

Dalton Transactions

An international journal of inorganic chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: J. Sanz-Garrido, R. Andrés, A. Martín, G. A. María del Camino and J. C. Flores, *Dalton Trans.*, 2026, DOI: 10.1039/D5DT02870A.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the [Information for Authors](#).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](#) and the [Ethical guidelines](#) still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

COMMUNICATION

Triaza-adamantyl *N*-heterocyclic carbenes (NHC-TA): water-soluble ligands and silver complexesReceived 00th January 20xx,
Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

We report high-yielding preparations of two water-soluble NHC pre-ligands bearing triazaadamantyl (TA) neutral hydrophilic groups. The NHC-TA derivatives have been utilized in the synthesis of $[\text{AgCl}(\text{NHC-TA})]$ complexes, which characterization has included ^{109}Ag resonance determinations. The hydrolytic stability of the silver complexes has been found to depend on the NHC-TA ligand.

The remarkable progress brought by N-heterocyclic carbene (NHC) ligands has established them among the most versatile ligands in organometallic chemistry, comparable to phosphines or cyclopentadienyls.¹ Their stability and strong metal–NHC bonds have enabled the design of robust complexes that are useful in catalysis for key reactions such as C–H activation, cross-coupling, and olefin metathesis.²

The binding features of NHC ligands³ have also promoted research in organometallic chemistry using water as a solvent.⁴ Once thought unsuitable, water is now recognized as a green medium offering advantages like enhanced reactivity, selectivity, and milder conditions,^{5,6} thanks to pioneering studies by Breslow,⁷ Joó,⁸ and Kuntz.⁹

A large number of hydrophilic ligands have been developed for the preparation of water-soluble metal complexes.^{4,10} One of the most popular water-soluble phosphines is PTA (1,3,5-triaza-7-phosphaadamantane, Figure 1a,), which was first synthesized and used as a ligand in metal chemistry by Daigle et al.,¹¹ and much later applied in metal catalysis in water,¹² then triggering the attention and research efforts on hydrophilic complexes with this cage adamantane-like phosphine.^{5,13}

Phosphines have secularly been used as references to compare the behavior of NHC ligands.¹ The first stable crystalline carbene isolated by Arduengo in 1991 was 1,3-bis(adamantyl)-imidazol-2-ylidene (IAd, Figure 1b), another

cage adamantane-like derivative.¹⁴ Given the aforementioned extensive development of the field of NHCs that followed this finding, and that of the PTA chemistry also initiated in the early 90's, it is striking that no precedent has yet been described for an NHC ligand, or derived metal complex, containing triazaadamantyl substituents in its structure. Here we introduce silver complexes containing *N*-heterocyclic carbene ligands *N*-substituted with 1,3,5-triaza-7-adamantyl groups (NHC-TA, Figure 1c).

Our assumptions at the outset of this work were the usefulness of NHCs as ligands for use in aqueous media due to the robustness of the M–NHC bond against oxidation and hydrolysis, together with their well-known easy tunability of properties through tailored and versatile functionalization, combined with the fact that the hydrophilicity of azaadamantanes, such as PTA and its derivatives, arises from good hydrogen acceptor capabilities of the tertiary nitrogen groups of the cage framework.¹⁵ Thus, after having identified a convenient synthetic procedure to access to 1,3,5-triazaadamantan-7-amine TA-NH₂ (see Supplementary Information), we set out the synthesis of NHC precursors *N*-substituted with triazaadamantyl groups, starting with IAd-HCl (Scheme 1a), analogous to the precursor of Arduengo's carbene (Figure 1b).

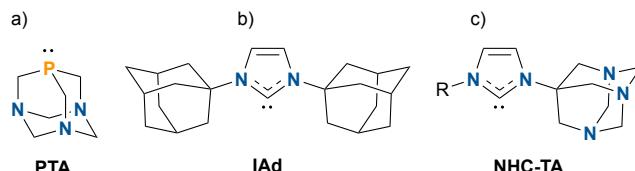
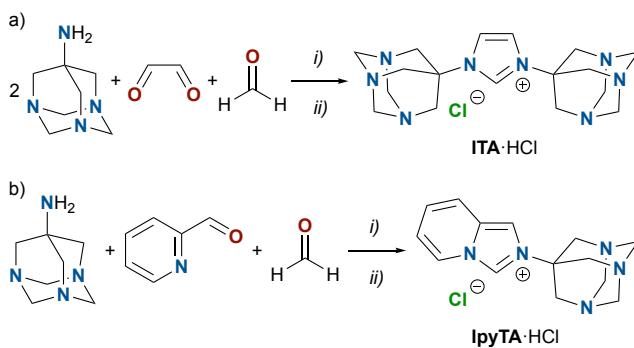


Fig. 1 a) Water-soluble phosphine; b) First isolated NHC; c) NHCs target of this work.

^a Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río", Universidad de Alcalá, Campus Universitario, 28805 Alcalá de Henares, Madrid, Spain. E-mail: juancflores@uah.es

Supplementary Information available: experimental details and characterization data. See DOI: 10.1039/x0xx00000x

Various approaches have been described for the synthesis of sterically encumbered *N,N*-disubstituted imidazolium salts.¹⁶ We have tested one-pot routes involving the sequential addition of paraformaldehyde, amine TA-NH₂, and glyoxal in the presence of hydrochloric acid,¹⁷ and cyclization pathways of the preformed 1,4-diazadiene (*i.e.*, di-(1,3,5-triazaadamantan-7-

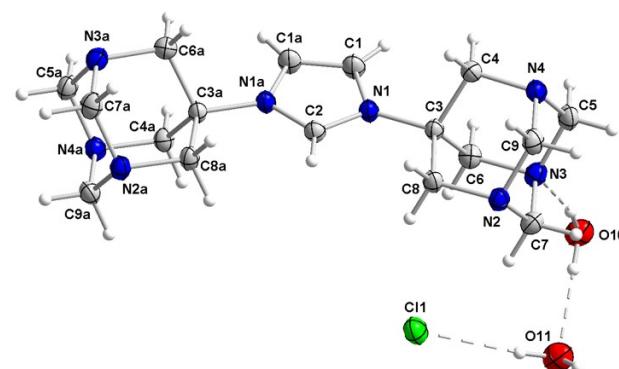

COMMUNICATION

Journal Name

yl)ethane-1,2-diimine)¹⁸ using different C1 building blocks for the ring closing and sources of the chloride counter anion, such as paraformaldehyde/HCl,¹⁹ or chloromethyl alkyl ethers,^{19c,20} or the paraformaldehyde/Me₃SiCl couple as in the expedient syntheses developed by Hintermann.²¹ All attempts afforded complex mixtures of addition compounds or no reaction at all. Instead, we have managed the synthesis of **ITA**·HCl by adapting the multicomponent and straightforward synthesis reported by Baslé and Mauduit (Scheme 1a).²² The one-pot procedure is described to be efficient for chiral non-symmetrical N,N'-substitution pattern of NHCs tethering a carboxylic or cycloalkyl functions, which are otherwise inaccessible, and that we have also previously used diversifying the NHC precursors available of this type.²³ Gratifyingly, we found this strategy to be successful also for the symmetrically substituted **ITA**·HCl in preparations up to multigram scale (6.1 g) in virtually quantitative yields.

Another structure substituted with the triazaadamantyl motif of our interest is based on an imidazo[1,5-a]pyridine skeleton (Scheme 1b). Imidazo[1,5-a]pyridinylidene were introduced in organometallic chemistry by the groups of Glorius and Lassaletta in 2005 as versatile and stable NHC ligands.²⁴ Thanks to their π -extended robust bicyclic framework, they rank among the strongest heteroatomic σ -donor,²⁵ and can also provide singular environments (e.g., L-shaped or axially chiral NHC ligands) in the close proximity of the metal center by readily substitution at C5 position of the pyridinyl ring.²⁶

As for **ITA**·HCl, various methods and conditions were attempted to synthesize **IpyTA**·HCl (e.g., picinaldehyde, **TA**·NH₂, formalin and HCl in EtOH;²⁷ pyridylimine py-2-CH=N-TA,²⁸ paraformaldehyde and SiMe₃Cl in toluene or ethyl acetate;²¹ or py-2-CH=N-TA and K₂CO₃ in chloromethyl methyl ether).²⁹ However, in our hands the only effective method for the synthesis of the pyridinium salt **IpyTA**·HCl is an adaptation of that described by Hutt et al. (Scheme 1b),³⁰ consisting in the nucleophilic attack of the amine on the formyl group, followed by the cyclization with formalin, in the presence of HCl, again in a one-pot procedure assessed up to grams scale (7.6 g) in quantitative yield.


Scheme 1 a) *i*) AcOH, 60 °C, 15 min, *ii*) HCl, r.t., 5 min; b) *i*) H₂O, HCl, r.t., o.n., *ii*) CH₂Cl₂/MeOH (20:1), NaHCO₃.

Cyclization to form both heterocycles is verified by their NMR spectra (see Supplementary Information). Thus, the protons of the imidazolic moieties are observed downfield (8–

10 ppm) as a triplet and a doublet (1:2) for **ITA**·HCl, and as two doublets (1:1) for **IpyTA**·HCl, due to ⁴H-¹H coupling (2.8–10.6 Hz) within the synthesized five-membered rings. In addition, the carbon in the carbenic position resonates at 133 or 125 ppm, respectively, which are similar to the chemical shifts observed for the corresponding non-azo adamantly-substituted analogues.^{17b,30} Two ¹⁵N resonance frequencies for **ITA**·HCl (197 (Imz) and 47 (TA) ppm) and three for **IpyTA**·HCl (205 (Imz), 193 (py) and 48 (TA) ppm), are found by ¹H,¹⁵N-HMBC correlations.

The molecular structure of **ITA**·HCl was determined using X-ray diffraction methods carried out with single crystals obtained from aqueous solutions. As shown in Figure 2, the desired structure is confirmed. The presence of crystallization water molecules interacting with an adamantly nitrogen atom and the chloride ion via hydrogen bonds is also observed. The cation is C_{2v} symmetric, with an N1-C2-N1a angle (108.4(2) $^\circ$) within the range found for other imidazolium rings (108–110 $^\circ$), and with C2-N bond lengths (1.383(2) Å) also normal considering the multiplicity of these bonds.¹⁴ All triazaadamantyl group atoms adopt the expected tetrahedral arrangement.

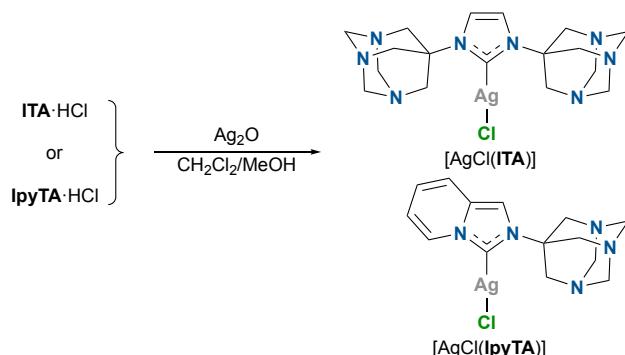

Both azolium salts are highly soluble in water, with solubilities of 150 and 144 g/100mL (4.0 and 4.9 mol/L) at r.t. for **ITA**·HCl and **IpyTA**·HCl, respectively, which exceed that of **PTA** (24 g/100mL or 1.5 mol/L),¹² or that of **IAd**·HCl (1.25 g/100mL or 0.03 mol/L). The five-membered ring in **IpyTA**·HCl undergoes H/D-exchange in D₂O (completed in a couple of days, but immediate for the proton on the carbenic position), in a process that is fully reversible by simply replacing D₂O for H₂O. Interestingly, although both salts are sparingly soluble in CH₂Cl₂ or in MeOH, a cooperative effect has been noticed with these solvents, observing that suspensions of any of these salts in CH₂Cl₂ rapidly turn to solutions by the addition of just a few drops of MeOH (20: \leq 1 v/v). This mixture of solvents has precisely enabled the synthesis of the silver NHC complexes.

Fig. 2 Molecular structure of **ITA**·HCl showing two of the crystallization water molecules. Thermal ellipsoids depicted at 50% probability. Selected bond lengths (Å) and angles (°): N1-C1 1.383(2), N1-C2 1.334(2), N1-C3 1.474(2), C1-C1a 1.346(3), C3-C4 1.539(2), C3-C8 1.531(2), N2-C7 1.474(2), N3-C6 1.478(2), N1-C2-N1a 108.4(2), C1a-C1-N1 107.2(1), C2-N1-C1 108.6(1), C1-N1-C3 125.0(1), C2-N1-C3 126.4(1), N1-C3-C4 110.0(1), C8-C3-C4 108.9(1), N2-C8-C3 109.3(1), C5-N3-C6 108.7(1), C7-N2-C9 108.1(1).

Silver(I)-NHC complexes are appealing due to their structural plasticity, the key role they play as carbene transfer agents to other metals, and important applications in

biomedicine and in catalysis.³¹ The direct deprotonation of imidazolium salts using silver bases, such as Ag(OAc), Ag₂O, or Ag₂CO₃, has been reported by Bertrand, Lin, and Danopoulos groups, respectively, as straightforward synthetic protocols that circumvent the often difficult generation and handling of free carbenes.³² A wide range of solvents have been used in the silver oxide pathway,^{31a,b} including alcohols. Therefore, we utilized the Ag₂O route with the triazaadamantyl azolium salts in CH₂Cl₂/MeOH mixtures (Scheme 2).

Scheme 2 Synthesis of [AgCl(NHC-TA)] complexes.

The procedure allows the isolation of the two silver complexes in a moderate yield ($\geq 65\%$, see Supplementary Information). The synthesis of [AgCl(ITA)] requires the presence of molecular sieves (4 Å) to ensure the complete consumption of the initial ITA·HCl. The same occurs when using Ag(OAc) as the silver source. In this case, an excess of a strong base (K₂CO₃, 3 equiv) is also needed to obtain comparable results. On the contrary, no drying material is required when preparing [AgCl(IpyTA)] with Ag₂O.

The deprotonation of the preligands leading to the silver complexes results in the absence of proton resonances assignable to carbene positions (9–10 ppm) and $^4J_{H-H}$ coupling in the remaining protons of the imidazolic rings in their NMR spectra. The coordination of the ligands to the silver centers is supported by the ¹³C-chemical shifts found for the carbene carbons (singlets at 175 and 168 ppm, for [AgCl(ITA)] and [AgCl(IpyTA)], respectively). These values are in good agreement with those reported for [AgCl(IAd)] (174 ppm)³³ and related [AgCl(imidazo-pyridinylidene)] complexes (168–172 ppm).²⁶ The ¹⁵N chemical shifts for [AgCl(IpyTA)] (217 (Imz), 209 (py) and 48 (TA) ppm), could also be determined by ¹H, ¹⁵N-HMBC.

The existence of dynamic processes involving heteroleptic and homoleptic silver species in equilibrium (*i.e.*, [AgCl(NHC)] \rightleftharpoons [Ag(NHC)₂]⁺AgCl²⁻) has been evidenced for a number of complexes of this type.^{31–34} The observation of the carbene carbon peaks as singlets indicates a fast exchange of ligands between metal centers on the NMR time scale, thereby precluding the ¹J_{C-Ag} couplings with ¹⁰⁷Ag (52% abundance) and ¹⁰⁹Ag (48%), both spin $\frac{1}{2}$ nuclei. However, the ¹⁰⁹Ag resonance for [AgCl(ITA)] could be determined by ¹H, ¹⁰⁹Ag-HMBC experiments by slowing down that exchange. In studies with [AgCl(IMes)], John *et al.* have shown that this indirect detection

relies on the coupling with the imidazolic protons ($^4J_{H-Ag} \approx 2$ Hz), only observable at temperatures low enough to slow down the dynamic process.³⁵ We have observed the $^4J_{H-Ag}$ coupling at -40°C for [AgCl(ITA)] in CDCl₃ (averaging 2.2 Hz with both silver isotopes), and the correlating ¹⁰⁹Ag-chemical shift at 679 ppm (Figure 3). We have repeated the experiment with [AgCl(IAd)], whose heteroleptic structure in the solid state is known,³³ finding the ¹⁰⁹Ag resonance at 669.4 ppm in CDCl₃ and at -40°C , a value that is close to that found for [AgCl(ITA)].

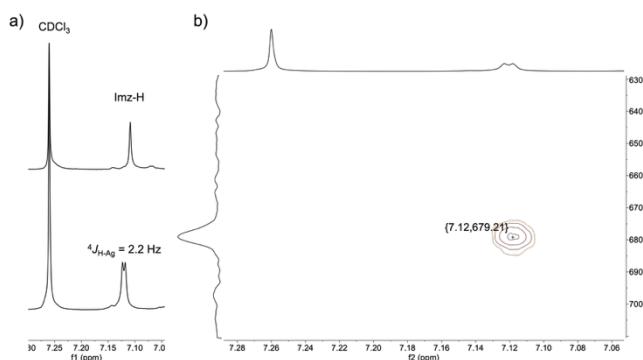
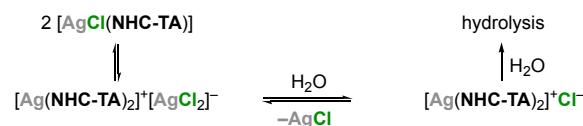



Fig. 3 a) NMR resonance for the imidazolic protons of [AgCl(ITA)] in CDCl₃ at 25°C (up), -40°C (down). b) ¹⁰⁹Ag-¹H(Imz) correlation detected for [AgCl(ITA)] at -40°C in CDCl₃.

The two [AgCl(NHC-TA)] complexes dissolve readily in water, undergoing immediate hydrolysis of the Ag-Carbene bond. In wet DMSO, however, [AgCl(ITA)] rapidly releases the imidazolium cation ($t_{1/2} = 24$ h), whereas [AgCl(IpyTA)] remains unchanged at least two weeks in an open NMR tube in DMSO-*d*₆. In water, the shift towards charged homoleptic species (*i.e.*, [Ag(NHC)₂]⁺X²⁻) is favored by the poor stability of AgCl²⁻ in H₂O (Scheme 3).³⁶ The steric hindrance in the bis-NHC structures appear to be fatal for the Ag-Carbene bond in water—inherently labile in an NHC transfer agent. However, the species with the IpyTA ligand are better protected against hydrolysis in DMSO, most likely due to the less hydrophilic environment and lower steric hindrance caused by this ligand, together with better solvation and shift of the equilibria to [AgCl(IpyTA)] in this solvent.

Scheme 3 Equilibria involving mono and bis-NHC-TA silver(I) species proposed to participate in their hydrolysis.

In summary, the present study introduces water-soluble chimeric ligands that combine features of PTA and NHC structures. Efficient high-yielding procedures for the synthesis of two NHC-TA preligands up to multigram scales have been developed. The utility of these novel precursors has been assessed through the synthesis of [AgCl(NHC-TA)] complexes, which exhibit variations in their hydrolytic stability. Further work is underway to explore the scope of the chemistry of this type of ligands and complexes, and their applications in water.

COMMUNICATION

Journal Name

This work was supported by the Spanish MICINN (PID2020-114637GB-I00), and the CAM (EPU-INV/2020/013).

J. S.-G.: investigation, validation, data curation. R.A. and A. M.: resources, formal analysis, data curation. C. G.-A.: methodology, supervision, funding acquisition. J. C. F.: conceptualization, supervision, funding acquisition, writing - original draft. All authors contributed to the writing-review and editing process of the manuscript.

Conflicts of interest

There are no conflicts to declare.

Data availability

The data supporting this article have been included as part of the Supplementary Information. See DOI: 10.1039/x0xx00000x.

CCDC 2505167 contains the supplementary crystallographic data for this paper.

Notes and references

- 1 R. H. Crabtree, *J. Organomet. Chem.*, 2005, **690**, 5451.
- 2 (a) P. Bellotti, M. Koy, M. N. Hopkinson and F. Glorius, *Nat. Rev. Chem.*, 2021, **5**, 711; (b) Q. Zhao, G. R. Meng, S. P. Nolan and M. Szostak, *Chem. Rev.*, 2020, **120**, 1981; (c) E. Peris, *Chem. Rev.*, 2018, **118**, 9988.
- 3 (a) A. Gómez-Suárez, D. J. Nelson and S. P. Nolan, *Chem. Commun.*, 2017, **53**, 2650; (b) D. J. Nelson and S. P. Nolan, *Chem. Soc. Rev.*, 2013, **42**, 6723.
- 4 (a) J. C. Flores, G. F. Silvestri and E. de Jesús, *Adv. Organomet. Chem.*, 2022, **77**, 169; (b) S. De, A. Udvary, C. E. Czégeni and F. Joó, *Coord. Chem. Rev.*, 2019, **400**, 213038; (c) E. Levin, E. Ivry, C. E. Diesendruck and N. G. Lemcoff, *Chem. Rev.*, 2015, **115**, 4607; (d) L.-A. Schaper, S. J. Hock, W. A. Herrmann and F. E. Kühn, *Angew. Chem. Int. Ed.*, 2013, **52**, 270; (e) H. D. Velazquez and F. Verpoort, *Chem. Soc. Rev.*, 2012, **41**, 7032.
- 5 (a) P. H. Dixneuf and V. Cadierno (eds.), *Metal-Catalyzed Reactions in Water*, Wiley-VCH, Weinheim, 2013; (b) B. Cornils and W. A. Herrmann (eds.), *Aqueous-phase organometallic catalysis: concepts and applications*. 2nd ed., Wiley-VCH, Weinheim, 2004.
- 6 See for instance: (a) B. H. Lipshutz, *Chem.*, 2018, **4**, 2004; (b) T. Kitanosono, K. Masuda, P. Y. Xu and S. Kobayashi, *Chem. Rev.*, 2018, **118**, 679.
- 7 D. C. Rideout and R. Breslow, *J. Am. Chem. Soc.*, 1980, **102**, 7816.
- 8 F. Joó, Z. Tóth and M. T. Beck, *Inorg. Chim. Acta*, 1977, **25**, L61.
- 9 (a) E. G. Kuntz, *CHEMTECH*, 1987, **17**, 570; (b) B. Cornils and E. G. Kuntz, *J. Organomet. Chem.*, 1995, **502**, 177.
- 10 (a) T. Schlatzer and R. Breinbauer, *Adv. Synth. Catal.*, 2021, **363**, 668; (b) K. H. Shaughnessy, *Chem. Rev.*, 2009, **109**, 643.
- 11 (a) D. J. Daigle, A. B. Pepperman Jr. and S. L. Vail, *J. Heterocycl. Chem.*, 1974, **11**, 407; (b) M. Y. Darenbourg and D. Daigle, *Inorg. Chem.*, 1975, **14**, 1217.
- 12 D. J. Darenbourg, F. Joó, M. Kannisto, A. Katho and J. H. Reibenspies, *Organometallics*, 1992, **11**, 1990.
- 13 (a) F. Scalambra, P. Lorenzo-Luis, I. de los Ríos and A. Romerosa, *Eur. J. Inorg. Chem.*, 2019, 1529; (b) L. Gonsalvi and M. Peruzzini in *Phosphorus Compounds. Catalysis by Metal Complexes*, eds. M. Peruzzini and L. Gonsalvi, Springer, Dordrecht, 2011, Vol. 37, pp. 183–212; (c) J. Bravo, S. Bolaño, L. Gonsalvi and M. Peruzzini, *Coord. Chem. Rev.*, 2010, **254**, 555; (d) A. D. Phillips, L. Gonsalvi, A. Romerosa, F. Vizza and M. Peruzzini, *Coord. Chem. Rev.*, 2004, **248**, 955. [View Article Online](#) DOI: 10.1039/D5DT02870A
- 14 A. J. Arduengo III, R. L. Harlow and M. J. Kline, *J. Am. Chem. Soc.*, 1991, **113**, 361.
- 15 (a) A. M. Kirillov, *Coord. Chem. Rev.*, 2011, **255**, 1603; (b) S.-L. Zheng, M.-L. Tong and X.-M. Chen, *Coord. Chem. Rev.*, 2003, **246**, 185.
- 16 L. Benhamou, E. Chardon, G. Lavigne, S. Bellemain-Lapponnaz and V. César, *Chem. Rev.*, 2011, **111**, 2705.
- 17 (a) A. J. Arduengo III, U.S. Patent 5,077,414, 1991; (b) K. Nguyen and D. W. Lupton, *Aust. J. Chem.*, 2017, **70**, 436.
- 18 M. N. Pinto, I. Chakraborty, J. Jimenez, K. Murphy, J. Wenger and P. K. Mascharak, *Inorg. Chem.*, 2019, **58**, 14522.
- 19 (a) S. P. Nolan, U. S. Patent 7,109,348 B1, 2006; (b) L. Jafarpour, E. D. Stevens and S. P. Nolan, *J. Organomet. Chem.*, 2000, **606**, 49; (c) L. Delaude, M. Szypa, A. Demonceau, A. F. Noels, *Adv. Synth. Catal.*, 2002, **344**, 749.
- 20 (a) A. J. Arduengo III, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marshall and M. Unverzagt, *Tetrahedron*, 1999, **55**, 14523; (b) K. V. Vasudevan, R. R. Butorac, C. D. Abernethy and A. H. Cowley, *Dalton Trans.* 2010, **39**, 7401.
- 21 L. Hintermann, *Beilstein J. Org. Chem.*, 2007, **3**, No. 22.
- 22 (a) C. Jahier-Diallo, M. S. T. Morin, P. Queval, M. Rouen, I. Artur, P. Querard, L. Toupet, C. Crévisy, O. Baslé and M. Mauduit, *Chem. Eur. J.*, 2015, **21**, 993; (b) P. Queval, C. Jahier, M. Rouen, I. Artur, J. C. Legeay, L. Falivene, L. Toupet, C. Crévisy, L. Cavallo, O. Baslé and M. Mauduit, *Angew. Chem. Int. Ed. Engl.*, 2013, **52**, 14103.
- 23 J. Sanz-Garrido, A. Martin, C. González-Arellano and J. C. Flores, *Dalton Trans.*, 2024, **53**, 1460.
- 24 (a) M. Alcarazo, S. J. Roseblade, A. R. Cowley, R. Fernández, J. M. Brown and J. M. Lassaletta, *J. Am. Chem. Soc.*, 2005, **127**, 3290. (b) C. Burstein, C. W. Lehmann and F. Glorius, *Tetrahedron*, 2005, **61**, 6207.
- 25 A. Fürstner, M. Alcarazo, H. Krause and C. W. Lehmann, *J. Am. Chem. Soc.*, 2007, **129**, 12676.
- 26 (a) M. Espina, I. Rivilla, A. Conde, M. M. Díaz-Requejo, P. J. Pérez, E. Álvarez, R. Fernández and J. M. Lassaletta, *Organometallics*, 2015, **34**, 1328. (b) F. Grande-Carmona, J. Iglesias-Sigüenza, E. Álvarez, E. Díez, R. Fernández, and J. M. Lassaletta, *Organometallics*, 2015, **34**, 5073.
- 27 D.-A. Park, J. Y. Ryu, J. Lee and S. Hong, *RSC Adv.*, 2017, **7**, 52496.
- 28 J. Jimenez, I. Chakraborty, S. J. Carrington and P. K. Mascharak, *Dalton Trans.*, 2016, **45**, 13204.
- 29 M. Kashihara, R.-L. Zhong, K. Semba, S. Sakaki and Y. Nakao, *Chem. Commun.*, 2019, **55**, 9291.
- 30 J. T. Hutt and Z. D. Aron, *Org. Lett.*, 2011, **13**, 5256.
- 31 (a) J. C. Garrison and W. J. Youngs, *Chem. Rev.*, 2005, **105**, 3978. (b) J. C. Y. Lin, R. T. W. Huang, C. S. Lee, A. Bhattacharyya, W. S. Hwang and I. J. B. Lin, *Chem. Rev.*, 2009, **109**, 3561. (c) S. Nayak and S. L. Gaonkar, *ChemMedChem*, 2021, **16**, 1360. (d) S. Budagumpi, R. S. Keri, G. Achar and K. N. Brinda, *Adv. Synth. Catal.*, 2020, **362**, 970.
- 32 (a) O. Guerret, S. Solé, H. Gornitzka, M. Teichert, G. Trinquier and G. Bertrand, *J. Am. Chem. Soc.*, 1997, **119**, 6668. (b) H. M. J. Wang and I. J. B. Lin, *Organometallics*, 1998, **17**, 972. (c) A. D. Tulloch, A. A. Danopoulos, S. Winston, S. Kleinhenz and G. Eastham, *J. Chem. Soc. Dalton Trans.*, 2000, 4499.
- 33 P. de Frémont, N. M. Scott, E. D. Stevens, T. Ramnial, O. C. Lightbody, C. L. B. Macdonald, J. A. C. Clyburne, C. D. Abernethy and S. P. Nolan, *Organometallics*, 2005, **24**, 6301.
- 34 H.-L. Su, L. M. Pérez, S.-J. Lee, J. H. Reibenspies, H. S. Bazzi and D. E. Bergbreiter, *Organometallics*, 2012, **31**, 4063.
- 35 S. Weske, Y. Li, S. Wiegmann and M. John, *Magn. Reson. Chem.*, 2015, **53**, 291.
- 36 E. A. Baquero, G. F. Silvestri, P. Gómez-Sal, J. C. Flores and E. de Jesús, *Organometallics*, 2013, **32**, 2814.

Data availability

The data supporting this article have been included as part of the Supplementary Information. See DOI: 10.1039/x0xx00000x.

CCDC 2505167 contains the supplementary crystallographic data for this paper.