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Solubility is a physicochemical property that plays a critical role in pharmaceutical formulation and
processing. While COSMO-RS offers physics-based solubility estimates, its computational cost limits
large-scale application. Building on earlier attempts to incorporate COSMO-RS-derived solubilities into
Machine Learning (ML) models, we present a substantially expanded and systematic hybrid QSAR
framework that advances the field in several novel ways. The direct comparison between COSMOtherm
and openCOSMO revealed consistent hybrid augmentation across COSMO engines and enhanced
reproducibility. Three widely used ML algorithms, eXtreme Gradient Boosting, Random Forest, and
Support Vector Machine, were benchmarked under both 10-fold and leave-one-solute-out cross-
validation. The comparison between four major descriptor sets, including MOE, Mordred, RDKit
descriptors, and Morgan Fingerprints, offering the first descriptor-level assessment of how COSMO-RS
calculated solubility augmentation interacts with diverse chemical feature space. The statistical Y-

scrambling was conducted to confirm that the hybrid improvements are genuine and not artefacts of
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Accepted 19th December 2025 dimensionality. SHAP-based feature analysis further revealed substructural patterns linked to solubility,

providing interpretability and mechanistic insight. This study demonstrates that combining physics-
DOI: 10.1039/d5dd00456] informed features with robust, interpretable ML algorithms enables scalable and generalisable solubility

rsc.li/digitaldiscovery prediction, supporting data-driven pharmaceutical design.

Machine Learning (ML) offers a complementary route by
learning structure-property patterns from data. Once trained
on an appropriate feature set, ML models can deliver predic-
tions at lower computational cost. When the feature set is

1 Introduction

Solubility is a key determinant of pharmaceutical formulation
and compound screening,™* affecting solute-solvent compati-

bility, mixture stability, and bioavailability.* Reliable solubility
models can accelerate early-stage development by narrowing
down viable solvent-solute combinations before costly experi-
mental testing. Among available tools, the COnductor-like
Screening Model for Real Solvents (COSMO-RS)*” has been
widely adopted for its quantum chemistry-based accuracy,
offering reasonable solubility predictions across diverse solvent
systems. However, the requirement for computationally costly
geometry optimisations and COSMO energy calculations
restricts its use in high-throughput or exploratory workflows.
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augmented with COSMO-RS-derived descriptors, the resulting
models not only improve predictive accuracy but also preserve
a degree of physics-based interpretability. More broadly, ML has
emerged as a powerful tool for property prediction in chemistry
and materials science.*® It can effectively capture complex links
between structure, composition, and properties, allowing the
design of targeted compounds and even the generation of novel
materials.’**® Within this domain, the Quantitative-Structure-
Property Relationship (QSPR) and Quantitative-Structure-
Activity Relationship (QSAR) approaches serve as a powerful
framework that correlate molecular structure with experimen-
tally measured physicochemical or material properties through
linear or nonlinear modelling based on various descriptors.™**®
Applications span the prediction of solubility,"*" boiling
point,'***?% polarisability,>*** and viscosity,**>® while offering
insights into the contributions of specific functional groups and
structural motifs.>=* It thereby supports the rational design
and optimisation of molecules and materials across chemical,
pharmaceutical, and materials sciences.
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Given the high dimensionality introduced by molecular
descriptors and fingerprints, modelling efforts often face the
“curse of dimensionality”, where available data sparsely
samples the chemical space.*” To address this challenge, we
benchmarked three widely used, non-linear algorithms well
suited to sparse, high-dimensional problems: eXtreme Gradient
Boosting (XGBoost), Random Forest (RF), and Support Vector
Machine (SVM).

Although the aqueous solubility of drug compounds has
been widely investigated, studies on solubility in organic
solvents remain comparatively limited.***” In this study, we
presented a QSAR-based solubility prediction framework
tailored for drug-like compounds in organic solvents. Extending
previous work that used RF with Molecular Operating Envi-
ronment (MOE)* descriptors, we expanded the modelling
framework to include XGBoost and SVM. Multiple descriptor
types are systematically compared: MOE,*® Mordred descrip-
tors,* RDKit descriptors,*® Morgan Fingerprints,** and COSMO-
RS predictions from COSMOtherm and openCOSMO-RS. Mor-
dred descriptors were computed using the Mordred chem-
informatics package; RDKit descriptors were calculated using
the RDKit cheminformatics toolkit; and Morgan Fingerprints
were generated with the RDKit package. COSMO-RS simulated
solubility is incorporated as an auxiliary feature rather than
used standalone, following evidence that hybrid models
outperform both descriptor-only ML and COSMO-RS alone.

Beyond accuracy, interpretability is emphasised through
SHapley Additive exPlanations (SHAP),” which decompose
predictions into feature contributions and highlight substruc-
tural motifs influencing solubility. This not only elucidates the
contribution of individual input features to model predictions
but also highlights the factors most critical in determining
solubilities under the QSAR framework. Among the selected
algorithms, XGBoost,” a regularised boosting algorithm,
sequentially optimises decision trees to correct residual errors
and has demonstrated strong performance in various molecular
prediction tasks,**® including feature reconstruction tasks
such as Raman spectra,” Near-Infrared (NIR) spectra,*® and
Infrared (IR) spectra prediction.*” In contrast, RF aggregates
independently built decision trees using bootstrap resampling,
providing robustness and stability but lacking the iterative
refinement of boosting. SVM uses kernel functions to project
input data into higher dimensions, offering strong performance
for high-dimensional and small-sample problems. However,
their performance can be sensitive to parameter selection, and
scalability may be limited for extensive datasets. These three
algorithms are frequently selected and compared in chem-
informatics studies for their robust predictive capabilities.

Several recent works highlight their utility. Kim et al.*® pre-
dicted the antioxidant activity of 2,2-diphenyl-1-picrylhydrazyl
(DPPH) using XGBoost, RF, and SVM with RDKit descriptors.
Qu et al.>* compared XGBoost, RF, SVM, and K-Nearest Neigh-
bour (KNN) for retention time prediction of proteolysis-
targeting chimeras, using fingerprints, physicochemical
descriptors, along with chromatographic-condition features.
Ghuriani et al® developed an XGBoost-driven biomarker
identification pipeline that fed selected features into RF, SVM,
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and logistic regression for cancer prediction from gene
sequencing. Danishuddin et al>® benchmarked XGBoost, RF,
SVM, and Multi-Layer Perceptron (MLP) to model HIV-1 inte-
grase inhibitor activity, comparing PaDEL and RDKit descrip-
tors with ECFP4 fingerprints (Morgan Fingerprints).
Collectively, these studies underscore the prominence of
XGBoost, RF, and SVM as standard benchmarks in chem-
informatics, where they are routinely employed in parallel to
assess predictive performance under varying descriptor types
and molecular contexts, supporting their selection here for
solubility modelling.

Recent advances have emphasised hybrid strategies that
integrate physics-based knowledge into ML frameworks, aiming
to preserve mechanistic interpretability while enhancing
predictive scalability. Beyond descriptors and fingerprints, the
output of physics-based models is increasingly incorporated as
auxiliary features to enrich the input space. For example, Vas-
sileiou et al.*®* showed that including COSMOtherm solubility
predictions as features improved the RF drug solubility models.
Xiong et al** combined first-principles descriptors generated
via Multiwfn with conventional descriptors to predict flotation
behaviour, while Lu et al.>®> embedded quantum-derived elec-
tronic features into deep learning for the prediction of drug-
drug interaction.

These studies collectively demonstrate that augmenting
data-driven QSAR/QSPR with physics-based descriptors yields
models that are both more predictive and mechanistically
interpretable. Although the trends identified align with estab-
lished chemical intuition, the strength of this framework lies in
its ability to validate and generalise these relationships
systematically across hundreds of solute-solvent pairs. Building
on this foundation, we designed a workflow that systematically
integrates diverse descriptor types with COSMO-RS features to
benchmark ML algorithms for solubility prediction, as shown in
Fig. 1.

The dataset used in this study is based on the solubility
collection compiled by Vassileiou et al.,*® which combines
experimental measurements extracted from the literature with
their in-house data. The dataset contains 714 solubility
measurements at room temperature, covering 75 organic
solutes and 49 solvents. The solutes span a chemically diverse
set of drug-like small molecules, making the dataset represen-
tative of pharmaceutical formulation challenges.

For comparison, Sodaei et al*® integrated MD-derived
properties with ML and reported a gradient boosting model
that achieved an R* of 0.87 and an RMSE of 0.537 for aqueous
drug solubility prediction under 10-fold CV. Algarni et al.”’
employed one-hot encoded solvents, temperature, and mass
fraction as inputs to predict rivaroxaban solubility, where the
light gradient boosting model achieved the best performance
with an R* of 0.988 and an RMSE of 9.13 x 10> under 5-fold CV.
Jiang et al.®® utilised temperature and pressure to model the
solubility of nonsteroidal anti-inflammatory drugs in green
solvents, achieving an R* of 0.987 and an RMSE of 13.7 under
10-fold CV using AdaBoost with Gaussian Process Regression
(ADA-GPR).

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 Workflow for solubility modelling and interpretation. (1) A dataset of 714 binary solute—solvent systems is encoded using SMILES. (2) These
SMILES serve as inputs for: openCOSMO solubility prediction utilising (a) surface charge distributions obtained from BP86/def2TZVPD and
COSMO calculations (b) in cases where the solute is a solid, solute enthalpies of fusion and melting points, and (c) a representative COSMO
surface charge density visualisation shown for illustration as part of the COSMO solubility output; and for the generation of MOE, RDKit, and
Mordred descriptors as well as Morgan Fingerprints. (3) The resulting COSMO-RS solubility estimates and preprocessed descriptor sets are
combined as input under a hybrid mode. Machine learning models (RF, XGBoost, SVM) are trained to predict solubility. (4) SHAP-based heatmaps
then decompose model outputs into descriptor and fingerprint contributions, translating predictions into QSAR insights.

It is important to note that these studies were trained on
different datasets, often restricted to a single solvent system or
a narrow chemical domain. As a result, direct numerical
comparisons to our results can be misleading, since dataset
composition and chemical diversity strongly influence apparent
model accuracy. Moreover, most of these works rely on n-fold
CV, which typically yields higher apparent performance than
LOSO while providing a weaker measure of generalisability.

By contrast, the focus of our work lies in integrating diverse
cheminformatics descriptors with multiple ML frameworks and
providing physicochemical interpretation across a broader
range of drug-like molecules and organic solvents, rather than
solely pursuing the highest apparent predictive accuracy.

Our integrated framework benchmarked descriptor sets,
algorithms, and hybrid strategies, while linking substructure-
level contributions to solubility behaviour. The remainder of
this paper presents the dataset and descriptors (Section 2.1),
COSMO-RS method (Section 2.2), ML modelling and evaluation
procedures (Section 2.3), predictive performance and interpret-
ability outcomes (Section 3.1), and concludes with broader
implications for data-driven pharmaceutical design (Section 3.2).

2 Model and method

In the original study, Vassileiou et al.** trained hybrid machine
learning models on this solubility dataset, achieving the coef-
ficient of determination, R*, of 0.56 and 0.78, Mean Absolute
Errors (MAE) of 0.36 and 0.59, and Root Mean Square Errors
(RMSE) of 0.79 and 0.55 under Leave One Solute Out (LOSO) and

© 2026 The Author(s). Published by the Royal Society of Chemistry

10-fold Cross Validation (CV), respectively. Building on these
results, this dataset provides the foundation for our bench-
marking and model development, supporting comparative
evaluation of hybrid feature sets and learning algorithms for
solubility prediction.

Solubility arises from the interactions between solute and
solvent, and cannot be explained solely by the properties of
either in isolation. A solute that dissolves readily in a polar
solvent can be expected to display very low solubility in a non-
polar organic solvent with contrasting chemical characteris-
tics. It is therefore important, when examining the dataset, to
define the chemical space spanned by the solvents, so that any
conclusions about solute features contributing to solubility are
interpreted within the context of solvent type. The dataset used
in this work was originally designed to include organic
solvents,*® which generally display high lipophilicity and low
hydrophilicity, participating in favourable interactions with
non-polar organic solutes. The octanol/water partition coeffi-
cient, logP(octanol/water), is a widely used measure of
lipophilicity/hydrophilicity. In this work, it was calculated using
the MOE log P(o/w) descriptor, a fragment-based method
trained on experimental data. Higher log P(o/w) values indicate
greater lipophilicity and lower polarity, whereas lower values
reflect greater hydrophilicity. A compound with a log P(o/w) of
0 would partition equally between an octanol and a water phase,
with positive log P(o/w) values favouring octanol (hydrophobic)
and negative log P(o/w) values favouring water (hydrophilic). In
our dataset, solvent log P(o/w) values range from —1.1 to 7.8. In
total, 8 solvents have log P(o/w) below 0, while the other 41 have
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log P(o/w) above 0. The solvents are predominantly lipophilic,
although the presence of several low-log P solvents introduces
chemical diversity that complicates simple trends in solute-
solvent solubility relationships. As introduced at the end of
Section 1, the 714 solute-solvent pairs consist of 75 organic
solutes and 49 solvents. The 12 most commonly occurring
solvent molecules in this dataset each appear in at least 20
solvent/solute mixtures and together account for 381 total
mixtures, over half of the dataset. These are ethanol, methanol,
ethyl acetate, 2-propanol, acetone, 1-butanol, acetonitrile,
chloroform, water, 1-propanol, 1-octanol and tetrahydrofuran.
Thus, the range includes water and a number of relatively small
organic molecules, all containing some functionality which can
contribute to dipolar or hydrogen bonds. Some of the longer
chain molecules among this group have lipophilic characteris-
tics, particularly 1-octanol in which polar compounds are only
sparingly soluble and which is used to define log P(o/w) and has
a log P(o/w) of 2.8. However, there is enough polar functionality
among the set of solvents that solvent polarity must also be
considered when concluding trends in the structure of solutes.

2.1 Molecular descriptors

To numerically represent the chemical features of each solute
and solvent, we computed three complementary sets of molec-
ular descriptors, in addition to retaining the original MOE
descriptors. Mordred descriptors (2D only) were generated using
the Mordred Python package,® yielding over 1600 features
spanning physicochemical, topological, and constitutional
properties. Morgan Fingerprints (extended-connectivity finger-
prints, ECFP)*"*® were generated using RDKit,* with a radius of 2
and a 2048 bit length. The associated bitInfo metadata was
preserved, enabling active bits to be mapped back to atomic
substructures. To reduce redundancy, low-information bits were
filtered using a Shannon entropy® threshold of 0.001, based on
binary activation profiles across all molecules. RDKit descriptors
were computed using RDKit's builtin set,* encompassing
diverse physicochemical and topological properties. For all
descriptor types, features with >10 per cent missing values were
discarded. The remaining features were zero-filled and filtered to
remove zero-variance columns prior to analysis.

After applying all filtering steps described above, the final
dimensionalities reported here refer to the combined solute-
solvent descriptor space used as input to the ML models. In
total, the retained descriptors comprised 357 MOE features, 322
RDKit features, 2439 Mordred features, and 875 informative
Morgan Fingerprint bits. These dimensionalities therefore
reflect the sum of all filtered solute and solvent descriptors
entering the final models. Although the Mordred representation
remains larger than the other descriptor families, its effective
dimensionality was substantially reduced from the initial raw
feature set, and all retained descriptors passed the missingness,
variance, and stability criteria. Moreover, all models were
trained exclusively under rigorous CV schemes, which provide
a strong safeguard against overfitting. The differences in
predictive performance between descriptor families therefore
cannot be attributed solely to the number of retained features.
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It is also worth noting that all selected modelling
approaches: XGBoost, RF, and SVM, are widely recognised for
their robustness in high-dimensional settings owing to intrinsic
regularisation, non-linear feature compression, and resistance
to overfitting. Together with the descriptor filtering steps and
the use of strict CV, this ensures that the observed differences in
predictive performance cannot be attributed solely to the size of
the feature space. To further validate that the models learn
genuine chemical signal rather than spurious correlations
arising from high dimensionality, we performed Y-scrambling
with B = 200 permutations for every descriptor family and
modelling approach. As shown in S$2-SI, in all cases, the
scrambled models collapsed to chance level, and the probability
that the original model performance could be reproduced
under randomly permuted targets was p = 0.005. These results
confirm that the input features contain statistically significant
information, and that the hybrid ML-physics models do not rely
on spurious correlations introduced by descriptor
dimensionality.

2.2 Physics-based solubility estimates

Mechanistic solubility estimates were generated for each
solute-solvent pair using the COSMO-RS method.*” The pre-
dicted log solubility served as an additional numerical input,
providing quantum chemistry-derived insights into solution
behaviour. Importantly, COSMO-RS outputs were incorporated
solely as input descriptors rather than as synthetic training
targets, ensuring that all models were trained exclusively on
experimental solubilities. The hybrid approach integrates
COSMO-RS predictions with structure-encoded descriptors,
allowing the model to learn residual structure-property rela-
tionships beyond the physics-based baseline.

In the interest of reproducibility, open science and the FAIR
(Findable, Accessible, Interoperable and Reusable) data princi-
ples, we investigated the use of the open source openCOSMO-RS
software®"® to generate the physics-based features. Our open-
COSMO-RS workflow involved accounting for the influence of
multiple conformers as described by Klamt®*® and has been
previously used by Schindl et al.** We calculated solubility itera-
tively from COSMO-RS activity coefficients using infinite dilution
as an initial guess, as described elsewhere.*** Solubility calcu-
lations were performed at 298.15 K, and for molecules whose
melting point was above working temperature, the free energy of
fusion was calculated from literature experimental melting point
and enthalpy of fusion values taken from the original dataset of
Vassileiou et al.*** Newly generated openCOSMO-RS results were
benchmarked against the original COSMOtherm data* before
being used as inputs for each QSAR model.

Given the nature of this work, it is important to note that our
current solute-solvent dataset is already highly challenging,
containing substantial chemical diversity and many intrinsi-
cally difficult cases. Expanding to external datasets such as
AgSolDB® or BigSolDB* would require COSMO-RS calculations
for every associated solute-solvent pair, which is computa-
tionally prohibitive at present. As our models rely on COSMO-
RS-derived solubility inputs, such benchmarking is deferred

© 2026 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00456j

Open Access Article. Published on 07 January 2026. Downloaded on 1/9/2026 2:21:32 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

to future work once large-scale COSMO-RS data become
available.

Instead, a more efficient strategy is to perform targeted vali-
dation on a representative subset of compounds drawn from
these larger datasets. This allows us to benchmark model accu-
racy externally without undertaking full COSMO-RS enumera-
tion. The results will be discussed in detail in Section 3.1.5.

2.3 Machine learning model

We benchmarked three supervised regression algorithms,
eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and
Support Vector Machine (SVM), for predicting the solubility of
drug-like compounds in organic solvents. XGBoost models were
implemented using XGBRegressor for regularised gradient
boosting, while RF and SVM models employed Random-
ForestRegressor and SVR, respectively, via the scikit-learn
framework.

To minimise hardware-induced variability, XGBoost was run
in CPU-only mode (CUDA_VISIBLE DEVICES = —1, device =
‘cpw’) using the histogram tree method (tree_method = ‘hist’).
OpenMP parallelism was restricted to eight threads (OMP_-
NUM_THREADS = 8), and the regressor was configured with
eight worker threads (n_jobs = 8) while CV fits were run
sequentially (RandomizedSearchCV(n_jobs = 1)). These settings
control the degree of parallelism and help stabilise floating-
point round-off behaviour, so that repeated runs on different
machines produce numerically comparable CV metrics.

Model inputs included molecular descriptors derived from
one of four descriptor sets: MOE descriptors, RDKit descriptors,
Mordred descriptors, or Morgan Fingerprints. COSMO-RS-
predicted solubility was incorporated as an additional input
feature in hybrid models. Model performance was evaluated
using 10-fold CV and Leave-One-Solute-Out (LOSO) CV, with
results reported using R>, RMSE, and MAE, averaged across
folds. LOSO ensures that no solute appears in both training and
test folds, preventing solute memorisation and reducing
leakage from solute recurrence.

2.3.1 Hyperparameter optimisation. Each model was sub-
jected to hyperparameter optimisation using Random-
izedSearchCV*® with three-fold internal CV, a search budget of
niter = 10, employing negative root mean squared error as the
scoring criterion. This strategy enabled efficient sampling of the
hyperparameter space while reducing the risk of overfitting to
specific folds. Full search spaces are provided in SI Section 1.

To quantify descriptor importance and generate heatmaps,
SHAP values were computed. For XGBoost regressors, we used
TreeExplainer in interventional mode with a fixed background of
100 samples. For SVM regressors, SHAP values were obtained
with KernelExplainer using a K-means background (= 10 clus-
ters), with perturbation sampling limited for efficiency and
11_reg (num_features(10)) applied to stabilise attributions.
Random Forest models were not analysed with SHAP due to
weaker predictive performance and limited interpretability
within this framework.

2.3.1.1 Y-scrambling. To assess the risk of chance correla-
tions, we performed Y-scrambling (response permutation)

© 2026 The Author(s). Published by the Royal Society of Chemistry
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under both CV schemes (10-fold and LOSO), preserving the
frozen splits of the observed models. For 10-fold CV, the same
fixed random seed and fixed fold assignment were reused for
every permutation, and no replicated resampling was per-
formed. Only the training targets were permuted within each
split, and models were re-fit using the same fixed hyper-
parameters. One-sided empirical permutation p-values were
computed following the standard formulation,* with B = 200
random permutations per model. Complete methodological
details and permutation histograms are provided in SI-S2.

2.3.2 Model explainability and substructure analysis. To
interpret model predictions and identify key molecular char-
acterisation driving solubility, we employed SHapley Additive
exPlanations (SHAP),"»”*"* which attributes changes in pre-
dicted output to individual input features based on cooperative
game theory. SHAP values were computed using the best-
performing model refitted on the full dataset after CV,
ensuring maximum exposure to training data. For descriptor-
based models, global feature importance was quantified by
ranking descriptors according to their mean absolute SHAP
values. Inputs comprised per-observation solute-solvent feature
vectors. Preprocessing steps preserved sample-level granularity.
SHAP therefore reports local contributions for each sample.

The top 20 most influential descriptors were visualised as
a heatmap and exported for further analysis, highlighting the
physicochemical properties that predominantly impact pre-
dicted solubility. For fingerprint-based models using Morgan
Fingerprints, we extended the analysis by mapping top-ranked
fingerprint bits to substructures using RDKit.*® Substructures
corresponding to high-ranking bits were extracted and visual-
ised across all activating solutes and solvents, enabling inter-
pretation of fragment-level contributions. Additionally, bit-wise
SHAP heatmaps were generated, offering a chemically intuitive
view of substructure importance.

3 Results and discussion
3.1 Model performance

3.1.1 Re-implementation of baseline RF model. To estab-
lish a consistent and reproducible baseline, we first re-
implemented a previously developed RF solubility prediction
model. The original version was written in R with the random-
Forest package and MOE descriptors, which we translated into
Python using scikit-learn. All original settings were preserved,
including descriptor input, original COSMOtherm solubility
predictions as hybrid features, model parameters (default in
both R and Python), and CV strategy. In Table 1, minor
performance differences arise from inherent implementation-
level distinctions between R and Python libraries (e.g., boot-
strap sampling routines, random number generator algorithms,
and default tree-splitting criteria). These differences are purely
technical, numerically insignificant, and do not affect the
scientific conclusions. The equations for these performance
metrics are provided in SI-S4.

3.1.2 Integration with openCOSMO. To evaluate the utility
of open-source COSMO methods, we compared openCOSMO
against COSMOtherm using the same Python machine learning
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Table1l Performance comparison of Random Forest solubility models
re-implemented from R to Python using identical MOE descriptors and
CV settings. Minor differences reflect implementation-level variations
in random sampling and tree construction

Version cv R RMSE MAE
Original R 10-Fold 0.783 0.553 0.363
Rewritten Python 10-Fold 0.785 0.551 0.364
Original R LOSO 0.562 0.786 0.59

Rewritten Python LOSO 0.556 0.791 0.581

pipeline, RF model with MOE descriptor. One of the solutes in
the dataset, gsk-Q, is an ion with no counterion specified. It was
therefore omitted from openCOSMO calculations. Meanwhile,
ORCA COSMO calculations for one of the solutes, 3-((6-O-(6-
deoxy-a-L.-mannopyranosyl)-B-p-glucopyranosyl)oxy)2-(3,4-di-
hydroxyphenol)-5,7-dihydroxy-4H-1-benzopyran4-one, failed to
converge with the openCOSMO-RS default functional and basis
set, BP86/def2-TZVPD, so the smaller basis set def2-TZVP was
used instead. ORCA calculations for a second solute, iodo-
propynyl butylcarbamate, failed to converge using either basis
set, and so this solute was omitted. For the gsk-S systems, the
openCOSMO-RS iterative solubility calculations did not
converge reliably, leading to unphysical solubility values; these
systems were therefore excluded from the dataset. Meanwhile,
the RDKit software was unable to correctly parse the SMILES
string of a final solute, 311-03-5, during the openCOSMO-RS
conformer workflow, so this solute was also omitted from the
openCOSMO-RS dataset. In total, four solute molecules were
removed. All of their solute-solvent combinations were omitted
from the openCOSMO-RS calculations, which resulted in the
loss of 27 data points compared to the COSMOtherm dataset. To
ensure a fair comparison, we restricted the analysis to the
subset of entries with successful openCOSMO predictions, and
filtered the COSMOtherm results to the same subset (Table 2).
The standalone performance of openCOSMO was poor (R*> =
—0.098, RMSE > 1), indicating large deviations from the exper-
imental solubility values. In contrast, COSMOtherm showed
stronger predictive accuracy in the same dataset (R* = 0.314),
although this still reflects limited standalone reliability. The
openCOSMO-RS software is newer than the established COS-
MOtherm and is still under development. Although the latest
parameterisation’ provides a less accurate performance than
COSMOtherm, its performance is improving. The solute mole-
cules in this dataset for which openCOSMO-RS displays the
poorest agreement with experiment tend to be larger molecules
featuring more complex ring systems than those for which the

Table 2 Standalone performance of openCOSMO and COSMOtherm
solubility predictions (log(g/100 g)) against experimental values, eval-
uated on a reduced dataset where openCOSMO results were available

COSMO model R? RMSE MAE
OpenCOSMO —0.098 1.243 0.940
COSMOtherm 0.314 0.983 0.707
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openCOSMO-RS agreement is the best. They also contain
a wider variety of different polar and hydrogen-bonding groups,
and are more likely to contain less common atoms, like S or P,
which featured less heavily in the latest openCOSMO-RS para-
meterisation set than C, O, and N. When combined with
machine learning models, both COSMO sources contributed to
improved hybrid predictions. In particular, models using
openCOSMO features still benefit from error correction via ML,
narrowing the performance gap with COSMOtherm-based
hybrids. Default settings are used for the RF model. The
COSMO-RS-predicted log solubility was incorporated as an
auxiliary numerical feature, providing a physically grounded,
quantum-chemistry-derived summary of the underlying solva-
tion thermodynamics for each solute-solvent pair. By
combining this physics-based estimate with detailed structure-
encoded descriptors, the hybrid models are able to learn the
remaining structure-property relationships that COSMO-RS
does not capture on its own, thereby systematically improving
upon the purely physics-based baseline. These findings high-
light the potential of openCOSMO as a lower-cost, open-access
alternative for hybrid solubility prediction, especially when
high-fidelity quantum chemical tools are not available. While
its standalone accuracy remains limited, integration with ML
enables correction of systematic errors, particularly for polar or
strongly hydrogen-bonding systems where COSMO-based
models might struggle, or areas of chemical space where
COSMO-based models are less reliable. Accordingly, the relative
improvement obtained by including openCOSMO-RS features
is more important than its absolute standalone performance.
Given its stronger performance and broader data coverage,
COSMOtherm is selected as the hybrid COSMO source for
subsequent analyses and discussion.

3.1.3 Benchmarking with hyperparameter optimisation.
We applied hyperparameter optimisation using Random-
izedSearchCV (see Section 2.3.1) to assess its impact on hybrid
model performance. Three algorithms, RF, XGB, and SVM were
trained using MOE descriptors together with COSMOtherm
solubilities as hybrid features, and evaluated under both 10-fold
and LOSO CV (Fig. 2 and 3). For 10-fold CV, all models were
trained and tested using the fixed random seed to ensure that
the fold partitions were identical across (i) the tuned models, (ii)
the untuned baselines, and (iii) all 10-fold Y-scrambling exper-
iments. This guarantees that the performance differences re-
ported here arise solely from model behaviour and not from
variations in fold composition. The LOSO protocol, by
construction, is deterministic and therefore required no seed
control.

For RF, tuning produced only minor and mixed effects.
Under LOSO, performance shifted marginally in the favourable
direction (e.g., R* increased from 0.5578 to 0.5582, although
MAE rose from 0.581 to 0.593), whereas under 10-fold CV the
tuned model performed slightly worse (e.g., R* decreased from
0.777 to 0.769). These changes are numerically small and
consistent with the well-known stability of RF, which typically
operates close to its default optimum. Because tuning alters tree
depth and feature-sampling behaviour, modest fluctuations in
performance across validation schemes are expected. For

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Model performance comparison for solubility prediction using RF, XGBoost, and SVM trained on pre-processed MOE descriptors,
evaluated under two CV schemes: 10-fold (left panels) and LOSO (right panels). (a—d) Parity plots comparing predicted and experimental
solubilities (log scale), with diagonal lines indicating £1 log unit error bounds.

consistency with the tuned XGB and SVM baselines, we there-
fore retain the tuned RF configuration in subsequent
comparisons.

In contrast, both XGB and SVM exhibited clear improve-
ments following tuning. For XGB, all metrics improved under
both CV strategies (10-fold R increased from 0.781 to 0.808;
LOSO R> from 0.506 to 0.555). SVM showed the largest gains

© 2026 The Author(s). Published by the Royal Society of Chemistry

overall, particularly under LOSO, where R* increased from 0.492
to 0.564 and RMSE decreased from 0.846 to 0.784, yielding the
strongest out-of-distribution performance among all tuned
models. A notable observation is that SVM outperforms XGB
under the LOSO protocol, even though their 10-fold CV perfor-
mance is nearly identical: both models achieve comparable R*
and RMSE values, with XGB showing only a slightly lower MAE.
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Fig. 3 Model performance comparison for solubility prediction using RF, XGBoost, and SVM across two CV schemes: 10-fold (left panels) and
LOSO (right panels). (a) RF model performance under 10-fold CV. (b) RF model performance under LOSO CV. (c) Performance of RF, XGBoost,
and SVM models under 10-fold CV. (d) Performance of RF, XGBoost, and SVM models under LOSO. All panels show cumulative error plots,
reporting the proportion of predictions within a given absolute error. COSMO-RS predictions are included as a baseline for comparison.

This behaviour is well understood in high-dimensional chem-
ical datasets where the number of available samples is limited
relative to the descriptor space. XGB relies on iterative, boosted
tree expansions that exploit correlations present within the
training folds; when the held-out solute is structurally dissim-
ilar to the training set, these correlations can become unreli-
able, leading to reduced stability and higher variance in the
predictions. In contrast, the SVM with an RBF kernel imposes
a stronger inductive bias and heavier regularisation, and the
model capacity is controlled primarily by the kernel bandwidth
and the regularisation parameter. As a result, SVMs tend to
produce smoother decision boundaries and are less sensitive to
small fold-to-fold fluctuations in descriptor-property correla-
tions. Under LOSO, where the task explicitly tests out-of-
distribution generalisation across different solutes, this regu-
larisation leads to improved robustness, yielding lower RMSE
and higher R* than XGB. Thus, the superior LOSO performance

Digital Discovery

of the tuned SVM reflects its more conservative extrapolative
behaviour in hybrid descriptor spaces.

Overall, these trends demonstrate that XGB and SVM benefit
substantially from hyperparameter optimisation due to their

Table 3 Performance of RF models trained with different COSMO
feature inputs under 10-fold and LOSO CV, without hyperparameter
tuning

COSMO feature cv R? RMSE MAE
None 10-Fold 0.653 0.699 0.450
LOSO 0.349 0.958 0.699
OpenCOSMO 10-Fold 0.747 0.598 0.387
LOSO 0.510 0.831 0.600
COSMOtherm 10-Fold 0.777 0.561 0.364
LOSO 0.549 0.797 0.581

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Model performance (R?, RMSE, MAE) for RF, XGB, and SVM
using MOE descriptors, with and without hyperparameter tuning under
LOSO and 10-fold CV. (Hyper P: hyperparameters)

R RMSE MAE
Model Hyper P LOSO 10-Fold LOSO 10-Fold LOSO 10-Fold
RF Default 0.558 0.777 0.789 0.561 0.581 0.369
Tuned 0.558 0.769 0.789 0.571 0.593 0.378
XGB Default 0.506 0.781 0.835 0.556 0.627 0.358
Tuned 0.555 0.808 0.792  0.520 0.575 0.332
SVM Default 0.492 0.707 0.846 0.643 0.615 0.432
Tuned 0.564 0.808 0.784 0.520 0.550 0.339

sensitivity to regularisation strength and margin or learning-
rate parameters, whereas RF is already strongly regularised by
design, remains close to its default optimum. Full results are
provided in Table 4.

As mentioned in Section 3.1.2, four solutes were removed,
eliminating 27 associated solute-solvent pairs from the
openCOSMO-RS calculations. For a fair comparison, both open-
COSMO and COSMOtherm predictions were restricted to the
subset of entries for which openCOSMO results were available.
Therefore, the hybrid RF results without tuning in Fig. 2 and
Table 4 will be different from what has been shown in Table 3.

3.1.4 Descriptor comparison across models. To compare
model generalisation across descriptor types, we evaluated
tuned RF, XGB, and SVM models using MOE, RDKit descriptors,
Mordred descriptors, and Morgan Fingerprints. All setups
included hybrid COSMO-RS predictions and were evaluated
using both 10-fold and LOSO validation.

Performance values reported in Table 5 correspond to the
mean =+ standard deviation obtained from N = 20 replicated 10-
fold CV runs, each performed using a distinct random seed.
This replicated protocol was applied to every model-descriptor
combination to provide a fair and statistically robust compar-
ison. In contrast, LOSO-CV is deterministic with respect to data
partitioning and therefore yields a single, seed-independent
result. The method details are illustrated in S3-SI, and the
observed variability across the 20 seeds was consistently small
(RMSE, MAE, and R differing only in the second decimal place),
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confirming that hybrid improvements are stable and not driven
by stochastic variation in training or fold assignment.

Notably, the XGBoost model using MOE descriptors achieved
the highest overall predictive performance under 10-fold CV (R
= 0.801 £ 0.010, RMSE = 0.517 &£ 0.012, MAE = 0.337 £ 0.005;
Table 5), with the SYM-MOE model performing comparably (R
= 0.801 £ 0.007, RMSE = 0.517 + 0.010, MAE = 0.339 + 0.005).
These results highlight the strong representational power of
curated MOE descriptors, particularly when combined with
regularised algorithms such as XGBoost and SVM.

Across all models and descriptor types, performance
declined under LOSO compared to 10-fold CV, consistent with
the increased difficulty of predicting solubility for unseen
solutes. The largest reductions in R> were observed for SVM
using RDKit descriptors (from 0.782 + 0.011 to 0.466; AR* =
0.316) and SVM using Mordred descriptors (from 0.726 + 0.012
to 0.415; AR®> = 0.311), indicating that kernel methods are
particularly sensitive to descriptor redundancy and high-
dimensional noise when forced to extrapolate to new solute
structures. RF performed most robustly under LOSO, achieving
R® =0.568 with RDKit and R* = 0.543 with Morgan Fingerprints.
This suggests that RF's ensemble averaging helps stabilise
predictions when solute diversity increases. By contrast, RF was
less effective with lower-dimensional inputs such as MOE and
RDKit under 10-fold CV, where XGBoost and SVM achieved
markedly higher accuracy.

XGBoost showed the strongest resilience with Mordred
descriptors (R* = 0.613 under LOSO; 0.791 + 0.007 under 10-
fold), demonstrating that gradient boosting can effectively
extract signal from large, heterogeneous descriptor sets. Under
10-fold CV, XGBoost also achieved the highest overall accuracy
with all types of descriptors and fingerprints, with particularly
strong performance for MOE (R* = 0.801 + 0.010).

The higher performance of XGBoost is also consistent with
the structure of the dataset. The descriptor sets used here are
high-dimensional and contain correlated features, and
XGBoost's sequential boosting, residual fitting, and built-in
regularisation allow it to exploit such feature spaces more
effectively than RF. This is particularly advantageous in the
hybrid setting, where the COSMO-RS solubility provides

Table 5 Cross-descriptor benchmarking of tuned RF, XGB, and SVM models under LOSO and replicated 10-fold CV (20 seeds; mean + std)

R RMSE MAE

Model Descriptors LOSO 10-Fold LOSO 10-Fold LOSO 10-Fold

RF MOE 0.558 0.765 £ 0.006 0.789 0.565 £ 0.007 0.593 0.381 £ 0.003
RDKit 0.568 0.764 £+ 0.006 0.780 0.567 £ 0.007 0.577 0.384 £ 0.002
Mordred 0.567 0.756 £ 0.006 0.781 0.576 £ 0.007 0.584 0.388 £ 0.003
Morgan 0.543 0.757 £+ 0.004 0.803 0.574 £ 0.005 0.576 0.394 £ 0.003

XGBoost MOE 0.555 0.801 £ 0.010 0.792 0.517 £ 0.012 0.575 0.337 £ 0.005
RDKit 0.567 0.794 £+ 0.011 0.781 0.527 £ 0.014 0.567 0.343 £ 0.006
Mordred 0.613 0.791 £ 0.007 0.738 0.529 + 0.009 0.538 0.350 £ 0.005
Morgan 0.511 0.775 £+ 0.009 0.831 0.547 £ 0.010 0.595 0.365 £ 0.005

SVM MOE 0.564 0.801 £ 0.007 0.784 0.517 £ 0.010 0.550 0.339 £ 0.005
RDKit 0.466 0.782 £+ 0.011 0.868 0.541 £ 0.014 0.628 0.348 £+ 0.007
Mordred 0.415 0.726 £ 0.012 0.908 0.607 £ 0.014 0.661 0.406 £ 0.007
Morgan 0.504 0.605 £ 0.017 0.836 0.729 £ 0.015 0.595 0.481 £ 0.007

© 2026 The Author(s). Published by the Royal Society of Chemistry
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a physics-based baseline and the ML component must learn the
remaining structure-dependent deviations. RF, which does not
explicitly model residuals, is less able to capture these fine-
grained corrections.

Among descriptor sets, MOE provided consistently strong
performance for both XGBoost (R* = 0.801 + 0.010 in 10-fold;
0.555 in LOSO) and SVM (R2 = 0.801 + 0.007 in 10-fold; 0.564 in
LOSO), reflecting the curated, property-focused nature of MOE
features. It is noteworthy that, even with the same descriptor
set, the tuned RF-MOE model reached a slightly lower 10-fold
performance (R* = 0.765 + 0.006), whereas both XGB-MOE and
SVM-MOE achieved the highest accuracies observed in this
study. This improvement does not arise from differences in
descriptor quality, which is held fixed across models, but from
differences in model capacity and how each algorithm extracts
structure-property relationships from MOE features. RF relies
on axis-aligned, shallow tree partitions, which stabilise predic-
tions but limit its ability to model smooth nonlinear interac-
tions among correlated MOE descriptors. In contrast, XGBoost
leverages sequential residual fitting to capture higher-order
nonlinearities, while the RBF-SVM constructs a continuous
similarity landscape that can more fully exploit the physico-
chemical signal encoded in the MOE feature space. As a result,
both XGB and SVM are able to extract more predictive infor-
mation from MOE features than RF, explaining the systematic
improvement from R* = 0.765 + 0.006 (RF-MOE, 10-fold CV) to
=~ 0.801 (XGB-MOE and SVM-MOE) under 10-fold CV.

Under LOSO, SVM-MOE markedly higher than SVM trained
on RDKit (R*> = 0.466), Mordred descriptors (R> = 0.415), or
Morgan Fingerprints (R = 0.504). This pattern reflects differ-
ences in descriptor design. MOE descriptors form a compact,
property-focused feature set with limited redundancy and well-
defined chemical meaning, enabling the RBF kernel to
construct smooth similarity functions without overfitting to
spurious dimensions. In contrast, the high-dimensional, highly
correlated Mordred and Morgan representations create a much
more irregular kernel landscape, making the SVM sensitive to
descriptor noise and leading to pronounced performance
degradation under LOSO. RDKit descriptors lie between these
extremes but still lack the curated, physicochemical structure
encoded in MOE. Consequently, the SVM benefits most from
the balanced dimensionality and targeted chemical relevance of
MOE features, which support stable extrapolation to unseen
solutes. RDKit descriptors occupied an intermediate position,
performing competitively with RF under LOSO and out-
performing Morgan and Mordred descriptors under 10-fold CV.
Morgan Fingerprints performed best with XGBoost (R* = 0.775
+ 0.009 in 10-fold) but lagged behind MOE and RDKit overall,
while Mordred descriptors exhibited the significant LOSO
degradation across all models due to their high redundancy.

Fig. 4 compares prediction performance (R*) across all
descriptor-model-CV combinations, using mean R* over repli-
cated 10-fold CV runs and single-run R? for deterministic LOSO.
For both RDKit descriptor and MOE, their relatively low
redundancy and high interpretability make them well-suited to
both tree-based and kernel-based models.
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Fig. 4 Prediction performance (R?) of RF, XGB, and SVM models
across RDKit, Morgan Fingerprint, Mordred and MOE descriptors.
Marker colour indicates model type; marker shape distinguishes CV
scheme (10-fold points show the mean over replicated runs, while
LOSO points correspond to a single deterministic split).

A portion of the residual unexplained variance may arise
from experimental heterogeneity in the solid-state form of
solutes, including differences in polymorphic form, amorphous
content, sample history (e.g. cooling or quenching rates), or
impurities. Such factors influence the Gibbs free energy of
fusion but are seldom reported in the literature sources from
which the dataset is constructed. As these effects cannot be
represented by structural descriptors or COSMO-RS features,
they set an intrinsic upper bound on achievable predictive
accuracy.

Under LOSO, RF outperforms XGB and SVM for most
descriptor sets, whereas under 10-fold CV it is often surpassed
by XGB and SVM. This divergence reflects the validation
objective: LOSO enforces generalisation to “unseen solutes”
(grouped CV), while 10-fold permits the same solute to appear
in both training and test folds. RF's bagging and feature sub-
sampling reduce variance, yielding stable predictions that
transfer better across solute identity, whereas the higher
capacity of XGB and SVM captures solute-specific interactions
that improve 10-fold scores but do not necessarily translate to
LOSO. Therefore LOSO should be prioritised for model selec-
tion when the deployment target is new solutes.

3.1.5 External validation. To further assess model gene-
ralisability beyond the training chemical space, external vali-
dation was performed using solubility data for organic
compounds collected from BigSolDB 2.0, an open-source
solubility database for organic compounds across diverse
solvents and temperatures. Six solutes absent from the original
training set were selected, yielding 63 solute-solvent pairs with
solubility measurements reported at 298.15 K, consistent with
the conditions used in the present study.

The ML models, trained exclusively on the original dataset,
were frozen and directly applied to the external dataset. For
external prediction, we used the ensemble of models obtained
from the 10-fold CV: each of the ten fold-specific models was
applied to the external systems, and their predictions were
averaged to obtain a single estimate for each solute-solvent
pair. External predictions were generated using models trained

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 External performance of tuned RF, XGB, and SVM models on
the BigSolDB 2.0 subset. Points show RMSE versus R? for each
combination of descriptor set (colour) and model type (marker).

with a fixed random seed to ensure a deterministic and repro-
ducible evaluation. This approach makes full use of the avail-
able training data while providing a statistically stable
prediction for unseen compounds. LOSO was used solely as an
internal validation scheme and was not considered for external
prediction. Descriptor calculation and preprocessing steps were
defined entirely from the training data and subsequently fixed,
so that external compounds were projected into the same
descriptor space. COSMOtherm-predicted solubilities for the
external systems were generated independently and used solely
as input features in the hybrid models.

For the external validation, we focused on descriptor sets
that are openly implementable or broadly accessible (Morgan
Fingerprints, Mordred, and RDKit descriptors). Although MOE
descriptors demonstrated competitive performance under
internal CV, their use relies on commercial software that cannot
be readily redistributed, and they were therefore omitted from
the external benchmark in favour of more reproducible options.

Fig. 5 summarises the external performance of tuned RF,
XGB, and SVM models with Morgan Fingerprints, Mordred, and
RDKit descriptors. Across all descriptor spaces, SVM models
show the most robust generalisation (highest R*> and lowest
RMSE), followed by RF. In contrast, XGBoost exhibits
a pronounced degradation in external performance, yielding
negative R>. This behaviour is consistent with the higher
sensitivity of boosted tree ensembles to covariate shift, arising
from changes in the distribution of input descriptors between
the training and external datasets, as well as to sparse
descriptor activation, whereas SVM and RF models show
improved robustness when extrapolating beyond the training
domain.

3.2 Interpreting molecular features and fingerprints

To elucidate the physicochemical determinants of solubility, we
analysed the relative importance of both molecular descriptors

© 2026 The Author(s). Published by the Royal Society of Chemistry
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(RDKit, MOE, Mordred) and structural fingerprints across
models. Feature contributions were quantified using SHAP
values, allowing us to connect model predictions back to
interpretable chemical features. This dual perspective captures
both engineered descriptors that summarise known molecular
properties and fingerprint bits that encode specific substruc-
tural motifs. By comparing feature rankings across high-
performance models, we aim to identify common drivers of
solubility, highlight algorithm-specific sensitivities, and assess
whether machine learning rediscovered known heuristics.

3.2.1 Descriptor-property relationships and solvent-solute
space alignment. Principal Component Analysis (PCA) was used
to assess how well each descriptor set (RDKit, MOE, Mordred)
encodes solubility-relevant chemical variation. The first two
principal components (PC1 and PC2) of each descriptor matrix
were analysed, and coloured projections by experimental solu-
bility,  hydrophobicity  (log P-like), molecular  weight
(log1o(MW)), and polarity (TPSA) are provided in the SI (Section
4). These confirm that PC1 consistently encodes a multivariate
gradient of increasing molecular weight, lipophilicity, and
polarity. In all cases, solubility increases toward the negative
end of PC1, aligning with smaller, less lipophilic, and less polar
solutes. While the relatively high solubility of smaller solutes is
expected, the apparent favourability of both less lipophilic and
less polar solutes may at first appear somewhat counterintui-
tive. Typically, a more polar solute is less lipophilic and there-
fore soluble in different solvents than a lipophilic solute.
However here, as discussed in Section 1, this set of solvents
contains a range of different chemical features. In line with this,
the PCA observations suggest that solutes with intermediate
properties are most likely to display high solubility across the
chemically diverse solvent set.

Importantly, the apparent dominance of solute features
compared to solvent features in PCA cannot be fully understood
without considering the corresponding solvent space. If the
solvents are averaged or biased toward one end of the polarity or
lipophilicity spectrum, the apparent dominance of solute
features in PCA becomes expected, consistent with the classical
principle of “like-dissolves-like”. To assess this directly, we
compared solute and solvent rankings for polarity (TPSA) and
lipophilicity (logP) generated from MOE descriptors. Spear-
man's rank correlation coefficient (p) was calculated to assess
the correspondence between solute and solvent properties.
Unlike Pearson's linear correlation coefficient (r), which is
sensitive to absolute scales and assumes linearity, Spearman's p
evaluates the degree of monotonic alignment between ranked
variables. This rank-based approach mitigates the impact of
differing property ranges and provides a more appropriate
measure of whether the solute and solvent spaces are system-
atically aligned.

The resulting rank-rank plots (Fig. 6 and 7) showed only
weak correlations (Spearman p = 0.10, 0.14) with horizontal
banding that reflects a narrower property range for solvents
than for solutes. To further explore the solvent contribution,
PCA projections coloured by solvent properties (log P, MW, and
TPSA generated from MOE) are shown in Fig. 8. These reveal
that the solvent space occupies a narrower range of lipophilicity
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Rank match: solute_logP(o/w) vs solvent_logP(o/w) (Spearman p = 0.14)
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Fig. 6 Rank-rank scatter comparing solute and solvent lipophilicity
(log P(o/w)). The negligible correlation (Spearman p = 0.14) indicates
that solute and solvent lipophilicity are only loosely aligned across the
dataset. The horizontal banding reflects the limited diversity of solvent
log P values relative to solutes, confirming that solute lipophilicity
spans a broader chemical space than solvent lipophilicity.
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Fig. 7 Rank-rank scatter comparing solute and solvent polarity
(TPSA). The negligible correlation (Spearman p = 0.10) and strong
horizontal banding highlight that solvents occupy a compressed
polarity range compared with solutes. This explains why PCA trends
are dominated by solute polarity, as solvent variation provides less
discriminative power.

and polarity compared with the corresponding solute proper-
ties. This compression explains the horizontal banding
observed in rank-rank comparisons and why solute descriptors
dominate the PCA trends. In other words, while solvents
introduce some modulation, the dataset is primarily defined by
solute chemical diversity.

As illustrated in SI-Section 4, although PCA revealed broadly
similar chemical organisation across RDKit, MOE, and Mordred
descriptor spaces, predictive performance varied between
models. XGBoost performed best with RDKit (under 10-fold)
and Mordred, while SVM performed better with MOE (under
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LOSO). These differences likely arise from how each algorithm
interacts with descriptor characteristics such as dimensionality,
collinearity, and feature scaling, rather than differences in the
underlying chemical information. For instance, the higher
dimensionality and redundancy of Mordred may favour
ensemble methods like XGBoost, which can down-weight
irrelevant features, whereas the more compact and curated
MOE descriptors align better with kernel-based methods such
as SVM. This highlights that comparable PCA structures do not
necessarily translate into uniform model performance, under-
scoring the importance of jointly optimising both descriptor
representation and modelling approach.

3.2.2 Complementary descriptor coverage by XGBoost and
SVM

3.2.2.1 Descriptor-level comparison between XGBoost and
SVM. To elucidate the physicochemical features governing
solubility, we analysed the top 20 MOE descriptors ranked by
SHAP values from tuned XGBoost and SVM models under 10-
fold CV. These two models showed consistently strong and g-
eneralisable performance across both CV strategies, making
them representative models for interpreting descriptor impor-
tance. Although both models captured overlapping chemical
themes, differences in descriptor prioritisation revealed their
distinct inductive biases and sensitivity to specific structural
patterns.

As shown in SI-S10, Fig. S6 and S7, descriptor names are
colour-coded by molecular role: solute-derived descriptors
(blue) and solvent-derived descriptors (green). Each row repre-
sents a solute, ordered by decreasing averaged experimental
solubility across available solvents (top to bottom). Columns
indicate individual MOE descriptors, selected based on their
global SHAP importance. Cell colours represent signed SHAP
values, with red indicating a positive influence on predicted
solubility and blue indicating a negative influence. Grey cells
correspond to near-zero contributions (|[SHAP| < 1x107%°).
While the top 20 includes both solute and solvent descriptors
along with the COSMOtherm feature, the majority originate
from the solute. This is not unexpected, since solubility
depends on the interactions between the solvent and the solute,
and the dataset contains more different solute molecules than
solvent molecules. Although there is variation within the
solvent set, including in hydrophilicity and lipophilicity, the
solvents may be considered to broadly fall within the same
category of organic solvents with heteroatom functionality.
Meanwhile, the solutes in the dataset cover a wider range of
chemical space, as seen in Section 3.2.1. In particular, they
include more molecules that are more hydrophilic, with the
lowest log P(o/w) value for a solute being —3.5, although the
highest is 7.0, close to the highest value among the solvents.
Variations in solvent chemical environment in the dataset are
likely to have a smaller impact on solubility than the larger
variations between solutes. Descriptors are ranked by their
mean absolute SHAP values across all solutes, reflecting their
overall contribution magnitude to model predictions regardless
of direction. The details of each top-ranked MOE descriptor are
listed in SI Sections S6 and S7.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 PCA projections of the dataset coloured by experimental solubility, log scale, solvent hydrophobicity, log P(o/w), solvent molecular
weight, log;o(MW), and solvent polarity, TPSA. These plots illustrate the distribution of solvent chemical space relative to solubility. The narrow
ranges of solvent log P(o/w) and TPSA values produce compressed colour gradients and horizontal banding, confirming that solvent variation is
less extensive than solute variation. In contrast, solubility and molecular weight span broader ranges, indicating that solubility prediction is
primarily modulated by solute properties, with only limited modulation by solvent descriptors.

3.2.2.2 XGBoost: polarity, hydrogen bonding, and solvation
geometry. XGBoost highlighted descriptors spanning molecular
geometry, charge distribution, and polar surface exposure. For
example, solute_a ICM and solvent_a ICM quantify atom
information content and internal coordinate moments,
reflecting molecular compactness and topological structure.
Charge-related descriptors such as solute_ PEOE_RPC-(relative
negative partial charge) and solvent PEOE_VSA_FNEG (frac-
tional negative van der Waals surface area) capture the strength
and extent of electron-rich regions, while solute_TPSA and
solute_vsa_pol measure accessible polar surface area. Addi-
tional contributors, including solute_h_emd (EHT donor
strength, sum) and solvent_h_emd_C (donor strength restricted
to carbon atoms), highlight electrotopological states that
encode the electronic environment of atoms in their bonding
context, emphasising the role of electron delocalisation and
substitution patterns in solubility.

SHAP analysis further identified classic drug-likeness
descriptors logP (solute_h_log pbo), H-bond donor and
acceptor counts (solute_a_donscc), H-bond acceptor counts
(Lipinski-style acceptor count: solute_lip_acc and general
acceptor count: solute_a_acc), and topological polar surface
area (TPSA, solute_TPSA) among the top contributors. This
convergence demonstrates that the XGBoost model effectively
rediscovered the same physicochemical drivers underlying
Lipinski's Rule of 5 (ref. 73) and its related Veber criteria.”

© 2026 The Author(s). Published by the Royal Society of Chemistry

While these rules were originally formulated in the context of
aqueous environments, their recurrence here reflects the
general importance of polarity, hydrogen bonding, and size-
related features across solvent systems. The specific impact of
each descriptor is modulated by solvent polarity and lip-
ophilicity, with our analysis focusing on general organic solvent
systems.

Beyond these primary descriptors, several related features
also appeared among the top-ranked contributors, including
additional lipophilicity measures (solute_SlogP_VSA1, sol-
ute_GCUT_S LOG P_1), estimated molecular aqueous solubility
(solute_h_ema), polar surface metrics (vsa_pol, sol-
ute_PEOE_RPC-, solute_GCUT_PEOE_1, and alternative
formulations of hydrogen-bonding capacity (total count of
donor and acceptor atoms together: solute_a_donacc). The
recurrence of multiple logP-, TPSA-, and H-bond-related
descriptors underscores the robustness of hydrophobicity,
polarity, and hydrogen bonding as central solubility determi-
nants across descriptor classes.

Finally, although solute descriptors dominate overall,
XGBoost also incorporates more solvent-specific features than
SVM. This suggests a greater sensitivity of the tree-based model
to subtle solvent differences, reinforcing that solubility is gov-
erned not only by intrinsic solute properties but also by the
solute-solvent match within the studied chemical space.
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3.2.2.3 SVM: broader spectrum including reactivity and
accessibility. In contrast to XGBoost, the SVM model distributed
importance more broadly across descriptors spanning hydro-
phobicity, polarity, electronic structure, and synthetic accessi-
bility. Lipophilicity-related features were again prominent,
including solute_S log P_VSA6 and solute_S log P_VSA1 (surface
area contributions partitioned by S log P values), together with
the classical octanol-water partition coefficient logP, sol-
ute_log P(o/w), highlighting the contribution of both global
hydrophobicity and localised lipophilic surface exposure.
Charge-based descriptors such as solute_ PEOE_RPC- and sol-
ute_PEOE_RPCH+ (relative negative and positive partial charges),
solute_PEOE_VSA+4 and solute_PEOE_VSA-4, sol-
ute_PEOE_VSA_FPPOS (fractional positive polar surface area),
and solute_GCUT_PEOE_2 (graph-cut from PEOE charges)
reflect detailed electron distribution patterns. Similarly, sol-
ute_SMR_VSA4 (van der Waals surface area weighted by molar
refractivity) integrates both surface area and polarizability
effects.

Topological and geometric also featured,
including solute_a ICM (atom information content), sol-
ute_balaban] (Balaban connectivity index), solute_radius
(molecular size), and solute_chiral_u (number of unconstrained
chiral centres), together indicating that SVM is sensitive to
molecular complexity, stereochemistry, and global shape.
Beyond these physicochemical determinants, the model
selected descriptors linked to reactivity and synthetic tracta-
bility, including solute_reactive, solute_rsynth, and sol-
vent_rsynth. While not mechanistic solubility drivers per se,
these properties correlate with size, functional group compo-
sition, and overall polarity, indirectly shaping solubility across
solvents.

The broader distribution of influential descriptors suggests
that SVM captures a more diffuse representation of solubility,
spanning lipophilicity, electronic structure, geometry, and
accessibility. This complements the sharper physicochemical
emphasis of XGBoost and underscores the multifactorial nature
of solubility in organic solvents.

3.2.2.4 Comparative interpretation of model biases. Several
descriptors top-ranked by SVM overlapped with those emphas-
ised by XGBoost, notably solute PEOE_RPC-, solute_a_ICM,
and solute_Slog P_VSA1, indicating consistent relevance of
partial charges, 3D shape, and surface lipophilicity across
models.

Taken together, the results and patterns in Fig. S6 and S7
suggest that XGBoost concentrated on a tighter set of polarity
and H-bonding metrics, while SVM captured a broader, more
diffuse spectrum of structural, electronic, and accessibility-
related features. SHAP heatmaps revealed clear differences in
how the two models attributed importance across solutes,
consistent with their distinct learning paradigms. XGBoost,
which leverages decision tree ensembles, produced smooth,
continuous SHAP gradients, particularly for global descriptors
such as solute_TPSA, solute_PEOE_RPC-, and solute/
solvent_a_ICM. This reflects its ability to split the feature
space using threshold-based decisions recursively and to

measures
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aggregate weak learners across multiple feature partitions. The
resulting heatmaps suggest that XGBoost captures multiscale
structure-property relationships, where continuous features
contribute to solubility predictions across a broad chemical
space.

In contrast, SVM, trained with a Radial Basis Function (RBF)
kernel, yielded discrete and clustered SHAP patterns, with
contributions sharply concentrated on specific solutes for
descriptors such as rsynth and reactive. These descriptors often
encode binary or threshold-like properties, which align with the
SVM's reliance on support vectors to define decision boundaries
in a projected feature space. Because SHAP values for kernel
models are computed via background sampling (KernelEx-
plainer), they tend to reflect abrupt shifts in predicted output
due to localised descriptor influence. The SVM heatmaps,
therefore, highlight class-like behaviour, solutes with distinct
physicochemical filters or synthetic characteristics, rather than
broad, continuous trends.

Together, these findings suggest that XGBoost identifies
solubility determinants driven by continuous physicochemical
gradients, particularly polarity, charge distribution, and
hydrogen-bonding capacity, while SVM highlights discrete
structural or accessibility filters that partition solutes into
distinct subgroups. This divergence reflects their underlying
learning biases: XGBoost leverages recursive thresholding to
capture fine-grained physicochemical variation, whereas SVM
relies on support vectors to enforce boundary-driven classifi-
cation in descriptor space. The convergence on common
features such as lipophilicity and 3D shape, coupled with their
complementary sensitivities, reinforces the robustness of our
conclusions and underscores the value of combining tree-based
and kernel methods to map a richer landscape of solubility-
relevant features.

3.2.3 Interpreting substructural patterns from finger-
prints. To complement descriptor-based insights, we analysed
SHAP-ranked Morgan Fingerprints derived from the XGBoost
model, which achieved the highest overall performance. Unlike
predefined descriptors, these fingerprint bits encode
algorithmically-derived molecular substructures based on atom
connectivity, rather than predefined chemically-informed
functional groups. By mapping key fingerprint bits back to
chemical fragments, we identified interpretable substructures
associated with solubility trends across the dataset. Fig. S8 and
S9 in SI-S10 show the top-ranked fingerprint bits for solutes and
solvents across SHAP values of solutes ordered by solubility.
Rows represent solutes ordered by decreasing averaged experi-
mental solubility across available solvents (top to bottom);
columns show fingerprint bits, with the importance ranking
from left to right. Cell values indicate SHAP contributions, with
positive values promoting solubility and negative values
reducing it.

Due to hashing and bit folding, the same Morgan Finger-
print bit can correspond to multiple distinct substructures
across different molecules. In cases where RDKit could not
recover a mapped atom environment for an active bit, we return
to highlighting the single atom. S8 and S9 in SI illustrated the

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Representative solute substructures corresponding to the top 20 SHAP-ranked Morgan Fingerprint bits that appeared in more than two
different solutes. Substructures are highlighted in red and classified according to their negative or positive effects on solubility.

top 20 Morgan Fingerprint bits that are visualisable from the
solutes and solvents individually.

Fig. 9 highlights recurring solute substructures among the
top 20 SHAP-ranked bits, restricted to those appearing in more
than two different solutes, thereby emphasising motifs with
consistent solubility effects across the dataset. Among the top
20 SHAP-ranked Morgan Fingerprint bits for solutes, several
showed consistent directional contributions across multiple
molecules. Bits such as 1876, 114, 145, 191, 310, and 1199 are
predominantly associated with increased predicted solubility,
while the rest of the bits contribute negatively. Both the bits
with positive contributions and those with negative contribu-
tions include a combination of organic sections and
heteroatom-based functional groups. The positive bits feature
more contribution from larger parts of aromatic rings than the
negative bits. Aromatic groups without heteroatoms can
contribute to solubility in solvents with significant organic
character, suggesting the extended aromatic sections contribute
to solubility in the less polar solvents among this dataset.
Meanwhile, aromatic groups containing heteroatoms can
contribute to solubility in polar solvents or solvents with polar
groups. This environment-dependent behaviour may explain
why aromatic groups feature heavily in general over the whole
dataset.

For a subset of high-ranking bits (e.g. 378, 935, 114, 656,
1683), a valid atom substructure could not be recovered, likely
due to bit collisions or unresolved hashing. In these cases,
visualisation defaulted to the central atom. This highlights

© 2026 The Author(s). Published by the Royal Society of Chemistry

a key limitation of hashed fingerprints: while they capture
predictive patterns, interpretability is constrained by the one-to-
many mapping between bits and substructures. Despite this,
SHAP analysis at the bit level offers a useful route for priori-
tising solubility-relevant features, particularly when combined
with substructure visualisation.

Among the top SHAP-ranked solvent fingerprint bits, direc-
tional contributions varied across solutes, highlighting the
context-dependent nature of solvation. Although both solute
and solvent substructures are fixed for a given molecule, the
influence of solvent fingerprints on solubility is inherently
relational; their effect emerges from compatibility with specific
solute features, rather than from intrinsic properties alone. For
instance, the same solvent bit encoding an ether or halogen may
enhance solubility for a polar solute by enabling favourable
dipolar or hydrogen bonding interactions, but reduce solubility
for a non-polar solute that cannot experience these interactions.
Meanwhile, a substantial carbon chain or non-decorated
aromatic group may enhance solubility for a non-polar
solvent, but reduce it for a solvent which relies on the pres-
ence of polar bonds. This variability reflects the principle that
solubility emerges from solute-solvent complementarity, rather
than intrinsic solvent features in isolation. Although this limits
direct attribution of solvent bits to fixed solubility effects, the
overall SHAP patterns reveal solvent environments that are
more or less compatible with the range of diverse solute classes
present in the current dataset.
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4 Conclusions

Predicting solubility remains a central challenge in chemical
and pharmaceutical research because of the complex interplay
of molecular structure, intermolecular interactions, and solvent
environment. Classical thermodynamic approaches, such as
COSMO-RS, provide a strong theoretical foundation by linking
molecular structure to solubility behaviour through quantum
chemical calculations and thermodynamic modelling. In
contrast, descriptor-based QSPR/QSAR frameworks capture
these structure-property relationships using molecular
descriptors through machine learning methods, offering a more
flexible way to learn patterns directly from data.

In this work, we develop an integrated pipeline that unifies
descriptor generation, flexible model selection (RF, SVM,
XGBoost), and hybridisation with COSMO-RS outputs, together
with systematic CV strategies. By incorporating interpretable ML
methods, notably SHAP-based feature attribution, the framework
not only achieves competitive predictive performance but also
reveals the molecular features most strongly governing solubility.
The pipeline further supports multiple descriptor types (Morgan
Fingerprints, Mordred, MOE, and RDKit descriptors), enabling
a comprehensive and modular evaluation across data
representations.

In particular, SHAP analysis revealed that the most influen-
tial features across the models corresponded to well-established
physicochemical determinants of solubility. This alignment
with Lipinski's Rule of Five demonstrates that the ML models
effectively rediscover classical medicinal chemistry heuristics,
while extending them into a broader solubility context.
Crucially, the contribution of the present work is in showing
that such relationships can be captured, quantified, and
generalised at scale across hundreds of solute-solvent combi-
nations. This systematic and data-driven validation provides
confidence that intuitive chemical principles hold in diverse
contexts, while highlighting where deviations may occur. Such
convergence across descriptor types underscores the reliability
of our framework and highlights the value of interpretable ML
in providing chemically meaningful insights.

Looking ahead, this pipeline demonstrates how mechanistic
insight and ML can be synergistically combined into a repro-
ducible and extensible workflow. By coupling COSMO-RS
physical descriptors with modern ML architectures and inter-
pretable feature analysis, the framework establishes a robust
template for the prediction of solubility with improved accuracy
and transparency. Most importantly, the workflow enables
scalable, reproducible screening of the solubility across large
chemical spaces, supporting practical applications where solu-
bility is a critical determinant of molecular performance. Such
advances can accelerate applications in drug discovery,
sustainable chemistry, and pharmaceutical design.
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