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Environmental Significance Statement

Haze in the Indo-Gangetic Plain reduces visibility and harms the environment. Atmospheric
particles play a critical role in forming haze, yet particle processing during hazy conditions remains
poorly understood. This study investigates particle processing from single-particle to molecular-
level during winter haze episodes originating from household fuel burning, agricultural residue
burning, and vehicle emissions. Using advanced single-particle analysis and mass spectrometry
techniques, this study reveals that winter haze contains abundant liquid-like particles enriched in
potassium and sulfates, with compositions that vary by source and time of day. These variations
influence how particles interact with sunlight and water vapor in the atmosphere. This study
highlights the central role of both organic and inorganic emissions from everyday activities in
driving winter haze formation.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 06 January 2026. Downloaded on 1/10/2026 6:38:49 AM.

(cc)


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ea00150a

Open Access Article. Published on 06 January 2026. Downloaded on 1/10/2026 6:38:49 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Environmental Science: Atmospheres

View Article Online
DOI: 10.1039/D5EA00150A

Haze processing of atmospheric particles during wintertime in the Indo-Gangetic Plains

Susan Mathai'?3, Amna ljaz%2#, Tania Gautam®#, Zezhen Cheng?, Nurun Nahar Lata?, Harsh
Bhotika?l, David Tseng?, Rosalie K. Chu?, Lynn Mazzoleni?, Claudio Mazzoleni?, Swarup China®*

lEnvironmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory,
Richland, WA 99354, United States

2Michigan Technological University, Houghton, MI-49931, United States

3Now at: NASA Langley Research Center, Hampton, Virginia 23666, United States; Oak Ridge
Associated Universities, Oak Ridge, Tennessee 37830, United States

4Now at: Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National
Laboratory, Richland, WA 99352, United States

* Corresponding author: Swarup China (Swarup.China@pnnl.gov; +1 509 371-7329)

ABSTRACT

The impacts of haze on visibility, air quality, and climate are not well quantified due to a lack of
understanding of the evolution of the mixing state and phase state of atmospheric particles
during haze processing. The variability of the mixing state of atmospheric particles contributes
significantly to uncertainties associated with the estimated aerosol radiative forcing. We
collected particle samples in January 2018 from the highly polluted Indo-Gangetic plain during
hazy conditions to study haze-processed particles. Single particle analysis using multi-modal
micro-spectroscopy techniques revealed an abundance (40-70% by number) of potassium-rich
sulfate particles from biomass-burning influenced smoke. Tilted view imaging showed that most
of the organic particles that had inorganic potassium and sulfate inclusions were liquid-like while

those without inclusions were more semi-solid. High-resolution mass spectrometry analysis
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revealed a significant presence of organosulfates and nitroxy-organosulfates in the morning
samples (24%) compared to the afternoon samples (9%), despite higher relative humidity in the
afternoon. Overall, our results highlight the significant contribution of both organic and inorganic
sulfate to the total particulate sulfur budget during haze processing in winter, when
anthropogenic emissions such as household burning, agricultural burning, and vehicular
emissions are major contributors to particle mass.

KEYWORDS

Single particle, mixing state, phase state, aerosol composition, molecular composition

1. INTRODUCTION

Haze, a suspension of particles in the atmosphere that scatters light,! reduces visibility to less

than 10 km due to the high accumulation of fine aerosols 2. Haze has adverse effects on human

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

health, climate, and the environment 3. Severe haze is a major concern all around the world such

as in France 4, China >, Mexico City ©, India 7, Bolivia in South America® , San Joaquin Valley in
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California®, and the Po Valley in Italy & The northern parts of India and China often experience

(cc)

severe haze, typically during winter when particle concentrations are as high as several hundred
ug/m3 2 10, This study focuses on the Indo-Gangetic Plain (IGP), which includes most of the
northern regions of the Indian subcontinent (~21% of land area) and is one of the most populated
and polluted regions in the world 1. The area is polluted by wildfires and a wide range of
anthropogenic activities such as biomass and fossil fuel burning, industries, transport, mining,
agricultural, and urbanization 1. The pollution can have contributions from the IGP region (West

Bengal), which hosts a large number of coal mines, and iron and steel industries 2. During winter,
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the estimated atmospheric particulate matter mass concentration (PM,s) in the city of Kolkata,
situated in the IGP, is 100 pg/m3, comparable to other highly polluted cities in India such as Delhi
13, These high particle concentrations during winter lead to increase haze occurrences, from 2003
to 2017, at a rate of about 2.6 days per year over IGP and about 1.7 days per year over central
India 4.

Since aerosols undergo multiphase reactions with high liquid water content, unraveling the
chemical composition of aerosols during haze episodes is an active area of research. The highly
acidic environment of the IGP region during winter due to the high concentration of sulfate
aerosols leads to the formation of secondary organic aerosol (SOA), which impacts the air quality
and visibility . Under high relative humidity conditions during haze episodes, aerosol undergoes
both physical (solid to liquid state) and chemical (formation of SOA via heterogeneous reactions
such as SO, heterogeneous oxidation, N,Os hydrolysis 1617 etc.) transformations due to aqueous
phase chemistry 8. Enhanced formations of water-soluble secondary inorganic aerosols such as
sulfates, nitrates, ammonium, and SOA are observed due to favorable meteorological conditions
in this region such as low wind speed, frequent temperature inversions, high humidity, and
shallow boundary layer > 19,

Most of the studies from the IGP region focused on the chemical composition of bulk aerosol
samples collected during haze episodes, but there is only a limited number of studies 29?2 that
report individual particles’” composition and molecular composition of bulk organic aerosol. Both
individual particles’ composition and molecular composition of organic aerosol are critical to
understanding the complexity of particles, their impact on heterogeneous chemistry, and cloud

formation. Given the dense urbanization in the IGP, acidic sulfate (SO4%) and nitrate (NO3’) are
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consistently produced via atmospheric oxidation of SO, (g) and NOy emitted from anthropogenic
activities such as vehicles’ driving, coal/oil refining, and brick kiln production?3. In particular, 2-
methyltetrol diastereomers (2-MTSs) have been extensively observed in isoprene-enriched
environments under significant anthropogenic influence in other part of the world, contributing
up to 13 % of the organic carbon in aerosols 2426, Coupled with IGP’s unique topography including
meteorological drivers, the regional diversity of emitted pollutants 2728 makes the composition
of particles more complex. Additionally, molecular characterization of organosulfates (OSs)
remains challenging due to the complexity of the SOA with large number of species and
instrumental challenges in distinguishing OSs from inorganic sulfates?®

Chemical composition of particles further influences the phase state of particles which refers to
the aerosol physical characteristic of being solid, semi-solid, or liquid, and it can change

depending on environmental conditions like relative humidity and temperature. The phase state

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

of the aerosols impact the gas-particle diffusion rates and play a major role in heterogeneous

reactions, particle growth, and cloud condensation nuclei concentrations 3°, thereby impacting
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the aerosol optical depth 31. Ambient organic particles often contain inorganic constituents (e.g.,
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sulfate, sodium) can increase the hygroscopicity of the particles and, at elevated relative
humidity, enhance the water uptake of aerosols. Because of this water uptake, organic particles
mixed with inorganic components might change phase from solid to semi-solid or liquid. With
increasing relative humidity, the viscosity of organic particles decreases and becomes liquid-like
particles 32. For example, OS are important SOA constituents derived from the oxidation of
biogenic 33 (e.g., a-pinene, isoprene) and anthropogenic 34 (e.g., industrial emissions, biomass

burning) volatile organic compounds. OS mixed with inorganics can influence the phase transition
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of ambient aerosols, for instance, by reducing the deliquescence RH of inorganic salts 31. While
particle phase state and volatility are critical for understanding SOA formation, growth, and their
atmospheric lifetime, our understanding of how these properties change under haze conditions
remains limited. Single-particle measurements combined with molecular-level characterization
are essential for resolving the distribution of aerosol phase state and volatility. Hence, further
field observations are needed to understand how haze processing alters the phase state, mixing
state, and volatility of the particles and their potential impact on the atmospheric environment
35.

In this study, we investigate the chemical composition of individual particles as well as the
bulk molecular composition of organic aerosols from a highly polluted region in the IGP under
hazy conditions during wintertime. We utilize multi-modal chemical and morphological imaging
techniques to probe the chemical composition and morphology of individual particles and high-
resolution mass spectrometry to investigate the molecular composition of the bulk aerosol by
studying the molecular formulae (MFs) 363, Combined chemical imaging and high-resolution
mass spectrometry (HRMS) analysis allow us to investigate the phase state and volatility of the
different particle types. The goal of this study is to advance our understanding of single-particle

composition, morphology and molecular composition of bulk aerosols during haze processing by

establishing their relationships with aerosol phase state and volatility.

2. EXPERIMENTAL METHODS

2.1 Sampling site and sample collection

Page 6 of 31
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This study was conducted on the eastern side of the IGP (23°24°N, 87°02°E) in West Bengal, India.
Samples were collected during the winter of 2018 between January 2 and January 10 using a four-
stage Sioutas Cascade Impactor (SKC Inc.). Particles were collected on substrates placed on the
D stage (50% cut-off aerodynamic size is 0.25 pum) and C stage (50% cut-off aerodynamic size is
0.5um). The substrate used to collect the particles were TEM grids (copper 400 mesh grids coated
with Carbon Type-B and lacey films, Ted Pella) and silicon nitride substrates (Silson). This study
analyzed a set of seven samples (a total of 14 samples) noted as S1, S2, S3, S4, S5, S6, and S7 and
combined stage C and stage D for each sample. Furthermore, bulk aerosol samples were collected
on Teflon filters during the morning and afternoon of January 09 (F5 and F7). The sampling days
(Supplementary Information Table S1) were found to be hazy with humidity ranging from 31% to
78%. According to the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) analysis

(Figure S1) and meteorological data, the air masses arriving at the site during sample collection

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

likely passed through regions with low-lying cloud or fog along the IGP. Hence it is likely that the

particles experienced fog processing. In addition to long-range transported aerosols, there could
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be influence from local sources such as biomass burning from fields, household use of fuels, and
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vehicular exhaust.

2.2 Micro-spectroscopy analysis of particles

The elemental composition and morphology of the particles in each sample were determined
using computer-controlled scanning electron microscopy with energy-dispersive X-ray
spectroscopy analysis (CCSEM/EDX)*. The analysis was conducted using an environmental
scanning electron microscope (Thermo Fisher, Quanta). The microscope uses an energy

dispersive X-ray analysis (EDX) spectrometer with a Si(Li) detector with an active area of 10 mm?
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and an atmospheric thin window. The X-ray spectra acquired using the EDX detector provided
the elemental composition of the particles in the samples. The CCSEM/EDX was operated with a
beam current of 500 pA and an accelerating voltage of 20 kV. Based on the elemental
composition obtained from CCSEM/EDX, particles were classified into eight groups, such as Na-
rich, Na-rich sulfates, Si-rich sulfates, carbonaceous-sulfates, K-rich sulfates, carbonaceous
particles, and dust (Figure S2). Particle classification is provided in Figure S3. Particles with
physical diameters ranging from 0.15 to 4.0 pm were analyzed in this study. At least 1000 particles
from each sample were analyzed. Overall, we analyzed 16,982 individual particles in this study.
We observed from the SEM and TEM tilted view (75°) images that there are particles with
inclusions that could impact the phase state of the particles. Hence, we subdivided the organic
particles into two categories: (a) particles with inclusion (mostly potassium and sulfate), and (b)
particles without inclusion. Using tilted angle electron microscopy, the deformation of the
particles upon impact on the substrate was determined by calculating the aspect ratio of the
particles (calculated as the ratio of the width of the particle to its height as measured in tilted
view imaging accounting for the specific tilt view angle) 41. Based on the aspect ratio boundaries
from a previous study, particles were grouped as solid (AR = 0.76 to 1), semi-solid (AR between
0.54 and 0.76), and liquid (AR below 0.54) 22, The aspect ratios were calculated for each sample
except for S3 and S6 for which images were unavailable because they were damaged after initial
analysis. Tilted view images were also captured using transmission electron microscopy to see
the particle inclusion.

Scanning transmission X-ray microscopy along with near-edge X-ray absorption fine structure

spectroscopy (STXM/NEXAFS) was utilized to determine the mixing state and carbon
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functionalities 42. The transmitted X-ray beam through the sample was acquired at different
energies and converted to an optical density (OD). Based on the observed absorption peak the
functional groups for different mixing states in the sample were identified. We acquired STXM
maps at 11 different energies of the carbon K-edge ranging from 278 to 320 eV and carbon
spectra were acquired by capturing a stack of images at 111 energies in the same range (278-320
eV).
2.3 High-resolution mass spectrometry analysis of organic aerosols

The molecular composition of the organic fraction of aerosol in the F5 and F7 samples was
determined using a 12-T Bruker SolariX Fourier-transform ion cyclotron resonance (FTICR) mass
spectrometer (Bruker Daltronics, Billerica MA). The experimental conditions were based on a
previous study 3. Briefly, organics were extracted by immersing aerosol-loaded substrate in an

80:20 methanol solution in water, followed by filtration through a 0.2-um PTFE syringe filter to

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

remove insoluble material. Mass spectra obtained from field blank samples were subtracted from

the measured spectra during data analysis. Mass spectra were acquired from m/z 100-900 by
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infusing the samples at 3.0 uL mintinto an electrospray source operated in the negative mode
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with a glass capillary temperature of 180°C. The needle voltage was set at +4.4 kV. A total of 300
scans were acquired with an ion accumulation time of 0.03 s. Mass lists were assigned formulae
(£3 ppm) using MFAssignR *within the following constraints: CcHpOoNo-3So-1Po-13Co-234So-1,
where the numbers of C, H, and O atoms was unrestricted; 0 < O/C < 2.0; 0.3 < H/C < 2.5,

and -13 << DBE-O < 20. Further details on data processing can be found elsewhere 4> 4,

RESULTS AND DISCUSSION
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3.1 Size-resolved particle composition and particle classes

As most of the sampling events were characterized by hazy conditions, our discussion primarily
focuses on these events. The particle composition across samples was dominated by K-rich
sulfates, accounting for 40 to 70% of the total particles analyzed. However, in S3, and S6, K-rich
sulfates dropped below 20% while carbonaceous sulfates increased to about 40-50%, indicating
SOA formation #’. Figure 1 shows the size-resolved particle composition of each sample.

K-rich sulfate particles are dominant, followed by Si-rich sulfates, carbonaceous sulfates, and Na-
rich sulfates, respectively (Figure 1). In the larger size fractions (1-4 um), Si-rich sulfates
constituted approximately 20-40% of the particle composition. Si-rich sulfates could be formed
from the hydrated Si-rich minerals reacting with SO, emitted from coal combustion or agricultural
burning 42.

The abundance of K and Si-rich sulfates suggests potential contributions from both biomass
burning and farming activities #° as a previous study attributed the presence of K and Si in
carbonaceous aerosol to agricultural activities and burning practices °°. These K-salt particles
present in the fresh smoke plumes of biomass burning transform into K,SO4 as part of aging in
the atmosphere 32,

Na-rich sulfates are present in smaller fractions accounting for 10 to 20% of the total number of
particles in each sample except for S6 (<10%). Na is mostly emitted from sea spray and fungal
spores, along with anthropogenic sources such as refuse incineration, oil combustion, coal
combustion, car exhaust, and industrial pollution °2.

Dust particles formed another consistent fraction (15-20%) in samples S1, S2, S3, S4, S6, and S7.

S5 stood out, with dust comprising ~40% of the particle population and carbonaceous material
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dropping below 10% (figure 1). The dust in S5 was predominantly Si-rich or Fe-rich, potentially
originating from fly ash or other combustion derived particulates. A previous study shows that in
East Asia, fly ash and Fe-rich mineral dust are prevalent especially during Aeolian dust events and
have important radiative implication due to their strong light-absorbing properties 3. Dust

particles are frequently coated with organic material that may be present in a liquid phase,

consistent with previous studies that identified aqueous-phase SOA coatings on aged dust particles
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S7 are 2183, 2417, 1105, 2348 2534, 4958, and 1966 respectively.
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The overall high sulfate content in the particles is consistent with previous studies >> °® that
reported enhancement in sulfur during hazy days. For instance, an enhancement ratio (defined
as the mean concentrations during haze divided by those during clean days) of 5.4 was observed
for sulfates over North China . In the IGP region, anthropogenic activities (e.g., coal and oil
burning, thermal power generation, road transport, commercial or residential burning, etc.)
release SO into the atmosphere >’. Sulfate formation can be very common under hazy conditions
through several pathways. For example, sulfur oxidation in the aqueous phase by hydrogen
peroxide and ozone occurs much more rapidly than gas-phase oxidation by OH radicals >2. Metal-
catalyzed oxidation is another pathway to sulfate formation during haze events. For example,
droplets containing dissolved Mn?* absorb SO, at the surface of aerosol to form sulfates >°.
Another possible mechanism is the reaction of SO, emitted from coal combustion with the wet
layer of adsorbed water vapor on non-carbonaceous particles, which eventually forms H,S0, °.
This could lead to the formation of different non-carbonaceous sulfates observed in our samples.
For instance, Na-rich particles could react with particulate H,SO4 to form Na-rich sulfates 2.

3.2 Sulfate formation during haze

Since the previous section established the dominance of K-rich sulfates across the samples, this
section further investigates their formation source and interactions with organic and sulfur-
containing compounds. By studying the formation pathways of sulfate aerosols and their
chemical composition, we aim to better understand the contribution of various sources, such as
agricultural burning and other anthropogenic activities, to the IGP haze %% 3. Particular attention

is given to the formation of OS and nitroxy-0S, which are key components in haze episodes.

11
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Therefore, we investigated the sulfate formation pathways to understand the contribution of
different sources. In a study by Li et al., haze was classified into two types depending on the
humidity and source °1. Type 1 haze was formed from aerosols emitted from agricultural biomass
burning and had particles larger than type 2 haze, which was formed from other anthropogenic
sources, such as industrial pollution, transportation, and cooking. Weight percentage analysis
indicated that haze formed due to agricultural burning showed a higher percentage of K with
respect to S than what was present in laboratory-generated potassium sulfates; this is because
of the abundance of KCl particles in fresh plumes of biomass burning. Similarly, we also plotted
the weight percentage of K against that of S for particles that were classified as potassium sulfate.
In line with the study by Li et al.>, anthropogenic pollution can be a potential source of haze

formation in the IGP (Figure 2) with a high fraction of S.
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Typically K is emitted as potassium chloride (KCl) into the atmosphere from fresh biomass-
burning plumes and undergoes heterogeneous reactions to form potassium sulfates and
nitrates®. EDX mapping of sampled particles shows that K and S are concentrated in small regions
of the particles surrounded by carbon, oxygen, and nitrogen (Figure S4). In line with this, 12-T FT-
ICR MS presented formulae corresponding to well-known primary markers of wood combustion,
including levoglucosan (CsH100s), acetosyringone (Ci0H1204), and sinapyl alcohol (C11H1404), in
both samples, while others, such as coniferaldfehyde (C10H1003), vanillin (CsHgO3), acetovanillone
(CoH1003), propiovanillone (C1oH1203), methoxy eugenol (C11H1403), and nitrocatechol (CsHsNO,)
were found only in morning aerosol. Additionally, the chemical composition of sulfur-containing
compounds, particularly organosulfates (OS) and nitroxy-0S, was explored with, considering that
they are commonly found in severe haze episodes, where they usually originate from
anthropogenic precursors . The high abundance of these compounds is strongly indicative of

aqueous-phase processing °, where gas-phase SO, and NO, from anthropogenic sources are
converted into acidic SO4% and NOj; within haze droplets. These compounds’ formation is
facilitated by the acidic 23 , high humidity, haze conditions characteristic of the IGP ¢7. Key
formation pathways include the acid-catalysed ring-opening of VOC oxidation products, such as
epoxides, aldehydes, and diverse multifunctional intermediates, which is a well-known mechanism

for OS and nitroxy-OS formation in haze and fog % . Figure 3 shows van Krevelen plots for the
organic compounds characterized in the morning (F5) and afternoon (F7) samples, and the
corresponding mass spectra are shown in Figure S5. The morning sample presented much more
molecular complexity (n = 5624 formulae) compared to the afternoon aerosol (n = 1637

formulae), which likely results from a combination of general and localized factors, such as
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accumulation of pollutants in a shallower nighttime boundary layer, enhanced aqueous-phase
chemistry in the morning hazy conditions noted at the sampling location, lower temperatures in
the morning that favour partitioning into the particle phase, as well as potentially unique
anthropogenic morning-specific source activities in the Indo-Gangetic Plain. In line with this
complexity, the morning sample was rich in both OS and nitroxy-OS, which constituted 24% of
the total formulae assigned, but <10% of the total formulae in the afternoon aerosol. Nitroxy-OS
compounds were not detected in the afternoon samples, whereas they constituted 10% of total
molecular formulae in the morning sample (Figure 3). Interestingly, the average relative humidity
was significantly higher in the afternoon (78%) compared to the morning (43%), suggesting that
relative humidity may not be the primary factor responsible for the presence of nitroxy-0OS
compounds in morning samples. Instead, the elevated levels of nitroxy-OS compounds in the

morning may be attributed to overnight NOs radical chemistry, which could explain the overall

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

higher abundance of CHNO compounds in morning samples compared to those collected in the

afternoon. CHNO and CHNOS compounds have been reported as prevalent nighttime

Open Access Article. Published on 06 January 2026. Downloaded on 1/10/2026 6:38:49 AM.

components that contributed more than 30% of the total light absorption by brown carbon

(cc)

during wintertime pollution in China 7°. Some specific examples of such compounds (or isobaric
species) that have previously been observed during haze conditions in winter across urban China

are presented in Table S3 39 6566,71,72,
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Figure 3: Van Krevelen diagrams for molecular fractions in each sampling period a) F5: Morning
and b) F7: Afternoon. The inset pie charts show the distribution of molecular formulae unique to
the sampling period (morning vs afternoon). The marker color indicates the class of identified

molecular formulae.

A few of the identified OS and nitroxy-OS had noticeable trends. In particular, CoH15075™ had the
highest intensity in both F5 and F7, and it has been previously observed in ambient cloud/fog

water and free tropospheric biomass burning organic aerosol 727> (Table S3). In the work of Cai
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et al. 3%, O;S species were found to be dominant in summertime, while Bryant et al. 76 showed an
8-fold enhancement in O;S during wintertime. Since O5S is predominantly found in the morning
in our study, along with other OSs, it could have originated from the photochemical oxidation of
common VOC precursors, such as monoterpenes 3° (e.g., limonene or isoprene). The nitroxy-0S
were exclusively observed in the morning sample (e.g., C10H18NQOgS-, C10H16NOgS-, C12H22NOgS-,
and C12H2,NOsS-). The compound with the highest peak intensity was C10H16NOsS-, which could
be a monoterpene-derived secondary product 3° as observed previously in urban aerosols during
wintertime, as well as in fog water samples 7® 77, Previously, two pathways have been described
for the formation of CHNOS, involving the conversion of primary CHOS species or the reaction of
non-sulfur organic compounds with high concentrations of SOx 7. The addition of S-containing
functional group generally reduces the light-absorption of CHNOS 7° 89, likely due to sulfate

groups being non-chromophoric that creates a hypochromic effect 8! 8, While the overall optical

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

properties of aerosol in the IGP have been explored in the upcoming sections, the abundance of

potentially light-absorbing N- and S-functionalized species in this region is interesting and needs

Open Access Article. Published on 06 January 2026. Downloaded on 1/10/2026 6:38:49 AM.

further investigation to determine their origin and implications.

(cc)

The predominance of OS and nitroxy-OS and their volatility distributions in the morning sample
can be seen in Figure S5. A large majority of the compounds were classified as extremely low-
volatility compounds (ELVOC) in both samples (Figure S6), indicating that S-containing species
are likely in the condensed (solid or liquid) phase that could have been produced via oxidative

atmospheric processing 3°.
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3.3 Chemical imaging of particles

Carbon functionalities of particles were studied using STXM/NEXAFS for two samples (S2 and S7)
out of the seven samples due to resource constraints. We selected samples S2 and S7 because
they contain a significant number of particles from all the identified classes and presented a
better probability of capturing different types of particles using STXM/NEXAFS. The
STXM/NEXAFS analysis was used to understand the influence of the mixing of inorganic material
with carbonaceous particles on their phase state. Each particle is assumed to be a mixture of
organic carbon (OC), elemental carbon (EC), and Inorganic component (In). Figure 4 shows
representative NEXAFS spectra and maps of particles with four particle types. The peak at 288.5
eV indicates the presence of the carboxylic functional group, which can contribute to water
uptake and increase in the viscosity of the particles with less oxygenated precursors®. In sample
S7, OCEC accounted for ~35% of the total particle fraction out of ~250 particles analyzed whereas,
while it only accounted for 20% in sample S2(Figure 4). An abundance of alkene groups in the
particles represents soot or other sp2-rich particles emitted from fossil fuel or biomass
combustion 3% 37, Moreover, sample S2 contained approximately 30% of particles with the
OCInEC, whereas less than 20% of the particles in S7 contained OCInEC. Further SEM analyses
were conducted to explain the phase state of the particles in different samples.

We also investigated the phase state of these samples based on STXM data. The total carbon
absorption (TCA) from STXM depends on the path length that X-ray photons travel through the
particle, and it is used to estimate the particle phase state #1. The threshold values for TCA to
classify the particles into solid, semi-solid, and liquid states were obtained from a previous study

37, Figure 5c shows that particles with inorganic mixing (OCInEC and OCIn) were mostly in the
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liquid state. OCIn and OCInEC accounted for more than half of the particle fraction (¥55%) in S2,
whereas they accounted for only ~35% of the total particle fraction in S7. Previous laboratory
studies suggest that inorganics are hygroscopic, and when they are internally mixed with
organics, they enhance the overall hygroscopicity of the particle*? 43. Moreover, a few field
studies also report a decrease in the viscosity of the particles due to the presence of inorganics*>
44, For instance, a field study by Slade et al. (2019)3* using the University of Houston Mobile Air
Quality Laboratory reported a decrease in the viscosity of the particles due to higher sulfate
fraction during daytime. Similarly, another study by Cheng et al. 2022 also observed high
abundance of liquid particles associated with inorganic inclusions 1. Hence, our observation is

consistent with previous studies.
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Figure 4: a) Representative STXM/NEXAFS spectra for different particle types. b) Particle fraction
of OC, OCIn, OCEC, and OCInEC for the S2 and S7 samples. c) Carbon maps. The different colors
in the Carbon map represent organic carbon (green), organics and inorganics (blue), organics and
elemental carbon (red), and a mixture of organic, elemental carbon and inorganics (teal). The
dotted lines show peaks corresponding to the energies of different functional groups. The scale

baris 0.5 um.

The tilted view images from TEM and SEM showed an abundance of liquid-like flat-shaped
particles in all the samples. TEM images in Figure 5 show that liquid particles have inorganic
inclusions with irregular shapes, while solid particles do not. Hence, we classified the particles
into two groups: with and without inclusion. More than 90% of the organics with solid inclusions
had an AR of less than 0.3 (except for sample S4), suggesting that they were mostly liquid.
Whereas particles without inclusions existed in all three phase states, with solid or semi-solid
states representing 42%, 31%, 67%, 47%, and 62% of the particles from S1, S2, S4, S5, and S7
samples respectively. Even though most of the samples (S1, S2, S5, and S7) showed an abundance
of low-viscosity particles, sample S4, collected in the afternoon in hazy conditions (highest RH,
63% compared to other samples), showed considerably higher solid and semi-solid particles as
compared to other samples. A potential explanation for this observation could be that the source
of the particles for S4 is different. For example, S4 might be dominated by highly viscous tar ball-
like particles as these particles were resistant to electron beam and spherical in shape.

Previous study also reported liquid-phase particles during heavy haze periods in urban

atmospheres in China #. They suggested that elevated RH and increased inorganic fractions in
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particles enhance aerosol liquid water content, leading to the formation of liquid-phase particles.

8 Similarly, another study found a predominance of semi-solid or solid particles during clean winter
2
g
3 days with relative humidity below 30%, with a shift toward liquid-phase particles as relative
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Figure 5: a) Tilted view TEM images show a liquid-like particle with inclusion (green arrow)
(Sample S2) and a spherical particle without inclusion (red arrow) (Sample S4). Particles on S2
collected during daytime show liquid particles with inclusion and particles on S4 collected in the
afternoon have spherical and solid particles. b) Particles in each sample are grouped as particles
with inclusions and particles without inclusions. The violin plots show the distribution of the

aspect ratio values of the particles along with their medians and ranges. The thresholds used to
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classify the particles into liquid, semi-solid, and solid are from a previous study*'. Total carbon
absorption is plotted against area equivalent diameter for samples S2 c) and S7 d). Based on the
thresholds used in a previous study, particles with different mixing states (OC, OCEC, OCIn, and

OCInEC) are also classified into solid, semi-solid, and liquid particles 2°.

4. SUMMARY AND ENVIRONMENTAL IMPLICATIONS

This study aimed at understanding aerosol processing under haze conditions by determining the
chemical composition, morphology, phase state, and volatility of particles collected during winter
from the highly polluted region of the Indo-Gangetic Plain. The abundance of potassium sulfates
in all samples suggests that biomass burning could be a major pollution source in the area &’.
Furthermore, we identified a diverse mixture of organonitrates, organosulfates, and nitroxy
organosulfates, frequently present in urban aerosols. Nitroxy-OS are functionalized OS that are
typically found as constituents of atmospheric agueous media (e.g., cloud, fog, and rainwater) 8%
83, 0S play a crucial role in the formation of SOA and enhance cloud condensation nuclei activity
by affecting particle hygroscopicity °°. The organonitrates in these aerosols can function as
efficient light-absorbing brown carbon components, potentially influencing regional radiative
balance and energy budget °-°2,

Liquid-like particles with inorganic inclusions were found to be abundant in our samples.
However, the afternoon sample (S4) showed particles with higher viscosity compared to the
morning samples. Because the composition of low-viscosity particles changes more rapidly as
they age due to faster diffusion of pollutants as compared to high-viscosity particles. Our findings

suggest that morning particles might chemically evolve more rapidly than afternoon particles due
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to their low viscosity ?3. The observed dependence of particle phase state on inclusions and time
of day underscores the complexity of haze processing, where factors beyond relative humidity,
such as particle composition and mixing state govern physical properties. These results highlight
the need for climate and chemical transport models to better represent source-specific aerosol
composition, phase state, and viscosity under haze conditions. The presence of biomass-burning-
derived organosulfates and organonitrates suggests that simplified model assumptions may
misrepresent aerosol aging, cloud condensation nuclei activity, and radiative effects. From a
policy perspective, reducing nighttime biomass burning and urban emissions could mitigate
morning haze severity and provide co-benefits for air quality, visibility, and the regional
environment in the IGP. While this study focuses on the IGP region, biomass burning is also a
dominant source and wintertime haze is common in East Asia. Therefore, the observed particle

phase state and volatility are likely to have similar implications across the broader East Asian

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
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