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proach to control stimulus
responsivity of functional polymer materials:
predicting thermoresponsive color-changing
properties of polydiacetylene

Risako Shibata,a Nano Shioda,a Hiroaki Imai, a Yasuhiko Igarashi bc

and Yuya Oaki *a

Sensing devices are fabricated using stimuli-responsive materials. In general, the responsivity is controlled

by designing molecules and materials based on professional experience. If predictors are constructed for

the responsivity control, the number of experiments can be reduced without consumption of time, cost,

and effort. However, such dynamic properties of functional polymer materials are not easily predicted

because of the small data and complex structure–function relationship. How to prepare a dataset and

train small data remain significant challenges. The present work shows construction and application of

a prediction model for controlling thermoresponsive color-changing properties of layered

polydiacetylenes (PDAs). The responsivity was changed by the intercalated guest molecules. The training

dataset was prepared from a series of the photographs representing the color at each temperature. The

prediction model of the thermoresponsivity, namely color-changing temperature, was constructed by

combining machine learning and our chemical insight based on the small experimental data. The

thermoresponsivity of the newly synthesized layered PDAs was predicted by the model. The modeling

methods can be applied to predict various dynamic properties of functional polymer materials.
1. Introduction

Stimuli-responsive molecules and materials have various
applications, such as sensors and actuators.1–11 An input
external stimulus, such as thermal, chemical, optical, and
mechanical stimuli, is converted to a specic output response
by molecules and materials. Visible and/or uorescent colors
are used for detection of the applied stresses. The responsivity,
such as sensitivity, chromaticity, and reversibility, is tuned by
design and synthesis of chromophores and their organization
states. In general, such molecules and materials are designed
based on professional experiences and synthesized with trial
and error. If a data-driven approach is effectively applied to
these processes, the responsivity can be efficiently tuned
without consumption of time, cost, and effort. Although this
motivation is rational, data-driven approaches are not easily
applied for designing such functional so materials because of
the following reasons. One of the problems is the insufficient
f Science and Technology, Keio University,

-8522, Japan. E-mail: oakiyuya@applc.

Systems, University of Tsukuba, 1-1-1
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data size of typical experimental procedures for the use of
conventional machine-learning (ML) algorithms. Another
problem is how to prepare a dataset suitable for ML based on
non-numerical experimental results. The targeted problem, i.e.
stimuli responsivity, should be translated into a ML-solvable
problem. For example, photographs, spectra, and their
changes need to be converted to ML-applicable data. Moreover,
as dynamic properties are related to the complex structural
hierarchy ranging from molecules to organized states, the
factors related to the properties as the potential descriptors are
not fully prepared only using conventional tools for automatic
generation of descriptors. In this manner, ML has not been fully
applied to experimental studies for controlling the properties of
stimuli-responsive materials because of the issues in data size,
data curation for the targets, and preparation of the descriptors.
Although ML has been applied to design polymers and so
materials, such as polymers, gels, liquid crystals, and bubbles,
in recent years,12–22 further methodological advances are
required to develop the methods for small experimental data.
The present work shows construction of a prediction model for
thermoresponsive color-changing properties of layered PDAs
(Fig. 1). Based on the photographic data, a straightforward
linear regression model was prepared by sparse modeling for
small data (SpM-S). The data acquisition, curation, and
modeling methods can be applied to construct the predictors of
Digital Discovery
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Fig. 1 Schematic illustration for predicting thermoresponsive color-changing properties of layered PDAs. (a) PCDAmonomer. (b) Guest amines.
(c) Guest-intercalated layered PDA with topochemical polymerization. (d) Photographs for preparing thermoresponsive color-changing
properties. (e) Small dataset containing the color transition temperature (Ttrs = y, objective variables) and physicochemical parameters of the
guests (xGn, explanatory variables). (f) SpM-S for extraction of the descriptors and model construction. (g) Synthesis of the layered PDA with
intercalating new guests based on the predicted Ttrs.
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the other stimuli-responsive functional materials with small
data.

PDA, a conjugated polymer, exhibits color changes in
response to external stimuli, such as thermal, chemical, and
frictional stresses.23–30 A wide variety of sensing devices and
systems were fabricated using PDA. The stresses induce
molecular motion and subsequent shortening of the effective
conjugation length of the PDA main chain. The stimuli
responsivity has been controlled by the molecular design.31–43

Our group has studied an intercalation approach to control the
responsivity of layered PDAs (Fig. 1a–d).45–52 The layered struc-
ture of an amphiphilic diacetylene (DA) monomer, 10,12-
pentacosadiynoic acid (PCDA), is topochemically polymerized
in the solid crystalline state (Fig. 1a and c). Whereas the layered
PDA derived from PCDA shows the blue-to-red color transition
around 65 °C with heating (Fig. 1d), the color-changing
temperature varied in the range from −0.2 to 146 °C depend-
ing on the intercalated guests, such as metal ions and alkyl
amines, in the interlayer space (Fig. 1b and d).44–52 However,
responsivity control based on experience and intuition meets
the limitations for both the molecular-design and intercalation
approaches. Here we used ML to construct the predictor for
controlling the responsivity.

In recent years, ML has been widely used in general materials
science.53–60 Most of the algorithms are suitable for big data. A
sufficient size of data is not available for all the experimental
works. With small data, conventional ML algorithms cause
problems, such as overtraining. Recent studies have proposed
Digital Discovery
specic methods for small data, such as transfer and active
learning.61–67 In our group, sparse modeling for small data
(SpM-S) has been studied; the approach combining ML and our
chemical insight provides straightforward and interpretable
predictors.68–73 SpM-S was used for simple numerical data, such
as yield, size, and capacity, directly obtained from the experi-
mental procedures. The approach was not applied to small
experimental data requiring curation prior to use, such as
photographs and graphs. If the targeted data and problem are
converted to SpM-S applicable formats in an appropriate
manner, the approach can be applied to small data in broader
elds. In the present work, a prediction model for the ther-
moresponsive color-changing properties of the layered PDA was
constructed by SpM-S (Fig. 1d–g). Aer the training dataset was
prepared from a series of photographic data (Fig. 1d and e),
combination of ML and chemical insight provides predictors
based on the small data (Fig. 1f). The model successfully pre-
dicted the thermoresponsivity of the layered PDAs with the
intercalation of new unknown guests (Fig. 1g). Based on these
results, if the targeted stimuli responsivity is converted to an
appropriate dataset, the predictors can be constructed by SpM-S
even on small experimental data.
2. Results and discussion
2.1. Preparation of datasets from photographs

The data about the thermoresponsive color-changing properties
were extracted from our previous studies and newly added in
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 1 List of explanatory variables

xGn Parameter Unit aMethod

xG1 HSP dispersion MPa1/2 H
xG2 HSP polarity MPa1/2 H
xG3 HSP hydrogen bonding MPa1/2 H
xG4 Density g cm−3 H
xG5 Molecular volume cm3 mol−1 H
xG6 Molecular surface area cm2 mol−1 H
xG7 Boiling point (1.01 × 105 Pa) °C H
xG8 Melting point (1.01 × 105 Pa) °C H
xG9 Ovality — H
xG10 Molecular weight g mol−1 R
xG11

bLog P — R
xG12

cTPSA (10−10 m)2 R
xG13 Molecular length 10−10 m R
xG14 Minimum of partial charge density C m−3 G
xG15 Polarizability (10−10 m)3 G
xG16 Dipole moment Debye G
xG17 Valence of amine — —

a Sowares: HSP-ip (H), RDKit (R), Gaussian (G) (See the SI).
b Logarithm of partition coefficient between water and octanol.
c Topological polar surface area.
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the present work (Fig. 1b–d, S1–S3 and Tables S1–S3 in the
(SI)).44–51 The layered PDAs show color changes from blue to red
with increasing temperature (T/°C) (Fig. 1d). Whereas the
layered PDA without the guest showed a blue-to-red color
transition around 65 °C, for example, the color transition was
observed around 80 and 100 °C with the intercalation of tetra-
decylamine (C14-NH2) and p-xylylenediamine (p-Xy), respectively
(Fig. 2a and b).

The original experimental data are a series of photographs
exhibiting the color of the sample at different temperatures. The
color of the photographs was converted to the red-color intensity
(x) based on the RGB values using an international standard (see
the ExperimentalMethod in the SI). An increment of x (Dx= x – x0)
was calculated at each T in reference to the initial state before
heating (x0). Then, Dx was normalized by dividing it by the
maximum Dxmax (Dx/Dxmax). The relationship between T and
Dx/Dxmax was prepared for each layered PDA containing 75
different guests (Fig. 2c, d and S3 in the SI). The T−(Dx/Dxmax)
curve was approximated using a sigmoidal function eqn (1), using
two constants a and b with the coefficient of determination (R2).

Dx

Dxmax

¼ 1

1þ expf�bðT � aÞg (1)

In the curve, the constant a corresponds to the color-changing
temperature reaching 0.5Dx/Dxmax (Fig. 1e). The constant
b corresponds to the slope representing the temperature
responsivity. The observed T–Dx plots were approximated using
eqn (1) by optimizing a and b to minimize the R2 value. The
average R2 values were 0.952 ± 0.066 for all the data (Table S4 in
the SI). The tting function was prepared with the specic a and
b for each sample (Fig. 2c, d and S3 in the SI). The color-
transition temperature (Ttrs) was dened as the T at which
0.5Dx/Dxmax is reached, namely a in eqn (1). The sigmoidal
function is a suitable approximation to describe the
Fig. 2 Data curation of the thermoresponsive color-changing
properties. (a and b) Photographs representing the relationship
between T and color of layered PDAs with the intercalation of C14-NH2

(a) and p-Xy (b). (c and d) Approximation of the relationship between T
and Dx/Dxmax (each plot) generated from the photographic data using
a sigmoidal function (red curve) for PDA-C14-NH2 (c) and PDA-p-Xy
(d). The same data for the other amines are summarized in Fig. S3 in the
SI.

© 2026 The Author(s). Published by the Royal Society of Chemistry
temperature-responsive chromaticity change. A sigmoidal
function generally exhibits the following trend of increase in y:
gentle increases in the initial and nal stages and a steep
increase in the middle range. The same trend was experimen-
tally observed for the thermoresponsive color-changing
behavior of PDAs (Fig. 2c and d). As the variation of the chro-
maticity change, Dx/Dxmax, is limited in a specic range, this
behavior is also represented by the sigmoidal function. In this
manner, the thermoresponsive color-changing properties based
on a series of photographs were converted to numerical data.

Ttrs as an objective variable (y) was calculated for the layered
PDA with the 75 different intercalated guests, such as alkyl
amines, cationic polymers, and aromatic amines (Table S1 in
the SI). These guests are numbered as S005, S006, ., S161 in
our group. Table 1 summarizes the explanatory variables (xGn: n
= 1–17) as the potential descriptors corresponding to the
physicochemical parameters of the guest molecules, such as
boiling point (xG6) and dipole moment (xG16).

2.2. Construction of the Ttrs predictor

The original 75 data points were divided into the training and
test datasets containing 65 y and 10 y, respectively (Tables S2
and S3 in the SI). The variable selection was carried out using
the training dataset (Fig. 3 and Table S2 in the SI). As the
correlation coefficients of xGn (n = 5, 6, 9, 10) were larger than
0.9 (Fig. S4 in the SI), these four xGn were removed to avoid
multicollinearity. In SpM-S,68 the signicance of xGn was visu-
alized in the weight diagram of exhaustive search with linear
regression (ES-LiR) (Fig. 3a).69,73 Linear regression models were
prepared using the training dataset in all the possible combi-
nations of 13 xGn (n = 1–4, 7, 8, 11–17), 213–1 (=8.2 × 103)
combinations, with ve-fold cross validation (CV). The con-
structed models were sorted in the ascending order of the cross-
validation error (CVE) values. The positive and negative
Digital Discovery
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Fig. 4 Model construction using other ML algorithms. (a–e) Rela-
tionship between the estimated and measured Ttrs for the training
dataset (black, 65 y) and test dataset (red, 10 y) for ML-R (a), LASSO (b),
RF-R (c), SV-R (d), and NN-R (e), respectively. (f) RMSE values of the

Fig. 3 Construction of the Ttrs predictionmodel. (a) Weight diagram of
ES-LiR. (b) Relationship between the estimated and measured Ttrs for
the training (black, 65 y) and test (red, 10 y) datasets using the model
eqn (2) composed of five xGn (xG4, xG12, xG14, xG16, and xG17),
respectively.
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coefficients of xGn were represented by the warm and cool colors
in the diagram, respectively (Fig. 3a). The more frequently used
xGn was displayed by the more densely colored bar on the
vertical axis. Based on the weight diagram, we selected ve xGn
(xG4, xG12, xG14, xG16, and xG17) as the descriptors to prepare the
linear regression model eqn (2).

y = 8.85xG4 − 6.66xG12 − 7.38xG14 − 5.76xG16 + 12.04xG17

+ 68.67 (2)

As the coefficients of this linear regression are normalized in
frequency distribution with a mean of 0 and a standard devia-
tion of 1, the contribution of each xGn is comparable. The
relationship between the estimated and measured Ttrs had
a root mean squared error (RMSE) of 15.9 °C for the training
dataset (65 y, black circles) and 25.3 °C for the test dataset (10 y,
red circles) (Fig. 3b). The coefficient of determination (R2) was
0.388 for the training dataset and 0.139 for the test dataset. Five-
fold CV was carried out using the merged dataset of the training
and test ones (75 y) (Fig. S5 in the SI). In the ve-fold CV, the
regression equations had the same positive and negative coef-
cients as those in eqn (2). RMSE was 15.6 ± 1.2 °C for the
training data and 17.3 ± 4.1 °C for the test data. The RMSE
values in the ve-fold CV imply that the model eqn (2) is not
overtrained in the training dataset but generalizable. The RMSE
Digital Discovery
and R2 values are not so high to predict Ttrs precisely. On the
other hand, the relationship between the estimated and pre-
dicted values in Fig. 3b indicates that the overall trends of the
higher and lower Ttrs are roughly described by the model. In
general, a model with high prediction accuracy (e.g. RMSE and
R2 values) is not easily constructed based on small data because
of the lack of data size. In addition to these quantitative metrics,
whether the overall trend is described by the model or not is
qualitatively evaluated by the plots representing the relation-
ship between the estimated and predicted values.68,69 If the
model describing the overall trend is constructed based on
small data, the next experiments can be accelerated by reducing
the number of trials. In this manner, a linear regression model
for predicting Ttrs of the layered PDA was constructed by SpM-S.

The contribution of each descriptor to Ttrs was studied based
on the positive and negative values of the coefficients with our
chemical insight. Density (xG4) and valence (xG17) of the guests
have a positive correlationwith Ttrs. If the guestmolecule with the
higher density (larger xG4) is intercalated in the interlayer space,
the more densely packed guests can provide a rigid layered
structure. The divalent guest amines also form the rigid layered
structure by anchoring the layers at both the terminals. The
constructed models for the training (gray) and test (pink) datasets.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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minimum value of the partial charge density (xG14) shows
a negative correlation. The guests with heteroatoms in the alkyl
chain or aromatic ring, such as secondary amines and pyridine
rings, have larger xG14 values compared with the other primary
amines (Tables S2 and S3 in the SI). These guest molecules direct
formation of so layered structures with the weakened interlayer
interaction leading to a decrease in Ttrs because of the loose
packing. Topological polar surface area (TPSA, xG4) and dipole
moment (xG16) have a negative correlation with Ttrs. As the guest
molecules with smaller xG4 and xG16 are organized and packed in
the interlayer space with van der Waals interactions, an increase
in Ttrs is attributed to the more rigid layered structure. In this
manner, the contribution of each xGn can be interpreted by our
experience and chemical insight. In the present study, the guest
monoamines and diamines with alkyl chains, cycloalkanes,
aromatic and heteroaromatic rings, and alcohols were mainly
used for the training (Table S1 in the SI). The other amines, such
as those containing branched alkyl chains and ethers, were not
fully trained in the present model. In addition, more different
types, such as amino acids, macromolecules, and polyamines,
need to be trained by adding more data. A more accurate model
can be constructed by adding more data.
Fig. 5 Prediction-based synthesis of the layered PDA with the intercalatio
Photographs representing the relationship between T and color of the l
measured Ttrs was noted with the photographs. (c) Relationship between t
newly synthesized ones (red, 9 y), respectively.

© 2026 The Author(s). Published by the Royal Society of Chemistry
2.3. Model construction using other ML algorithms

The model construction was carried out based on the same
training and test datasets using the following other linear and
nonlinear ML algorithms (Fig. 4): multiple linear regression
(MLR) without variable selection, least absolute shrinkage and
selection operator (LASSO), random forest regression (RF-R),
support vector regression (SV-R), and neural network regres-
sion (NN-R). Whereas the relationship between the estimated
and observed Ttrs approached the diagonal line for the training
dataset, a large error was found for the test dataset (Fig. 4a–e).
Fig. 4f summarizes the RMSE values for the original training
and test datasets. The other algorithms provide slightly smaller
RMSE values for the training dataset compared with that of the
model constructed by SpM-S. In contrast, the larger RMSE
values were obtained for the test dataset. In the case of LASSO,
a larger number of the descriptors xn (2, 5–8, 10, 12, 13, and 15)
was used for the model. These results imply that the other
algorithms lead to the overtting of the training dataset and
lower the generalizability to the test dataset. Similar results
were obtained in our previous studies using small data.69,70,74,75

SpM-S provides an accurate model comparable to other models
n of new guests. (a) Molecular structure of new guests S901–S909. (b)
ayered PDA with the intercalation of the new guests S901–S909. The
he estimated andmeasured Ttrs for the training dataset (black, 65 y) and
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even though the number of the selected descriptors is limited.
The linear regression model comprising the selected descrip-
tors and coefficients has interpretability and straightforward-
ness. The smallest RMSE value for the test dataset indicates
generalizability to unknown test data. In this manner, SpM-S is
a suitable approach to small data in terms of accuracy, inter-
pretability, and generalizability.
2.4. Prediction-based syntheses of new layered PDAs

Nine commercial amines (S901–S909) were selected as the new
guests (Fig. 5a and Table S5 in the SI). These molecules were not
used in the previous studies and datasets for the model
construction. Prior to the experiments, the predicted Ttrs was
calculated using the model eqn (2). These guest-intercalated
precursor layered crystals were synthesized by self-organization
from a solution containing the host PCDA and guest amine
with the evaporation of the solvent.45 The layered PDA with the
intercalated guests was obtained by UV-light irradiation. The
intercalated structures were analyzed by X-ray diffraction (XRD)
and Fourier-transform infrared (FT-IR) spectroscopy (Fig. S6 in
the SI). The thermoresponsive color-changing properties were
observed by heating the samples (Fig. 5b). The actual Ttrs was
calculated from the T–(Dx/Dxmax) relationship by approximation
using eqn (1) (Fig. S7 in the SI). The predicted and actual Ttrs
values are summarized using the red circles in Fig. 5c. The RMSE
value of the actual Ttrs was 15.6 °C comparable to that of the
training data (15.9 °C, black circles in Fig. 5c). The results indi-
cate that Ttrs of the guest-intercalated layered PDA can be pre-
dicted using the model. Although the guests have been selected
based on our experience and intuition, a more efficient selection
can be achieved using the predictor in the future. Moreover,
a similar approach can be applied to the molecular design of DA
monomers to achieve tailored responsivity.
3. Conclusions

A dynamic function of polymer materials has been predicted
based on small experimental data with the assistance of ML,
SpM-S. Layered PDAs show thermoresponsive color-changing
properties depending on the intercalated guest molecules. As
the color-changing properties were represented by a series of
photographs in our experimental studies, the ML-applicable
data were prepared at the initial data-curation step. The rela-
tionship between T and Dx/Dxmax representing the thermores-
ponsivity was approximated using a sigmoidal function for
conversion of the photographic data to numerical data for ML. A
constant in the tting function was set as y. The descriptors
were extracted from the weight diagram representing the
contribution of each xn. The straightforward and interpretable
linear model was constructed for predicting Ttrs by SpM-S.
Furthermore, Ttrs of the layered PDA with intercalation of the
new guest was predicted prior to the experiment. The actual Ttrs
was consistent with the predicted one. These results indicate
the successful construction of the Ttrs predictor for layered
PDAs. In general, dynamic functions of polymer materials are
not easily predicted because of the complex structural
Digital Discovery
hierarchy. The present approach combining data curation and
SpM-S can be applied to other stimuli-responsive materials with
input triggers (e.g. temperature, concentration, pH, and light)
and output signals (e.g. color change, phase and structural
transitions, morphology change, and current). Moreover,
designing other functional polymer materials can be achieved
using the present method based on small data.
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26 X. Qian and B. Städler, Chem. Mater., 2019, 31, 1196.
27 Y. Oaki, Chem. Commun., 2020, 56, 13069.
28 B. Das, S. Jo, J. Zheng, J. Chen and K. Sugihara, Nanoscale,

2022, 14, 1670.
29 Y. Kim, K. Iimura and N. Tamaoki, Bull. Chem. Soc. Jpn.,

2024, 97, uoae034.
30 C. C. Revadekar, A. A. Patil, J. M. Kim and B. J. Park, J.

Photochem. Photobiol., C, 2025, 63, 100699.
31 Z. Huo, Q. Deng, T. Fan, G. He, X. Hu, X. Hong, H. Chen,

S. Luo, Z. Wang and D. Chen, Polym. Chem., 2017, 8, 7438.
32 Z. Yu, C. MuYu, H. Xu, J. Zhao and G. Yang, Polym. Chem.,

2023, 14, 2266.
33 A. Thakuri, M. Banerjee and A. Chatterjee, Chem.–Asian J.,

2025, 20, e202500219.
34 S. Dei, M. Matsumoto and A. Matsumoto, Macromolecules,

2008, 41, 2467.
35 S. Ampornpun, S. Montha, G. Tumcharern,

V. Vchirawongkwin, M. Sukwattanasinitt and
S. Wacharasindhu, Macromolecules, 2012, 45, 9038.

36 J. Seo, C. Kantha, J. F. Joung, S. Park, R. Jelinek and
J. M. Kim, Small, 2019, 15, 1901342.

37 B. Hu and P. Wu, Giant, 2020, 3, 100025.
38 B. S. Kim, M. I. Khazi and J. M. Kim, Macromolecules, 2021,

54, 8220.
39 R. Saymung, N. Traiphol and R. Traiphol, Colloids Surf., A,

2021, 626, 120746.
40 S. Baek, J. M. Heo, K. Bae, M. I. Khazi, S. Lee, K. Kim and

J. M. Kim, Langmuir, 2024, 40, 18272.
41 N. N. Kadamannil, D. Jang, H. Lee, J. M. Kim and R. Jelinek,

Small Methods, 2024, 8, 2301286.
42 J. Zheng, J. Chen, M. Galluzzi, Y. Hou and K. Sugihara, Nano

Lett., 2025, 25, 7307.
43 Y. Takeuchi, H. Imai and Y. Oaki, J. Mater. Chem. C, 2025, 13,

3209.
44 Y. Ishijima, H. Imai and Y. Oaki, Chem, 2017, 3, 509.
© 2026 The Author(s). Published by the Royal Society of Chemistry
45 H. Terada, H. Imai and Y. Oaki, Adv. Mater., 2018, 30,
1801121.

46 Y. Oaki, Y. Ishijima and H. Imai, Polym. J., 2018, 50, 319.
47 K. Watanabe, H. Imai and Y. Oaki, Small, 2020, 16, 20045.
48 K. Watanabe, H. Imai and Y. Oaki, J. Mater. Chem. C, 2020, 8,

1265.
49 Y. Mochizuki, H. Imai and Y. Oaki, ChemPlusChem, 2021, 86,

1563.
50 A. Edagawa, S. Matsuda, H. Kawakubo, H. Imai and Y. Oaki,

ACS Appl. Mater. Interfaces, 2022, 14, 43792.
51 N. Shioda, J. M. Heo, B. Kim, H. Imai, J. M. Kim and Y. Oaki,

Sens. Diagn., 2022, 1, 163.
52 R. Shibata, S. Matsuda, H. Kawakubo, H. Imai and Y. Oaki, J.

Mater. Chem. B, 2024, 12, 10886.
53 S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo,

S. Sanvito and O. Levy, Nat. Mater., 2013, 12, 191.
54 K. Rajan, Annu. Rev. Mater. Res., 2015, 45, 153.
55 K. T. Butler, J. M. Frost, J. M. Skelton, K. L. Svanea and

A. Walsh, Chem. Soc. Rev., 2016, 45, 6138.
56 B. Sanchez-Lengeling and A. Aspuru-Guzik, Science, 2018,

361, 360.
57 A. Agrawal and A. Choudhary, MRS Commun., 2019, 9, 779.
58 L. Himanen, A. Geurts, A. S. Foster and P. Rinke, Adv. Sci.,

2019, 6, 1900808.
59 Y. Miyake and A. Saeki, J. Phys. Chem. Lett., 2021, 12, 12391.
60 S. C. Smith, C. S. Horbaczewskyj, T. F. N. Tanner, J. J. Walder

and J. S. Fairlamb, Digital Discovery, 2024, 3, 1467.
61 A. D. Sendek, B. Ransom, E. D. Cubuk, L. A. Pellouchoud,

J. Nanda and E. J. Reed, Adv. Energy Mater., 2022, 12,
2200553.

62 Y. Zhang and C. Ling, npj Comput. Mater., 2018, 4, 25.
63 Y. Liu, B. Guo, X. Zou, Y. Li and S. Shi, Energy Storage Mater.,

2020, 31, 434.
64 B. Dou, Z. Zhu, E. Merkurjev, L. Ke, L. Chen, J. Jian, Y. Zhu,

J. Liu, B. Zhang and G. W. Wei, Chem. Rev., 2023, 123, 8736.
65 P. Xu, X. Ji, M. Li and W. Lu, npj Comput. Mater., 2023, 9, 42.
66 S. J. Pan and Q. Yang, IEEE Trans. Knowl. Data Eng., 2010, 22,

1345.
67 A. U. Mahmood, M. M. Ghelardini, J. B. Tracy and

Y. G. Yingling, Chem. Mater., 2024, 36, 9330.
68 Y. Oaki and Y. Igarashi, Bull. Chem. Soc. Jpn., 2021, 94, 2410.
69 Y. Haraguchi, Y. Igarashi, H. Imai and Y. Oaki, Digital

Discovery, 2022, 1, 26.
70 H. Tobita, Y. Namiuchi, T. Komura, H. Imai, K. Obinata,

M. Okada, Y. Igarashi and Y. Oaki, Energy Adv., 2023, 2, 1014.
71 W. Hamada, M. Hishida, R. Sugiura, H. Tobita, H. Imai,

Y. Igarashi and Y. Oaki, J. Mater. Chem. A, 2024, 12, 3294.
72 D. Suzuki, H. Minato, Y. Sato, R. Namioka, Y. Igarashi,

R. Shibata and Y. Oaki, Chem. Commun., 2024, 60, 13678.
73 Y. Kitamura, Y. Namiuchi, H. Imai, Y. Igarashi and Y. Oaki,

Nanoscale Adv., 2025, 7, 4620.
74 K. Sakano, Y. Igarashi, H. Imai, S. Miyakawa, T. Saito,

Y. Takayanagi, K. Nishiyama and Y. Oaki, ACS Appl. Energy
Mater., 2022, 5, 2074.

75 R. Yamamoto, Y. Igarashi, H. Imai, T. Sakata, S. Miyakawa,
S. Yoshizaki, T. Saito and Y. Oaki, Batteries Supercaps,
2025, 8, e202500288.
Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00442j

	A data-driven approach to control stimulus responsivity of functional polymer materials: predicting thermoresponsive color-changing properties of polydiacetylene
	A data-driven approach to control stimulus responsivity of functional polymer materials: predicting thermoresponsive color-changing properties of polydiacetylene
	A data-driven approach to control stimulus responsivity of functional polymer materials: predicting thermoresponsive color-changing properties of polydiacetylene
	A data-driven approach to control stimulus responsivity of functional polymer materials: predicting thermoresponsive color-changing properties of polydiacetylene
	A data-driven approach to control stimulus responsivity of functional polymer materials: predicting thermoresponsive color-changing properties of polydiacetylene
	A data-driven approach to control stimulus responsivity of functional polymer materials: predicting thermoresponsive color-changing properties of polydiacetylene
	A data-driven approach to control stimulus responsivity of functional polymer materials: predicting thermoresponsive color-changing properties of polydiacetylene

	A data-driven approach to control stimulus responsivity of functional polymer materials: predicting thermoresponsive color-changing properties of polydiacetylene
	A data-driven approach to control stimulus responsivity of functional polymer materials: predicting thermoresponsive color-changing properties of polydiacetylene
	A data-driven approach to control stimulus responsivity of functional polymer materials: predicting thermoresponsive color-changing properties of polydiacetylene
	A data-driven approach to control stimulus responsivity of functional polymer materials: predicting thermoresponsive color-changing properties of polydiacetylene


