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Solid polymer electrolytes exhibit limitations in room-temperature ionic conductivity and electrochemical

stability. While molecular simulations and electronic-structure theory are able to sample these key

properties at the molecular scale, the field currently lacks integrated, automated tools for end-to-end

assessment. We introduce polymer electrolyte modeling and discovery (PEMD), an open-source Python

framework that unifies polymer construction, force field parameterization, multiscale simulation, and

property analysis for polymer electrolytes. The comprehensive analysis suite spans transport properties,

transport mechanisms, and electrochemical stability. PEMD achieves a 100% success rate in constructing

a collection of 656 homopolymers. The automated molecular dynamics workflow reproduces

experimental ionic conductivities for 18 reported systems (Spearman r = 0.819; MAE = 0.684 in log 10

(S cm−1)). Specifically, for poly(ethylene oxide)/LiTFSI electrolytes, PEMD captures the canonical non-

monotonic dependence of ionic conductivity on salt concentration with built-in default settings. The

workflow is further applied at scale to compute ionic conductivities for 200 polymer electrolytes.

Moreover, automated oxidation window screening on 15 representative polymer electrolytes recovers

experimental rankings for the oxidation potential (Spearman r = 0.754; MAE = 0.473 V). With

standardized protocols and traceable workflows, PEMD provides a reliable platform for high-throughput

screening and data-driven design of solid polymer electrolytes.
1 Introduction

Solid polymer electrolytes are promising candidates for next-
generation solid-state lithium battery technology owing to
their inherent advantages, including low cost, enhanced safety,
and manufacturing compatibility.1–5 Despite the benets, their
limited room-temperature ionic conductivity and electro-
chemical stability represent the primary impediments to prac-
tical applications.6–8 The transport mechanism in polymer
electrolytes is intrinsically coupled across scales: local Li+

solvation, coordination, and ion pairing phenomena dictate the
mesoscale structure and constrain polymer segmental motion.
This coupling ultimately results in poor ion transport and the
formation of concentration gradients that induce electrode
polarization.9–12 Given that experimental characterization is
frequently limited by resolution, timescale, and compositional
complexity, theoretical and computational methodologies offer
Electrolyte Engineering Research Center,

nghua Shenzhen International Graduate

8055, China. E-mail: tingzhenghou@sz.

g, Tsinghua University, Beijing, 100084,

ering, City University of Hong Kong, Hong

y the Royal Society of Chemistry
a complementary and powerful route that affords atomistic
insight under controlled conditions to systematically uncover
fundamental structure–property relationships.13–17

Over the past decades, established simulation engines such
as GROMACS,18 LAMMPS,19 and Gaussian20 have served as
theoretical platforms for performing molecular dynamics (MD)
simulations and quantum mechanics (QM) calculations,
enabling a wide range of studies on polymer systems.21–23

Moreover, the polymer modeling community has developed
diverse specialized tools, including PSP,24 mBuild,25 PySoK,26

and the high-throughput workow package RadonPy.27 Despite
the extensive toolkit (Table S1), the utility of most existing
computational resources is limited to either structural model
generation or data-driven polymer informatics. Most recent
developments have begun to couple modeling with electrolyte-
specic analyses.9,28–30 Nevertheless, end-to-end, domain-
tailored platforms for data-driven screening and design of
polymer electrolytes remain inadequate. The absence of such
a unied toolchain currently forces researchers to assemble
fragmented toolchains via manual scripting, a process which
fundamentally compromises reproducibility, scalability, and
computational efficiency. Therefore, to address the current data
scarcity for electrolyte-specic polymer properties, including
transport properties,31–33 transport mechanisms,34–36 and
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electrochemical stability,37,38 an integrated computational
workow is fundamentally necessiary.

In this work, we present PEMD (polymer electrolyte
modeling and discovery), an open-source Python package for
high-throughput simulation and analysis of polymer electro-
lytes. PEMD establishes an integrated and modular platform
that seamlessly automates the entire computational workow,
from polymer construction and force eld generation to mul-
tiscale simulation and property analysis. Compared with exist-
ing tool, PEMD achieves substantial efficiency gains in polymer
structure modeling, capable of OPLS-AA force eld generation
and conformer search for polymer chains of effectively unlim-
ited length. Utilizing this foundation, the embedded analysis
module is designed to evaluate key electrolyte properties,
including ionic conductivity, transference numbers, solvation
structure distributions, and electrochemical stability windows
(ESW), while supporting scalable, high-throughput calcula-
tions. By enabling standardized, reproducible, and scalable
computational protocols, PEMD bridges atomistic modeling
with data-driven materials discovery, offering a versatile and
essential tool for the design and optimization of next-
generation polymer electrolytes.

2 Architecture and methods

As schematically outlined in Fig. 1, the PEMD framework
provides an integrated, high-throughput pipeline designed for
the comprehensive assessment of polymer electrolyte behavior.
The workow comprises four key stages: polymer construction,
OPLS-AA force eld parameterization, multiscale simulation,
and physicochemical property analysis.

2.1 Polymer model construction

Reliable, automated construction of representative polymer
conformers is fundamental for enabling credible simulations
Fig. 1 Overview of the PEMD workflow: modeling, force field paramete
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and subsequent analyses of polymer electrolytes. Fig. 2a shows
the automated polymer structures generation algorithm. The
workow initiates by generating the 3D structure of the
constituent monomer. Monomer units are then repeatedly
attached to the growing polymer chain at predened connec-
tion sites. Fig. 2b details the geometric operations of a move-
align connection operator. First, the local neighborhood of
the chain's tail atom is analyzed to compute the outward
extension vector vchain, pointing in the direction of minimal
steric hindrance. A virtual joining site is subsequently placed
along vchain at the prescribed bond length, r0 = 1.5 Å. The
incoming monomer unit is then translated such that its head
atom coincides with this designated site. Based on the local
environment around the head atom, its own extension vector
vunit is determined, and the unit is rigidly rotated to achieve the
antiparallel alignment of vunit with vchain. To mitigate close
atomic contacts, an additional dihedral rotation (40) is applied
around vunit. Following each connection step, the resulting
geometry is rigorously evaluated for steric conicts or unreal-
istic conformations (Fig. 2a). If such structural defects are
detected, a local geometric optimization is performed to relieve
strain and preserve structural integrity. Otherwise, the chain
construction proceeds directly to the next connection step.
Upon completion of the polymer backbone, users can specify
capping groups for the head and tail termini (e.g., –H, –CH3, –
OH). By default, saturated sp3-carbon termini are hydrogen-
capped, while all other termini are methyl-capped.

Based on this workow, PEMD facilitates the construction of
diverse polymer architectures, including homopolymers, alter-
nating copolymers, random copolymers, and block copolymers
(Fig. 2c). Given that previous reports has highlighted the
profound inuence of amorphous morphology on ion transport
and segmental dynamics in polymer electrolytes,5,39 the con-
structed polymer chains are subsequently used to automatically
generate amorphous simulation cells through the integrated
rization, simulation, and analysis.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Flowchart of the OPLS-AA force field parameterization in
PEMD. (b) Atom-typing logic implemented via SMARTS pattern
matching, illustrated on a PEO oligomer (degree of polymerization =

3).

Fig. 2 (a) Flowchart illustrating the polymer structure generation
algorithm. (b) Connection process between growing polymer chain
and monomer unit. (c) Representative polymer chain structures for
a homopolymer, alternating copolymer, random copolymer, and
block copolymer.
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PACKMOL interface.40 Example code snippets illustrating the
polymer construction and amorphous cell generation processes
are provided in Fig. S1 and S2.
2.2 OPLS-AA force eld parameterization

OPLS-AA force eld has been widely implemented and bench-
marked for polymer electrolyte simulations due to its estab-
lished robustness and universality.30,36,41,42 However, the utility
of existing parameterization tools, such as LigParGen,43 is
restricted by a maximummolecule size, typically fewer than 200
atoms. The inherent limitations render direct parameter
generation unsuitable for the long polymer chains that are
typically required for accurate representation of polymer elec-
trolyte systems.

To effectively address this size limitation, we employ a two-
stage parameterization strategy (Fig. 3a). The rst stage
involves generating initial OPLS-AA parameters for a short-
chain polymer segment. The resultant parameters are then
converted into an XML-based force eld le via the XMLGene-
rator class in PEMD. This step establishes an explicit and veri-
able mapping between atom types and their corresponding
bonded and non-bonded parameters. In the second stage, these
XML denitions are systematically extended to arbitrarily larger
polymer chains without atom-count restrictions. Atom typing is
performed using Foyer44 through a hierarchical SMARTS-based
pattern matching algorithm. As illustrated in Fig. 3b with
a polyethylene oxide (PEO) oligomer (degree of polymerization
= 3), each atom is uniquely identied by a SMARTS string that
© 2025 The Author(s). Published by the Royal Society of Chemistry
encodes both its elemental identity and its local chemical
environment. Based on this precise atom-type matching,
GROMACS-compatible OPLS-AA force eld les are generated
automatically, ensuring high delity and scalability.

Furthermore, PEMD integrates automated support for RESP
and RESP2 charge tting (detailed subsequently), enabling the
direct incorporation of optimized partial charges into the
generated OPLS-AA force eld le. For enhanced convenience
and standardization, PEMD maintains an internal OPLS-AA
force eld database, which houses curated entries for a wide
selection of representative polymers and electrolyte compo-
nents. This provides users with exible access to OPLS-AA
parameters, allowing them to be either dynamically generated
by calling oplsaa() via LigParGen or readily loaded from the
internal database (Fig. S3).
2.3 Automated simulations framework

We employ a funnel-type conformer search strategy (Fig. 4a)
that is applicable to both oligomers and small molecules, with
a PEO oligomer presented as a representative example. The
procedure begins by using the monomer's SMILES notation and
the specied degree of polymerization to generate 1000 initial
3D conformers using RDKit.45 A subsequent rapid MMFF46

prescreening step retains the 100 lowest-energy, diversity-aware
candidates. These candidates are then rened through a semi-
empirical GFN1-xTB47 method, which reduces the set to the 10
most promising structures. Finally, these structures undergo
density functional theory (DFT) geometry optimizations,
utilizing a user-specied functional and basis set, to ultimately
converge on 5 local energy minima.

Once the lowest-energy geometries are identied following
the protocol, they serve as the input structures for subsequent
Digital Discovery
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Fig. 4 (a) Multi-level conformer search workflow in PEMD. (b) RESP/
RESP2 charge fitting with multi-conformer averaging and end-
preserving charge reassignment.

Fig. 5 (a) General MD simulation protocol in PEMD. (b) Visualization of
the annealing process, showing the initial and post-annealed amor-
phous polymer electrolyte configurations.
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QM calculations. Fig. 4b summarizes an automated RESP/
RESP2 charge-tting workow. A procedure includes calcu-
lating the electrostatic potential (ESP) of representative oligo-
mers at the DFT level, followed by tting atom-centered charges
using Multiwfn48 with either the RESP or RESP2 formalism. To
mitigate the geometry dependence of the tted charges, we
implement a multi-conformer averaging scheme. Specically,
charges for each member of the low-energy conformer
ensemble are tted separately, and the nal per-atom charges
are determined by averaging these values across all conformers.
To extend these derived charges to arbitrary polymer chain
lengths, the oligomer is structurally decomposed into terminal
caps and a repeat unit. A user-selected parameter, nend, species
the number of terminal repeat units that will retain their
explicit tted charges, while the interior are assigned trans-
lationally invariant charges obtained by averaging the charges
over the core repeat unit and subsequently tiling this averaged
set across the remaining interior segments. The nal set of
charges is then renormalized to match the required net charge
of the system. This end-preserving, interior-periodic mapping
strictly follows established best practices for polymer parame-
terization based on oligomer ESP tting.41 Fig. S4 provides the
PEMD code snippets implementing the conformer search and
automated RESP/RESP2 charge tting.

To accurately sample the transport properties of polymer
electrolytes, we adopt a standardized classical MD protocol
implemented within GROMACS (Fig. 5a). Initial amorphous cell
at the target density is prepared in the modeling module
(Fig. S2). Following a steepest-descent energy minimization to
eliminate unphysical close contacts, the systems undergo NVT
equilibration at the target temperature. This is immediately
succeeded by a linear up-down temperature ramp implemented
via the simulated-annealing control points in GROMACS, which
accelerates the relaxation of local entanglements characteristic
of amorphous polymer systems. The annealing stage, which is
automated in PEMD, exposes user-tunable parameters
(temperature window, ramp rate, number of control points) to
ensure efficient and reproducible equilibration. Subsequently,
a 5 ns NPT equilibration is performed to further relax the
systems. The time evolution of the potential energy, tempera-
ture, volume, mean-squared end-to-end distance <R2>, and
Digital Discovery
radius of gyration Rg for representative systems is shown in
Fig. S5. All of these quantities uctuate around stable mean
values without systematic dri, indicating that both the ther-
modynamic state and the polymer chain conformations are well
equilibrated before the production runs. A representative
snapshot at the mean plateau volume was extracted as the
starting conguration for production MD run. Given that
amorphous polymer electrolytes typically require tens to
hundreds of nanoseconds for obtaining converged transport
statistics, the production simulations are conducted at the
target temperature with a default simulation time of 200 ns. To
quantify the computational cost of the MD workow, Table S2
summarizes the wall-clock runtime of each MD stage for PEO/
LiTFSI electrolytes at various Li : EO ratios. For example, for
a system with Li : EO = 0.05 (7900 atoms), the total wall-clock
time required for the full MD workow is 53.83 h. Fig. 5b
visually compares the initial PACKMOL packing with the
equilibrated amorphous polymer electrolyte structures ob-
tained following this complete workow. The PEMD code
snippets automateing this MD protocol are provided in Fig. S6.
In fact, similar MD workows have been implemented in the
GroPoB framework developed by Gudla and Zhang,49 which
focuses on determining the glass transition temperature of
PEO/LiTFSI polymer electrolytes. By contrast, PEMD is inte-
grated with a general polymer builder and supports high-
throughput analysis of both transport properties and redox
stability across diverse polymer electrolytes.

Electrochemical stability is dened as the voltage window
bounded by the reduction and oxidation limits over which
a polymer electrolyte can operate without undergoing irrevers-
ible redox decomposition.8 The oxidative limit is particularly
critical as it dictates compatibility with high-voltage cathodes,50

and thus imposes constraints on the energy density, cycle life-
time, and safety of solid-state batteries. Prior work has found
that reliable and converged estimates of the oxidative window
are achieved using a polymer-anion complex with three repeat
units38,51–53 (Fig. S7). Herein, we automated the oxidation
potentials (Eox) calculation of polymer electrolytes based on the
polymer-anion cluster model (Fig. 6a). First, ion-polymer
complexes are extracted from MD trajectories by specifying
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (a) Automated computational framework for oxidative window. (b) Extraction of ion-polymer complexes from MD trajectories.
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the repeat unit, chain length, and capping group. Illustrated
using the PEO/LiTFSI (Fig. 6b), the construction of these ion-
polymer clusters begins by identifying the anion's rst coordi-
nation shell with respect to the H atoms of the PEO chain. The
covalently bound heavy atom (X in X–H) nearest to the coordi-
nating H is designated as the chain anchor. Starting from this
anchor, a contiguous polymer segment is grown in both
symmetrically along the backbone until the prescribed chain
length is reached. This segment, alongside the coordinating
anion, is then excised from the trajectory structure. Finally, the
extracted clusters are capped using the identical algorithm
empolyed in the initial polymer model construction.

EoxðV vs: Li=LiþÞ ¼ �½GðMÞ � GðMþÞ�
F

� 1:46 V (1)

Here, G(M) and G(M+) represent the free energies of the neutral
and oxidized molecules, respectively. F is the Faraday constant
(96485C mol−1). These potentials are adjusted relative to the Li/
Li+ reference electrode by subtracting 1.46 V.54 The PEMD code
Fig. 7 (a) Schematic of the PEMD post-analysis, including transport
properties (blue panels), transport mechanisms (orange panels), and
electrochemical stability (green panels). Next, we specify the bulk
dielectric constant and perform DFT single-point energy calculations
to identify plausible starting geometries. The oxidative limit Eox is then
computed by evaluating the adiabatic ionization free energy and
converting it to a voltage via eqn (1).

© 2025 The Author(s). Published by the Royal Society of Chemistry
that fully automates this oxidative window calculation is
provided in Fig. S8.
2.4 Post-processing and analysis

PEMD is designed to provide comprehensive property analyses
of polymer electrolytes. As summarized in Fig. 7, the schematic
presents three core modules: transport properties, transport
mechanisms, and electrochemical stability. Within the trans-
port properties module, current functionalities include evalu-
ating self-diffusion coefficients, ionic conductivity, and the
cation transference number. Specically, the self-diffusion
coefficients are evaluated from the Einstein relation (eqn (2)
in Table 1). Ionic conductivity is computed from the uctuation-
dissipation theorem via the Green–Kubo relation (eqn (3) in
Table 1). Additionally, the cation transference number is
precisely determined from the Onsager transport matrix Lij (eqn
(4) in Table 1). To obtain physically meaningful transport
properties from MD simulations, PEMD employs automated
analysis procedures to ensure that the system has reached the
diffusive regime (Fig. S9).

The design of higher-performance polymer electrolytes
fundamentally necessitates a mechanistic understanding of ion
transport at the atomistic level. Accordingly, PEMD provides
a comprehensive suite of mechanistic analyses, including
solvation structure distributions, cation transport mechanisms,
ion clustering statistics, and residence times. We quantied the
solvation structure distributions directly from MD trajectories,
leveraging the capabilities of MDAnalysis.55 The requisite
distance cutoffs for dening Li+-donor contacts were rigorously
determined from the rst minima of the radial distribution
functions (RDF). For every simulation frame and each indi-
vidual Li+, PEMD records the composition of specic coordi-
nation motifs, m = (npolymer, nanion, nsolvent). These motifs were
then histogrammed to yield the statistical distribution of
distinct solvation structures within the electrolyte. Additional
analysis methods, including the detailed characterization of
cation transport mechanisms, ion clustering statistics, and
residence times, are thoroughly discussed in Fig. S10–S13.

Electrochemical stability is assessed using two complemen-
tary approaches. Firstly, the frontier orbital energies (HOMO
and LUMO) of polymer electrolytes can provide a rapid, quali-
tative estimate of the stability window (Fig. S14). A lower HOMO
energy typically correlates with higher oxidative stability, while
Digital Discovery
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Table 1 Defining equations for key transport coefficients31

Transport property Formulaa

Self-diffusion coefficient (Da) Da ¼ lim
t/N

� 1
6t
hDrðtÞ2i� (2)

Ionic conductivity (s)
s ¼ 1

6kBTV
lim
t/N

d
dt

�X

i

X

j

qiqj ½riðtÞ � rið0Þ�$½rjðtÞ � rjð0Þ�
�
(3)

Cation transference number (t+)
tþ ¼ zþ2Lþþ þ zþz�Lþ�

zþ2Lþþ þ z�2L�� þ zþz�Lþ� (4)

a List of symbols: a denotes an index over particles (ions, polymer and solvent); i and j denote indices of ionic species; kB is the Boltzmann constant;
T is the temperature; V is the cell volume; qi and qj are the charge of species i and j; z+ and z− are the charge numbers of the cation. and anion,
respectively.
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a higher LUMO energy suggests greater resistance to reduction.
Although this approach is low-cost and highly suitable for large-
scale pre-screening and ranking, it inherently neglects geometry
relaxation, local coordination, and environmental polarization.
Consequently, the absolute values derived from frontier orbitals
should be treated as qualitative or at most semi-quantitative.
For the denitive electrochemical stability window (ESW)
determination, PEMD incorporates the calculation of Eox and
Ered values obtained by a more rigorous approach: sampling
chemically representative MD snapshots, prescreening candi-
date geometries at the low-level DFT, and then computing
adiabatic ionization/electron-attachment free energies that are
mapped to voltages versus Li/Li+ (Fig. 6).
3 Results and discussion
3.1 Modeling performance

To quantify the efficiency and robustness for polymer structure
generation and simulation initialization, we benchmarked
PEMD against existing platforms, specically mBuild, PSP,
PySoK, and RadonPy on 656 homopolymers spanning a broad
range of molecular weights (Mw) (Fig. 8). PEMD successfully
generated terminally capped chains for every target system,
exhibiting no discernible dependence on Mw. By contrast, both
PSP and PySoK demonstrated a steep decline in their success
Fig. 8 (a) Success rate of chain generation as a function of molecular we
PEMD). (b) Representative monomer units from the benchmark set with

Digital Discovery
rate as Mw increased, with PSP showing the most signicant
decrease. While mBuild exhibited no clear Mw dependence, its
overall success rate was consistently below 60%. RadonPy
maintained a high success rate across the molecular weight
spectrum but did not achieve 100% completion. Collectively,
these comparative results establish PEMD as a highly robust
and scalable front-end for the large-scale computational
modeling of polymer structures, particularly in the domain of
experimentally relevant polymer electrolyte systems with high
Mw.
3.2 Transport properties

To assess the delity of the MD workow, we performed fully
automated MD simulations on 18 literature-reported polymer
electrolytes and systematically compared the resultant ionic
conductivities (s) against experimental data (Fig. 9a and Table
S3; see computational details in Part S1). The calculated and
experimental s show a strong monotonic relationship, quanti-
ed by a Spearman correlation coefficient (r) of 0.819 and
a mean absolute error (MAE) of 0.684 in log10 (S cm−1). This
strong correlation directly supports the quantitative reliability
of the automated computational workow. Glass transition
temperature (Tg) plays an important role in governing polymer
chain mobility and thus inuences the dynamics of polymer
electrolytes.5,6 In PEMD, Tg can also be computed automatically
ight (Mw) comparing multiple tools (mBuild, PSP, PySoftK, RadonPy, and
their SMILES. * denotes the connecting sites of the monomers.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 (a) Correlation between calculated and experimental ionic
conductivity. The dashed diagonal line denotes perfect agreement. (b)
Frequency distribution of ionic conductivity shown as a histogramwith
an overlaid normal fit. (c) Ionic conductivity and (d) transference
number versus Li : EO ratios, compared with reported experiments and
prior MD simulations.

Fig. 10 (a) Schematic first-shell motifs of Li+ in PEO electrolytes: Li+-
PEO coordination (top) and Li+-PEO-TFSI− coordination (bottom). (b)
Coordination fraction of Li+-PEO and Li+-PEO-TFSI− coordination
from experiments and MD simulations at three salt concentrations (Li :
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using a protocol adapted from the GroPoB workow.49 Fig. S16
depicts the calculated Tg values plotted against experimental
ionic conductivity. A strong negative correlation is observed,
with a Spearman rank coefficient r of−0.962 and a coefficient of
determination R2 of 0.949. We further applied this validated
workow to automatically compute s for 200 polymer electro-
lytes (Fig. 9b). Across this expanded chemical space, the
distribution of log10 s is unimodal with a mean centered at
−4.81 (approximately 1.5 × 10−5 S cm−1 in linear units). Within
this benchmarked set, PEO/LiTFSI remains the top-performing
electrolyte. A small distribution on the high-conductivity side
suggests that only a limited subset of candidates is likely to be
promising. This nding underscores the necessity of expanding
the accessible chemical space, for instance by utilizing gener-
ative models to propose novel polymer chemistries, in order to
accelerate the identication of superior polymer
electrolytes.56–59

We further benchmarked the dependence of ionic conduc-
tivity on salt concentration within PEO/LiTFSI electrolytes
(Fig. 9c and Table S4). The MD workow accurately reproduces
the canonical non-monotonic dependence of s on salt concen-
tration, characterized by an initial rise at low salt, a maximum
concentration near Li : EO ratios of 0.10 to 0.12, and a subse-
quent decline at higher salt loadings. The predicted ionic
conductivity trend shows close quantitative agreement with
prior experimental observation by Villaluenga et al.60 and
computation studies by Shao et al.61 This result underscores the
robustness and delity of the default MD protocol across
a broad range of electrolyte formulations.

The cation transference number was subsequently deter-
mined directly from the MD trajectories. Fig. 9d illustrates the
dependence of t+ on salt concentration for PEO/LiTFSI (Table
© 2025 The Author(s). Published by the Royal Society of Chemistry
S4). t+ exhibits an increasing trend with salt loading, consistent
with both experimental reports and prior MD investigations.61

Therefore, the built-in MD workow provides a robust, auto-
mated framework for the comprehensive evaluation of key
transport properties in polymer electrolytes.
3.3 Transport mechanisms

Designing high-performance polymer electrolytes requires
a fundamental mechanistic understanding of Li+ transport. In
PEO/LiTFSI electrolytes, the tight coordination of Li+ by ether
oxygens suppresses ion mobility. Recent studies show that ne-
tuning the salt content can partially release Li+ from the PEO
cage, enhancing both ionic conductivity and the cation trans-
ference number.62 The solvation structure distributions,
specically Li+-PEO and Li+-PEO-TFSI− species, are quantied
using PEMD and compared with the experiments. The experi-
mental data was derived from Raman spectral ts of the TFSI−

bands, characterizing the dissociated and associated ion frac-
tions (Fig. 10). As the salt concentration increases from Li : EO=

1 : 32 to 1 : 6, the computed results show a monotonic increase
in the Li+-PEO fraction and a concurrent suppression of the Li+-
PEO-TFSI− aggregates. The measured values based on the
Raman spectral analysis agrees well with the computed distri-
butions across the range of concentrations.63 This agreement
indicates that PEMD faithfully recovers the Li+ solvation-
structure distribution, providing support for the reliability of
the mechanistic analysis module.

To further demonstrate that the current analysis workow is
not limited to ether-based polymer electrolytes, we additionally
applied the same protocol to a representative polycarbonate
system, poly(ethylene carbonate) (PEC)/LiTFSI. Fig. S17 depicts
the coordination fractions of Li+-PEC and Li+-PEC-TFSI− species
at Li : carbonyl oxygen (CO) ratios of 1 : 32, 1 : 16, and 1 : 6. We
observed that, at low salt concentration, the fraction of Li+-PEC-
TFSI− species in PEC/LiTFSI is clearly higher than the Li+-PEO-
TFSI− fraction in the corresponding PEO/LiTFSI system. This
suggests that the polycarbonate host provides a weaker coor-
dination environment for Li+ than PEO, allowing TFSI− anions
to enter the rst solvation shell more readily.
EO = 1 : 32, 1 : 16, 1 : 6).
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Fig. 11 (a) Correlation between calculated and experimental oxidation
potentials (Eox) at the B3LYP-D3(BJ)/def2-TZVP level of theory. The
dashed diagonal line denotes perfect agreement. (b) The spin density
distribution (isovalues = 0.003 a.u.) of representative polymer/TFSI−

complexes.
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3.4 Electrochemical stability

To evaluate the external validity of the electrochemical stability
calculation protocol, we applied the framework to 15 repre-
sentative polymer electrolytes and benchmarked the predicted
Eox against reported oxidation onsets (Fig. 11 and Table S5). Eox
values were computed at the B3LYP-D3(BJ)/def2-TZVP64–68 level
of theory. The functional sensitivity relative to M06-2X69 and
uB97X-D70 is shown in Fig. S18. B3LYP yielded the highest
Spearman r (0.754) and the lowest MAE (0.473 V). Specically,
PPO, PEO, PDOL, and PTHF exhibit lower oxidative window.
Spin density maps of the cationic states reveal hole localization
along the backbone C–C bonds in PPO, consistent with the C–C
bond weakening and subsequent elongation. By contrast, the
preferred oxidation pathway in PEO, PDOL, and PTHF is anion-
mediated hydrogen abstraction (deprotonation), where the
anion extracts a proton from the polymer. Using the automated
computational workow for Eox, our predictions show strong
agreement with experiment, validating the methodology for
electrochemical stability calculations.
4 Conclusion

We developed PEMD, an open-source Python framework that
unies polymer construction, OPLS-AA force eld parameteri-
zation, multiscale simulation, and property analysis into
a single, automated workow specically tailored to polymer
electrolytes. Rigorous benchmarking demonstrates that PEMD
achieves a 100% build success rate across 656 homopolymers.
Furthermore, the automated MD workow accurately repro-
duces experimental ionic conductivity trends with high statis-
tical delity (Spearman r = 0.819; MAE = 0.684 in log10
(S cm−1)), and captures the canonical dependence of trans-
ference numbers on salt concentration. The automated oxida-
tion window screening protocol further recovers the
experimental ranking of 15 representative polymer electrolytes
(Spearman r= 0.754; MAE= 0.473 V). Collectively, these results
establish PEMD as a reproducible and scalable platform that
advances the capability of electrolyte-specic computational
modeling for polymer materials design.
Digital Discovery
By formulating standardized protocols and high-throughput
calculation framework, PEMD enables the systematic explora-
tion of diverse polymer chemistries, generating robust data sets
suitable for mechanistic analysis and data-driven materials
discovery. We note that the current tool has several inherent
limitations. First, due to practical limits on the number of
atoms, the polymer chain lengths accessible to atomistic MD
are considerably shorter than those in experimental samples.30

While convergence tests in concerning chain length have been
performed to verify certain transport properties, a limited chain
length has been reported to cause deviations in other proper-
ties, such as rheological properties.71–73 Second, polymer elec-
trolytes oen exhibit signicant crystallinity,39 whereas PEMD
currently focuses exclusively on amorphous phases, which are
widely reported to be more relevant to ion transport.39,74,75

Finally, at high salt concentrations, strong ion–ion correlations
make it computationally challenging for the system to reach
a diffusive regime within an accessible simulation timeframe,36

thereby demanding signicantly larger consumption of
computing power.

Future extensions of this work will focus on three key
aspects: (i) enriching the underlying physical models, including
the incorporation of polarizable and reactive force elds; (ii)
coupling the workow with active learning and generative
design strategies to enable accelerated closed-loop discovery;
and (iii) extending applicability to more complex systems,
including gra polymers, multicomponent composite electro-
lytes, and interfacial systems. These potential improvements
will offer a versatile foundation for the predictive design and
rapid screening of next-generation polymer electrolytes essen-
tial for solid-state battery technologies.
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Example notebooks and workow scripts are also included in
the GitHub and Zenodo releases.

All data supporting the ndings of this study are available
within the article and its supplementary information (SI).
Supplementary information is available. See DOI: https://
doi.org/10.1039/d5dd00454c.
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