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binding affinity prediction

Satya Pratik Srivastava,a Rohan Gorantla, bc Sharath Krishna Chundru,a
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Active learning (AL) prioritises which compounds to measure next for protein–ligand affinity when assay or

simulation budgets are limited. We present an explainable AL framework built on Gaussian process

regression and assess how molecular representations, covariance kernels, and acquisition policies affect

enrichment across four drug-relevant targets. Using recall of the top active compound, we find that

dataset identity which is a target's chemical landscape sets the performance ceiling and method choices

modulate outcomes rather than overturn them. Fingerprints with simple Gaussian process kernels

provide robust, low-variance enrichment, whereas learned embeddings with non-linear kernels can

reach higher peaks but with greater variability. Uncertainty-guided acquisition consistently outperforms

random selection, yet no single policy is universally optimal; the best choice follows structure–activity

relationship (SAR) complexity. To enhance interpretability beyond black-box selection, we integrate

SHapley Additive exPlanations (SHAP) to link high-impact fingerprint bits to chemically meaningful

fragments across AL cycles, illustrating how the model's attention progressively concentrates on SAR-

relevant motifs. We additionally provide an interactive active learning analysis platform featuring SHAP

traces to support reproducibility and target-specific decision-making.
1 Introduction

Drug discovery is the process of identifying new molecules that
can target a disease state with novel chemical compounds
ranging from small molecules1–3 to anti-bodies.3,4 One way of
approaching small molecule drug discovery is by identifying
a biological target, e.g., a protein or other relevant biomolecule
to alter their functional state by inhibition. One key property
that can help identify novel inhibitors for a protein target is
optimisation of the protein-ligand binding affinity. As such,
accurate in silico and experimental estimation of protein–ligand
binding affinities are essential properties to measure and
predict during hit identication across vast chemical libraries
and systematic optimization of congeneric series during hit–to–
lead campaigns.5–7 High–throughput screening remains
a cornerstone of small-molecule discovery, but rising assay
complexity and cost increasingly preclude exhaustive use.8 As
discovery shis toward medium-throughput, biophysics-rich
assays supported by structure-guided optimisation with
alchemical free-energy methods (AFEs),2,6,9–11 the goal centers
around exploring chemical space effectively under a budget.
This budget can determine both the number of evaluations
-mail: rajeev.kumar@snu.edu.in

rgh, Edinburgh EH8 9AB, UK

y of Edinburgh, Edinburgh EH9 3FJ, UK.

y the Royal Society of Chemistry
measurements or computational predictions by only assessing
a few hundred compounds per cycle.5,6,12 Biophysical assays
such as surface plasmon resonance (SPR) provide kinetics-
resolved conrmation of binding and are widely used when
functional assays are noisy, non-specic, or fail to identify
tractable series.13,14 Yet their medium-to-low throughput
constrains campaign scale. Similarly, AFE calculations can
prospectively prioritise substitutions but remain computation-
ally intensive. In both cases, identifying the most promising set
of compounds with the fewest computational or experimental
evaluations and minimising the overall budget is desirable.

Active learning (AL), a subset ofmachine learning, has emerged
as a framework to address this challenge.2,9,15 By training a surro-
gate model, quantifying predictive uncertainty, and iteratively
prioritising the next most informative compounds, AL maximises
information gain from a limited number of experimental assay
measurements or physics-based computations, enabling efficient
enrichment without relying on brute-force screening.9,15–18 In
practice, AL balances exploitation that is rening known high-
activity scaffolds, against exploration that probes novel chemo-
types that may unlock new structure–activity relationships (SARs).
This trade-off is controlled by the acquisition strategy.19,20 As
a result, AL has been deployed for ligand binding affinity predic-
tion and multi-property lead optimisation under assay- or
simulation-constrained budgets.2,9,15,18,20 Notwithstanding its
potential, AL is not a “one-size-ts-all” solution.15,21 Its perfor-
mance is signicantly dependent on a complex interplay of
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methodological choices, including the underlying machine
learningmodel, themolecular representation, the kernel function,
and the acquisition protocol.19,21 Outcomes vary with the chemical
landscape of the library, the molecular representation, the surro-
gate model choice, and the acquisition protocol.15,19,21 Moreover,
surrogate models and representations from deep learning models
can behave as “black boxes,” limiting chemical intuition and trust
in recommendations.22–24 AL has been applied successfully on
individual targets2,25,26 and specic workows,10,27,28 and recent
efforts have begun to systematically explore different strategies
and parameters.15,21 Open questions remain around clarifying
when different AL designs are most effective, why performance
varies across chemical spaces, and nding ways to incorporate
explainability into the selection process of the AL cycles to help
with guiding design choices that can be experimentally veried.

In this work we combine explainability while exploring seven
acquisition protocols with ve Gaussian-process kernels and
three molecular representations (ECFP4, MACCS, and Chem-
BERTa) in a xed budget-setting for pharmaceutically relevant
targets taken from literature (TYK2, USP7, D2R, and MPro). We
show that the inherent chemical landscape of each target
substantially dictates achievable enrichment, and that the
choice of representation–kernel combination presents a trade-
off between robustness (e.g., xed ngerprints with simple
kernels) and peak performance (e.g., learned embeddings with
non-linear kernels). To move beyond black-box selection, we
integrate SHapley Additive exPlanations29 (SHAP) to map high-
impact ngerprint bits to chemically interpretable fragments
over AL cycles, revealing how model focus sharpens onto SAR-
relevant motifs. To allow easy visualisation and analysis of
various AL strategies in combination with the SHAP analysis, we
provide an active learning analysis platform. This platform
provides a way to visualise this comprehensive analysis across
all diverse settings and targets and integrates SHAP traces to
support reproducibility and target-specic decision-making. It
can easily be adapted to different protocols and targets to
provide a comprehensive and interactive understanding of
different AL strategies and their impact on chemical space. Our
code is available at https://github.com/meyresearch/
explainable_AL.
2 Methods
2.1 Active learning setup

Central to our active learning framework is a methodology that
employs principles of Bayesian Optimization (BO).30 BO is an
iterative strategy for optimizing black-box functions that are
expensive to evaluate. It operates by building a probabilistic
surrogate model of the objective function, which is then used to
intelligently select the most promising points to evaluate next. In
our framework, the surrogate model approximates the relation-
ship between the molecular structure and binding affinity across
the chemical space of ligands. An acquisition function (AF) uses
the model's estimates and uncertainties to select the next batch of
compounds for evaluation. The model is then updated with the
new data, and the process is repeated. The ultimate goal of this
Digital Discovery
iterative process is to nd the compound with the highest affinity,
as summarised by the objective in eqn (1).

X̂ ¼ argmax
x˛X

f ðxÞ (1)

in eqn (1), f(x) represents the true but unknown binding affinity
of a given compound (molecule) x. The search space X repre-
sents the entire library of candidate compounds available for
evaluation. The goal of BO is to nd the optimal compound X^
that maximizes the affinity, while minimizing the number of
expensive evaluations of f(x) (i.e., experiments or simulations).
2.2 Gaussian process as the surrogate model

The most common and effective class of surrogate models for
Bayesian optimization are Gaussian Processes (GPs).31 A GP is
a non-parametric model, dened by its mean function m(x) and
covariance, i.e., the kernel function k(x, x0) which measures the
similarity between two points. The GP is dened by using the
following eqn (2)

f(x) ∼ GP(m(x),k(x, x
0
)) (2)

Gaussian functions canmodel the unknown affinity function
f(x) on a distribution of functions, and they are incredibly
adaptable at approximating nonlinear functions, which are
needed to traverse the vast chemical space.
2.3 Acquisition strategies in AL cycles

Compound selection within the active learning loop is guided
by an acquisition strategy; here we use the generalized Upper
Condence Bound (UCB) acquisition function.20,32 This func-
tion balances exploring new molecules with exploiting known
good binders by linearly weighting the model's estimated mean
affinity and its associated uncertainty. The acquisition score for
a compound x is determined as follows,

sacq(x) = a m(x) + b s(x) (3)

In eqn (3), m(x) is the estimated mean affinity for x, s(x) is the
estimated standard deviation (uncertainty), a is a parameter
weighting exploitation (mean prediction), and b is a parameter
weighting exploration (uncertainty).17 Seven distinct acquisition
strategies have been examined by varying a and b parameters
over the acquisition cycles.

The seven distinct active learning acquisition protocols in this
study were designed to systematically probe the trade-off between
exploration and exploitation. Each protocol began with an initial
random batch of 60 compounds to seed the model, followed by 10
acquisition cycles of 30 compounds each. The exploration-
exploitation balance was controlled by dynamically varying the
a and b parameters in the generalized Upper Condence Bound
(UCB) acquisition function: sacq(x) = a m(x) + b s(x).

This framework allows for three primary modes: pure
exploration (a = 0, b = 1), which prioritizes molecules with the
highest uncertainty (s(x)); pure exploitation (a = 1, b = 0),
which selects the most promising estimated affinity (m(x)); and
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Overview of active learning acquisition protocols. Each
protocol starts with an initial batch of 60 randomly selected
compounds, followed by 10 cycles of 30 compounds. Shorthand: R =

Random, E = Explore (a = 0, b = 1), X = Exploit (a = 1, b = 0), and B =

Balanced (a = 0.5, b = 0.5). Numbers in parentheses indicate the
number of compounds acquired in that step

Protocol name Acquisition schedule (10 cycles of 30 compounds)

Random baseline [R(30)] × 10
UCB-balanced [B(30)] × 10
UCB-alternate [E(30), X(30)] × 5
UCB-sandwich [E(30)] × 2 + [X(30)] × 6 + [E(30)] × 2
UCB-explore-heavy [E(30)] × 7 + [X(30)] × 3
UCB-exploit-heavy [X(30)] × 7 + [E(30)] × 3
UCB-gradual [E(30)] × 3 + [B(30)] × 4 + [X(30)] × 3
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a balanced strategy (a = 0.5, b = 0.5). The specic schedules for
each protocol are summarised in Table 1.

Beyond simple baselines like the random and UCB-balanced
protocols, we designed several dynamic strategies to model
different discovery campaign philosophies:

2.3.1 UCB-alternate. This protocol alternates every cycle
between pure exploration and pure exploitation to explicitly
separate the search for novel chemotypes from the renement of
known active scaffolds.

2.3.2 UCB-sandwich. This strategy “sandwiches” a long
phase of intensive exploitation (6 cycles) between two short
phases of initial and terminal exploration (2 cycles each),
Fig. 1 Screenshots of the interactive active learning analysis platform. (A)
loading a complete, pre-analyzed demo dataset or uploading custom da
which visualizes how the importance of top molecular features, as measu
different phases (random, explore, and exploit) of the active learning cycl
by-step instructions for users to either explore the platform's built-in fin

© 2026 The Author(s). Published by the Royal Society of Chemistry
modeling a campaign that quickly focuses on a promising
region before a nal check for missed opportunities.

2.3.3 UCB-gradual. This protocol mimics a phased discovery
campaign, beginning with broad exploration (3 cycles), trans-
itioning to a balanced search (4 cycles), and concluding with
focused exploitation (3 cycles) as the SAR landscape becomes
better dened.
2.4 Model validation and hyperparameter handling

To ensure the robustness of our models and the validity of their
uncertainty estimates, we incorporated several validation and
regularization techniques.

2.4.1 Hyperparameter optimization and regularization.
Kernel hyperparameters and the model's likelihood were opti-
mized in each AL cycle by maximizing the marginal log-likelihood
using the Adam optimizer for 100 epochs. To correct for potential
model miscalibration, we implemented weakly informative
Gamma priors on the GP model's likelihood noise (G(1.1, 0.05))
and the kernel's lengthscale parameter (G(3.0, 6.0)), a step proven
to be critical for producing reliable uncertainty estimates (SI
Fig. S1).

2.4.2 Uncertainty calibration diagnostics. A core premise of
UCB-based active learning is that the model's predictive
uncertainty, s(x), is well calibrated. To validate this, we per-
formed a suite of calibration diagnostics at the nal cycle of
each experiment. We calculated and analyzed three key metrics:
Probability Integral Transform (PIT) histograms to assess
distributional correctness, reliability diagrams to check the
Themain landing page offers two primary ways to engagewith the tool:
ta files via the sidebar. (B) A view of the ‘Feature Evolution Analysis’ tab,
red based on their mean SHAP values, changes dynamically across the
es. (C) The “How to Explore Our Results” section, providing clear, step-
dings or analyze their own data for comparison.
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accuracy of condence intervals, and the Negative Log Predic-
tive Density (NLPD) to provide an overall score for the predictive
distribution.

2.4.3 Preprocessing ablation study for ChemBERTa. To
investigate the sensitivity of non-Tanimoto kernels to the scale
of high-dimensional ChemBERTa embeddings, we conducted
a comprehensive ablation study. We compared four pre-
processing strategies: (i) no preprocessing, (ii) StandardScaler,
(iii) StandardScaler followed by PCA to 50 components, and (iv)
StandardScaler followed by PCA to 100 components.
2.5 Molecular representations and kernel choices

When using GPs, we need to convert chemical SMILES strings
with numerical feature vectors. An efficient molecular repre-
sentation can reduce the complexity of the problem by
capturing only relevant information. Capturing all the relevant
structure and chemical information, maintaining low dimen-
sionality and providing chemical intuition are the challenges
that any representation method has to deal with. By using three
different molecular representations, we explore different
aspects each with their unique tradeoffs. We use ECFP nger-
prints, i.e., Extended-Connectivity Fingerprints with radius 4,
consisting of 4,096 binary features.33 MACCS Keys, with 166-bit
binary ngerprints representing predened molecular frag-
ments,34 and, ChemBERTa Embeddings, generated using the
pre-trained ChemBERTa-77M-MTR model.35

The choice of kernel function is fundamental to the GP's
ability to model correlations between data points based on their
similarity. We explore ve distinct covariance kernel functions
viz., Tanimoto, linear, Radial Basis Function (RBF), Rational
Quadratic (RQ), and Matérn (n = 1.5). Please refer to the SI for
further details. For all kernels that include hyperparameters
(i.e., linear, RBF, RQ, and Matérn), these parameters (e.g.,
lengthscale ‘, shape parameter a, outputscale s, and noise
variance s2n) were optimized by maximizing the marginal log-
likelihood during model training.36,37 For further information
please refer to the SI.
2.6 Model explainability with SHAP

We incorporated SHapley Additive exPlanations (SHAP)29,38 to
quantify the contribution of individual molecular features to GP
model predictions across active learning cycles. For a molecule
x, the prediction f(x) is decomposed into a baseline f0 and
additive contributions from M features,

f ðxÞ ¼ f0 þ
XM

i¼1

fiðxÞ (4)

In eqn (4) fi(x) denotes the SHAP value for feature i. Feature
importance was computed as the mean absolute SHAP value
across a held-out test set of Ntest molecules as demonstrated in
eqn (5),

Importancei ¼
1

Ntest

XNtest

j¼1

��fi

�
xj

��� (5)
Digital Discovery
For each AL cycle, SHAP values were evaluated on 100 test
molecules randomly sampled from the unqueried pool, using
a background of 50 randomly sampled compounds from the
training set to initialise the shap.KernelExplainer. The top ten
features ranked based on the mean absolute SHAP value were
retained for detailed analysis. The stability and robustness of
these feature attributions were validated through quantitative
analysis across different acquisition protocols.

For models trained on ECFP ngerprints, selected features
were mapped back to molecular fragments using RDKit. To
address the ambiguity of mapping ECFP bits (due to bit collisions
or multiple environments), we implemented an affinity-prioritized
algorithm. Atom environments corresponding to top-ranked
ngerprint bits were rst identied in all molecules containing
the bit. These molecules were then sorted by descending affinity.
The environment from the highest-affinity compound was
extracted using Chem.FindAtomEnvironmentOfRadiusN, canon-
icalised to a SMILES string, and used as the representative frag-
ment. These fragments were then ranked by a combined score of
frequency and SHAP magnitude. This procedure ensures that the
identied chemical substructures are those most strongly associ-
ated with the high-potency predictive signal and allows for
a mechanistic interpretation of how AL reshapes the model's
representation of structure–activity relationships.
2.7 Experimental setup and evaluation

In order to evaluate the AL setup, we follow the xed cost
approach by Gorantla et al.15 in acquiring a total of 360
compounds for each individual experiment. Each experiment
starts with 60 randomly selected compounds, followed by 10
cycles of selecting 30 new compounds per cycle, using different
exploration/exploitation strategies.

The cycle is then repeated for each experiment, and param-
eter combinations undergo repeated cycles. Suitable steps for
updating and acquisition are undertaken to allow for unbiased
comparison across datasets.

In this work, a single “experiment” refers to one complete,
10-cycle active learning simulation for a specic combination of
datasets, molecular representations, kernels, acquisition
protocols, and random seeds.

For each dataset–representation–kernel combination, all
seven acquisition strategies were evaluated, resulting in a total
of 4 × 3 × 5 × 7 = 420 distinct experiments. The vast scope of
the experiments poses a challenge to visualise and evaluate
these results.

The entire computational study, including the training of all
GP models, required approximately 4 hours of wall-clock time
on a single NVIDIA RTX 4090 GPU. This demonstrates the
practical feasibility of applying our comprehensive bench-
marking framework.

The recall of top compounds (Rk) metric quanties the
fraction of truly high-affinity compounds (top k%) that are
successfully identied by the active learning process, relative to
the total number of such compounds present in the entire
dataset. It is calculated using the following eqn (6),
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Rk ¼ Nk
discovered

Nk
total

(6)

where Nk
discovered is the number of compounds found in the

acquired set that belong to the top k% class, and Nk
total is the

total number of compounds that actually belong in the top k%
most active ones based on the observed activity in the entire
dataset. Recall was computed for the top 2% (R2) and 5% (R5) of
compounds.

To provide a more comprehensive and robust assessment of
early enrichment performance, we also report two additional
standard metrics. The Enrichment Factor (EFk) measures how
many times more frequently active compounds are found
within the top k% of a ranked list compared to a random
selection. It is dened as give in eqn (7):

EFk ¼ Hit rate in top k%

Overall hit rate
(7)

An EFk of 1.0 corresponds to random performance. In this
study, we report the EF at 1%, 2%, and 5%.

Tomitigate the sensitivity to a xed cutoff k, we also report the
Boltzmann-Enhanced Discrimination of ROC (BEDROC) score.39

BEDROC is a metric that preferentially rewards the identication
of active compounds at the top of a ranked list without requiring
an arbitrary cutoff. It applies an exponential weight to each
compound based on its rank, such that hits at the beginning of
the list contribute muchmore to the nal score than those found
later. Following common practice for virtual screening, we use an
a parameter of 20.0, which heavily focuses the evaluation on the
top portion of the ranked list. The score ranges from 0 (no
enrichment over random) to 1 (perfect ranking).
2.8 Data for the study

The active learning framework has been evaluated using four
diverse protein target datasets viz., TYK2 (Tyrosine Kinase 2),9

USP7 (Ubiquitin Specic Peptidase 7),40 D2R (Dopamine D2
Receptor),41 and MPRO (SARS-CoV-2 Main Protease).26 It is
important to note that while Thompson et al.9 describes TYK2
as a congeneric series derived from a single synthetic scaffold,
our analysis using RDKit's Murcko decomposition identied
104 distinct Murcko scaffolds, reecting minor structural vari-
ations within the series. In contrast, USP7, D2R, and MPRO
demonstrate substantially higher diversity (N/Mz 0.41 − 0.45),
reecting more structurally varied compound collections.
Details of datasets are provided in the SI. Table 2 summarises
some relevant details across the four datasets used.
Table 2 Dataset properties

Property TYK2 USP7 D2R MPRO

Binding measure pKi pIC50 pKi pIC50
Ligands (total) 9997 1799 2502 2062
Scaffolds (unique) 104 770 1034 934
Std dev (p-value) 1.36 1.31 1.44 0.91
N/M ratio 0.0104 0.428 0.413 0.452

© 2026 The Author(s). Published by the Royal Society of Chemistry
We note that the datasets employ different affinity measures
(pKi for TYK2 and D2R; pIC50 for USP7 andMPRO), as shown in
Table 2. As these units are derived from different assay types
and are not directly comparable, our study does not make
direct, quantitative comparisons of the absolute affinity values
across targets. Instead, our primary performance metric, recall
of top compounds (Rk), is based on a relative, percentile-based
threshold. For each dataset, the “top k%” active compounds
are determined by internally ranking the molecules based on
their specic affinity measure. This approach allows for a valid
comparison of the enrichment efficiency of the AL strategies
across the different chemical landscapes, without relying on
a comparison of the raw activity scales.
3 Results and discussion

While the conceptual idea of an active learning cycle is quite
straightforward, the myriad of choices that one can make
around surrogate models, acquisition functions, kernel choices,
and molecular representations poses a challenge. Finding an
optimal combination of choices may not be practical and eval-
uating the increasingly large number of combinations is diffi-
cult to assess and visualise. Lastly, active learning cycles are
oen black box systems allowing for little explainability of what
the models are learning. Combining active learning with
a SHapley Additive exPlanations (SHAP)29,38 analysis can provide
some indications of model learning. With our results, we
highlight that optimal AL strategies are highly context-
dependent, underscoring the critical inuence of inherent
dataset characteristics and the complex interactions among
methodological choices. In the following section, we present
a comprehensive study of dataset characteristics followed by an
analysis of how different methodological choices inuence
active learning performance. Furthermore, we explore how
a versatile web-based tool aids in understanding complex
results. Lastly, we use SHAP to understand if the AL cycles pick
up patterns that lead to explainable properties that could be
harnessed by medicinal chemists in designing effective AL
strategies.
3.1 Chemical landscape sets difficulty – scaffold diversity
patterns anticipate AL headroom

We evaluated four therapeutically relevant targets with distinct
chemistry—TYK2, USP7, D2R, and MPRO—to probe how data-
set composition shapes active learning (AL) outcomes.

Scaffold diversity, as determined by the ratio of unique
scaffolds to total molecules (N/M) is the main differentiator
between the datasets. TYK2 exhibits exceptionally low diversity
(N/M z 0.01), indicating a highly constrained chemical space
dominated by few structural motifs. On the other hand, USP7,
D2R, and MPRO exhibit signicantly greater diversity (N/M z
0.41 − 0.45), which is indicative of more structurally diverse
compound collections.

Scaffold diversity directly impacts molecular similarity
patterns within each dataset as evident in Fig. 2. For instance,
TYK2's constrained chemical space is particularly evident with
Digital Discovery
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ECFP ngerprints, which show highly skewed similarity distri-
butions with the majority of compound pairs exhibiting low
Tanimoto similarities as evident from Fig. 2A. ChemBERTa
embeddings and MACCS, on the other hand, display broader
distributions centered at higher similarity values as evident
from Fig. 2B and C demonstrating how different representa-
tions highlight structural homogeneity differently. In contrast,
USP7, D2R, and MPRO show wider and more diverse internal
similarity distributions across all three molecular representa-
tions—ECFP, MACCS, and ChemBERTa (Fig. 2A–C). ECFP
ngerprints produce sharp peaks at low similarity values,
whereas MACCS keys and ChemBERTa embeddings give more
spread-out distributions because they capture the molecular
structure in different ways.

Dataset diversity patterns have direct implications for active
learning performance. While the more expansive chemical
landscape of USP7, D2R, and MPRO offers more chance of
strategic compound selection, constrained chemical space like
TYK2 restricts the opportunity for diversied exploration.
Further dataset diagnostics are provided in the SI.

3.2 AL analysis platform

With a 420 experiment run, the complexity of our results, which
include four datasets, three molecular representations, ve
kernels, and seven protocols, necessitates a new way of
Fig. 2 Molecular similarity distributions across datasets and repre-
sentations. Kernel Density Estimate (KDE) plots illustrate the distribu-
tion of pairwise Tanimoto similarity scores for compounds within the
TYK2, D2R, MPRO and USP7 datasets, as perceived by different
molecular representations. For each dataset, the similarity profiles
generated by ECFP4, MACCS, and ChemBERTa are compared. The
ECFP fingerprints consistently show distributions which are heavily
skewed towards low similarity across all datasets, particularly for TYK2,
D2R, and MPRO. In contrast, both MACCS keys and ChemBERTa
embeddings provide broader similarity distributions, often centered at
higher values, indicating their capacity to capture more diverse
structural relationships than ECFP. (A–D) Demonstrates kernel density
estimate with respect to similarity scores across TYK2, USP7, D2R and
MPRO targets respectively.

Digital Discovery
presenting the results beyond graphs. To address this and
promote transparency and reproducibility, we have developed
the active learning analysis platform, an interactive web tool
which is freely accessible. As shown in Fig. 1, this platform
offers access to all the comprehensive experiments and analysis
we did on each target dataset, enabling researchers to explore
our ndings interactively.
3.3 Dataset characteristics drive performance variation

The chemical space properties have a signicant effect on active
learning performance. Recall of top compounds Rk values
ranging from 0.5052 for the constrained TYK2 dataset to 0.9942
for the more diverse MPRO dataset indicate that performance
varies signicantly across datasets as shown in Fig. 4. Visual
summary of the distribution of all experimental outcomes with
every dataset is available at https://shapanalysis.streamlit.app/.

Statistical analysis demonstrates that the intrinsic properties
of the target dataset are the most dominant factor in deter-
mining achievable performance. To quantify the relative
contributions of our methodological choices, we conducted
a four-factor ANOVA (Type II Sums of Squares) on the nal recall
(Rk) values from all non-random protocols. The full model
explained a substantial proportion of the variance in perfor-
mance (R2 = 0.84; Adjusted R2 = 0.82).

To properly assess effect sizes, we computed omega-squared
(u2), an unbiased estimator of the population effect size, along
with 95% bootstrap condence intervals (1,000 iterations).
Dataset identity exhibited the largest effect (u2 = 0.31, 95% CI
[0.28, 0.35]; F(3, 994) = 640.37, p < 0.001), conrming that the
chemical landscape sets fundamental performance constraints.
Notably, the interaction between datasets and kernel interac-
tion showed a similarly large effect (u2 = 0.31; F(12, 994) =
160.22, p < 0.001), demonstrating that kernel effectiveness is
highly context-dependent.

Other factors made smaller but signicant contributions:
kernel choice (u2 = 0.09, 95% CI [0.07, 0.11]; F(4, 994) = 135.27,
p < 0.001), molecular representation (u2 = 0.03, 95% CI [0.02,
0.04]; F(2, 994) = 91.47, p < 0.001), and the kernel × ngerprint
interaction (u2 = 0.04; F(8, 994) = 29.08, p < 0.001). The
acquisition protocol, while statistically signicant (F(5, 994) =
12.44, p < 0.001), had the smallest main effect (u2 = 0.01, 95%
CI [0.004, 0.019]), suggesting that its role is to modulate
outcomes within the constraints imposed by the dataset and
model architecture. This statistical evidence reinforces that
optimal active learning strategies are highly context-dependent,
with dataset characteristics and their interactions with meth-
odological choices playing the dominant role.

The Post-hoc Tukey HSD analysis showed that all UCB-based
protocols performed signicantly better than random selection
in terms of mean recall of top compounds Rk with all adjusted p-
values less than 0.05, indicating strong statistical signicance.
However, there is no signicant difference between the UCB
protocols themselves, as all adjusted p-values were greater than
0.05. The practical impact of these improvements is measured
using Cohen's d effect sizes, which were larger, ranging from 0.934
ucb-balanced vs. random to 1.308 ucb-explore-heavy vs. random,
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Overall active learning performance across datasets. This
composite figure summarizes key active learning performancemetrics
for each dataset, aggregating results across all kernel, molecular
representation, and acquisition strategy combinations. (A) Perfor-
mance distribution across datasets: violin plots illustrating the distri-
bution of final 2% recall of top compounds (Rk) values for each dataset
(TYK2,USP7 and MPRO,D2R). The horizontal lines within each violin
indicate the mean (m) and median (red) Rk values, while the shape
reflects the density of results. (B) Learning curves by dataset: average
2% recall of top compounds (Rk) over the 10 active learning cycles,
demonstrating performance evolution for each dataset. All plots
aggregate data across all method combinations and replicates unless
otherwise specified.
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revealing that UCB strategies had a strong advantage over random
selection.

No one set of Kernel function, acquisition technique or
molecular representation worked optimally in every circumstance.
The best conguration for each dataset highlights the range of
possible Rk values from 0.5052 for TYK2 to 0.9942 for MPRO,
indicating that different datasets require different optimal setups
as shown in Fig. 3.

3.4 Impact of molecular representation and kernel functions

Performance is signicantly impacted by the kernel function
and selected molecular representation. Our ndings demon-
strate no universally optimal combination, consistent with
signicant partial h2p values for Dataset:Kernel interaction
(65.92%) and Kernel:Fingerprint interaction (18.97%) in the
ANOVA analysis.

3.4.1 Molecular representations. ECFP ngerprints
exhibited the most consistent and strong performance. The
mean 2% recall of top compounds (Rk) is 0.37 ± 0.31 across all
datasets and protocols. ECFP demonstrated strong perfor-
mance across a range of dataset-kernel combinations, particu-
larly excelling in USP7 and MPRO with mean Rk values of 0.57 ±

0.33 and 0.49 ± 0.33, respectively. While ChemBERTa occa-
sionally outperformed ECFP on specic combinations, ECFP
provided superior predictability and delivered consistently
reasonable performance even when other approaches yielded
less than satisfactory results on challenging datasets like D2R
and TYK2.

ChemBERTa embeddings exhibited a high-variance perfor-
mance prole characterized by exceptional peaks and notable
failures. When optimally paired with non-linear kernels i.e.
Matérn and RBF on USP7 and MPRO, ChemBERTa achieved the
highest individual Rk of 0.99 on MPRO. This representation
proved susceptible to signicant performance loss under
© 2026 The Author(s). Published by the Royal Society of Chemistry
suboptimal conditions. On challenging datasets viz. D2R and
TYK2, identical kernel combinations yielded dramatically lower
mean Rk values, with some as low as 0.02 ± 0.01 and a mean
BEDROC of 0.003 ± 0.01 for the Matérn kernel on TYK2, high-
lighting ChemBERTa's context-dependency and unpredictable
efficacy.

MACCS ngerprints demonstrated the most consistent
performance prole despite achieving the lowest overall mean
Rk of 0.27 ± 0.18. This representation exhibited remarkably
stable performance across different datasets, with substantially
lower inter-dataset variance compared to ECFP or ChemBERTa.
Even while MACCS rarely reached peak performance, its
consistency makes it a reliable baseline when predictable
results are prioritized over maximum performance. Notably,
MACCS achieved competitive performance on D2R with Rk =

0.61 when paired with the Tanimoto kernel, demonstrating its
potential for specic dataset-kernel synergies.

3.4.2 Kernel functions. The Matérn and RBF kernels have
been observed with the highest performance potential albeit with
a signicant dataset-dependent variability. These kernels ach-
ieved the study's peak Rk values of 0.9942 for MPRO with Matérn,
and 0.97 for USP7 with Matérn when conditions were favorable,
particularly with ChemBERTa or ECFP on receptive datasets viz.
MPRO and USP7. For instance, MPRO with RBFKernel had
a mean Rk of 0.75 ± 0.31, and USP7 with RBFKernel had 0.72 ±

0.33, amean BEDROC of 0.6± 0.3, and amean enrichment factor
at 2% (EF2) of 27.9 ± 21.3. Conversely, these same kernels per-
formed appallingly on challenging datasets, with TYK2 yielding
mean Rk values as low as 0.04 ± 0.04, a mean BEDROC near zero
(0.003 ± 0.01) and an EF2 of approximately 1.1± 0.8 on (Matérn)
and 0.03 ± 0.02 (RBF), clearly showing their high-risk, high-
reward characteristics.

The linear and Tanimoto kernels delivered consistent,
moderate performance across all tested conditions. Linear kernel
achieved a mean Rk of 0.35 ± 0.14 on D2R and 0.29 ± 0.13 on
TYK2, and a mean enrichment factor at 2% (EF2) of 17.1 ± 8.2.
This EF2 value, indicating that the top 2% of compounds were
identied at over 17 times the rate of random selection, stands in
stark contrast to the near-random performance of the non-linear
kernels on the same dataset (EF2 z 1.1), while the Tanimoto
kernel yielded 0.30 ± 0.12 and 0.26 ± 0.12 on the same datasets,
respectively. These kernels maintained stable performance
regardless of dataset difficulty or molecular representation. The
Rational Quadratic (RQ) kernel consistently underperformed
across all conditions, achieving a Rk as low as 0.12± 0.07, and EF2
of only 7.6 ± 4.0, on TYK2 and reaching only 0.26 ± 0.13 on
MPRO. This demonstrates a trade-off wherein the non-linear
kernels can offer high rewards but with high variability, while
linear kernels offer reliable, moderate performance suitable for
risk-averse applications as evident in Fig. 4.

3.4.3 Impact of the active learning protocol. The active
learning protocol had a considerable impact on both the trajec-
tory and nal outcome of the compound acquisition process, with
distinct behavioural patterns observed across various dataset
characteristics and kernel–representation combinations. While
random selection consistently yielded the lowest performance
(overall mean 2% recall of top compounds (Rk) of 0.11± 0.05 and
Digital Discovery
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Fig. 4 Mean 2% recall of top compounds (Rk) across protocols, kernels, and representations. A heatmap illustrating the average final Rk for each
combination of active learning protocol (rows), Gaussian process kernel (main columns), and molecular representation (sub-columns) at cycle
10. Each cell represents themean Rk across 3 replicate runs. The colour scale indicates performance, from low (dark purple/blue) to high (yellow).
(A) TYK2 dataset: performance landscape for the challenging TYK2 dataset; highlights the relatively lower overall Rk and the best-performing
combinations. (B) USP7 dataset: performance landscape for the receptive USP7 dataset; illustrates the generally higher Rk values and identifies
highly effective combinations.
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mean EF2 of 6.4 ± 5.7), UCB-based strategies demonstrated clear
advantages. Acquisition trajectories typically exhibited three
distinct phases: an early exploration phase viz. 0–100 compounds,
a middle transition phase with 100–250 compounds, and a late
convergence phase with 250+ compounds.

Exploit-heavy strategies such as UCB-exploit-heavy, oen
designed for rapid prioritization, demonstrated effectiveness on
USP7 and MPRO datasets, leading to rapid initial gains.
Temporal SHAP analysis, which demonstrated top features for
USP7 exploit-heavy strategies consistently peaking early in
Cycles 2 or 3, indicates rapid initial SAR identication. In
contrast, exploit-heavy strategies exhibited a noticeable ‘late
spike’ in feature importance on datasets such as TYK2, sug-
gesting that important SAR features are not immediately
apparent, but are rather revealed aer focused, persistent
sampling in specic, high-reward regions of the chemical space.
This ‘late spike’ reects the model's attempt to progressively
prioritize subtle features within a highly constrained or chal-
lenging SAR landscape as shown in Fig. 5.

On the other hand, explore-heavy strategies such as UCB-
explore-heavy typical showed slower initial progress but could
achieve higher long-term Rk on complex datasets like D2R,
Digital Discovery
showing more consistent improvement patterns. This reects
a broader sampling approach and a more distributed learning
of features across the chemical space, as evident by less
pronounced temporal shis in SHAP feature importance. This
approach is advantageous where targets havemore diffused SAR
or where novel active regions need to be discovered beyond
narrow, pre-dened areas. Balanced and adaptive protocols
(e.g.,UCB-balanced and UCB-gradual) frequently achieved
competitive performance and demonstrated robustness across
varied complexities, providing reliable options when optimal
congurations are not immediately apparent.

The importance of protocol choice varied signicantly
depending on the dataset selected. High-performing combina-
tions such as Matérn + ChemBERTa achieved high Rk across
most protocols with rapid convergence on datasets such as
MPRO and USP7. On the other hand, protocol selection was
more crucial for difficult datasets such as TYK2 and D2R which
had signicant Rk variation and demonstrated slow improve-
ment beyond 300 compounds. This emphasizes how AL strategy
effectiveness is highly dependent on dataset characteristics and
the chosen kernel–ngerprint combinations, inuencing the
initial trajectory and overall performance outcome.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 SHAP analysis reveals dynamic feature importance in TYK2 active learning. (A) Mean SHAP importance evolution for top-ranking ECFP
features (699, 491, and 561) across active learning cycles using the UCB-exploit-heavy protocol. Feature importance shifts from exploration
(cycles 1–3) to exploitation phases (cycles 4–10). (B) Binding affinity distributions for compounds containing key features. Dashed lines show
mean pKi values: feature 699 (7.75 ± 1.35), feature 491 (7.76 ± 1.44), and feature 561 (7.77 ± 1.34), confirming association with high-affinity
binders. (C) Representative TYK2 inhibitors with SHAP-identified substructure highlighted regions. Molecular structures demonstrate concrete
chemical patterns underlying abstract feature importance scores. (D) Protein–ligand binding showing interaction modes for selected
compounds in the TYK2 active site, with key residues Val100 and Asp107 labeled.
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3.5 Mechanistic insights from feature importance analysis

To obtain deeper mechanistic insights into how Gaussian
process models predict compound activity and how active
learning inuences the understanding of the SAR we perform
explainability studies. The application of SHAP analysis on
ECFP ngerprint models is a well-established method38 for
understanding explainability. This analysis, focusing on TYK2
and USP7 targets uses exploit-heavy and explore-heavy AL
protocols, to uncover distinct aspects of the model's learning
and the underlying chemical determinants of activity.

SHAP analysis consistently identied specic, chemically
interpretable molecular fragments that were highly predictive of
binding affinity, validating the model's ability to learn genuine
SARs.42,43 Importantly, compounds containing these top-ranked
features consistently exhibited high binding affinities (Fig. 5).
© 2026 The Author(s). Published by the Royal Society of Chemistry
Our analysis demonstrates that the model learns stable and
genuine SAR drivers. For the USP7 target, the set of the top 5,
most important features was identical between the ucb-exploit-
heavy and ucb-explore-heavy protocols, yielding a Jaccard index
of 1.00. This perfect stability indicates that the model rapidly
and consistently identied the core SAR. For the more chal-
lenging, low-diversity TYK2 dataset, the analysis still showed
good stability with a Jaccard index of 0.43. While different
protocols explored different nuances of the constrained chem-
ical space, a core set of features (e.g., bits corresponding to cF
and cNc fragments) were consistently ranked as the most
important. This provides strong evidence that our model is
learning genuine SARs rather than stochastic noise.

3.5.1 Key predictive fragments and chemical relevance. For
TYK2, key features consistently identied across both exploit heavy
Digital Discovery
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and explore heavy methods included halogenated motifs—such as
Feature ID 699, cF; Feature ID 561, cCl—and nitrogen-containing
aromatic systems such as Feature ID 491, cNc; Feature ID 2425,
ccc(nc)Nc. These features were repeatedly highlighted as signi-
cant determinants for TYK2 activity. These fragments with mean
affinity of TYK2 6.76–7.78 pKi align with common interaction
modes for kinase inhibitors, such as halogen bonding and p-
stacking.3,44 According to the chemical pattern analysis, TYK2's
primary characteristics included 100% aromatic, 54.8% halogen-
containing, and 30.1% nitrogen-containing fragments.

For USP7, prominent features were consistently associated
with carbonyl groups such as Feature ID 2362, C]O and
nitrogen-rich heterocycles such as Feature ID 3500, cnc for both
protocols. These features with mean affinity for USP7 9.33–9.66
pIC50 are chemically relevant for deubiquitinase active sites,
oen involved in hydrogen bonding and electrostatic interac-
tions.45,46 The identication of a complex fragment ID 875, i.e.,
nc1cncn(CC2(O)CCNCC2)c1=O suggests the model's capability
to prioritize intricate patterns. USP7's top fragments were 100%
aromatic, 24% nitrogen-containing, and 0% halogen-
containing, aligning with DUB modulator characteristics.

3.5.2 Robustness of insights across active learning proto-
cols. The identied key features and their associated mean affin-
ities remained remarkably consistent between exploit-heavy and
explore-heavy AL protocols for both TYK2 and USP7. For
instance, in TYK2, Feature ID 699 (cF) consistently ranked the
highest across both protocols, with identical affinity statistics.
Similarly, for USP7, Feature ID 3500 (cnc) and Feature ID 2362 (C]
O) maintained high ranks and consistent affinities across proto-
cols. This robustness suggests that the identication of core
binding motifs is stable, even if the sampling strategy inuences
the diversity of compounds explored around them.44 This consis-
tency provides further condence in the model's generalizability
and its robust mechanistic understanding of binding, even when
the underlying sampling strategies might aim for different
balances of exploration and exploitationwithin the chemical space.

4 Conclusion and outlook

In this work, we evaluated active learning (AL) strategies for
ligand binding affinity prediction, investigating the interplay
between molecular representations, kernel functions, and
acquisition protocols across various chemical datasets. Our
main conclusion is that AL's effectiveness varies signicantly
based on the dataset's chemical properties. Statistical analysis
demonstrated that the dataset, and its interaction with tech-
niques like kernel functions, is the primary factor inuencing
performance, establishing the limits for AL success.

Our analysis revealed important trade-offs between different
methodological choices. We discovered that simpler, explicit
representations like ECFP ngerprints, paired with robust
linear kernels, offer consistent and reliable performance across
a wide range of dataset complexities. On the other hand,
advance, pre-trained embeddings like ChemBERTa, when
combined with exible non-linear kernels such as Matérna and
RBF, can achieve state-of-the-art peak performance; however,
they are prone to catastrophic failures on difficult or
Digital Discovery
mismatched chemical landscapes. Similar to this it was
demonstrated the AL protocol selection is context-dependent.
Exploit-heavy methods are better suited for rapid lead optimi-
zation within well-dened SARs, whereas explore-heavy strate-
gies are benecial for novel chemotype discovery in more
diverse chemical spaces. Mechanistic insights from our SHAP
analysis offer a framework for understanding why these choices
matter, linking them to the model's dynamic learning of SARs
throughout the AL cycles.

According to these results, there is no “one-size-ts-all” AL
strategy that works in all circumstances. We proposed a context-
aware framework for AL in drug discovery demonstrating prom-
ising results in terms of ease of their analysis. Practitioners should
rst analyze their dataset's chemical space, i.e., scaffold diversity
and similarity to set reasonable expectations and select AL
components accordingly. Challenging or unknown spaces may
benet from stable combinations such as ECFP with a linear
kernel, while well-behaved SARs might justify using risky, high-
reward methods like ChemBERTa with non-linear kernels.

While this study provides a robust framework, it has limita-
tions, including its retrospective nature and the focus of SHAP
analysis on ECFP models. Future work can focus on the prospec-
tive validation of these ndings in real-world drug discovery
campaigns. The most promising future direction, however, lies in
the development of adaptive active learning frameworks. These
systems could learn the characteristics of the chemical space in
real-time and automatically select or adjust the molecular repre-
sentation, kernel, and acquisition strategy during the campaign,
moving beyond the static protocol choices. We can fully utilize
active learning to speed up the development of novel medicine by
balancing the performance improvement in ligand binding affinity
prediction with explainability built in the model from the start.
Further improvements could also be achieved by exploring more
advanced surrogate models, such as warped Gaussian processes,
which could allow the model to explicitly learn the non-Gaussian
distribution of affinity data.
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