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esis and fragment descriptor-
based machine learning for retention time
prediction in supercritical fluid chromatography

Sitanan Sartyoungkul,ab Balasubramaniyan Sakthivel,a Pavel Sidorov *a

and Yuuya Nagata *abc

The integration of automated synthesis and machine learning (ML) is transforming analytical chemistry by

enabling data-driven approaches to method development. Chromatographic column selection, a critical

yet time-consuming step in separation science, stands to benefit substantially from such advances. Here,

we report a workflow that combines automated synthesis of a structurally diverse amide library with

fragment descriptor-based ML for retention time prediction in supercritical fluid chromatography (SFC).

Retention data were systematically acquired on the recently developed DCpak® PBT column, providing

one of the first structured datasets for this stationary phase. Benchmarking revealed that fragment-count

descriptors (ChyLine and CircuS) substantially outperformed conventional molecular fingerprints,

delivering higher predictive accuracy and more interpretable relationships between substructures and

retention behavior. External validation underscored the role of chemical space coverage, while

visualization techniques such as ColorAtom analysis offered mechanistic insight into model decisions. By

uniting automated synthesis with chemoinformatics-driven ML, this study demonstrates a scalable

approach to generating high-quality training data and predictive models for chromatography. Beyond

retention prediction, the framework exemplifies how data-centric strategies can accelerate column

characterization, reduce reliance on trial-and-error experimentation, and advance the development of

autonomous, high-throughput analytical workflows.
Introduction

Chromatography is an indispensable analytical technique for the
separation and analysis of components within complex mixtures,
with widespread applications in pharmaceuticals,1 food science,2

and environmental monitoring.3 Among the various factors
inuencing the efficiency and success of chromatographic sepa-
rations, column selection is paramount. Consequently, the char-
acterization of both new and existing columns is a crucial step in
optimizing separation conditions. High-throughput evaluation
methods facilitate the rapid and efficient screening of numerous
columns, signicantly accelerating analytical workows.

In recent years, articial intelligence (AI) and machine
learning (ML) have attracted considerable attention for their
predictive capabilities across various scientic disciplines,
including analytical chemistry.4–6 In liquid chromatography
nd Discovery (WPI-ICReDD), Hokkaido
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y the Royal Society of Chemistry
(LC), AI and ML have emerged as powerful tools for retention
time prediction, enabling faster, more accurate, and more effi-
cient chromatographic method development. Furthermore,
supercritical uid chromatography (SFC) has gained increasing
attention due to its ability to provide even faster analyses, and
its adoption has been expanding rapidly.7,8

Despite these advancements, the adoption of newly devel-
oped chromatography columns remains challenging for
analytical chemists, as their separation characteristics are oen
unknown. Consequently, trial-and-error experimentation with
unfamiliar columns can be impractical and time-consuming.
To address this issue, we propose a machine learning model
capable of predicting retention times based on molecular
structures, thereby providing analytical chemists with valuable
insights into the separation characteristics of new columns and
facilitating their selection and use.

In this study, we employed an automated synthesis robot to
rapidly generate a diverse set of amide compounds with varying
molecular structures. Retention times were measured using an
SFC system, and a machine learning model was developed to
predict retention times based on molecular structures.
Furthermore, we explored the relationship between molecular
substructures and retention times through visualization, which
is also discussed in this study.
Digital Discovery
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Fig. 1 Automated synthesis of amides 1a–8h. Carboxylic acids were
dissolved in THF. Amines, DMAP, and EDC-HCl were dissolved in DCM.
For SFCmeasurements, sample solutions were diluted with a heptane/
2-propanol (50/50) mixture in 2 mL vials.
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Materials and methods
Experimental setup

To construct a library of amide compounds with diverse
molecular structures, we obtained a comprehensive list of
commercially available reagents from Tokyo Chemical Industry
Co., Ltd (TCIDATA, no. 43, 202007). For both carboxylic acid
derivatives and amine derivatives, we calculated their Morgan
ngerprints and selected eight structurally diverse compounds
from each category based on Tanimoto similarity coefficients,
ensuring minimal structural redundancy. The library of amide
compounds consisted mainly of aromatic amide compounds.
This composition reects the structural bias present in
commercially available amines and carboxylic acids, which tend
to include a large proportion of aromatic derivatives. Such
a bias likely originates from the pharmaceutical importance of
aromatic amides, as compounds such as aniracetam, agome-
latine, and benorilate are well known marketed drugs. There-
fore, aromatic amides play a signicant role in screening
libraries used in drug discovery. Nevertheless, the dataset also
contains aliphatic amides such as 6c and amides with ester
functionalities such as 8c, ensuring structural diversity for
reliable model development.

Subsequently, the automated synthesis of various amide
compounds was carried out through condensation reactions
between the selected amines and carboxylic acids (Fig. 1 and
Table 1). Tetrahydrofuran (THF) solutions of the selected eight
carboxylic acid derivatives and dichloromethane (DCM) solu-
tions of the eight selected amines were prepared. A di-
chloromethane solution of 4-dimethylaminopyridine (DMAP)
and 3-ethylcarbodiimide hydrochloride (EDC-HCl) was then
added, and the mixtures were stirred at 40 °C for 8 hours to
synthesize various amide compounds. Aer the reaction was
complete, 0.1 mol L−1 HCl aqueous solution was added, and the
mixture was shaken. The organic layer was separated using
a phase separation lter, collected, and diluted with a heptane/
2-propanol (50/50) mixture to prepare the chromatography
sample solutions. For the synthesis of compound 7b, a catalytic
amount of hydroxybenzotriazole (HOBt) was additionally
employed under otherwise identical conditions. Chromato-
graphic analysis was carried out on a Daicel DCpak® PBT
column9 (3 mm, 4.6 mm i.d. × 100 mm, fully porous particles)
with supercritical CO2 and 2-propanol (90 : 10, v/v) as themobile
phase at a ow rate of 2.0 mL min−1. The column temperature
was maintained at 40 °C. Samples (1 mg mL−1 in n-hexane/2-
propanol) were injected at a volume of 5 mL. Detection was
performed using a two-dimensional photo diode array detector,
and one-dimensional chromatograms were obtained at
220.0 nm. For samples that eluted at retention times close to
that of the sample solvent, chromatograms were compared with
those of previously measured other samples to identify solvent-
derived peaks, and the analyte retention times were determined
accordingly. When the reaction did not proceed completely,
chromatograms of the starting materials were measured, and
the newly appeared peak that was not derived from the starting
materials was identied as the amide product.
Digital Discovery
Here, we employed the DCpak® PBT column, which is
a silica gel-modied column with polybutylene terephthalate
(PBT). This column was developed relatively recently, and its
use remains limited. The retention times of the 64 synthesized
amide compounds are summarized in Table 1.

In general, compounds containing aromatic rings tended to
exhibit strong retention, whereas those with alkyl chains
showed shorter retention times. However, interpreting the
column characteristics intuitively based solely on this retention
time table is challenging. Therefore, based on these results, we
attempted to develop a machine learning model to predict
retention times from molecular structures.
Computational details

Experimental data (chromatograms) was processed using in-
house scripts to extract the retention time in an automatic
manner with the peak detection and integration by Python. The
code and intermediate results are available as SI.

The ML model for prediction of retention time was built
following the best practices in QSPR modelling.10 In this work,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Retention time tR (s) of the 64 amides (1a–8h). Column; DCpak® PBT, eluent; sCO2/2-PrOH = 90/10, flow rate; 2.0 mL min−1, column
temperature; 40 °C, concentration of the sample; 1 mg mL−1 in heptane/2-PrOH (50/50) mixture, injection volume; 5 mL, detection; absorption
at 220 nma

148.0 97.8 130.4 201.6 149.2 81.6 174.8 88.0

132.6 105.6 131.8 240.6 150.6 77.0 180.8 86.6

76.0 61.8 66.2 103.0 78.8 56.4 88.0 59.6

220.2 133.4 179.4 315.6 221.1 102.8 224.4 107.8

132.2 104.8 130.4 228.2 149.4 98.0 168.6 110.2

381.0 238.2 300.0 654.4 408.8 158.6 488.6 183.8

504.4 262.0 371.8 719.8 503.2 179.2 534.0 193.2

161.0 107.6 168.8 260.4 185.6 80.6 182.4 87.6

a Retention time tR (s), 220 nm, t0 ∼ 39.8 s.
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we chose structural descriptors to represent the molecules, as it
is the most relevant part in our dataset. Widely used molecular
ngerprints (FP) – binary vectors indicating the absence or the
presence of certain structural features – were selected for their
simplicity.11 We have used Morgan FP12 (capturing the circular
substructures), RDkit FP13 (circular, linear, and branched
substructures), AtomPairs14 (pairs of atoms with the topological
distance between them), Torsion15 (substructures consisting of
4 connected atoms with torsion angles) and Avalon16 (various
drug-likeness features). The binary nature of the FP, however,
limits their expressiveness and may lead to lower performance
of a model. To circumvent that, we also use fragment features
that account not only for the presence of certain substructure,
but count their occurrences in each molecule, enriching the
information content in the descriptor vector. Two types of
fragment descriptors were used – CircuS (Circular Substruc-
tures) to account for circular fragments, and ChyLine (Chython
Linear) for linear substructures. Both fragment descriptors were
calculated using DOPtools library (ver.1.2),17 all ngerprints –

using RDkit (ver.2024.9.6). Each descriptor type generates
a number of features for the dataset: for ngerprints, the length
of the feature vector was set to 1024; for fragment counts, the
number varies depending on the fragment topology and size.
The calculated matrices of descriptors for each setting are
available in SI.

The best descriptor type was selected in a benchmarking
study. It was performed using DOPtools library and the
© 2025 The Author(s). Published by the Royal Society of Chemistry
following parameters were optimized: (1) descriptor space –

only one type of descriptors were used at a time by each model;
(2) ML algorithm – Support Vector Machines (SVM),18 Random
Forest (RF)19 and XGBoost (XGB)20 were tested in a regression
model; (3) ML hyperparameters, depending on the algorithm.
The models were scored by the prediction results of a repeated
5-fold cross-validation (CVk=5). Determination coefficient (R2)
and root mean squared error (RMSE) are used to quantify the
model's quality:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
N

�
yobs;i � ypred;i

�2s

R2 ¼ 1�
P
N

�
yobs;i � ypred;i

�2
P
N

�
yobs;i � ŷobs;i

�2
where N is the number of points in the set, yobs,i is the experi-
mentally observed value of the ith data point, ypred,i is the pre-
dicted value of the ith data point, and ŷobs,i is the average
observed value across the set.

The following Python libraries were used for data processing
and calculations: Chython (ver.1.78),21 RDkit (ver.2024.9.6),
DOPtools (ver.1.2), Scikit-learn (ver.1.5),22 Optuna (ver.3.6).23

Other libraries were installed as dependencies to the latest
available versions.
Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00437c


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
3/

20
26

 1
0:

51
:4

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Results and discussion
Model benchmark

The model for the prediction of retention time was based on the
ensemble of data presented in the Table 1. In the initial stages,
we have modelled the retention time directly, and a benchmark
study on molecular descriptors was performed along with the
hyperparameter optimization, so that every type of descriptors
achieves the best possible predictivity in CVk=5. Additionally,
performing the benchmark on different ML methods, we have
observed better predictive power of the SVM, so the results
henceforth are only shown for this method (all benchmark
results are available in SI). Its results show the clear advantage
of fragment descriptors over ngerprints: all ngerprints have
shown much higher error of prediction and have especially
struggled with the compounds in the higher ranges (see
Fig. S141). Indeed, as fragment counts contain more informa-
tion, it is expected that they would retain more knowledge on
the relationship between the structure and the modelled prop-
erty. Moreover, as the higher retention times are oen associ-
ated with the repeating substructures (e.g., in this case, more
aromatic rings in a structure lead to higher RT), which the
Fig. 2 (Top) benchmark results (RMSE in repeated CVk=5 for the logar
boxplot represents the distribution of scores (RMSE, in log units) for 5 repe
the mean score, the box for the interquartile range IQR, whiskers for 1.5
CVk=5 for the three best models: ChyLine fragments (left), CircuS fragm

Digital Discovery
ngerprints fail to effectively retain as they only encode the
presence and absence of substructures.

Yet, the retention time by itself depends not only on the
chemical structure, but also on the experimental setup and
conditions. To eliminate the effect of changes in the chroma-
tography column size and eluent speed, we have then selected
the retention factor as the modelled property. The retention
factor (k) is given by (tR − t0)/t0, where tR is the analyte retention
time and t0 is the column dead time. Considering the range of
the values, we also transform the retention factor value to
a logarithmic scale to reduce the effect of the range on the error
of prediction (ln k). As the Fig. 2 shows, the fragment descrip-
tors have again shown the best performance in cross-validation,
although the performance was excellent across the board. For
this property, the ngerprints still have difficulties with pre-
dicting values in lower and higher ranges. Since the models for
ln k with fragments have shown the best performance, further
we only discuss these.

External predictions and interpretation

Fragment-based models for ln k were applied to a series of
molecules from external sources to verify the chemical space
coverage by the models. The compounds used here (1x–12x)
ithmic retention factor model) for each descriptor type in SVM. Each
ats of CVk=5 on the training set with random shuffling (white square for
IQR, other points are outliers). (Bottom) observed vs. predicted RT in

ents (middle), Morgan features FP (right).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The external predictions for the test set (1x–12x, right) made by the model built on ChyLine fragments (left plot) and CircuS fragments
(right plot). The outliers (data points for which the prediction error is greater than 1 logarithmic unit) are indicated in red and annotated by text.
Statistical scores in blue are for the subset excluding the outliers.
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included various amide compounds with structures relatively
similar to those used in model training, as well as arbitrarily
selected compounds with completely dissimilar structures. The
results of predictions are shown in Fig. 3. As the gure shows,
both models struggle with this test set, with the RMSE being
over 1 compared to 0.12 for cross-validation. However, such
high prediction error is due to two main factors.

First, there are several notable outliers for both models,
especially compounds 10x and 12x. If the outliers are removed,
the statistical scores for the models improve signicantly.
Moreover, outside of these outliers, model built on ChyLine
performs quite well across most of the range of ln k values. The
CircuS model, on the other hand, shows a more restrictive
coverage.

Second, the chemical space of the test set is quite different
from that of the training set. First of all, not all molecules are
amides, although they are the main target of the model. The
special cases are the aforementioned compounds 10x and 12x,
the former of which (9,10-diphenylanthracene) is a polycyclic
Fig. 4 Interpretation of ChyLine-based model for prediction of ln k by
ColorAtom. The contributions of atoms are coded blue for negative
contributions and red for positive, with the intensity of color indicating
the scale of the effect. White-coded atoms have virtually no contri-
bution to the prediction. The contributions are scaled to the maximum
in the test set (colorbar on the right), to allow the comparison of the
effect.

© 2025 The Author(s). Published by the Royal Society of Chemistry
aromatic compound, and the latter (1,4-bis(trimethylsilyl)
benzene) contains trimethylsilyl groups which are completely
outside of the initial chemical space. One can also interpret
these errors using the ColorAtom methodology,24 which allows
to assign atomic contributions to predictions by coloring them
according to their importance. Fig. 4 shows ColorAtom inter-
pretations for the predictions on outliers by the ChyLine model.
Indeed, for the compound 10x, the aromatic groups show
positive contribution, i.e., increasing the retention time as it
would be expected. However, due to the high number of these
groups compared to the training set, the model overestimates
the ln k which leads to a high prediction error. On the other
hand, the silyl groups in the compound 12x are completely
ignored by the model and their contribution cannot be correctly
estimated. Similar observations can be made about other
outliers, as well, where some groups' contributions are over- or
underestimated.

It could also be assumed that the compounds of the test set
are outside of the applicability domain (AD)25 of the training set.
Indeed, when estimating Fragment Control (FC)26 AD, which
excludes the compounds possessing new fragments, and
Bounding Box (BB)27 AD, which excludes compounds which
have descriptors values outside of the training set, all
compounds of the test set would be considered outside of AD,
although these are very strict denitions (see details in SI). To
demonstrate that the AD of the model is not extremely restric-
tive, we performed validation by excluding a random portion of
the training set to an external test set and repeated the opti-
mization and validation process on these new sets. The
predictions for these sets are excellent, which shows that the
model works well on external data of amides, as expected (all
details are presented in SI).
Conclusions

In this study, we demonstrated a machine learning-based
approach for predicting the retention times of amide
compounds in supercritical uid chromatography (SFC), aimed
at facilitating high-throughput evaluation of recently developed
Digital Discovery
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chromatography columns. By combining automated synthesis
of a structurally diverse amide library with rigorous chemo-
informatics modelling, we generated a dataset of retention
times measured on the DCpak® PBT column, which is a rela-
tively new stationary phase with limited prior characterization.

We benchmarked a range of molecular descriptors and
machine learning algorithms, showing that fragment-count-
based descriptors (ChyLine and CircuS) substantially out-
performed traditional molecular ngerprints in cross-validated
prediction of both raw retention times and logarithmic reten-
tion factors (ln k). These fragment descriptors provided richer,
more quantitative representations of structural features that
correlate with chromatographic behavior, especially for
compounds with repeating or aromatic substructures that drive
retention on the PBT column.

External validation using structurally diverse test
compounds highlighted important limitations of model
extrapolation, with notable prediction errors for molecules well
outside the training set's chemical space. Nonetheless, inter-
pretation methods such as ColorAtom analysis claried the
origins of prediction errors, conrming that the model's
learned relationships remain chemically meaningful within its
applicability domain. Moreover, controlled experiments
excluding subsets of the training data demonstrated robust
predictive performance for amide structures within the ex-
pected chemical space.

Overall, our approach shows that machine learning models
trained on systematically designed reaction libraries can
provide accurate, interpretable predictions of SFC retention
times for new columns. This can reduce the need for trial-and-
error experimentation, accelerate method development, and
improve column selection workows. Future work will expand
the training data to broader chemical classes and columns,
rene applicability domain estimation, and integrate these
predictive tools into automated analytical workows for high-
throughput chromatography.
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