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2 capture by the synthesis of
metal organic frameworks using large language
models
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Ahmed Shafeen,c Encheng Liu,d Sohrab Zendehboudi, e Ali Elkamel afg

and Aiping Yu *ab

This research focuses on efficiently collecting CO2 adsorption data using experimental metal–organic

framework (MOF) porous materials from the scientific literature, addressing the challenges related to

data classification and access to MOF synthesis methods. The aim is to organize, classify, and facilitate

easy access to materials science information using artificial intelligence (AI). Using advanced large

language models (LLMs), we developed a systematic approach to extract and sort MOF synthesis data for

CO2 adsorption in a structured format. Using this method, we collected data from over 433 published

experimental research papers and created a specific dataset to analyze the effects of metals, ligands, and

carbon adsorption conditions on CO2 uptake performance. The correlations between the material

structure, such as metal types, ligands, specific surface area, pore size, pore volume, synthesis

conditions, and CO2 adsorption, under various process conditions were examined using the final

database. We applied ChatGPT 4o mini as an AI assistant to text-mine all MOF information from different

PDF file references. In addition to revealing the impact of each parameter on CO2 uptake and MOF

structure before synthesis, the AI analysis findings indicated which ligand and metal groups should be

altered to customize the MOF structure for improved CO2 capture.
1. Introduction

In response to growing concerns over climate change, the
Intergovernmental Panel on Climate Change (IPCC) was estab-
lished in 1988 to deliver regular, comprehensive scientic
assessments to inform policymakers about the current under-
standing of climate change.1 From 2016 to 2100, cumulative
residual greenhouse gas (GHG) emissions, including CO2 from
fossil fuel use, are projected to range from 850 to 1150 Gt CO2.2
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According to IPCC, current trends are likely to result in a global
warming of 1.5 °C between 2030 and 2052, with human activity
expected to contribute to an anticipated increase of 0.8–1.2 °C.1

Growing concern over the accelerating accumulation of GHGs,
primarily CO2, has underscored the urgent need for effective
mitigation strategies. In this context, advancements in mate-
rials science offer a promising pathway for developing novel
technologies to reduce carbon emissions.3

Since solid adsorbent-based gas adsorption and separation
methods offer the potential to be more adaptable and energy-
efficient for a range of carbon capture applications, they have
been extensively studied.4 Metal oxides,5 polymers,6 zeolite,7

ceria oxide,8 porous carbon, and activated carbon9 are the types
of common adsorbents. Metal–organic frameworks (MOFs)
have been extensively investigated as potent and promising CO2

capture adsorbents in recent years due to their porous structure,
large specic surface area (SBET), high capacity, excellent
selectivity, and structural tunability.10 As a result, an excep-
tionally wide range of MOF materials can be synthesized
through broad design strategies. Engineering the selection of
framework components should enable precise control over the
internal pore surface's affinity for CO2 adsorption.11 This will
allow for the customization of MOF material properties tailored
to specic CO2 capture and separation processes as well as to
various operating conditions. Signicant progress has been
Digital Discovery
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made recently to enhance the carbon capture and separation
performance of MOFs.12 Furthermore, some studies that eval-
uate the potential of these materials for use in CO2 capture
systems in the industrial chemical and energy sectors are
emerging.10

For assessing and choosing adsorption methods, scientists
identify the best combination of adsorbent structures for
carbon capture processes. Discovering materials that have
already been synthesized is one strategy, while another is to use
simulation approaches to assess MOFs before synthesis.11 The
concept of developing an articial intelligence (AI)-based
chemical assistant has opened up previously unheard-of
possibilities to revolutionize materials research, particularly
for MOFs used in carbon capture. Today, time-consuming and
difficult operations, such as data analysis, chemical screening,
and library searches, can be processed quickly by utilizing AI
expertise across multiple disciplines.13 Employing a xed
vacuum swing adsorption (VSA) process, Burns et al.14 evaluated
over 1600 MOFs for post-combustion CO2 capture by combining
atomic/molecular simulation and process modeling. Only 500
of the above MOFs fullled the U.S. Department of Energy's
standards for 90% purity and 95% recovery of CO2. To facilitate
this search, they created a machine learning (ML) algorithm
that detects promising materials with an accuracy of over 90%
and rapidly determines which materials should satisfy the
purity and recovery requirements. Therefore, it is essential to
employ AI/ML algorithms to accelerate the selection and opti-
mization of the desired MOF structure for customization in CO2

adsorption processes. One of the most signicant challenges in
chemistry and materials science research has been determining
chemical compound information and material compositions,
including optimal synthesis conditions as well as physical and
chemical properties. A fundamental and crucial stage in the
materials discovery process is to obtain a thorough summary of
chemical information taken from literature sources, including
articles and patents, and then store it in an orderly database.15

In general, scholars are particularly interested in effectively
extracting vast volumes of material structure information from
published scientic articles and existing literature. Natural
language processing (NLP) models, which can quickly read and
understand the words and information in published papers, are
currently one of the most widely used methods in this eld.16,17

Large language models (LLMs), especially the GPT series, are
emerging nowadays, and the elds of materials science and
chemistry are undergoing a signicant revolution because of
these language models.18

One of the primary objectives is to use published data and
screen them to extract required information and features for the
design of MOF structures for various CO2 adsorption processes.
This valuable information can provide insights and promising
opportunities for materials design researchers, seeking to
synthesize and design a new generation of MOF compounds for
CO2 capture. Understanding the impact of each of the funda-
mental MOF properties, such as modications to ligands,
metals, and component functional groups, as well as the
adsorption process conditions (temperature and pressure), is
essential for the innovative design of MOFs for CO2 separation
Digital Discovery
from gases. The selection of the component structure or the
synthesis method can be signicantly inuenced by the MOF
synthesis techniques and the impact of each of the previously
listed criteria.19

In the present study, we performed text data mining of
scientic experimental data published in reputable journals on
the synthesis of MOFs, specically for CO2 capture, using the
LLM (ChatGPT) model. Compared to other generative AI plat-
forms or other open-source models, we selected the ChatGPT 4o
mini20 because of its universal accessibility, computational
correctness, task-based performance, and token limitations.
First, one of the easiest generative AI systems to use is OpenAI's
ChatGPT family. Unlike alternatives that require an application
programming interface (API), interacting with a GPT model
using a web user interface (UI) does not require any hardware or
installation. Second, the GPT-4 series also demonstrates
stronger performance in chemical science and engineering,
including improved accuracy in tasks such as structure eluci-
dation and reaction prediction.21–23 These features create a new
opportunity to use data analysis for accelerating research in this
eld. The ndings from text mining on the synthesis methods
of different MOFs for CO2 capture were linked to process
adsorption conditions and MOF performance. Finally, an
analytical investigation was conducted to examine the rela-
tionships among synthesis techniques, structural components
of MOFs, functional groups, and CO2 capture performance. It
provides a useful tool for decision-making and synthesis strat-
egies, demonstrating that linking various MOF components
with their corresponding synthesis techniques based on pub-
lished papers is feasible. Furthermore, we used details collected
from the synthesis conditions and types of MOFs for CO2

adsorption to create a recommendation system for synthesis
conditions. This method offers an asset for various MOF
methods of synthesis by recommending customized MOF
synthesis conditions based on specic metal and ligand types
and a direct correlation with the amount of CO2 adsorption.
This research study demonstrates how LLMs can aid in chem-
istry and accelerate MOF customization to build high-efficiency
CO2 adsorbents.

2. Materials and methods

Finding accurate information from trustworthy sources is the
main challenge; to overcome this issue, we need to select
excellent, highly referenced articles for creating a reliable
database in this area. Thus, we focused on papers, with the titles
“Synthesis of MOFs for CO2 capture,” “MOF for CO2,” and “MOF
for CO2 adsorption,” published in respectable journals. All
keywords for searching articles with relevant topics, such as
carbon capture using MOF, are mentioned in Section 1 (proce-
dure section) of the SI with full details. We targeted 433 exper-
imental articles from the vast collection of published articles in
this eld as input data, focusing on studies of MOFs and their
composites that are employed only for CO2 capture. The types of
metals, functional groups, solvents, ligands, specic surface
area (SSA), pore size, pore volume, reaction time, oxidation
number, adsorption temperature and pressure, as well as CO2
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 General schematic of the LLM in the general process of extracting information and data from papers (PDF files), and the general process of
text mining based on the defined features of the types of metals, functional groups, solvents, ligands, SSA (m2 g−1), pore size (nm), pore volume
(cm3 g−1), reaction time (s), oxidation number (n), temperature (K) and pressure (bar) adsorption, CO2 adsorption rate (mmol g−1), MOF group, and
synthesis methods. In this method, data integration is handled either directly by ChatGPT or through Python code written by ChatGPT. All
prompts are performed by connecting the generated Python code to ChatGPT. The Python logo displayed is attributed to the Python Software
Foundation, and the OpenAI logo is attributed to OpenAI.
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adsorption rate are parameters that should be considered when
selecting and organizing research articles to read and extract
information on MOF synthesis conditions for CO2 adsorption
by ChatGPT 4o mini.20 Furthermore, various writing styles need
to be considered. In this study, we encountered a broad variety
of writing styles that lacked a common framework across all
published papers. Therefore, reading irrelevant information
can be a challenge in identifying vital information about MOF
compounds in scientic articles and published literature. Due
to the various naming and spelling variations in scientic arti-
cles and literature, we adapted common keywords from these
sources. Then, we had to identify all the complex and diverse
information considered in the articles, such as MOF synthesis
for CO2 adsorption. We collected all the info/details on how to
search and classify the articles, along with the selection of
keywords in the SI le in the Methods section.

Fig. 1 presents a procedure for chemical text mining
instructions, including how to extract all the information and
name the MOF groups. The goal is to extract all data/informa-
tion on MOF synthesis, including the name of compounds,
metal source, ligand, solvent, and reaction time. Simulta-
neously, the CO2 adsorption rate at different temperature and
pressure conditions, along with pore size, pore volume, and SSA
of MOFs, are other keywords. The details of the dataset used for
chemical text mining are listed and compiled in the SI le. Fig. 1
is a schematic of the data mining workow using ChatGPT for
text mining and extracting information on MOF synthesis
conditions and key parameters for CO2 capture from a number
of published research articles. In the rst step, the articles' PDF
les are considered as input data; during the initial evaluation,
we take into account all the expected data displayed in the blue
box that have an impact on CO2 adsorption (see Fig. 1). The
white or black OpenAI logo signies the use of the ChatGPT
platform, and the entire article review process is performed
according to ChatGPT 4o-mini20 language patterns. We created
prompts for ChatGPT to guide its reading of the articles. By
© 2025 The Author(s). Published by the Royal Society of Chemistry
specifying keywords, the language model concentrates solely on
the titles and terms we identied at the outset. This technique
swily eliminates all parts unrelated to the article's keywords.
By establishing this method, we enhance the processing and
text-mining speed of our desired articles. In this approach,
ChatGPT reads all selected keywords, along with the associated
numbers and organizes them in a table as reference data (see
Table S1). The texts of the articles are thoroughly scanned, and
a table containing the MOF synthesis information, along with
the CO2 adsorption data and MOF specications mentioned in
the articles, is created. The data-gathering text mining proce-
dure that employs ChatGPT4o-mini to collect information on
MOF synthesis conditions and important CO2 capture param-
eters from several published research articles is presented as
a owchart in Fig. S1 of the SI le. Instead of using individual,
time-consuming chats with web-based ChatGPT to process text
from numerous research papers, OpenAI's GPT-4o-mini, which
is the same as the one that powers the ChatGPT product, allows
for a more effective method because it has an API that allows
text from a large number of papers to be processed in batches.
3. Results and discussion
3.1. Text mining performance

The ChatGPT extracts the desired data (the prompts mentioned
in Fig. 2) from the articles PDF les using the OpenAI API. The
extracted data is stored in a table. Since the data are compiled
from different articles, they are not uniform in chemical
compound names and units. In addition, the data is sometimes
stored in a random combination of numbers and letters in the
table cells. In fact, ChatGPT's output table for data analysis is
very messy. Therefore, to prepare and sort the data for subse-
quent analyses, an extensive process was carried out to stan-
dardize the data table. During preprocessing, extensive
modications were made to the data. These modications
consist of four steps. (i) For correlation between the data, rst,
Digital Discovery
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Fig. 2 Pseudo-code of the GPT-4o mini prompts with the LLM
algorithm interaction for the MOF parameters.

Fig. 3 (a) CO2 adsorption capacity (mmol g−1) data range for the top
five ligands, along with the SSA (m2 g−1), (b) pore size (nm), and (c) pore
volume (cm3 g−1), obtained for selected MOF.
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unusual data were removed from the table as a whole, including
duplicate rows and rows with insufficient data. (ii) Extensive
unit conversion was performed. Since the articles reported
numbers in various units, all numerical data were standardized
to the same unit. (iii) Non-numeric data, such as chemical
names of ligands and solvents, were standardized. (iv) Scattered
and diverse names were placed in larger and more compre-
hensive classications. All these stages were carried out to clean
and standardize the data.

Fig. 2 shows the pseudo-code and addresses the corre-
sponding effects of these parameters using an LLM-based
model developed to establish a meaningful relationship
between the parameters. Given the limited availability of CO2

selectivity data, it was not possible to nd a robust relationship
between this parameter and the other parameters. All statistical
data for pressure, CO2 adsorption temperature, SSA, and
oxidation number shown in Fig. S8 to S10 in the SI have been
reported in studies that focused on adsorption pressure,
adsorption temperature, reaction time, and oxidation number.
The data cover oxidation numbers from 0 to 4, temperatures up
to 325 K, and adsorption pressures up to 15 bar. Fig. S7 in the SI
document shows the scatter of the data across the top ten
ligands, metals, and MOF groups.

As shown in Fig. 1, textual data about different MOFs, such
as MOF types, ligands, metals, synthesis method, solvent,
physical states, oxidation number, reaction time, MOF structure
characteristics, SSA (m2 g−1), pore size diameter (nm), pore
Digital Discovery
volume (cm3 g−1), CO2 adsorption capacity (mmol g−1), CO2

selectivity, adsorption temperature (K), adsorption pressure
(bar), and MOF group name, which are present in the SI, were
extracted as the data required for implementation of LLMs.
Comprehensive details about MOF group characteristics,
synthesis methods, and CO2 adsorption rates are provided in
Table S1 of the SI. By carefully extracting the data and applying
one-hot coding to the MOF group names and related features,
appropriate weighting was performed. The results in Fig. S4
reveal the relationship between the mentioned parameters in
the SI. Pearson correlations between all the considered
parameters for the top ve metals, along with the top six MOFs,
structural variables, and CO2 adsorption characteristics, are
plotted in Fig. S4 of the SI.

All MOF structural characteristics, including the SSA (m2

g−1), pore size diameter (nm), pore volume (cm3 g−1), and CO2

adsorption capacity (mmol g−1), of the top ve metals, and
ligands, which were obtained from the data text mining
approach, are shown in Fig. 3–6. The top six ligands (H3BTC,
H2BDC, H4DOBPDC, 2-methylimidazole, H3BTB, and NH2-
BDC), metals (Cu, Zn, Mg, Cr, Zr, and Co), MOF groups (UiO-66,
MIL-101, MIL-100, HKUST-1, MOF-5, and MOF-74), and top ve
supergroups (MOF, MIL, ZIF, UiO, and metal/dobpdc) are listed
in (Fig. 4, 6, 8 and 9). This means that the statistical data on the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Relationship between the CO2 adsorption capacity data range in Fig. 3 for the top ten ligand types introduced for (a) ten physical states, (b)
ten solvents, and (c) ten MOF synthesis methods.
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top parameters had more repeatability and more data. The
execution method and instructions for these prompts are pre-
sented in Fig. 2. To understand how the GPT-4o mini20 prompt
interacts with the LLM algorithm, the pseudo-codes are
demonstrated in Fig. 2 and the S1 document. The data extrac-
tion process began by analysing individual paragraphs in each
article, aer rst separating the articles into independent PDF
les. To coordinate interactions between the different LLMs, we
© 2025 The Author(s). Published by the Royal Society of Chemistry
used the OpenAI API to perform data mining on the documents.
To read the PDF documents and convert them into text, PyPDF2
version 3.0.1 was utilized. All data manipulation, analysis, and
processing were performed by employing Panda's library
version 1.4.3. Diagrams and gures were plotted by the Plotly
library version 5.13.1. The workow enables fully automated
data extraction, which includes three main steps: namely clas-
sication, feature consideration and inclusion, and nally
Digital Discovery
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Fig. 5 CO2 adsorption capacity (mmol g−1) data range for the top five
metals versus (a) SSA (m2 g−1), (b) pore size (nm), and (c) pore volume
(cm3 g−1), for considered MOF.

Fig. 6 Relationship between the CO2 adsorption capacity data ranges
in Fig. 5 for the top ten metal types introduced for (a) ten solvents, (b)
ten ligands, and (c) ten MOF synthesis methods.
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extraction. The automation was performed manually with
modications such as monitoring token length. Table S2 illus-
trates the accuracy achieved for the classication and inclusion
of features. Fig. S1 in the SI document depicts the data mining
path classication and data cleaning procedure involved in this
process. In Table S2, where the evaluation results are specied,
the column “Description by human reviewer” lists the observed
discrepancies, and the results of the review of the articles that
had discrepancies are listed in the column “Status”.

Aer extracting the identied data and establishing the
appropriate data format, a validation process was performed by
comparing the extracted data with the original articles to
minimize errors in 10% of the dataset (see SI Excel, Table S2).
The text and keywords were correctly detected in over 86% of the
ChatGPT readings. To check the accuracy of the data extracted
by ChatGPT, 10% of the articles were randomly selected (using
the random function) and were reviewed manually and by
a human reviewer. The results of this review are given in Table
S2 in the SI. We decided to remove CO2 selectivity from the
results in the table because it did not show a signicant rela-
tionship with the other parameters. Furthermore, as indicated
in Table S2, inconsistencies in how selectivity was reported/
written across studies (combined with the limited amount of
available data) made meaningful analysis difficult. Thus, this
parameter was excluded from further consideration.
Digital Discovery
Fig. S4(a) highlights the key correlations between CO2

adsorption parameters, metals, pore volume, specic surface
area (SSA), and adsorption pressure with other parameters.
Fig. S4(b) shows that SSA and pore volume strongly inuence
the adsorption rate of metals Cr and Cu, while adsorption
temperature exhibits the strongest correlation with Cr and Mg.
Fig. S4(c) displays the signicant structure-property relation-
ships, where MIL-101 shows the strongest SSA–SSA-adsorption
correlation, MOF-74 demonstrates the highest adsorption
capacity correlation, and MIL-100 shows the strongest temper-
ature correlation.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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We should focus on reducing the illusion created by the
comparison table between real data extraction and the fabri-
cated or misleading content from ChatGPT. Examples of what is
or is not in the text (Table S1) and how ChatGPT presents it in
a fabricated state can be seen in the SI Excel le (Table S2).
Therefore, the issue of illusion is an important concern, and we
need to analyze and evaluate the obtained data so we can
control how we retrieve data while designing ChatGPT
commands. The CO2 adsorption rates (mmol g−1) with related
MOF structure parameters such as SSA (m2 g−1), pore size (nm),
and pore volume (cm3 g−1) using the top ve ligands listed in
the literature are illustrated in Fig. 3(a–c). Aer investigating the
data, ref. 24–31 are consulted to verify the accuracy of these
items/factors. The ndings indicate that the H2BDC ligand has
the highest porosity, and the H3BTC ligand has the greatest CO2

adsorption capability. Fig. 4(a–c) displays the relationship
diagram of the top ten ligands in terms of physical state,
solvent, and synthesis method parameters, respectively. The
connections between each ligand and the synthesis parameters
are evident in these gures. The ndings offer researchers
a broad framework for synthesis and can serve as useful
guidelines when using different MOF synthesis techniques for
CO2 adsorption application. The amount of CO2 adsorption,
along with the corresponding SSA, pore size and pore volume
for particular MOF ligands (frequently reported in the litera-
ture), and their synthesis methods, serves as evidence of the
reproducibility of the information obtained. This indicates that
data gathered from the literature can be used for synthesizing
MOFs targeted for CO2 capture.

The hexanuclear [Zr6O4(OH)4] units that make up the
hydroxylated form of UiO-66 have m3-O and m3-OH groups
alternately capped on the triangular faces of the Zr6 octahedron.
To create a cubic 3-D framework, the Zr6 polyhedra are joined
along their edges by carboxylate groups from twelve 1,4-
benzenedicarboxylate (BDC) linkers.32 Experimental and simu-
lation studies have demonstrated that the addition of func-
tional groups like –COOH, –SO3H, and –NH2 to the BDC ligand
signicantly enhances UiO-66's capacity to adsorb and separate
CO2.33 Since UiO-66 structures oen have smaller pore diame-
ters and surface areas, adding functional groups generally
reduces the adsorbent's SSA, which may harm the CO2

adsorption capacity of porous adsorbents.34

The same strategy is repeated in Fig. 5–9 for the top ve
metals andMOF groups identied, along with their relationship
to physical conditions, solvents, metals, ligands, and synthesis
methods. The relationships between the top ve metals and
synthesis parameters, along with the CO2 adsorption rate and
its relationship to SSA, pore size, and pore volume, are evident
in these gures. Using these ndings, the identication of the
top ve metals and their interactions with the CO2 adsorption
rate (mmol g−1) results and the structure of the MOF in terms of
porosity, SSA, and pore size can be understood. By combining
this information with the various methods of MOF synthesis,
researchers can make more informed decisions regarding MOF
selection, targeted adsorption performance, and desired
porosity characteristics. Organizing and categorizing these data
together provides a clearer research roadmap and makes
© 2025 The Author(s). Published by the Royal Society of Chemistry
potential objectives more achievable. For example, Cu metal
created the porous structure with the highest SSA (m2 g−1) and
CO2 adsorption capacity (mmol g−1) among all metals. Fig. 4, 6,
and 8 illustrate another aspect of the top ve metal interactions
with ligands and MOF groups, as well as synthesis details,
including the solvent type and synthesis methods.

The sources involving UiO-66 and MIL-101 were investigated
further, and the text mining ndings were in agreement with
every result reported in the relevant papers.35,36

Fig. 3–6, concerning the top ve ligands and metals, conrm
the results of Fig. S11 (in the SI le) and the relationship
between the aforementioned parameters. This approach allows
for exibility in selecting different synthesis conditions among
the top ten ligands and metals. Furthermore, by providing an
overview of the synthesis methods and the rationale behind
solvent selection, researchers are better equipped to anticipate
and understand the study approach. The rst step is to establish
a relationship between all synthesis factors, such as the choice
of solvent, physical state, ligand, metal, and synthesis tech-
nique, with the CO2 adsorption rate and porosity of the nal
MOF type. The next step is to observe and classify the MOF types
and their grouping. An overview of these relationships is clearly
illustrated in Fig. 3–8. Based on the statistical data from pub-
lished articles, Fig. 7 and 8 further identify MOF-5, MIL-101,
UiO-66, and HKUST-1 as the most effective MOF groups for
CO2 adsorption. The selection of a specic MOF group provides
a framework for researchers to investigate the effects of key
variables, such as the metal type, ligand, synthesis method, and
solvent used, on overall CO2 capture performance. An evalua-
tion of room-temperature adsorption diffraction data implies
that a secondary adsorption site contributes to the adsorption
behavior of many of these materials. Fig. 8 and 9 show the
relationship between ligands, metals, solvents, synthesis
methods, and MOF type. Indeed, the collected data may be
easily linked to the experimental results, serving as a useful
reference for future study. In all Fig. 4, 6, 8, 9a, and 9b, direct
relationships between top metal groups, top ligands, top
solvents, top synthesis methods, and top MOF groups that had
the greatest effect on CO2 adsorption are shown.

It is worth noting that the roles of each metal and ligand in
relation to the synthesis methods can be observed. For example,
Cu demonstrates a progressively stronger inuence in MOFs as
the pore volume varies. The synthesis routes, extracted from text
mining and illustrated in Fig. 6–9, provide further insight into
these relationships. In addition, Fig. S8 and S9 depict statistical
data distributions of other key parameters inuencing CO2

adsorption capacity, including the top ve ligands, metals, and
MOF groups. The results conrm the impact of the top ve
ligands as well as the top ve metals on CO2 adsorption. Cu and
Co metals, along with H2BDC and NH2BDC ligands from MOF-
74 and MIL-101, will lead to a high specic surface area and
enhanced CO2 adsorption (see Fig. S11). Therefore, based on
data obtained using solvothermal, hydrothermal, spray drying,
and post-synthetic modication methods and utilizing DMF,
MeOH, and H2O solvents in the presence of H2BDC/NH2-BDC
ligands and Cu, it is possible to achieve MOF composites with
greater CO2 adsorption capacity. The results reveal that text
Digital Discovery
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Fig. 7 CO2 adsorption capacity (mmol g−1) data range for the top five MOF groups, in terms of (a) SSA (m2 g−1), (b) pore size (nm), and (c) pore
volume (cm3 g−1), obtained for considered MOF in Fig. 8.
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mining facilitates data-driven decision-making to optimize the
desired MOFs for CO2 uptake or synthesis method selection. By
empowering researchers to choose synthesis methods, solvents,
ligand types, and metals, and to understand how these factors
interact to shape the MOF structure and performance, we move
closer to developing a smart assistant. This assistant, supported
by text mining, will enhance researchers' ability to select the
best synthesis techniques, solvents, ligand types, and metals, as
well as to understand how these features interact to create the
optimum MOF structure with high performance.

As shown in Fig. 3–9, the textual data analysis highlights the
inuence of different metals (e.g., Cu and Zn) and ligands (e.g.,
BDC) on adsorption efficiency. Variations in metal centers and
Digital Discovery
ligand types signicantly affect the porosity of the adsorbent
and the resulting MOF structure. Recent studies indicate that
Zn-based MOFs, particularly those incorporating Cu2BDC2

frameworks, exhibit strong and rapid CO2 uptake.37 Further-
more, the effect of pressure on MOF-based adsorbents, as
extracted from the textual data, provides valuable guidance for
process optimization before experimental synthesis. As an
example of validating our results against published studies, we
assessed the MOF-74 sample and compared the data obtained
through text data mining with atomic simulation data and
experimental data for transition-metal MOF-74 variants. It is
noticed that the results of text mining, which are based on
experimental data, would support the ndings of this study (see
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Relationship between the CO2 adsorption capacity data ranges
in Fig. 7 for the top ten MOF group types introduced for (a) nine
solvents, (b) ten metals, (c) six ligands, (d) nine synthesis methods, and
(e) seven physical states.

Fig. 9 (a) Relationships and classification of MOF groups and (b)
supergroups with metals and ligands obtained from text mining.
Evaluation of the top five MOF supergroups based on CO2 adsorption
performance (mmol g−1) in different ranges, along with the MOF
features of (c) SSA (m2 g−1), (d) pore size (nm), and (e) pore volume
(cm3 g−1), extracted from text mining.

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery
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Fig. 10 Density distribution plots of the metals of the MOF-74: (a) Mn-MOF-74, (b) Co-MOF-74, (c) Ni-MOF-74, and (d) Cu-MOF-74 model
clusters interacting with a CO2 molecule, and (e) CO2 adsorption isotherms for Mn, Co, Ni, and Cu-MOF-74, utilizing universal force field (UFF) in
conjunction with the localization of properties and density-derived electrostatic and chemical (cyan circles) point charges, calculated at
a temperature of 298 K. Reprinted with permission from ref. 40 Copyright 2015, the American Chemical Society. Experimental isotherms at 298 K
are displayed for comparison (black curves, data extracted from ref. 38 Copyright 2014 with permission from the Royal Society of Chemistry). (f)
Schematic of the MIL-101(Cr)-NH2 structure39,41 and (g) TEM images of MIL-101(Cr)-NH2 nanoparticles. Reprinted with permission from ref. 39
Copyright 2020, the American Chemical Society.
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Fig. 10). Queen et al.38 found that the Cu analogue has an axial
strain that causes the ligand O2 atom to be positioned in such
a way that CO2 cannot approach the open metal site. Since the
CO2 site's occupancy is similar, it is clear that Cu2(dobdc)
possesses two adsorption sites with identical binding strengths.
The results obtained from text data mining are in strong
agreement with the experimental results39 of the role of Cr and
ligand for tuning the pore size and SSA for the synthesis of
amine-functionalized MIL-101(Cr)-NH2 with a particle size less
than 20 nm, SSA above 2800 m2 g−1, and CO2 adsorption up to
3.4 mmol g−1 (see Fig. 10 (f) and (g)).

Our strategy, with the help of the ChatGPT-4o-mini LLM
assistant, aims to quickly review a variety of synthesis
methods, including green methods, to facilitate routine
experimental work. Using the extensive knowledge previously
published by researchers, we enable rapid searching and
evaluation of various synthesis parameters by utilizing AI
algorithms. The standard criteria of gas adsorption by porous
materials depend on various parameters, such as (i) variations
in size and/or shape (molecular sieve effect); (ii) variations in
the interactions between the adsorbent molecule and adsor-
bent surface (thermodynamic equilibrium effect); (iii) varia-
tions in diffusion intensities (kinetic effect or partial
molecular sieve action); and (iv) quantum effects.42 The
interaction between the gas and the MOF surface becomes
Digital Discovery
a key parameter in determining the quantity of adsorption of
each component when the MOF adsorbent's pore size is large
enough to allow all gas components to pass through. Addi-
tionally, the characteristics of the adsorbent, such as polariz-
ability, permanent dipole moment, quadrupole moment, as
well as the features of the adsorbent surface, inuence the
interaction intensity.43 When carboxylate ligands (1,4-
benzenedicarboxylates (BDC)) are combined with high-valence
metal cations (Cr3+), the MOF stability is improved in the
presence of water. However, CO2 adsorption, which produces
a quadrupole moment, is signicantly affected by strong
polarizing groups such as carboxylic acid.44 Furthermore,
increasing metal valence causes an increase in the electrical
difference between the CO2 molecule and the adsorbent
surface, which improves CO2 adsorption. For CO2 adsorption,
the adsorbent's pore diameter (3.3 Å) must be greater than the
kinetic diameter of CO2 molecule. Because of the different
interactions between the adsorbent and its surface, CO2 gas is
adsorbed, and the adsorption process will be at thermody-
namic equilibrium.12 Consequently, it is feasible to anticipate
increased CO2 adsorption and tune the pore size diameter of
MOFs, by carefully selecting the appropriate ligands and
metals.

Fig. 11 provides an overview of the creation of keywords and
classication of the MOF group for CO2 capture. Based on the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Schematic of the classified types of supergroups, MOF groups, and MOF types obtained from text mining.
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classication generated by the LLM, MOFs can be organized into
groups and supergroups, and the relationships among the MOF
types used for CO2 capture are shown in Fig. 9. In fact, the rela-
tionship of the ligand and metal types is one of the most impor-
tant foundations of the MOF structure. By observing the type of
MOF in the separated subgroups, the results of the mentioned
diagrams can be easily used. Using the current ChatGPT-based
assistant, researchers can gain an overview and a roadmap of
how different MOF or composite types are synthesized and
perform. This allows them to analyze the data effectively andmake
informed decisions when selecting an MOF type or synthesis
method. New data can be integrated into the existing dataset to
update themodel and results using the attached GitHub code. The
approach is easily expandable by incorporating additional data
and rening the outputs accordingly. One of themainmotivations
behind this work was to promote the green synthesis of newMOFs
by avoiding the use of toxic solvents such as DMF and reducing
synthesis costs.45 The resulting MOF cleaned database (Table S3,
Excel le in the SI), including DOI links to the original articles, can
be used asdata for training ML models and for evaluating various
features.
© 2025 The Author(s). Published by the Royal Society of Chemistry
4. Conclusions and outlook

In this research work, we investigated how the use of LLMs
through the ChatGPT-4o mini platform can enhance the
understanding and effectiveness of article text mining to assist
chemists and chemical engineers in the design, synthesis, and
utilization of MOF materials for CO2 capture. We introduced
a scheme for data mining and subsequent analysis of MOF data
related to CO2 capture using LLM, based on published articles.
Our evaluation of the results and the data mining process
demonstrated the potential of LLMs as an efficient tool for
rapidly classifying and extracting MOF-related CO2 capture data
from published scientic articles. Statistical analysis of the data
mining results from the articles provided extensive insights into
the process conditions, porous structures of different MOFs,
and synthesis methods relevant to CO2 capture. Statistical
differences were evaluated for 10% of the results, and data
inconsistencies were assessed accordingly.

Based on human analysis, a signicant percentage of correct
data from the articles was identied and extracted by ChatGPT
with appropriate accuracy and presented an acceptable true-
Digital Discovery
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positive ratio. A major problem with the data in the articles is
that ChatGPT fails to identify many instances of false negatives,
particularly in review articles, where it only extracts a small
number of relevant data items from a vast amount of infor-
mation. This issue with CO2 selectivity stopped us from adding
this parameter to the database. Another issue with ChatGPT is
its ability to identify data in large tables, as it extracts a limited
number of items from them. Therefore, the results show that
research article data is more practical and it is easier to read the
text correctly by ChatGPT. Incorporating more research articles
to obtain new data and creating a larger database will facilitate
broader and more accurate research in materials science,
especially on MOFs for certain applications. To improve the
quality of LLM-based models, several key challenges need to be
addressed. First, the literature is biased towards successful
results, while unsuccessful experiments are rarely reported,
which introduces uncertainty in the results. Second, text mining
with LLMs is still in its early stages, and as the scientic liter-
ature continues to evolve, LLM results will change, potentially
leading to inconsistencies. Therefore, it is imperative to address
this concern and develop more linguistic models on specic
topics, such as the synthesis of porous materials, with further
validation. Therefore, one should not immediately expect
accurate results from LLMs. Instead, they should be used with
caution as an assistant to observation and data mining, mate-
rial design, and laboratory synthesis to simplify and accelerate
the review of past research. To improve validation, we recom-
mend that researchers include the obtained data in a separate
table in note format when publishing research results to allow
for careful review and secondary validation. This research study
not only demonstrates how LLMs can revolutionize the devel-
opment of porous MOF materials for CO2 capture, but also
provides a useful guide for the design of high-performanceMOF
materials in themore general areas of designing and fabricating
adsorbents and catalysts with efficient synthesis schemes. This
practical tool can play a fundamental role for researchers in
synthetic strategies and in providing roadmaps. Expanding this
research method beyond adsorbent and catalyst studies would
be encouraging. Crystal-structured adsorbents, such as zeolites
and metal oxides, have high potential for future research.

Nomenclatures
N

Digital Discovery
Number of datasets for training [-]

R2
 Correlation coefficient [%]

SBET
 Specic surface area [m2 g−1]
Acronyms
AI
 Articial intelligence

ANN
 Articial neural network

AARD
 Average absolute relative deviation [%]

AAD
 Average absolute deviation [%]

API
 Application programming interface

CCS
 Carbon capture and sequestration
CBM
© 2025 The A
Carbon-based materials

GHG
 Greenhouse gas

IPCC
 Intergovernmental panel on climate change

MSE
 Mean square error

MOF
 Metal–organic framework

ML
 Machine learning

MLP
 Multi-layer perceptron

POP
 Porous organic polymers

RMSE
 Root means square error

SSA
 Specic surface area [m2 g−1]

TEM
 Transmission electron microscopy

VSA
 Vacuum swing adsorption
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