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DFT meets Bayesian inference: creating
a framework for the assignment of calculated
vibrational frequencies

Michael Nicolaou, Hans M. Senn, Emma Gibson, (2 * Mario Gonzalez-

Jiménez & and Laia Vily-Nadal®*

Volatile Organic Compounds (VOCs) are abundant in nature and play vital roles in industries such as food,
fragrance, and pharmaceuticals. Aromatic VOCs like vanillin are especially valuable, driving research into
sustainable chemical processes, including the conversion of biomass into high-value chemicals.
Understanding the molecular structure and vibrational behavior of these compounds is essential for
designing and optimising such processes. In this work, we explore how computational modelling can be
used to predict and interpret vibrational spectra of VOCs. We also introduce a statistical approach using
Bayesian inference to improve how theoretical predictions are matched to experimental observations.
This combined strategy enhances the reliability and clarity of spectral interpretation, offering a more
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Introduction

Aromatic Volatile Organic Compounds (VOCs), such as vanillin,
have wide-ranging applications in food, cosmetics, and phar-
maceuticals." They play an important role in petrochemical
transition strategies,” acting as a critical link between renewable
biomass sources,® and fine chemicals.* Phenylpropanoid VOCs
in particular act as a driving force for recent advances in lignin
conversion to value-added chemicals,>® a highly promising
scientific frontier that aims for the depolymerisation of lignin,
an abundant, yet complex biopolymer that constitutes a large
fraction of plant matter.>>*® Aromatic VOCs are highly sought
after in the food, cosmetics, and fragrance industries due to
their strong organoleptic characteristics.'***

In parallel, the structural complexity of lignin—a heteroge-
neous biopolymer found in plant cell walls—continues to pose
a major challenge in sustainable chemical conversion. Its
irregular monomer composition and variable linkages, which
differ across plant species and extraction methods, complicate
both structural identification and the assessment of chemical
treatments.>'® As a result, analytical tools such as GC-MS,*”
NMR,**>* and IR/Raman spectroscopy'”*® are essential for
characterising lignin and its depolymerisation products.

Computational Density Functional Theory (DFT) methods
provide an invaluable tool for innumerable applications, such
as mechanistic studies of catalytical environments,"** aiding
in the understanding of catalytical processes and identification
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consistent framework for studying complex organic molecules.

of catalytical products. DFT modelling is, however, fundamen-
tally approximate, and needs experimental benchmarking when
choosing a system to model and caution when interpreting the
findings. This is further compounded by a notoriously expan-
sive catalogue of available methodology parameters,*** (choice
of functional, basis set or other factors such as dispersion) and
even strategies enhancing DFT with other approaches, such as
QM/MM methods** and machine learning.* This can be espe-
cially daunting when studying convoluted systems, such as
vibrational fingerprints, where intensities are approximate and
frequencies are off-set.>® These challenges are especially evident
in vibrational spectroscopy, where the harmonic approxima-
tion*” is commonly used to reduce computational cost. While
practical, this simplification introduces frequency errors, as it
neglects anharmonicity. Calculation of vibrational frequencies
also ignores phenomena like combination bands and Fermi
resonance. This becomes exacerbated when studying systems in
the solid or liquid state, where environmental effects are
involved, such as hydrogen bonding and =-stacking of aromatic
rings. While solid state calculations are possible using periodic
DFT, it escalates the complexity and thus computational cost of
a calculation, and is limited by the requirement of having prior
knowledge of the system's structure. Static scaling factors are
typically applied to correct frequency offsets, but interpretation
still requires manual assignment—often a tedious and uncer-
tain process. Recently, the integration of statistical models and
machine learning has propelled the rise of digital chemistry—
a data-driven paradigm that enhances the design, analysis, and
interpretation of chemical systems.”®* In this context, IR
spectral prediction is becoming increasingly automated, accu-
rate, and scalable, offering powerful tools for materials
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Fig. 1 Concept figure. A selection of important aromatic volatile organic compounds (VOCs) are analysed using IR spectrometry and their
vibrational frequencies are modelled using DFT. Experimental bands in the solid or liquid state are affected by environmental effects and their
interpretation can be difficult and ambiguous. DFT modelling of single molecules is fast and provides clear information on the vibrational modes.
A Bayesian probabilistic approach is employed to improve the daunting task of assigning DFT vibrational modes to experimental bands.

discovery, reaction monitoring, and structural elucidation.* To
overcome these issues, we introduce a Bayesian framework that
enhances vibrational mode assignment from single molecule
DFT calculations to non-gas phase IR spectra by statistically
linking theoretical frequencies with experimental bands. Bayes'
theorem allows us to quantify the likelihood of each potential
match, offering a structured and reproducible alternative to
subjective interpretation.

In this work, we have combined experimental results with
our calculated vibrational data to benchmark a range of DFT
methods for modelling aromatic VOCs and identify the most
time-efficient and accurate approach. Following the protocol
established by Alecu et al.,*® we report universal scaling factors
for these methods. Furthermore, we create a framework and
demonstrate how Bayesian inference can be used as a tool to
enhance and strengthen spectral interpretation. The following
ten aromatic compounds were used to test our proposed
method: vanillin, 4-hydroxybenzaldehyde, syringaldehyde,
cinnamaldehyde, = cuminaldehyde, eugenol, estragole,
coumarin, dihydrocoumarin, and umbelliferone, resulting in
facilitated spectral interpretation and vibrational mode identi-
fication (Fig. 1).

Methodology
Computational method

All computational calculations were performed using the
Gaussian 16 software®* on the University of Glasgow School of
Chemistry High-Performance Computing (HPC) cluster.
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Molecule visualisations were performed using the GaussView-5
software.*

Molecular geometry optimisation and vibrational frequency
calculations of vanillin molecules were performed at different
exchange-correlation (XC) functional levels of theory (S1) across
the GGA (Generalised-Gradient Approximation), mGGA (meta-
GGA), hybrid (HF exchange energy contribution), meta-hybrid,
range-separated hybrid and double-hybrid (HF and post-HF XC
contribution) “rungs” (BP86,°*** PBE,** OPBE,*** M06-L%,
B3LYP,*39 (z,B97X-D,* PBE0,**2 M06,** M06-2X** and PBEO-
DH*), as well as using ab initio post-HF second-order Mgller-
Plesset perturbation theory (MP2),***° wusing the 6-
311++G(2d,2p) triple-{ split-valence polarised Pople Gaussian-
type orbital (GTO) basis set for H, C and O°*** with diffuse
orbitals for all atoms.

To determine the point of basis set convergence and study the
effects of basis set parameters, such as polarisation and diffuse
functions, the same calculations were also performed at the M06-
2X XC functional level of theory using different basis sets (3-21G,
6-31G, 6-31G(d,p), 6-311G, 6-311G(d,p), 6-311+G, cc-pVDZ, cc-
pVTZ, cc-pVQZ, aug-cc-pVIZ, aug-cc-pVQZ,>* def2-TZVP, def2-
QZVP*), as M06-2X has been extensively used in studies on
similar molecules and suggested to be suitable for small-medium
molecules® and main-group thermochemistry.*>**

All calculations were performed using spin-restricted
(“closed shell”) orbitals and structures pre-optimised using
Universal Force-Field (UFF)*® Molecular Mechanics (MM).

Vibrational frequency calculations (IR and Raman), were
performed using the harmonic approximation model (S3).>

© 2026 The Author(s). Published by the Royal Society of Chemistry
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DFT-calculated vibrational frequencies were convolved and
plotted using Python.””*® Gaussian broadening was applied (S8)
around the calculated frequencies with a standard deviation of 8,
representing a full width at half maximum (FWHM) of approxi-
mately 19 ecm ™. All spectra were normalised when plotted.

Experimental details

Vanillin  (4-hydroxy-3-methoxybenzaldehyde)  (8.18718), 4-
hydroxybenzaldehyde (54590-F), syringaldehyde (4-hydroxy-3,5-
dimethoxybenzaldehyde) (S7602), cinnamaldehyde (2E-3-
phenylprop-2-enal) (W228613), cuminaldehyde (4-iso-
propylbenzaldehyde) (135178), eugenol (2-methoxy-4-(prop-2-en-1-
yl)phenol) (E51791), estragole (4-allylanisole) (A29208), coumarin
(C4261), dihydrocoumarin (D104809) and umbelliferone (7-
hydroxycoumarin) (H24003) were obtained from Sigma-Aldrich.
Experimental IR spectra were measured using a dry-air
purged Bruker Vertex 70 spectrometer equipped with a Globar
lamp, a Deuterated 1-alanine doped Tri-Glycine Sulphate
(DLaTGS) detector, a potassium bromide (KBr) beamsplitter,
and a diamond ATR accessory (Bruker Platinum ATR Unit
A225), at a resolution of 1 cm™ ', averaging over 16 scans at
a range of 350-4000 cm '. The gas phase IR spectrum of
vanillin was taken from the NIST Chemistry WebBook.**

Computational benchmark

To determine the most efficient method to model the selected
VOCs, a benchmark of the studied methodologies has been
carried out. The calculated bond lengths (excluding bonds with
H-atoms) of vanillin have been compared to single-crystal X-ray
crystallographic data (S10) found through the CCDC database®
(CID: 13006628) from Velavan et al.*®

Fig. 2 shows the geometry of vanillin as found in the crys-
tallographic file. The average bond length for each of the 11
bonds was taken as the average bond length of 4 vanillin
molecules present in the periodic crystal unit.

To gauge the efficiency of each method, the Mean Absolute
Deviation (MAD) (S4) between calculated and reference bond
lengths was compared with the job CPU time for the geometry
optimisation of a pre-optimised input structure.

The calculation of vibrational modes and frequencies
employs harmonic approximation,” in which normal modes
and frequencies are calculated based on the second derivatives
of the energy with respect to atomic displacements. This is done
to avoid the calculation of higher-order terms and simplify the
calculation. Additionally, DFT calculations were performed on
a single molecule, which is different from the experimental IR
spectrum of a crystal or liquid.

As a result, computed vibrational frequencies differ from
those observed experimentally via IR spectroscopy. It is thus
important to gauge the expected magnitude of this deviation
when attempting to make such a comparison. For errors due to
anharmonicity, a scaling factor, which depends on the method
used, is conventionally applied.

In their study, Alecu et al?®* showed that fundamental
frequency scaling factors, which can be universally applied to
frequency calculations to reduce the error by that method, can

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Structure of vanillin in single crystal (CCDC® CID 1306628 (ref.
63)). The coloured boxes highlight characteristic functional groups of
vanillin.

be obtained from the comparison of calculated frequency values
to the experimentally observed frequencies of a suggested
database containing 38 modes of vibration across 15 molecules,
referred to in their study as “F38/10”.2° The scaling factor (1Y)
can then be calculated as:

2 (o)
> (@?)

where w are the DFT-calculated harmonic frequencies and » are
the experimentally observed frequencies in cm™'. The root-
mean-square (RMS) deviation associated with a scaling
factor's fit to the dataset can be calculated as:

A= (1)

Z(Awav)z

n

RMS = (2)
where n refers to the number of modes compared, in this case
38. Minimising the RMS with respect to the scaling factor yields
the optimal scaling factor for the methodology.

The scaling factor for M06-2X/def2-TZVP was calculated for
validation. A scaling factor of 0.945 was obtained which is in
close agreement to the 0.946 reported by the authors, exhibiting
a scaled RMS deviation of the dataset of 48 cm™', showing
a clear improvement from the 147 cm™ ! unscaled deviation. A
clear improvement in the accuracy of the methods when
calculating the frequencies of the F38/10 database (S13) can be
seen with the application of the reported scaling factors.

The RMS was optimised with respect to A¥ (S13) and the
scaled RMS deviations present similar values to those of scaling
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factors reported, with the significant exception of cases using
basis sets lacking polarisation (3-21G, 6-31G, 6-311G, 6-311++G),
which still exhibit large RMS deviations after being scaled. We
selected 17 bands in the solid state IR spectrum of vanillin for
comparison with theoretical values. These can be seen as the
labelled bands in Table 2.

Frequency calculations on the optimised vanillin structures
were performed using the selected methods. The frequencies
for the fundamental modes of vibration were scaled using the
scaling factors obtained from literature where available (M06-
2X/: 6-31G(d,p), 6-311G(d,p), aug-cc-pVTZ, def2-TZVP and
def2-QZVP)****%* and using the scaling factors calculated in the
present work for the other methods (Table 1). The internal
coordinates and contributions of involved bonds, angles and
dihedral angles for each normal mode were also recorded.

The calculated frequencies, after applying the optimised
scaling factor for the respective method, were matched against
the experimental bands and the difference in wavenumbers was
used to calculate the Mean Signed Deviation (MSD), Mean
Absolute Deviation (MAD) and Standard Deviation (STD) (S12).

Fig. 3 shows the plot of frequency MAD (cm ') across the
characteristic bands against CPU time.

The lowest MADs (10-15 cm ') are obtained when using
mGGA or higher-rung functionals and with a polarised double/
triple-{ or higher basis sets.

The hybrid functionals M06, M06-2X, PBEO and wB97X-D, as
well as the mGGA functional M06-L, have the fastest job

Table 1 Calculated scaling factors (AF) for used methods not included
in the literature

RMS deviation® (em ™)

Methodology ¥ Scaled Unscaled
Functionals using 6-311++G(2d,2p)

MP2-FC 0.955 77 136
BP86 0.989 34 43
PBE 0.986 33 47
OPBE 0.969 42 88
Mo06-L 0.959 32 107
B3LYP 0.963 28 103
wB97X-D 0.948 41 137
PBEO 0.950 34 130
Mo6 0.956 45 118
MO06-2X 0.944 44 148
PBEO-DH 0.935 42 170
Basis sets used with M06-2X

3-21G 0.969 139 158
6-31G 0.954 136 178
6-311G 0.960 109 147
6-311++G 0.962 126 158
cc-pvDZ 0.947 54 144
cc-pvVTzZ 0.945 47 147
cc-pvQz 0.944 49 149
aug-cc-pvVQZ 0.945 49 148
def2-TZVP? 0.945 48 147

“ Calculated from the F38/10 database®® (S13). ° Reproduced and
compared with literature.
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completion times (2-5 hours) while yielding low MADs. The
fastest job completions at basis set convergence are observed
using the 6-311++G(2d,2,p), def2-TZVP or cc-pVDZ basis sets (1-
5 hours). PBEO in particular shows the overall lowest error and
fastest calculation time of all hybrid functionals.

Bayesian inference

Frequency calculations can identify and illustrate a vibrational
mode, but assigning this mode to the correct experimental band
is not always straightforward. To identify the most probable
theoretical-to-experimental band assignments, we employed
a Bayesian inference method, calibrated using the model's
performance on vanillin. Bayes' theorem provides a tool for
iterative updating of a “hypothesis” (H) through the introduc-
tion of new “evidence” (E) (S7).

P(E[H)P(H)

PHIE) = ==p 5

(3)
Eqn (3) states that the “posterior” probability of H being true
given E, P(H|E), can be calculated from the “likelihood” prob-
ability of E being observed assuming that H is true, P(E|H), the
“prior” probability of H, P(H), and the “marginal” probability of
all possible hypotheses that can explain E, P(E). The updated
(posterior) probability can then be used as the prior probability
when introducing new evidence.

Fig. 4 illustrates the workflow of Bayesian inference in this
study. In the context of this paper, a hypothesis was taken to be
a unique set of assignments of all theoretical bands to experi-
mentally observed bands within the spectrum range of 680-
1800 cm ™', within a range of 40 cm ™" (45 cm ™" in the case of
p-hydroxy benzaldehyde) of the theoretical band (S19). In each
iteration, the evidence was treated as the probability of a theo-
retical band being observed at its predicted frequency, given the

© 2026 The Author(s). Published by the Royal Society of Chemistry
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experimental assignment specified by the hypothesis. This
probability was then modelled using a Gaussian distribution
centered on the expected calculated value, with the mean and
standard deviation determined from the benchmarking of the
computational method.

Results and discussion
Spectral analysis

Matching the scaled calculated frequencies of the studied
molecules using PBE0/6-311++G(2d,2p) with the equivalent
experimentally observed bands allows for the elucidation of the
vibrational modes responsible for the transmittance bands in
the experimental spectra. Additionally, deviation metrics ob-
tained are needed for the probability modelling of band
assignments used in the Bayesian framework. To facilitate the
assignment of characteristic DFT-calculated frequencies of
vanillin to the solid state IR spectrum, an experimental gas
phase IR spectrum (NIST*') was also compared. Fig. 5 shows the
solid state and gas phase experimental spectra of vanillin, as
well as a visualised DFT-calculated spectrum. This visualisation
enables the comparison between the computational and
experimental spectra. The calculated spectra have been visual-
ised using a custom Python®* script (S8). Computational
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normal mode analysis extracted from the calculations and
vibrational mode animations have been used to determine the
nature of the highlighted bands. Individual atomic changes in
distance (R), angle (4) and dihedral angle (D) were used to assist
in elucidating the nature of the vibrational modes. The vibra-
tional frequencies were cross-referenced with expected values
for the type of vibration and were found to be in good
agreement.*®°®

Table 2 shows the assigned vibrational modes to the
absorption bands observed in the experimental solid state, gas
phase and DFT calculated IR spectra of vanillin.

In regards to the solid state noticeable medium bands can be
found at 812 and 859 cm ', which correspond to the out-of-
plane aromatic C-H bending fingerprint of the 1,3,4-tri
substituted ring, involving the in-phase wagging mode of the
adjacent 5,6-position and the bending mode of the 2-position
C-H bonds respectively.®* A strong band at 1025 cm ' is
attributed to the C-OCHj; ether stretching vibration and ring
deformation mode. Very strong bands observed at 1121, 1151
and 1170 cm™ ' respectively are assigned to modes caused
primarily by in-plane bending modes of the aromatic C-H
bonds, but also alcohol and ether bending and ether stretching
modes. It should be noted that the gas phase and DFT bands

Table 2 Identified IR bands of vanillin in the solid state, gas phase and DFT vibrational frequency calculation
Wavenumber (cm ) Solid state intensity

Band Solid state Gas phase DFT Band assignment” Transmittance (%) Relative

1 812 818 794 v(C-H) 2 adjacent aromatic symm. (wagging) 68 m

2 859 874 854 v(C-H) lone aromatic 62 s

3 1025 1034 1024 v(0O-CHj3), §(C-C-C) aromatic ring bend 60 s

— N/AP N/AP 1087 d(C-H) o.ph. adjacent aromatic (Scissoring) — —

4 1121 1118 1123 d(C-H) aromatic, d(O-C-H) aldehyde, v(C-OCH3) 53 Vs

5 1151 1150 1151 3(CH,), 3(C-0-H) 49 vs

6 1170 1182 1173 d(C-H) aromatic, d(O-C-H) aldehyde, v(C-OCH3) 61 s

— N/A? N/A? 1225 o. ph. (v(C-OCHj), v(C-OH)), 3(C-H) aromatic — —

7 1264 N/A® 1241 v(C-OH), 3(C-O-H), 3(C-H) aromatic 57 s

8 1298 1274 1274 i. ph. (v(C-OCHj), v(C-OH)), v(C-C) aromatic, §(C- 62 s
H) aromatic

— N/A? N/A? 1341 3(C-H) aldehyde, 3(C-H) aromatic, 3(C-O-H) — —

9 1371 N/A® 1378 v(C-C-C) aromatic (“Kekulé’s”), 3(O-C-H) ether, 78 m
3(C-0-H), 3(C-H) aldehyde

10 1397 1390 1402 d(CH;3) symm. (“Umbrella”), 3(C-O-H), 3(C-H) 76 m
aldehyde

11 1428 1438 1433 d(CH;3) asymm., v(C-C-C) aromatic (“semi- 61 s
circular”)

12 1509 1510 1485 v(C-C-C) aromatic (“semi-circular”) 64

13 1586 1598 1579 v(C-C-C) aromatic (“quadrant”) 60 s

14 1662 1718 1696 v(C=0) aldehyde 54 vs

15 2861 2722 2769 v(C-H) aldehyde 84 w

— N/A® 2810 2892 v(C-H) methyl symm. — —

16 2945 2962 2957 v(C-H) methyl asymm. 83 w

17 3020 3014 3013 v(C-H) methyl asymm. 82 w

— N/AP 3074 3065 v(C-H) lone aromatic — —

— 3146 3578 3621 v(O-H) alcohol 79 w

“ v refers to stretching, d refers to in-plane bending, vy refers to out-of-plane bending “symm.” and “asymm.” indicate symmetrical or asymmetrical
Vlbratlon between the atoms of the same group. “i. ph.” and “o. ph.” indicate in and out out-of phase vibrations between different groups.
b Experimentally not clearly observable or combined into larger band (e.g. band shoulder).
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corresponding to these bands show lower intensity. Strong
bands at 1264 and 1298 cm™' are assigned to alcohol C-O
stretching, and in-phase ether and alcohol C-O stretching
modes. A medium band observed at 1371 cm ™" is assigned to
the specific “Kekulé” ring stretching mode, as well as related
bends. The medium and strong bands observed at 1397 and
1428 cm ™' respectively are attributed to methyl CH; (ether) in
and out-of-phase bends. Strong bands at 1509 and 1586 cm "
correspond to characteristic ring “Semi-circular” and “Quad-
rant” vibrations. The strong band 1662 is caused by the alde-
hyde C=0 stretching mode. A weak doublet at 2861 cm*
corresponds to the aldehyde C-H stretching vibration. Weak
bands can be observed at 2945 and 3020, which are loosely
assigned stretching vibrations of the methyl and aromatic C-H
bonds. The gas phase and DFT spectra provide clearer profiles
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of these vibrations, allowing clearer distinction between the
symmetric and asymmetric methyl C-H, and a ring lone C-H
stretching mode. A characteristic broad band at 3146 cm ™'
corresponds to the O-H stretching mode, seen as sharp
stronger bands at higher frequencies in the gas phase and DFT-
calculated spectra.

Computation and band assignment of VOCs

The same computational approach was then applied to opti-
mise and calculate the vibrational frequencies of a selection of
important volatile organic compounds (VOCs). A conforma-
tional search was performed to determine the global minimum
conformer for all compounds (S15). Frequency calculations
were performed on the lowest-energy conformer for each
compound using PBE0/6-311++G(2d,2p). Compound key
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modes between experimental and calculated frequencies across the studied molecules.
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vibrations in the theoretical spectra were selected, and their
vibrational modes were identified (518). A Python®""* script was
used to process the theoretical frequencies and experimental
bands within 680-1800 cm ™", generate all acceptable hypoth-
eses and iteratively apply Bayes' theorem to determine the
feasibility (S19) of each hypothesis.

In the context of this paper, a hypothesis was taken to be an
assignment of all represented theoretical vibrations to experi-
mental bands. The evidence presented in each iteration was
calculated as the likelihood that a theoretical vibration would
have the observed frequency it has, given that it represented the
experimental band assigned in the specific hypothesis. This
probability was modelled as a Gaussian probability density
distribution around an expected value (experimental band shif-
ted by the MSD) and the STD calculated during the benchmark.
The result of this procedure is a relative probability value for each
hypothesis, which quantifies the likelihood of that hypothesis to
be correct, given the expected accuracy of the DFT calculation,
thus identifying band assignments that are more plausible than
others (S19). Those hypotheses were then examined, and the
most reasonable hypothesis was considered based on IR intensity
and chemical sense. Fig. 6 shows the experimental-to-theoretical
comparison of the chosen modes for all studied molecules. The
x-axis corresponds to the experimentally obtained band
frequencies for the assigned bands, and the y-axis corresponds to
the scaled calculated frequencies for the vibrational modes
(scaling factor of 0.950 for PBE0/6-311++G(2d,2p)).

A systematic underestimation of the frequencies was
observed, as most assigned frequencies predict a lower value
than the experimental band. While some of the vibrations show
great agreement between theory and experiment, aromatic C-H
wagging modes and C-O stretching modes are calculated within
10-30 cm ™" of the experiment, leading to a deviation of 1-4%
for C-H wagging and 2% for C-O stretching modes. CHj;
deformations show excellent agreement for vanillin, whereas
a consistently negative deviation of around 30 em ™' (2-3%) is
observed for syringaldehyde, cuminaldehyde, eugenol, estra-
gole and dihydrocoumarin (CH, deformations). Aromatic ring
“semi-circular” and “quadrant” modes show good agreement
across all the molecules with most calculations falling within
40 cm ™! below the experimental bands (~2.5%). The MSD for
all molecules, except umbelliferone, is negative, indicating that
for the chosen set of molecules and vibrations, the mean error
metrics could also be improved by applying a higher scaling
factor. This is expected when considering the comparison
between single molecule calculations to solid or liquid state
systems, in which the bond vibrations and affected by inter-
molecular interactions.

The calculated values across all identified modes exhibit
MADs ranging from 10 cm ™' to 20 em™ ' (0.9-1.8%) (Fig. 7),
showing good agreement between the experimental spectra and
assigned theoretical frequencies.

Using this approach to assign theoretical frequencies to
experimental bands allows for more coherent identification of
recurring key vibrations for the studied molecules. These
vibrations include the fingerprint aromatic C-H out-of-plane
bending modes (650-900 cm™ '), phenyl and aryl ether C-O
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MSD (%) (transparent) across all studied vibrational modes for all
compounds compared to experimental IR bands.

stretching modes (1000-1300 cm ™), CH; and CH, deformation
(1300-1500 cm ™) and ring C=C stretching (“semi-circular”
and “quadrant”; 1400-1650 cm ™~ ') modes.

Conclusions

The computational benchmarking for the geometry optimisa-
tion and vibrational frequency calculations of vanillin across
a selection of computational methods, including an ab initio
method and different DFT XC-functionals, as well as basis sets,
has been completed and the most efficient method for calcu-
lations of vanillin in terms of accuracy and time determined to
be PBE0/6-311++G(2d,2p). Hybrid functionals using a polarised
triple-{ basis set have shown to be sufficient for convergence to
the lowest error values.

Optimised scaling factors, following the method proposed by
Alecu®® et al. are reported in this paper for method/basis set
combinations for which scaling factors were not previously
available in the literature, to the best of our knowledge.

A spectral analysis of vanillin has been performed, in which
the characteristic DFT-calculated vibrational modes are
assigned to experimentally observed solid state IR bands. This
was enabled by comparing between DFT, gas phase® and solid
state, allowing for better association between experiment and
theory, and for gauging of the expected deviations when
comparing single molecule DFT to non-gas phase experimental
IR spectra. Using the normal modes obtained by the frequency
calculation, the nature of each vibrational mode is thus
explained, allowing for better understanding of the character-
istic groups of vanillin responsible for each vibration.

A Bayesian approach was then applied to identify important
vibrational modes in a selection of crucial volatile aromatic
compounds  (p-hydroxy  benzaldehyde, syringaldehyde,
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cinnamaldehyde, cuminaldehyde, eugenol, estragole,
coumarin, dihydrocoumarin and umbelliferone). The theoret-
ical frequencies were assigned to experimental bands based on
the calculated deviation statistics, using Bayes' theorem (S7)
(S19). The performance of our approach was assessed by
comparing the theoretical frequencies with their matched
experimental bands, showing good performance with MAD (%)
values between 1 and 2% for all compounds.

Key vibrations found in aromatic systems (aromatic C-H
bending and ring C=C stretching modes) were identified
(where observable) in all molecules (S18) and compared with
the experimental spectra.

A negative MSD across all molecules, except umbelliferone,
in the studied spectral range suggests that a higher scaling
factor for the method would improve the fit of these frequencies
to their experimental spectra.

In summary, an efficient computational method and
a universal scaling factor (PBE0/6-311++G(2d,2p) with a scaling
factor of 0.950) are reported and used to analyse the solid state
experimental IR spectrum of vanillin. Bayesian inference is used
to provide a framework for matching single molecule theoret-
ical to experimental solid and liquid state IR vibrational
frequencies of a selection of important volatile organic chem-
icals and the consistency of the method is tested by comparing
indicative vibrational mode frequencies to experimentally
assigned IR bands. Key vibrational modes of all compounds are
identified and matched on the experimental IR spectrum.
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