxed
conditions and may violate the linearity and the smooth
range.187 Fig. 8 shows that both the real and imaginary parts
of the operando dynamic EIS spectra are smaller than those of
the classical static EIS spectra, but both exhibit the same trend
of contracting towards the origin as the SOC increases.
Regarding the above impedance spectra from these two
measurement methods, the trend of the imaginary part and
the phase angle are very similar with respect to the SOC;
however, the real parts have a big difference. These results
support the rationality of applying operando EIS for tempera-
ture detection.

Regarding electro-thermal coupling models, both Bai
et al.188 and Ma et al.189 used a second-order RC thermal
circuit model to simulate the cylindrical battery, while a three-
dimensional multi-grid geometric thermal model was used to
simulate the blade battery. Building on this foundation,
Rodríguez-Iturriaga et al.190 considered the heat generated by
solid diffusion via ohmic resistance Rohm, charge transfer resis-

tance Rct and solid state diffusion characteristic time τd. The
reduced-order thermal model provides some explanatory
power for battery behaviors under conditions of different
ambient temperatures and charge/discharge rates.

With a two-step resistance transfer algorithm, Xie et al.191

established a thermal resistance network by replacing the
lumped parameter model with a three-dimensional heat con-
duction equation. The presented method demonstrates
superior computational speed compared to the finite element
method and achieved an online value of 0.496 seconds for
model computation. Based on fractional-order equivalent
circuit models, Sun et al.192 developed a frequency-domain dis-
tributed multi-point thermal model, in which the circuit
model is in good agreement with the offline EIS analysis. This
approach used a joint Kalman filter to achieve a joint esti-
mation of tab temperature and time-varying thermal conduc-
tivity, with a maximum error of less than 1.5 °C. Currently,
Shen et al.193 integrated electro-thermal coupling models with
deep learning technology. Based on experimental data, a finite
element physical model was constructed to quantify the
relationship between battery internal resistance and entropy
production coefficient. After a convolutional neural network

Fig. 8 Comparison between the classical static EIS and the operando
dynamic EIS. (a) Nyquist diagram; (b) Bode diagram.187
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was integrated into the above model, the temperature field dis-
tribution could be predicted with a mean absolute error of less
than 0.73 °C within 2.92 seconds. The framework constructed
for temperature distribution prediction is shown in Fig. 9.

While these advanced methods show promise, EIS-based
temperature estimation faces unique challenges distinct from
those in state estimation. A fundamental obstacle lies in
decoupling the impedance response’s inherent sensitivity to
both temperature and state-of-health, as aging-induced degra-
dation can mimic or mask thermal effects. Furthermore, the
technique struggles with spatial resolution, providing a bulk
internal value that may obscure critical localized hot spots.
Translating lab-based models to real-world applications is also
hindered by the complex heat transfer dynamics in battery
packs, where cell-to-cell thermal interactions and cooling con-
ditions significantly alter the core temperature–impedance
relationship. Finally, achieving the required accuracy for
safety-critical management under dynamic loads remains
difficult, as transient conditions affect both the battery’s
thermal time constant and the impedance measurement itself.

4.3 Battery early safety warning

Early safety warning for batteries are extremely important, as
there is often not enough time to issue warnings when
thermal runaway occurs due to different reasons.195 Current

methods such as gas detection, surface temperature monitor-
ing, internal short-circuit monitoring, and pressure detection
generally fail to achieve perfect integration and information
fusion. If overly reliant on a single data source, it may lead to
false alarms or omissions in security alerts. Under normal
operating conditions, frequent false alarms from the early
warning system may actually lower the vigilance of manage-
ment personnel, leading to more serious consequences. As a
result, early warning systems not only require enough
measured data related to thermal runaway caused by various
misuse and abuse but also can integrate multidimensional
data to reduce false alarm rates and issue warning signals
earlier. On the one hand, EIS can reflect charge transfer reac-
tions in batteries and can issue the early warning of thermal
runaway; on the other hand, the advancement for impedance-
based state estimation algorithms has significantly lowered
the difficulty in integrating and processing impedance data.
Safety warnings solely based on impedance features might
cause false alarms, which could be addressed by multidimen-
sional data fusion with impedance features. Impedance
characteristics used to issue early warning for thermal
runaway have been discussed above and a summary of it is
listed in Table 8.

In the early warning for thermal runaway based on impe-
dance characteristics, the single-frequency feature is primarily
focused on phase declination196 at specific frequencies or
amplitude attenuation197 under high-temperature conditions,
while multi-frequency analyses are focused on the shrinkage
or variation of impedance arcs in the low-frequency regime
under high-temperature conditions. Regarding warning temp-
eratures, the arc curve change or magnitude attenuation of
impedance spectra is suitable to the thermal runaway warning
at relatively low temperatures, typically between 60 and
80 °C,201 while the phase and magnitude of impedance
spectra transited from decreasing to increasing are suitable to
the thermal runaway warning at middle temperatures, around
100 to 120 °C, which are regarded as the onset temperatures of
thermal runaway in some situations. Furthermore, due to the
minimal change in amplitude or phase of impedance spectra
under thermal runaway conditions, single battery impedance
monitoring is preferred for practical applications because the
module-level impedance spectra often fail to monitor the
thermal runaway. Impedance spectra are sampled at multiple

Fig. 9 Overview of a CNN-based framework for temperature distri-
bution prediction from cell to pack.193

Table 8 Summary of thermal runaway warnings based on impedance characteristics

Ref. Type Impedance characteristics Alarm temperature Scenario

196 Single frequency Impedance phase at 40 Hz 120 °C TR test
197 Multi-frequency The real part of EIS/ohmic resistance/ISC — Mechanical abuse
198 Single frequency Dynamic impedance slope at 70 Hz — Overcharge
199 Multi-frequency Full EIS data and DRT/DNN methods — ISC prediction
200 Multi-frequency 31.62 Hz phase/circular arc/linear slope 80 °C/120 °C/120 °C ARC constant
201 Multi-frequency EIS arc contraction or disappearance 55 °C Pulse heating
202 Single frequency Impedance amplitude at 0.1 Hz 82 °C/100 °C Battery module
47 Single frequency Impedance amplitude and phase at 1 kHz 45 °C/90 °C/fail T ARC constant
203 Multi-frequency Impedance phase at 200–600 Hz 45 °C Charger
204 Single frequency 400.15 Hz phase < −0.5°/stabilized-phase |Z| increase 55 °C/100 °C ARC constant
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dispersed mid-to-high frequency points for the purpose of cap-
turing the dynamics of charge transfer reactions as fast as
possible, and at the same time avoiding or mitigating false
alarms inherent in single-frequency phase/amplitude
methods. Nevertheless, these approaches may fail completely
when addressing specific circuit failures such as conductor
burnout or collector fracture induced by thermal runaway.201

Current research mainly aims at utilizing the impedance tech-
nique to identify the cause or root of the thermal runaway,
detect overcharging and lithium plating phenomena, and
actively prevent and diagnose the risk of thermal runaway
from the source.198

Conclusions

In spite of many challenges and uncertainties, the engineering
and practical application of EIS-based state estimation and
intelligent diagnosis of batteries are becoming increasingly
clear. EIS-based battery management systems facilitate a
deeper monitoring and understanding of the internal states of
batteries under various operating conditions. Regarding practi-
cal applications, the technical roadmap for AC impedance
includes at least three key nodes: miniaturization of measure-
ment equipment, real-time data analysis, and accuracy of
electrochemical models. These three key nodes play a critical
role in achieving truly intelligent state monitoring and battery
management systems. Currently, the progress of various impe-
dance measurement schemes has nearly reached the first node
of the technical roadmap for EIS-based intelligent diagnosis.
Driven by artificial intelligence, continuous breakthroughs
have been made in both real-time data analysis and the accu-
racy of electrochemical models. However, transforming EIS
from a research tool into industrialized, large-scale appli-
cations still faces multiple challenges, including measurement
robustness, model universality, and system integration. This
requires multidisciplinary collaboration and standardization
efforts to drive industrial implementation.

This paper comprehensively discusses EIS technology for
batteries from three core aspects: AC impedance measure-
ment, AC impedance data interpretation, and AC impedance
applications.

(i) AC impedance measurement is focused on four potential
sources of noise interference and centralized/distributed impe-
dance measurement devices. Interferences such as crosstalk,
DC bias, connection resistance, and ripple noise require
certain considerations for impedance compensation. The
design of impedance measurement equipment needs the con-
sideration of different application scenarios in order to
achieve higher speed and stability without sacrificing much
accuracy.

(ii) The impedance data interpretation is focused on three
key points: data acquisition, data validation, and data analysis,
with emphasis on investigating data validation under various
rapid measurement conditions and automatic processing of
impedance data based on ECM models or DRT techniques.

(iii) How to understand impedance data for intelligent
applications? Although uniquely designed impedance features
perform well in some cases, further exploration in interpreting
impedance data, innovative research on artificial intelligence
algorithms, and theoretical development of thermoelectric
coupling models, are still urgently needed in order to achieve
better universality and interpretability.

In order to achieve breakthroughs in accuracy, efficiency,
and intelligence for EIS-based battery management and
thermal management strategies, multidimensional and sys-
tematic research and practice are required. Promising future
development directions include establishing standardized EIS
testing protocols and open impedance databases to facilitate
comparative studies and accelerate model generalization.
Integrating AI-driven interpretability frameworks with physical
models will enhance the credibility and actionability of EIS-
based diagnostics.205,206 Ultimately, transitioning EIS from lab-
oratory validation to field deployment requires industry endor-
sement and the development of new hardware platforms.
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Abbreviations

ACMC Average current-mode control
ADC Analog to digital converter
AFE Analog front end
ARC Accelerating rate calorimetry
BMS Battery management system
BTMS Battery thermal management system
CMWT Complex Morlet wavelet transform
CNLS Complex nonlinear least squares
CPE Constant phase element
DAB Dual active bridge
DAC Digital to analog converter
DCT The distribution of capacitive time
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DDC The distribution of differential capacity
DFN Doyle–Fuller–Newman
DFT Discrete Fourier transform
DIBS Discrete interval binary sequence
DLIA Digital lock-in amplifier
DP Discrete pulse
DRBS Discrete random binary sequence
DRT Distribution of relaxation time
ECM Equivalent circuit model
EIS Electrochemical impedance spectroscopy
EMF Electromotive force
ERPGT Evolutionary role-playing game theory
ESC External short-circuit
ETCM Electro-thermal coupling model
FBG Fiber Bragg grating
FFT Fast Fourier transform
FIBC Floating-interleaving boost converter
GOA Global optimization algorithm
GPR Gaussian process regression
GSK Gaining-sharing knowledge metaheuristic algorithm
INFO Innovative weighted mean of vectors
IOT Internet of things
ISC Internal short-circuit
LCOE Levelized cost of electricity
LKK Linear Kramers–Kronig
LSTM Long short-term memory
MAPE Mean absolute percentage error
MCU Microcontroller unit
MSE Mean square error
NTC Negative temperature coefficient
OBC On-board charger
P2D Pseudo-two-dimensional model
PDE Partial differential equation
PE Percentage error
PFRT Probability function of relaxation time
PHM Prognostics and health management
PI Proportional integral
PR Proportional resonant
PRBS Pseudo-random binary sequence
PRO Partial reinforcement optimizer
PSC Phase shift control
PWM Pulse width modulation
RMSE Root mean square error
RTA Resistance transfer algorithm
RTD Resistance temperature detector
SEI Solid-electrolyte interphase
SIRBS Short inverse repeated binary sequence
SNR Signal-to-noise ratio
SOC State of charge
SOGI Second-order generalized integrator
SOH State of health
SPM Single particle model
SPS Samples per second
STFT Short-time Fourier transform
TAB Triple-active-bridge
THD Total harmonic distortion

TLM Transmission line model
TR Thermal runaway
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