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Large Language Models (LLMs) with generative capabilities have garnered significant attention in various

domains, including materials science. However, systematically evaluating their performance for structure

generation tasks remains a major challenge. In this study, we fine-tune multiple LLMs on various density

functional theory (DFT) datasets (including superconducting and semiconducting materials at different

levels of DFT theory) and apply quantitative metrics to benchmark their effectiveness. Among the models

evaluated, the Mistral 7 billion parameter model demonstrated excellent performance across several

metrics. Leveraging this model, we generated candidate semiconductors and further screened them

using a graph neural network property prediction model and validated them with DFT. Starting from

nearly 100 000 generated candidates, we identified six semiconductor materials near the convex hull

with DFT that were not present in any known datasets, one of which was found to be dynamically stable

(Na3S2). This study demonstrates the effectiveness of a pipeline spanning fine-tuning, evaluation,

generation, and validation for accelerating inverse design and discovery in computational materials science.
1 Introduction

Semiconductors are foundational to the digital age, powering
technologies from smartphones and laptops to advanced
sensors and quantum processors. Unlike metals, which are
relatively abundant and functional in their natural state,
semiconductors are rare in nature due to the precise electronic
band alignments required for their performance. Designing
new semiconducting materials with tailored bandgap proper-
ties remains one of the most challenging problems in materials
science.1–3

In recent years, the surge in data availability, fueled by
initiatives such as the Materials Genome Initiative4 and
advances in computational tools,5,6 has created fertile ground
for accelerating materials discovery. AI-driven generative
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models such as generative adversarial networks (GANs), varia-
tional autoencoders (VAEs), and diffusion models have shown
strong potential in proposing chemically valid material candi-
dates far more efficiently than traditional random sampling
methods.7,8 Specically, GANs generate samples by mapping
noise from a prior distribution, while VAEs encode high-
dimensional inputs into a lower-dimensional latent space,
which is then used to reconstruct or generate new samples.
Diffusion models,9 on the other hand, progressively denoise
samples from a noise distribution to generate new structures.
While these approaches have demonstrated success in mate-
rials generation, they require specic input–output formats and
oen struggle with variable-length or highly diverse represen-
tations.10 In contrast, LLMs can naturally handle textualized
representations of chemical formulas and crystal structures,
allowing exible encoding of composition, structural, and
property information in a single sequence. This makes them
particularly suitable for generative tasks in materials discovery
where data may vary signicantly in complexity and format.
However, LLM-based approaches also have limitations,
including reliance on accurate tokenization and the need for
sufficiently large datasets to capture complex structural
patterns effectively.11,12 Nevertheless, representing complex
material systems for modeling remains difficult. This has led to
the exploration of advanced data representations,13 including
graph neural networks and atomistic image-based approaches,
to better capture structure-property relationships.14–16 Tradi-
tional methods such as Density Functional Theory (DFT),17,18
Digital Discovery
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though reasonably accurate, are computationally intensive. To
overcome this bottleneck, various diffusion, transformer-based,
and large language models (LLMs) have been employed to
accelerate inverse design workows.9,19–21 Enhancing the effi-
ciency of inverse design-particularly for material generation,
not only expedites scientic discovery22 but also shortens
innovation cycles23,24 and signicantly reduces the costs asso-
ciated with traditional trial-and-error experimentation and
material synthesis.24

Among these, Large Language Models (LLMs) have shown
particular promise. Originally developed for natural language
tasks, LLMs are now being repurposed for scientic domains,
including materials science.25–28 They excel at integrating
heterogeneous data, ranging from text to tabular values and
time series, and have improved tasks such as data extraction,
annotation, and materials validity assessments.29–33

Beyond text mining, LLMs are revolutionizing property
prediction and inverse design applications. Recent research
shows that ne-tuned LLMs can not only match but oen
exceed traditional machine learning models in predicting
material properties, such as formation energy and bandgap.34,35

Additionally, hybrid models that integrate LLMs with graph
neural networks signicantly enhance performance in mate-
rials property prediction.36 Notable foundation models tailored
for chemistry include Simplied Molecular Input Line Entry
System BERT (SMILES-BERT),37 a BERT-style encoder pretrained
on large collections of SMILES38 strings to predict masked
tokens and learn chemical context, and Molecular Language
Transformer (MoLFormer),39 a Transformer-based chemical
language model that captures molecular structure–property
relationships directly from SMILES sequences. Both models
have demonstrated strong performance in encoding molecular
representations for downstream regression tasks, such as
property prediction. In parallel, LLMs are making substantial
contributions to inverse design applications, aiming to create
innovative materials with targeted properties. For instance,
Atomistic Generative Pre-trained Transformer (AtomGPT)40 is
a Large Language Model built on GPT-241 and Mistral42 archi-
tectures, designed to perform both forward modeling, predict-
ing material properties from atomic structures, and inverse
design, where target properties are used to generate plausible
atomic structures. By leveraging the generative and contextual
capabilities of LLMs, AtomGPT bridges property prediction and
structure generation within a unied framework for materials
discovery. Remarkably, the model of Wei, Lai, et al.8 that uses
LLM-based discovery pipelines shows that the proposed struc-
tures can achieve up to 90% chemical neutrality, compared to
only 20–25% for pseudo-random generation,8 highlighting their
potential to generate high-quality, plausible candidates. More-
over, Metal–Organic Framework Generative Pre-trained Trans-
former (MOFGPT)43 utilizes a Transformer architecture adapted
from GPT-2 to generate metal–organic frameworks (MOFs)
based on specic property constraints while integrating rein-
forcement learning for property optimization. It comprises of 12
Transformer decoder layers, each with an embedding dimen-
sion of 768, 12 attention heads, and a feed-forward network
with a dimensionality of 3072. Together, these advancements
Digital Discovery
highlight the growing power of LLMs not only to interpret and
extract scientic knowledge, but also to actively generate novel
functional materials, fundamentally transforming the tradi-
tional design-make-test cycle in materials science.

Despite these gains, challenges remain. Materials datasets
are oen sparse, inconsistent, and diverse in format, limiting
the performance of traditional machine learning (ML)
approaches.20,44 This is primarily because traditional MLmodels
typically assume that input data is well-structured, uniform,
and of xed length, which limits their ability to handle the
diverse and irregular formats oen found in materials science
datasets.45 In contrast, LLMs can learn from contextually
encoded representations, making themmore adaptable to such
variability with minimal domain specic feature engineering.
They have demonstrated a remarkable capacity to generalize
across domains capable of generating executable code,46 inte-
grating multimodal data such as text and images for grounded
reasoning tasks,47 and solving complex mathematical problems
through multi-step reasoning.48 This adaptability across varied
data modalities and problem types makes LLMs particularly
promising for addressing inverse design challenges inmaterials
science.

In this study, we investigate the potential of ne-tuned LLMs
for inverse materials design. The overall workow is depicted in
Fig. 1. Using Alpaca-style prompts, composed of instructions,
inputs, and responses, we train several LLMs on three distinct
datasets to generate crystal structures, including lattice
constants, angles, and atomic coordinates. Through a rigorous
benchmarking process on test datasets, comprising 12 models
evaluated across three datasets with four LLM variants each, we
identify the highest-performing model and use it to generate
new candidate materials by giving randomly generated
prompts. These candidates are further screened using the
Atomistic Line Graph Neural Network (ALIGNN) model49 to
predict material properties and stability. Final validation is
performed via density functional theory (DFT) calculations.
This end-to-end workow, spanning ne-tuning, generation,
prediction, and validation, offers a robust framework for
accelerating data-driven discovery of functional materials.
2 Methods
2.1 String formatting

Crystals obtained from the JARVIS-DFT database50–52 are repre-
sented as periodically repeating unit cells, dened by lattice
constants (l1, l2, l3) and angles (q1, q2, q3). The number of atoms
in each cell depends on the chemical formula.

Assuming there are n atoms (ei), each with fractional coor-
dinates (xi, yi, zi), the structure can be represented as:

C = (l1, l2, l3, q1, q2, q3, e1, x1, y1, z1,.,en, xn, yn, zn). (1)

This numerical representation is converted into a text format
suitable for LLMs, as illustrated in Fig. 1d. Coordinates are
space-separated, while different atoms are listed on new lines.
There is no restriction on the number of atomic entries,
allowing for exible structural complexity.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) Overview of the full workflow, from data extraction to candidate discovery. Key inputs, chemical formula, structure, and target values
(e.g., superconducting transition temperature, bandgaps), are processed by an LLM using next-token prediction. Prompts follow an Alpaca
format with instruction, input, and response sections. After fine-tuning, the model completes the response to generate structures, which are
evaluated using the Atomistic Line Graph Neural Network (ALIGNN). The highest-performing LLM (among 12 models) is then used to generate
and validate new candidates. (b) Flowchart of the discovery (inverse design) process, including ALIGNN screening, database cross-referencing
and DFT validation. (c) Example of a text-encoded structure (e.g., V2O5) showing lattice and atomic details separated by ‘\n’. (d) Color-coded
Alpaca prompt format, with fixed instructions and variable input/response sections for fine-tuning and generation.

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

7/
20

26
 1

0:
17

:4
9 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
2.2 Prompt design

During ne-tuning, we employ the Alpaca prompt format,
which consists of three sections: instruction, input, and
response. The response is structured as a bulk crystal format
string, containing all relevant lattice and atomic details, as
shown in Fig. 1c.

2.3 LLM models

We used four LLMs from the Unsloth project on Hugging Face:53

unsloth/tinyllama-chat, unsloth/mistral-7b-bnb-4bit, unsloth/
gemma-7b-bnb-4bit, and unsloth/llama-3-8b-bnb-4bit.
Parameter-Efficient Fine-Tuning (PEFT)54 was applied to
reduce the number of trainable parameters, thereby acceler-
ating training while preserving model generalizability. The
learning rate, 2 × 10−4, and number of epochs, 8, were deter-
mined empirically based on extensive experimentation with the
Unsloth models, providing the best balance between training
efficiency and the ability of the models to generate correctly
formatted structures.

2.4 Screening and validation

To assess material properties, we used the ALIGNN model,49

which is a graph neural network-based model trained on DFT
calculations that predicts material properties directly from
crystal structures. In our benchmarking calculations, we tested
the impact of relaxing the LLM generated structures with the
ALIGNN-FF universal machine learning force eld.55 This force
eld was used as a calculator along with the atomic simulation
environment (ASE),56 where the Fast Inertial Relaxation Engine
(FIRE) algorithm,57 with a maximum of 250 optimization steps
© 2026 The Author(s). Published by the Royal Society of Chemistry
and a force convergence threshold of 0.1 eV Å−1, was applied to
perform full geometry optimization of the structures (lattice
parameters and atomic positions). If a structure did not reach
convergence aer 250 steps, the nal structure was used for
evaluation. In our inverse design (discovery) workow (Fig. 1b),
we performed DFT calculations with the Vienna Ab initio
Simulation Package (VASP) using the projector augmented wave
(PAW) method.58,59 We used JARVIS-Tools to facilitate these
VASP calculations with automated k-point and kinetic energy
cutoff convergence.60 We primarily used the OptB88vdW61

functional for all DFT calculations, which is a Generalized
Gradient Approximation (GGA) functional that includes van der
Waals (vdW) effects. We also used the Tran-Blaha Modied
Becke–Johnson (TB-MBJ)62–65 meta-GGA functional to compute
the bandgap at a degree of higher accuracy (to correct for
bandgap underestimation). Phonon calculations were carried
out using the nite displacement method66 along with the
phonopy67,68 package. Prior to the DFT calculations, we pre-
relaxed the LLM generated structures with the Mattersim69

universal machine learning force eld (in order to accelerate
convergence at the DFT level). We used the Open Databases
Integration for Materials Design (OPTIMADE)70–72 infrastructure
to compare our LLM generated structures to materials in several
other databases. The DFT data (including input and output
les) is included with this manuscript for full reproducibility.
3 Results and discussion

The performance of each model is assessed through various
metrics within an inverse design framework. The top-
performing LLM is used to generate candidate structures,
Digital Discovery
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which are further rened using ALIGNN predictions to reduce
the search space. Finally, top candidates are validated with DFT
aer searching if they exist in other materials databases.

The data used in this study was obtained from the JARVIS-
DFT database,50,51 uploaded in 2022-12-12, which includes
a total of 75 993materials. We focused on three specic subsets:
the Tc Superconductor dataset, which includes materials
labeled with their critical temperatures (1058 entries), and two
bandgap datasets. One bandgap dataset at the OptB88vdW level
of theory (23 061 entries) and the other at the TB-MBJ (meta-
GGA) level of theory (19 805 entries). For the OptB88vdW data-
set, entries with bandgap values greater than 0 eV were selected.
Specically, 52 932 entries with a bandgap of 0 eV were removed
from the OptB88vdW subset, resulting in the nal dataset of 23
061 entries. The dataset was split into a training set (90%) and
a test set (10%), with no separate validation set. Although the
target property distributions are not uniform, all available data,
except for the test set, is intentionally included in the training
process to maximize diversity which is highly important given
the limited dataset size. Excessive data removal would limit the
LLM's ability to learn robust structure-property relationships,
particularly for the smallest dataset (Tc Superconductor).
Additionally, in generative AI settings, lower training loss does
not necessarily correlate with better generation quality.73 As
a result, model comparison is based on multiple performance
metrics, including inference time, MAE, RMSE, the ratio of valid
structures, rather than training loss alone, ensuring a compre-
hensive assessment of generative model performance.

Fig. 2 presents the distribution of properties across the three
datasets. Although the dataset is not uniformly distributed, the
primary aim of this study is to develop a pipeline capable of
generating valid chemical structures from given formulas and
target properties, rather than solely optimizing property
prediction accuracy. Fig. S1 in the SI illustrates the impact of
applying different property-value splitting thresholds on dataset
sizes. We evaluate the performance of the models using a range
of metrics. The test datasets, distinct from those used during
ne-tuning, consist of 106 samples for Tc Supercon, 2307 for
OptB88vdW bandgap, and 1981 for MBJ bandgap, representing
Fig. 2 Histogram plots of material property values for three datase
OptB88vdW functional (OPT) bandgap (eV), and Tran-Blaha modified B
Each histogram is accompanied by a Kernel Density Estimate (KDE) curve

Digital Discovery
approximately 10% of the total data available for each case. A
composition-based overlap analysis was also conducted across
the training and test sets for all three datasets. The results
indicate that only the Tc Superconductor dataset contains any
overlap, with 5 polymorph pairs out of 1058 entries (approxi-
mately 0.5%; see Table S2 in the SI for details). For the
OptB88vdW and TB-MBJ datasets, no composition overlaps
were observed between the training and test splits. Given this
extremely small degree of overlap (limited to 0.5% in a single
dataset) and the fact that all model comparisons are performed
within each dataset, data leakage does not meaningfully inu-
ence the evaluation. Following the training phase, the models
enter the inference stage, where the response sections of the
prompts are initially le blank, as illustrated in Fig. 1d.

Our initial experiment focused on comparing the predicted
structures with the ground truth from the test set across
different models. The four selected models, TinyLlama-Chat,74

Mistral-7B-bnb-4bit,75 Gemma-7B-bnb-4bit,76 and LLaMA 3-8B-
bnb-4bit,77 were chosen based on their public availability and
suitability for ne-tuning on standard research hardware,
ensuring reproducibility. All selected models have approxi-
mately 7–8 billion parameters (except TinyLlama with 1.1
billion), which allows efficient ne-tuning while retaining
strong generative capabilities. TinyLlama-Chat is a lightweight
model featuring approximately 1.1 billion parameters, designed
specically for fast, low-resource chat applications. Both
Mistral-7B and Gemma-7B are robust models with 7 billion
parameters, quantized to 4-bit precision through the Bi-
tsAndBytes (bnb) framework.78 This quantization signicantly
reduces memory usage while preserving strong performance.
Mistral stands out with its innovative sliding window attention
mechanism and demonstrates solid capabilities across a range
of natural language processing benchmarks. Conversely,
Gemma, developed by Google, is focused on multilingual
support and safety alignment, positioning it as a strong candi-
date for responsible AI applications. Finally, LLaMA 3-8B-bnb-
4bit, the new addition to Meta's LLaMA series, delivers state-
of-the-art performance with its 8-billion-parameter architec-
ture, also quantized to 4-bit for improved efficiency. It excels in
ts: Superconducting Critical Temperature (Tc Superconductor) (K),
ecke Johnson potential (MBJ) bandgap (eV), shown from left to right.
to provide a smoother and more interpretable view of the distributions.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Lattice constant distributions across the three dimensions. The leftmost plot shows the target distribution obtained from the Tc Supercon
test data, while the subsequent four plots display the lattice constants generated by different LLM models, based on their completions of the
response section in the Alpaca prompt for each respective dimension.
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complex reasoning, natural language generation, and general
understanding. Fig. 3 shows the distribution of lattice constants
for both the target structures and the predictions generated by
these four models on the Tc Supercon dataset. Each subgure
represents the distribution along one of the three lattice
parameters: a, b, and c. The lattice constant a distribution
substantially overlaps with that of b, making a difficult to
visually distinguish in the gure; however, in most models, the
a distribution remains visible as a blue overlay on top of b.
Visually, the Llama3 model appears to align closest to the target
distribution. However, quantitative results from the lattice
constant error analysis in Table 1 indicate that the Gemma
model achieves the lowest lattice constant loss value. Additional
lattice constant distribution gures for the OptB88vdW and
MBJ bandgap datasets are included in the SI.

We extend the comparison by computing the Mean Absolute
Error (MAE) for structural attributes, including lattice
constants, atomic coordinates, and angles within each unit cell.
Table 1 A comparison of one-to-onematching of structural component
cell parameters, including 3D coordinates, lattice constants (Å), and angle
and target structures. Invalid or structurally inconsistent predictions are

Model
Test set
size

Valid structures

Tcsupercon
tinyllama-chat 106 74
mistral-7b-bnb-4bit 106 92
gemma-7b-bnb-4bit 106 87
llama-3-8b-bnb-4bit 106 85

OptB88vdW bandgap
tinyllama-chat 2307 1314
mistral-7b-bnb-4bit 2307 1529
gemma-7b-bnb-4bit 2307 1490
llama-3-8b-bnb-4bit 2307 1458

MBJ bandgap
tinyllama-chat 1981 1369
mistral-7b-bnb-4bit 1981 1495
gemma-7b-bnb-4bit 1981 1479
llama-3-8b-bnb-4bit 1981 1474

a Bold values indicate the highest performance for each metric within eac

© 2026 The Author(s). Published by the Royal Society of Chemistry
The equations below denes the loss calculations, where N
denotes the number of valid structures available for each
dataset and model. Lattice constants and lattice angles are
represented by three values each for every data in the dataset,
while the number of atomic coordinates varies depending on
the number of atoms in the structure.

MAElattice ¼ 1

N

XN

i¼1

1

3

X3

j¼1

��alattice;i;j � âlattice;i;j
�� (2)

MAEcoord ¼ 1

N

XN

i¼1

1

n

Xn

k¼1

1

3

X3

j¼1

��acoord;i;k;j � âcoord;i;k;j
�� (3)

MAEangle ¼ 1

N

XN

i¼1

1

3

X3

j¼1

��aangle;i;j � âangle;i;j
�� (4)
s in the test data. Each prompt is filled with structural information of unit
s (°) by fine-tuned LLMs. Comparisons are made between the predicted
excluded from the analysisa

3D coord. MAE Lat. Const. MAE

(Å)

Lat. Angle MAE

(°)

0.226 0.486 8.72
0.183 0.486 8.72
0.154 0.375 5.042
0.203 0.422 7.447

0.272 0.861 12.144
0.243 0.741 9.427
0.247 0.765 10.366
0.247 0.734 9.804

0.222 0.594 11.249
0.210 0.591 10.522
0.211 0.593 10.626
0.215 0.597 10.738

h dataset (Tc Supercon, OptB88vdW bandgap, and MBJ bandgap).
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� alattice/coord/angle,i: Target value of lattice/coordinates/angle
for the i-th data.

� âlattice/coord/angle,i: Predicted value of lattice/coordinates/
angle for the i-th data.

A comprehensive summary is provided in Table 1, which lists
the total number of test samples and the corresponding
number of valid structures produced by each model. Here, valid
structures are dened as those preserving the same number of
atoms as the target, thereby allowing a direct one-to-one
comparison of structural components.

While the quantitative evaluation of valid structures in Table
1 is informative, analyzing invalid structures offers additional
insight into model failure modes. A qualitative examination of
these cases revealed three primary sources of invalidity in our
calculations.

(1) Composition mismatches: The generated structure
contains an incorrect number of atoms for one or more
elements relative to the target formula (e.g., producing ZrB8

instead of ZrB6, or MnBe2P instead of MnBe2P2).
(2) Lattice-parameter inconsistencies: The generated lattice

constants or angles deviate substantially from physically plau-
sible values.

(3) Parsing and formatting errors: The output sequence is
truncated or corrupted, leading to syntactically invalid struc-
tural descriptions.

The distribution of these error types varies across datasets.
The Tc Superconductor dataset exhibits a higher proportion of
invalid outputs, largely due to its small size and a higher
frequency of parsing-related failures. In contrast, the
OptB88vdW and TB-MBJ datasets show fewer invalid structures
overall, with most errors arising from composition mismatches
rather than formatting issues. Among the four LLMs,
TinyLlama-Chat exhibits the highest rate of invalid generations
across all datasets, likely due to its smaller parameter count.
Conversely, the Mistral model achieves the strongest overall
performance (Table 1), although differences in MAE values
remain relatively modest among the larger models.
Table 2 The inference time of the models under three different configur
Empty. For each configuration, 20 samples were generated, and the in
results include the minimum (Min), maximum (Max), average (Mean), an
datasets

Model Statistic

Tc Supercon

Random Consistent Empty

mistral-7b-bnb-4bit Min (seconds) 2.54 4.15 6.66
Max (seconds) 5.59 4.32 6.80
Mean (seconds) 4.31 4.20 6.71
Std (seconds) 1.01 0.05 0.03

gemma-7b-bnb-4bit Min (seconds) 2.51 3.81 7.01
Max (seconds) 7.88 3.91 7.67
Mean (seconds) 4.20 3.83 7.49
Std (seconds) 1.38 0.02 0.13

llama-3-8b-bnb-4bit Min (seconds) 2.30 3.56 6.59
Max (seconds) 16.77 3.67 6.66
Mean (seconds) 4.47 3.58 6.61
Std (seconds) 3.10 0.02 0.01

Digital Discovery
Representative failure cases corresponding to each error cate-
gory are summarized in Table S1 of the SI.

Our second evaluation metric focuses on comparing the
inference times of the ne-tuned LLMs. This analysis provides
a comprehensive evaluation of the models from multiple
perspectives, specically assessing how the number of model
parameters and prompt structures inuence computational
performance. Table 2 reports the results in seconds for each
model based on 20 generated samples. In the random
comparison, 20 sample prompts are randomly selected from the
test set and passed to the models, with the time required for
output generation recorded. In the consistent comparison,
a single xed prompt is used across all datasets and models,
allowing for a controlled comparison of inference speed. In the
empty prompt scenario, the prompt contains no input, and the
models generate outputs based solely on this blank input.
Inference with empty prompts tends to be slower than in the
random and consistent cases, likely due to the lack of input
constraints. In both the consistent and empty cases, because
the input remains unchanged, the models generate identical
outputs. This deterministic behavior is ensured by disabling
random sampling in the model's output generation (do_sample
= False), which guarantees reproducibility. As shown in Table 2,
inference time varies substantially depending on the prompt
type, and inference-time variability is driven primarily by
sample complexity (e.g., formulas containing many elements
leading to longer output sequences) rather than intrinsic model
efficiency alone. Despite being a larger model, Mistral exhibits
slower inference while achieving the best performance across
metrics, highlighting the relationship between model
complexity and generative success.

Our nal metric for selecting the highest-performing model
is based on the structural similarity (evaluated via the RMS
distance), and its corresponding material property values, both
of which are critical inputs for the model (target value, formula,
and structural information) comparison. This analysis is part of
the evaluation phase in the workow, prior to the discovery
phase, as shown in Fig. 1a. The target value refers to the
ations on an NVIDIA Quadro RTX 8000 GPU: Random, Consistent, and
ference times were recorded in seconds per serial computation. The
d standard deviation (Std) of the inference times across the evaluated

OptB88vdW bandgap MBJ bandgap

Random Consistent Empty Random Consistent Empty

4.31 4.18 20.59 2.68 5.44 10.11
195.18 4.24 20.85 17.54 5.49 11.37
22.31 4.21 20.67 6.26 5.46 10.28
40.54 0.01 0.05 4.16 0.01 0.26
3.31 3.81 18.45 1.80 4.12 7.68

25.43 4.89 18.61 15.62 4.34 7.74
10.08 4.22 18.53 6.35 4.16 7.71
6.37 0.44 0.04 3.72 0.04 0.01
2.82 4.60 14.45 2.28 3.82 8.10

39.81 4.63 14.99 14.58 3.88 8.16
12.80 4.61 14.61 5.00 3.88 8.13
9.33 0.00 0.15 3.53 0.01 0.01

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Before and after ALIGNN-FF relaxation for the datasets (Tc Superconductor, OptB88vdW, and MBJ Bandgap) and four LLMmodels. This
table presents the NaN ratios, mean root-mean-square (RMS) distances (denoted as RMS), and mean absolute errors (MAE) alongside NaN ratios
for material property value (MPV) predictions. NaN ratios for RMS distance indicate cases where RMS distance could not be calculated, while NaN
ratios for MAE represent cases where the predicted atomic structures were unsuitable for MPV calculation. The ratios reflect the proportion of
NaN occurrences in the test datasets. MAE values are reported in Kelvin (K) for the Tc Superconductor dataset and in electron volts (eV) for the
OptB88vdW and MBJ Bandgap datasets

Model

Before relaxation Aer relaxation

NaN ratio
(RMS)

Mean
(RMS)

NaN ratio
(MPV)

MAE
(MPV)

NaN ratio
(RMS)

Mean
(RMS)

NaN ratio
(MPV)

MAE
(MPV)

Tc Supercon
tinyllama-chat 0.62 0.046 0.06 2.634 0.62 0.041 0.06 2.678
mistral-7b-bnb-4bit 0.36 0.035 0.009 2.062 0.377 0.020 0.009 2.259
gemma-7b-bnb-4bit 0.38 0.025 0.00 2.092 0.37 0.028 0.00 2.29
llama-3-8b-bnb-4bit 0.43 0.037 0.037 2.500 0.43 0.024 0.037 2.142

OptB88vdW bandgap
tinyllama-chat 0.79 0.016 0.107 1.302 0.78 0.133 0.109 1.192
mistral-7b-bnb-4bit 0.62 0.011 0.022 0.848 0.62 0.099 0.023 0.832
gemma-7b-bnb-4bit 0.65 0.010 0.022 0.941 0.66 0.109 0.022 0.928
llama-3-8b-bnb-4bit 0.67 0.012 0.034 0.885 0.66 0.090 0.034 0.887

MBJ bandgap
tinyllama-chat 0.59 0.058 0.048 0.706 0.59 0.057 0.049 0.697
mistral-7b-bnb-4bit 0.53 0.045 0.012 0.532 0.53 0.051 0.013 0.595
gemma-7b-bnb-4bit 0.54 0.043 0.008 0.547 0.54 0.048 0.008 0.580
llama-3-8b-bnb-4bit 0.54 0.049 0.017 0.566 0.54 0.056 0.017 0.597
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superconductivity value for the Tc Supercon dataset, the
OptB88vdW bandgap value for the OptB88vdW dataset, and the
MBJ bandgap value for the MBJ bandgap dataset. To compare
the material property values, we use the Mean Error Value as
shown in Table 3. This analysis evaluates the original structure
values in the test set against those predicted by the ALIGNN
model, which takes atomic structural information and predicts
the corresponding material property value. Additionally, we
place particular emphasis on the structural similarity between
the generated and reference structures. To quantify this, we
compute the root mean square (RMS) distance for each
predicted-reference structure pair, as implemented in the
pymatgen library,79 and evaluate the mean of the RMS distance
values across all data points. All model comparisons were
conducted within each dataset to ensure a fair evaluation, given
the substantial differences in dataset sizes. The Tc Supercon-
ductor dataset, due to its small size and limited data, was not
treated as a primary target but rather serves as a benchmark to
assess model performance in low-data cases.

We also evaluated the impact of relaxing the structures
generated by LLMs using the universal machine learning force
eld ALIGNN-FF. Our ndings, summarized in Table 3, indicate
that structural relaxation affected the mean absolute error
(MAE) in different ways across the various models, depending
on the dataset. In the case of the Tc Supercon dataset, three out
of the four models, excluding LLaMA-3, experienced an increase
in MAE following the relaxation process. Conversely, for the
OptB88vdW bandgap dataset, all models except LLaMA-3
demonstrated a decrease in MAE, suggesting that relaxation
generally enhanced their performance. For instance, the Mistral
© 2026 The Author(s). Published by the Royal Society of Chemistry
model had the lowest overall MAE within OptB88vdW bandgap
dataset before relaxation (0.848), and aer ALIGNN-FF relaxa-
tion, its MAE improved further to 0.832. Although the Mistral
model outperformed the other models prior to relaxation, the
relaxation process did not improve performance for the Tc
Supercon and MBJ bandgap datasets, and instead increased the
mean error. Without relaxation, it achieved an MAE of 0.53 on
the MBJ bandgap dataset which is the lowest among all models
and datasets. Additionally, for cases where the RMS distance
could not be measured (RMS Not a Number (NaN) ratio), the
Mistral model exhibited the lowest NaN ratio in OptB88vdW
and MbJ bandgap datasets. Overall, relaxing with ALIGNN-FF
does not result in a signicant gain or loss of accuracy. Lower
accuracy can be due to: (a) ALIGNN-FF relaxation resulting in
a local minimum structure instead of the global minimum, (b)
the relaxed structure from ALIGNN-FF being too far from the
training distribution of the ALIGNN property prediction
models, resulting in higher errors.

Fig. 1b illustrates the inverse design workow for material
discovery (aer training and evaluating the performance of each
LLM model). In our case, we were interested in leveraging our
trained LLM model to generate new semiconductor candidates
as a proof-of-concept application. For this reason, we focused
on the models trained on the MBJ bandgap dataset and found
that among the four models we considered, the Mistral 7B
model demonstrated the highest performance. Aer selecting
the Mistral 7B model trained on the MBJ dataset, we generated
a set of binary and ternary wide bandgap semiconductor
candidates for further exploration. For binary and ternary
structures, we assigned a random bandgap value, ranging from
Digital Discovery
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Table 4 A summary of DFT validation results for the top candidate semiconductor structures generated with Mistral 7B. Properties include
formation energy (OptB88vdW), energy above the convex hull (OptB88vdW) and bandgap (OptB88vdW and MBJ). (I) and (II) represent the two
different phases that were found for Zn2GaS2

Chemical formula
Eform
(OptB88vdW) eV per atom

Ehull
(OptB88vdW) eV per atom

Egap
(OptB88vdW) eV

Egap
(MBJ) eV

Zn2F3 −2.09 0.10 0.75 2.20
Mg3Te2 −0.63 0.13 0.43 0.75
Na3S2 −1.06 0.06 2.13 2.45
Rb3S2 −1.10 0.04 2.11 3.15
Zn2GaS2 (I) −0.45 0.26 0.73 1.25
Zn2GaS2 (II) −0.48 0.23 0.66 1.31
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2.5 eV to 5 eV in the prompt. We generated binary candidates by
swapping the positions of elements in formulas, such as con-
verting OH2 to H2O, recognizing that the correct representation
of a chemical formula in databases may not always be the rst-
listed combination for a given set of elements. Subsequently,
a chosen set of elements, particularly those oen found in
semiconductor devices, was combined with random elements
from the periodic table. This set of elements included Si, O,
C, N, Al, Ga, Cd, Te, Ge, Se, S, As, B, Zn, Cu, P, Pb, Sn, Mo, In,
and Ag. To reduce the sampling space for ternary compounds,
we swapped the same set of elements with combinations of
themselves. This resulted in 19 000 binary candidates and 74
000 ternary candidates.

In order to down-select from the structures generated by
Mistral 7B, we used various pretrained ALIGNN models to
predict the formation energy, energy above the convex hull and
bandgap. Aer predicting these properties with ALIGNN, we
ltered candidates based on whether they had negative forma-
tion energy, energy above the convex hull below 0.3 eV per atom,
and a bandgap (at the MBJ level of theory) above 2 eV. The
distributions of the ALIGNN predictions that satisfy this crite-
rion are given in Fig. S12. Although a promising number of
candidate structures satisfy this ALIGNN-based screening
criteria, we are only concerned with candidates that are previ-
ously undiscovered (theoretically and experimentally). To
Fig. 4 (a) The electronic band structure of top candidate Na3S2, which is t
structures that are presented in Table 4.

Digital Discovery
further screen candidates that satisfy our ALIGNN-based
screening criteria (in Fig. S12), we utilized the Open Data-
bases Integration for Materials Design (OPTIMADE) infra-
structure to search various databases (Materials Project,80

JARVIS-DFT, Alexandria,81–83 Open Quantum Materials Data-
base,84,85 and Materials Cloud Three-Dimensional Structure
Database86) for matching chemical compositions and crystal
structures. Aer this additional ltering step, we performed
DFT calculations to verify that these candidates were in fact
semiconductors and thermodynamically and dynamically
stable. Thermodynamic stability, which uses the energy above
the convex hull as a metric, and dynamical stability, which uses
the phonon spectra (absence of imaginary frequencies) as
a metric, can both be quantied with the nal DFT step in the
screening workow. Prior to the DFT relaxation, we relaxed the
structures with the Mattersim universal machine learning force
eld to accelerate convergence.

Table 4 depicts a summary of our results for the top candi-
date structures (aer being ltered by ALIGNN and OPTIMADE
and veried with DFT). In addition to relaxing the structures
with the OptB88vdW functional to obtain Eform, Ehull and Egap,
we computed Egap at the MBJ level of theory (to partially correct
for underestimation of the bandgap). For these top 6 candidates,
we went on to perform phonon calculations to conrm dynam-
ical stability (no imaginary phonon frequencies). Out of these 6
hermodynamically and dynamically stable. (b) The remaining candidate

© 2026 The Author(s). Published by the Royal Society of Chemistry
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structures, we nd that Na3S2 contains all positive phonon
frequencies (see Fig. S13), while the remaining 5 structures
contain some negative phonon frequencies (which can be due in
part to instability, meta-stability or artifacts of the DFT
calculations/simulation settings). Fig. 4a depicts the electronic
band structure of the top candidate Na3S2 (OptB88vdW), which
has a bandgap of 2.13 eV (OptB88vdW) and 2.45 (MBJ), making it
a good candidate for wide bandgap applications. Specically, we
nd that the mixed valence nature of Na3S2 results in a lowering
of the valence band maxima (VBM), resulting in an increase of
the bandgap. Fig. 4b depicts the remaining candidate structures
that are reported in Table 4.We nd that most of these candidate
structures have low symmetry, which is common in other
generative approaches.87–91 These DFT results highlight the
difficulty in nding previously undiscovered semiconductors that
are thermodynamically and dynamically stable. Our results also
highlight how using LLMs for this difficult inverse design task (in
conjunction with graph neural networks and DFT) can accelerate
the process of nding new materials with targeted properties.

4 Conclusion

In this work, we evaluated four Large Language Models (LLMs):
TinyLlama-Chat, Mistral-7B, Gemma-7B, and LLaMA 3-8B,
utilizing them on three materials datasets: Tc Supercon,
OptB88vdW Bandgap, and MBJ Bandgap. Our evaluation of
model performance encompassed both structural comparisons,
such as atomic coordinates, lattice constants, and lattice angles,
and an analysis of material property values of the predicted
outcomes. Through our comparative analysis, we identied the
Mistral-7B evaluated on theMBJ Bandgap as the top-performing
model–dataset pair. Using this model, we developed an inverse
design pipeline that generates candidate crystal structures
based on specied chemical formulas and randomly sampled
target property values. The resulting structures were subjected
to validation and screening processes. From the initial pool of
approximately 100 000 candidate structures, this rigorous
process ultimately led to the identication of six semi-
conducting materials validated through density functional
theory (DFT) calculations. Our ndings underscore both the
inherent challenges of materials discovery and the signicant
potential of LLMs to expedite materials discovery by enabling
a data-driven exploration approach. In the future, we aim to
extend this work by developing a domain-specic structured
LLM optimized for materials science, with the objective of
further accelerating the discovery process and improving the
performance through the integration of larger datasets and
more advanced model architectures.
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