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Christina Siakalli, © ° Bradley E. Osborne, (22" Ryan K. Brown, Claudia Rocco,®
Dominik Weiss,© Enrique V. Garcia-Espafia, () ¢ Pascal V. Grundler,®

Anzhelika N. Moiseeva,® Zeynep Talip,” Nicholas P. van der Meulen,®f

Michelle T. Ma (2 ** and Nicholas J. Long () *

Emerging therapeutic radiolanthanides have utility for systemic molecular radiotherapy in nuclear medi-
cine, provided that suitable chemical technology is available to incorporate them into receptor-targeted
radiopharmaceuticals. In this work, N,N’'-bis(8-hydroxyquinoline-2-ylmethyl)-4,13-diaza-18-crown-6
(H,KHQ) was synthesised, and its binding ability, thermodynamic stability and selectivity for Ln®* ions
(Ln®* = La, Th, and Lu) investigated. The design of H,KHQ involves pendant arms featuring 8-hydroxyqui-
noline units, known to possess metal-chelating properties and desirable activity in other therapeutic
molecules. HKHQ exhibited selectivity for the larger Ln®* ions, confirmed by experimentally measured
stability constants as well as DFT calculations. H,KHQ was able to bind the larger, non-radioactive La®*
and Tb** ions within 30 minutes at room temperature, forming a single, 2-fold symmetric species in solu-
tion. The structure of [La-HKHQI?*, as determined by single crystal XRD, emphasized the need for high
denticity chelators to satisfy the coordination sphere of the Ln®*, showing a 10-coordinate La®>" metal
centre. H,KHQ was radiolabelled with [***Tb]TbClz under mild conditions in 92% radiochemical yield in
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Introduction

Radioactive nuclides of the lanthanides have significant utility
in nuclear medicine for both diagnostic imaging and systemic
radiotherapy. In particular, radiolanthanides that emit cyto-
toxic particles including beta (f7), alpha (a) and Auger
Electrons (AE), have demonstrated efficacy in theranostic
radiopharmaceuticals." Diagnostic and therapeutic (“thera-
nostic”) pairs of radiopharmaceuticals typically utilise the
same biologically active receptor-targeted vector to deliver
either an imaging radionuclide or a cytotoxic therapeutic
radionuclide to diseased tissue. This “look and treat” approach
uses the radiotracer, in combination with either Positron
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promising proof-of-concept measurements.

Emission Tomography (PET) or Single Photon Emission
Computed Tomography (SPECT) imaging to provide diagnostic
information that guides decisions on suitability of the compa-
nion therapeutic radiotracer."* For example, the PET radio-
nuclide gallium-68 (**Ga, t;,, = 68 min, f*) is commonly used
in tandem with therapeutic lutetium-177 (*"’Lu, t;, = 6.64
days, B7) for the treatment of somatostatin receptor (SSTR)-
positive neuroendocrine tumours, using an “octreotate”
peptide attached to a macrocyclic chelator.>>® While the use
of the ®*Ga/"”’Lu radionuclide pair is effective, “true theranos-
tic” agents consisting of a pair of imaging and therapeutic
radionuclides of the same element could provide significant
advantages. In “true theranostic” pairs, the chemically identi-
cal imaging radiotracer and radiotherapeutic agent exhibit
equivalent biodistributions: the imaging radiotracer can be
used to determine accurate dosimetry of the radiotherapeutic
agent. Examples include copper-64/copper-67 (**Cu, p*/*’Cu,
B7), terbium-155/terbium-161 (*>*Tb, y/**'Tb, p~, AE, y) and
scandium-44/scandium-47 (*'Sc, $*/*’Sc, p7).>"° Terbium
radioisotopes have potential for receptor-targeted theranostic
radiopharmaceuticals. There are four clinically relevant radio-
isotopes: “*°Tb (¢,/, = 4.12 hours, E, = 3.97 MeV, I, = 16.7%) for
targeted o therapy, °*Tb (ty/, = 17.5 hours, Ep; oy = 1.14 MeV, I
= 20.3%) for PET and "*°Tb (¢, = 5.3 days, E, = 86.6, 105.3 and
180.1 keV) for SPECT. Finally, '®'Tb (¢, = 6.95 days) is a p~-
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emitter (154 keV) that undergoes low-energy internal conver-
sion (IC), co-emitting high-energy AE (~12.12 e~, <40 keV per
decay) and y-rays.>”"'? In side-by-side preclinical studies, **'Tb
has showcased superior in vitro and in vivo efficacy compared
to ’Lu, alongside an ability to deliver higher absorbed
doses.’® ™ The co-emission of both long-range B~ and shorter-
range AE emissions from '°'Tb in comparison to ""’Lu (B~
emitter only) is hypothesized to increase its efficacy and radio-
therapeutic effect.””'>'® Phase I/II clinical trials with '®'Tb
radiopharmaceuticals are currently evaluating the efficacy of
¢1Th-based radiopharmaceuticals.'”

A suitable chelating agent is required to coordinate radi-
olanthanides such as '®'Tb and subsequently attach them to
biologically active motifs that target surface receptors of dis-
eased cells. Over the years, a series of aza-crown macrocyclic
chelators have been developed, for coordination of rare-earth
metals available for theranostic applications (Fig. 1). The
coordination chemistry of macropa, macrodipa and next-gene-
ration analogues have been extensively studied with regards to
their ability to bind clinically relevant radionuclides, including
actinium-225 (***Ac) and lanthanum-135 (**°La).’®**” Macropa
displayed preferential binding with radionuclides of larger
ionic radius, over smaller radionuclides whereas macrodipa,
py-macrodipa and py,-macrodipa complexes with both large
and small radionuclides demonstrated increased thermo-
dynamic and kinetic stability.>' > Blei et al. have further high-
lighted the abilities of macropa to bind radiometals with
larger ionic radii (lead-212 (***Pb) and lanthanum-133 (***La))
in 100% radiochemical conversion (RCC), comparable to label-
ling with **°Ac.”” Macropa was also able to complex the
smaller radionuclide, '""Lu, however, the complex’s kinetic
stability was lower and higher ligand concentrations were
required to achieve satisfactory RCC.?” Still, macropa is one of
the two state-of-the-art chelators for ***Ac, alongside 1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and is
currently being used in clinical trials.***°

In this work, we explore a diaza-18-crown-6 derivative,
H,KHQ, containing two 8-hydroxyquinoline pendant arms.
This chelator is related to macropa, in that the picolinic acid
groups of the latter are replaced by 8-hydroxyquinoline motifs.
H,KHQ has highly similar topology to macropa, with increased
rigidity in the pendant arms. H,KHQ has been previously
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Fig. 1 Examples of azamacrocyclic chelators.
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studied for the complexation of divalent metals ions of zinc,
barium, copper, as well as monovalent potassium and
sodium.>® However, it has not been reported for the complexation
of trivalent lanthanides or for use in nuclear medicine. In
general, 8-hydroxyquinoline units and derivatives are widely
used in medicinal chemistry and drug discovery.*'° They are
well-known to possess metal chelating properties and have
been assessed as ionophores,*”*® antiseptic,*® antioxidant,*®*!
and anticancer agents.”>*® In addition, they exhibit photo-
physical properties enabling them to act as sensitizers for Ln**
in a wide variety of applications including biological imaging
and materials chemistry.**™*°

Results

Ligand synthesis

H,KHQ (N,N'-bis(8-hydroxyquinoline-2-ylmethyl)-4,13-diaza-18-
crown-6) was synthesised in a three-step reaction as shown in
Scheme 1. 8-Hydroxyquinoline-2-carbaldehyde was reduced
and brominated following a previous procedure.>® Subsequent
attachment of intermediate 2 onto a Kryptofix®22 backbone
was carried out via nucleophilic substitution in the presence
of sodium carbonate, adapted from previous procedures.”*®
The product was isolated as a pure, white solid in 27% yield
post purification (Fig. S1-S6, SI).

Characterisation of lanthanide complexes

To investigate the metal chelating abilities of H,KHQ, the non-
radioactive [Tb-KHQ]" complex was synthesised by mixing
H,KHQ and TbCl;-6H,0 (1.2 eq.) in H,O (pH 4-5) at room
temperature for 30 min. The pure complex was isolated by C18
reverse-phase chromatography as a yellow solid in 65% yield.
The "H NMR spectrum shows no evidence of unchelated
H,KHQ ligand and contains characteristic paramagnetic NMR
shifts of Tb**, with signals observed between —200 and
+250 ppm (Fig. 2A).>' LC-MS (Fig. S26) and HR-ESI-MS
(Fig. S27) detected a molecular ion peak corresponding to the
stoichiometry of [Tb-KHQ]" at m/z 733.2076 (for
[C3,H3sN,TbO;4]" caled = 733.2039). HPLC confirmed the pres-
ence of a single [Tb-KHQ]" species in solution, with a retention
time distinct to that of unchelated H,KHQ ligand (Fig. 2B).
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Scheme 1 Synthesis of H,KHQ.
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Fig. 2 (A) 1H NMR spectrum of [Tb-KHQ]* (D0, 400 MHz, 298 K). (B) HPLC chromatogram of H,KHQ and [Tb-KHQI* (1 mM in NH,OAc, pH 6.5).

The diamagnetic [La-KHQ]" complex was also prepared:
H,KHQ and LaCl;-7H,0 (1.2 eq.) were mixed in D,O (pD 6.5)
at room temperature for 30 min. The 'H NMR spectrum
(Fig. 3) indicated a single symmetric species present: only five
resonances in the aromatic region were observed, corres-
ponding to the five distinct proton environments on the
8-hydroxyquinoline arms. Notably, large geminal "H-"H coup-
ling constants (>/yy > 10 Hz) were observed for all macrocyclic
CH, protons. This is consistent with metal binding, leading to
chemically inequivalent geminal proton environments. In the
BC{'H} NMR spectrum (Fig. S12), sixteen '*C signals were
detected, further supporting the presence of a 2-fold sym-
metric species. Upon La** binding, an increase in the chemical
shift of aromatic 8-hydroxyquinoline '*C resonances was
observed, relative to the unchelated H,KHQ ligand. The chemi-
cal equivalence of 'H and "*C atoms of both 8-hydroxyquino-
line motifs is similar to analagous complexes (La**-macrodipa,
La*"-macropa), in which 2-fold symmetry was also observed in
solution by 'H and "*C NMR spectroscopy.”®*"*?

To further probe the solution-state chemistry of [La-KHQ]",
a mixture of H,KHQ and LaCl;-7H,0 (1.2 eq.) in D,O was
monitored via "H NMR spectroscopy from pD 2-13 (Fig. S15).
The "H NMR spectrum of H,KHQ ligand did not change sig-
nificantly with pD. Binding of La*" to H,KHQ was not observed
at low pD but was seen at pD 6.5, with only a single species
noted. With increasing pD, the chemical shifts of [La-KHQ]"
did not change significantly.
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Fig. 3 Expanded 'H NMR spectrum of H,KHQ (top) and [La-KHQ]*
(bottom). (DO, pD 6.5, 400 MHz, 298 K). The macrocyclic protons are
labelled as Hacro-
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Lastly, the formation of [Lu-KHQ]' complex was also
explored via 'H NMR studies (Fig. S18-S20). H,KHQ and
LuCl;-6H,0 (1.2 eq.) were reacted in D,0, and "H NMR spectra
were obtained over pD 2-9. At low pD, no complex formation
was detected whereas at pD 6, H,KHQ ligand and a [Lu-KHQ]"
species were observed in a 1:2 ratio. At pD 9, full conversion
to a [Lu-KHQ]" metal complex was observed. Similarly to [La-
KHQJ", the Lu*" complex showed 2-fold symmetry, as evi-
denced by a single set of aromatic protons.

To explore the solid-state structure of the [La-KHQJ"
complex, it was re-synthesised by mixing H,KHQ with La
(ClO4); (1.2 eq.) in MeOH at room temperature for 30 min.
Single crystals of [La-HKHQ](ClO,4), were obtained by vapour
diffusion of pentane into a solution of [La-HKHQ](ClO,4), in
EtOH. Single crystal X-ray diffraction analysis revealed the crys-
talline material to be [La-HKHQ](ClO4), (Fig. 4). The La**
metal centre sits in a 10-coordinate environment, with all
nitrogen and oxygen donor atoms bound to the metal centre.
The complex adopted a syn-conformation, where the 8-hydroxy-
quinoline arms were both coordinated to the metal centre on
the same face relative to the macrocyclic ring. The syn-confor-
mation of the ligand implies the presence of two helices, one
for the pendant arms (absolute configuration A or A) and one
for the six five-membered chelate rings formed (absolute con-
figuration & or A).>>** The crystal structure reveals the most

Fig. 4 The structure of [La-HKHQI](CLO,), (50% probability ellipsoids).
H atoms and second perchlorate anion omitted for clarity. H-bonding
contacts in teal and interatomic distances in green.
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stable isomer to be A(SAA)(8A8), present as part of a racemate.
One of the hydroxyl groups remained protonated, forming a
hydrogen bond to a second perchlorate counter-anion, and a
long La-O8 bond (2.673(3) A). The non-protonated oxygen
atom in the 8-hydroxyquinoline arms formed a strong La-O18
bond (2.365(3) A). In [La-HKHQ]*", La-N12 (2.658(4) A), La-N2
(2.655(3) A), La-N23 (2.847(4) A) were all relatively shorter than
the La-N bonds in [La(Hmacropa)(H,O)], suggesting that the
8-hydroxyquinoline arms provide a basis for stronger binding
in comparison to the picolinate motif.>° The solid-state struc-
ture was consistent with the "H NMR solution-state data.

Lanthanide complexes thermodynamic stability

Potentiometric titrations were employed to obtain ligand pro-
tonation constants (K,) and complex stability constants (K,
(defined in eqn (S4) and (S5) respectively).

As shown in Table 1, the first and second H,KHQ protona-
tion constants (log Ki; and log Kyy,) correspond to the hydroxyl
groups of the two 8-hydroxyquinoline arms. In free 8-hydroxy-
quinoline, the hydroxyl groups have a pK, of 9.9.°° The differ-
ences in protonation constants between the two 8-hydroxyqui-
noline substituents on H,KHQ is likely a result of complex
intramolecular hydrogen bonding patterns in the unchelated
ligand, such as those between the O-H and the macrocyclic
nitrogen atoms (Fig. $9).>® The third and fourth protonation
constants (log K3 and log Kyy,4) correspond to the macrocyclic
tertiary amine atoms, while the fifth and sixth protonation
constants (log Kys and log Kye) correspond to the nitrogen
atoms of the 8-hydroxyquinoline motifs.

The log Ky, values for H,KHQ and similar macrocyclic che-
lators such as macropa and py,-macrodipa were plotted
against the ionic radii of key Ln*" ions (Fig. 5).>'>**”""*% The
affinity of H,KHQ for trivalent cationic lanthanide metal ions
decreases as the ionic radius decreases. Importantly, the
log Ky, (L = KHQ?>™, Ln = Tb**, Lu**) values were comparable
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Fig. 5 Stability constants of [Ln-KHQ]* (Ln = La, Tb, Lu) plotted versus
Ln** ionic radii.

to those of macropa, highlighting that substituting picolinic
acid groups for hydroxyquinoline groups does not have a
marked effect on the binding affinity of this class of chelators.
Indeed, the log K, values for Ln®" complexes of H,KHQ are
lower than those of many newer chelators (such as py,-
macrodipa).

However, to compare ligands with different basicities, the
relevant parameter pM, is used as an indicator of affinity
(Table 1). The pM value is the negative logarithm of the free
metal concentration in equilibrium with complexed and free
ligand, at a fixed pH 7.4. Analysis of the pM(Ln(m)) values
emphasizes that with H,KHQ at pH 7.4, more Ln(u) ions are
present in solution, in comparison to other chelators.

Speciation plots (Fig. 6) indicate that under the conditions
studied here, all available H,KHQ ligand molecules were
bound to La** at pH ~6, Tb®" at pH ~6.5 and Lu®** at pH ~7.5.
This was also consistent with "H NMR studies which indicated
that a higher pH was needed to achieve quantitative coordi-
nation of Lu** by H,KHQ, as compared to the analogous La*"
complex. The distribution of both La®>" and Tb** species sup-
ports the formation of one major species at ambient pH, con-

Table 1 Protonation constants (log K,) and stability constants (log K.,.) obtained by potentiometric titrations

H,KHQ* Macropa>*®’ Py,-macrodipa® Py-macrodipa® Macrodipa®!
Log Ky 10.40(2) 7.41 7.58(4) 7.20 7.79
Log Ky 7.70(2) 6.85 6.48(1) 6.54 7.04
Log Kys 4.03(4) 3.32 3.52(3) 3.17 3.18
Log Kay 3.74(3) 2.36 2.60(5) 2.31 2.14
Log K5 3.10(5) 1.69 2.10(11) — —
Log K6 3.08(4) — — — —
Log Kiar 12.10(8) 14.99 16.68(8) 14.31(6) 12.19(2)
Log Kty 11.05(2) 11.79 14.76(6) 11.95(3) 9.68(1)
Log KyuL 8.58(5) 8.25 11.90(3) 11.54(2) 10.64(4)
Log Kpapr — 2.28 — — —
Log KpuLm-1 2.46(1) - - - -
Pra 9.47 15.58 17.20 15.03 12.49
Prb 8.54 12.38 15.28 12.62 9.98
Pru 7.50 8.84 12.42 12.26 10.94

“This work: 0.1 M NacCl, 25 °C. Ligand concentration 0.018 mmol. pH range used 3-10.5. Three repeats. The values in the parentheses are one
standard deviation of the last significant figure. pM is the negative logarithm of the free metal concentration in equilibrium with complexed and

free ligand, at a fixed pH 7.4.
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volume V = 30 mL. Data fitting and speciation distribution over the pH range shown. L represents fully deprotonated ligand, KHQ?".

sistent with "H NMR spectroscopic studies. Significantly, the
Lu®" speciation plot indicates that the major species forming
between Lu®" and H,KHQ at above pH 6.5 is LuLy_;. This
most likely corresponds to a species where a water molecule is
interacting with the complex. Attempts to elucidate the solid-
state structure of [Lu-KHQ]" via crystals were unsuccessful.

DFT calculations

DFT is a useful tool for exploring the coordination chemistry
of Ln*" with macrocyclic chelators and has been used to better
understand the origin of size selectivity in macropa and
second-generation analogues.”’”* Herein, we explored the
binding of H,KHQ across the lanthanide series (La**-Lu*") to
gain insight into the size selectivity of H,KHQ complexation.
Initially, geometries were taken from the crystal structure of
syn [La-HKHQJ** with removal of H8 to model the overall “+1’
species. Different conformational arrangements were modelled
with the 8-hydroxyquinoline arms in either a syn or anti
arrangement around the metal centre (whilst retaining sym-
metry). Across the lanthanide series, the syn conformation was
favoured over the anti-conformation (Fig. S30). The relative
Gibbs free energy (AAG) for the transmetallation reaction
([LakHQ]" + Ln** — [LnKHQ]" + La*") was calculated. The
results show a thermodynamic preference for the larger Ln**
ions (Fig. 7). This calculated trend is in good qualitative agree-
ment with experimental data (AAGe, = —2.303RT log(Kin, —
Kiar)y AAGrp 1. = +1.43 keal mol™, AAGyy, 1. = +4.80 kcal
mol™") which shows decreasing thermodynamic stability
across the series. The quantitative discrepancy is attributed to
the over estimation of gas-phase Ln*" ion energies in our
model, which does not include explicit solvation effects. The
destabilisation evidently results from a greater degree of
ligand strain in the macrocyclic framework to facilitate the
coordination of the oxygen atoms to the smaller Ln*" ions
(Fig. S34). Furthermore, H,KHQ did not exhibit the confor-
mational toggle that is predominant in macrodipa and
analogues.”'

Structural analysis revealed a coordination number of 10
for all Ln**, involving four nitrogen atoms and six oxygen
atoms in coordination to the metal centre (Fig. S31). Across

This journal is © The Royal Society of Chemistry 2026
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Fig. 7 DFT-computed relative Gibbs free energies (AAG) for the
transmetallation reaction: values are calculated as: AGgA4AG° =
GZ,([syn-Ln-KHQ]") + GZ, (La*") — G5, (Ln*") — G, ([syn-La-KHQ] ).

the series, the hapticity of the KHQ ligand was 1'°, with the
metal ion located above the plane of the macrocyclic ring
enclosed by both 8-hydroxyquinoline
Additionally, the presence of a water molecule in the first

system, units.
coordination sphere was modelled, however the resulting
coordination number of 11 was less favoured across the series
(Table 52, AG, ).

Analysis of the structure of [La-HKHQ]*" reveals that there
are 16 possible conformations (8 enantiomeric pairs of dia-
stereoisomers) with C, symmetry.>* To better explore the in-
solution behaviour, an in-depth conformational screen of 8
different diastereomers was carried out for La**, Tb®" and
Lu*". As shown in Fig. S32, our calculations predict that the
A(B)8)(6A8) conformation is the lowest energy form in aqueous
solution across the three Ln®" ions tested, and is lower in
energy by ca. 1.9 kcal mol™" than the solid-state conformation
observed for [La-HKHQJ]*'. The relative energies of the
different conformations in aqueous solution are given in
Table S3 and highlight the multiple C,-symmetric confor-
mational modes that likely exist in equilibrium in solution.
This result is consistent with the NMR solution-state studies
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Fig. 8 (A) Phosphorescence spectrum for [Tb-KHQ]* (H,O, 20 uM, 20 nm slits, 0.1 ms delay). (B) RadioHPLC of HoKHQ (1 mM) with [***Tb]Tb®* (2.5
MBg, 1 mM HCl) after 60 min at 90 °C. RCY = 92%. [**'Tb][Tb-KHQI"* retention time = 18.3 min.

on [La-KHQ]" where a complex with C, symmetry was
observed.

To explore the effects of the nature of the pendant arm on
the stability of these complexes a parallel conformational
screen of macropa complexes (for La**, Tb*" and Lu®**) was
carried out, where our model also favoured the A(SA3)(SA3)
conformation (see Fig. S33). Analysis of gas-phase Gibbs free
binding energies and ligand strain was performed to compare
the influence of the pendant arms of macropa and KHQ on
ligand preorganisation and metal binding. The results show
that whilst ligand strain generally increases with decreasing
ionic radius for both ligands, the effect is much less pro-
nounced for macropa (Fig. S34). Additionally, our calculations
suggest that macropa provides a consistently greater, albeit
modest, metal-ligand stabilisation for La*", Tb®" and Lu’**
(Table S4). Whilst experiments show the reverse trend for Lu®",
the differences are small enough that calculated values are
likely within error. Together with experimental results, it
appears that the greater rigidity of the pendant arms in KHQ
forces a higher degree of overall ligand strain in the metal-
bound conformation of the macrocycle.

Phosphorescence spectroscopy

The pendant 8-hydroxyquinoline motifs possess useful photo-
physical properties and can potentially act as antennae to
exploit the luminescence emission properties of Tb>".
Luminescence studies were carried out to ascertain whether
the [Tb-KHQ]" complex exhibited characteristic Tb phosphor-
escent emissions. Indeed, sharp emission peaks at 518, 565,
583 and 621 nm were observed for [Tb-KHQ]" via the antenna
effect, following excitation of the ligand at 242 nm (Fig. 8A).
These are characteristic of the D, — ’F,, transitions (n = 6, 5,
4, 3). This preliminary experiment highlights the potential of
8-hydroxyquinoline based ligands to be used for optical
imaging, with further studies needed to optimise ligand
design for efficient sensitization.

Radiolabelling experiments

Finally, [***Tb]Tb** radiolabelling experiments were under-
taken, with ['®'Tb]TbCl; provided by the Paul Scherrer

Dalton Trans.

Institute. Solutions of H,KHQ (1 mM) and [**'Tb]Tb*" (2.5
MBq, 1 mM HCl) in NH,OAc (20 mM) at pH 8.5 were reacted
at 25 °C. After 20 min and 180 min, the reactions were ana-
lysed by reverse-phase radio-HPLC (Fig. S41-43), which indi-
cated formation of [**'Tb][Tb-KHQ]" with a retention time (R,)
of 18.33 min. We observed that unreacted ['°'Tb]Tb*" was
initially retained on the column, presumably as a colloidal
species, similar to prior radiochemical observations.>
However, upon switching to an aqueous mobile phase at the
end of analysis, free ['*'Tb]Tb*" eluted, appearing at >29 min,
enabling quantification of radiochemical yield (RCY).
Preliminary radiolabelling studies show that at 25 °C, H,KHQ
was radiolabelled in 33% RCY after 20 min, which increased to
68% after 180 min. Upon heating to 90 °C for 60 min, a high
RCY of 92% was achieved (Fig. 8B). In comparison, macropa
radiolabelling with ['*'Tb]Tb®" (5 MBq, 2 mM HCI) was
achieved at 62 and 55% RCY respectively at room temperature
and 90 °C after 30 minutes (Fig. S44 and $45).

Conclusions

The coordination of H,KHQ with Ln*" ions has been interro-
gated via X-ray crystallography, NMR spectroscopy, DFT calcu-
lations, analytical chromatography and potentiometric titra-
tions. H,KHQ exhibited a higher binding affinity towards
larger Ln** ions compared to the smaller ions. DFT calcu-
lations corroborate the experimental evidence: [Ln-KHQ]" com-
plexes demonstrated decreasing thermodynamic stability as
ionic radii decrease across the lanthanide series. In solid-state
studies, XRD analysis of [La-KHQ]" showed that the La*" metal
ion adopts a 10-coordinate conformation with the 8-hydroxy-
quinoline arms binding in a syn orientation relative to the
macrocycle. This was consistent with solution-state NMR
studies, that suggest a 2-fold symmetric complex present. The
optical properties of [Tb-KHQ]" were investigated by ligand
sensitization at 242 nm, and characteristic phosphorescence
emission peaks were observed. It has been noted that in order
to effectively exploit the capabilities of 8-HQ moieties as anten-
nae, optimised ligand analogues can be designed for increased
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sensitization and signal enhancement. The promising chela-
tion properties seen with La’" and Tb*" prompted us to
explore the chelation of KHQ with ['*'Tb]Tb*". Preliminary
radiolabelling corroborated the ability of H,KHQ to coordinate
[***Tb]Tb*" in high radiochemical yields (92%). Further in-
depth radiolabelling studies are required to explore concen-
tration, time, pH and temperature dependencies as well as
maximum molar activity. Complex stability and inertness for
in vivo applications shall be adequately explored in future
work. Still, the combination of radioactive properties with
photophysical properties could enable the development of a
dual-modal Tb*" probe for future medical applications.®*®*
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