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One of the main bottlenecks for the wide adoption of atomistic simulation pipelines for computational

materials design is the high complexity of the workflows which many times requires the use of a diverse

set of specialized toolkits and libraries. Here, we introduce a multi-agent artificial intelligence (AI)

framework that autonomously performs end-to-end atomistic simulations, i.e. molecular dynamics (MD),

with automated input and associated full suite of analyses, using large language models (LLMs) and

multiple specialized AI agents. Our system orchestrates the entire simulation pipeline, from structure

generation via Atomsk and interatomic potential discovery through automated web mining, to simulation

setup and execution using LAMMPS on high-performance computing (HPC) platforms. Post-simulation,

our agentic framework performs automated data analysis and visualization with popular analysis tools

like OVITO and Phonopy. Each expert agent operates within a defined role, equipped with domain-

specific functions and a shared memory context for coordination. Using a diverse set of representative

elemental and alloy systems, we demonstrate the capability of our framework to execute a range of

static and dynamic materials modeling tasks, including lattice parameter and cohesive energy estimation,

elastic constants computation, phonon dispersion analysis, as well as perform MD simulations to

determine dynamical properties that aid estimation of melting point. The results produced by the agents

show strong agreement with those obtained by a human expert, highlighting the reliability of the agentic

approach. By combining automation, reproducibility, and human-in-the-loop control, our framework

lowers the barrier to the widespread adoption of scalable, AI-driven discovery tools in materials science.
1. Introduction

Atomistic simulations represent a popular and powerful method
to understand structure and dynamics of complex systems in
materials science spanning a broad range of applications from
energy to environment.1–3 In particular, techniques such as
molecular dynamics (MD) provide detailed insights into atomic-
scale behavior, enabling the study of structural relaxation, phase
transitions,4 transport phenomena,5 and thermomechanical
properties of solids and uids. The level of accuracy is deter-
mined by an interatomic potential (force eld) which denes the
potential energy of the system as a function of atom positions.6

However, despite their wide adoption and availability, these
simulation workows remain fragmented, manual, and highly
dependent on domain expertise. Researchers must typically
integrate multiple tools such as, for example, Atomsk for
ational Laboratory, Lemont, IL, 60439,

l.gov; skrssank@anl.gov

ngineering, University of Illinois, Chicago,

rgonne National Laboratory, Lemont, IL,

y the Royal Society of Chemistry
structure generation,7 LAMMPS for dynamics simulation,8 Pho-
nopy for simulation analysis,9 and OVITO for visualization,10

alongside literature or web search to retrieve force elds from
relevant databases like the NIST Interatomic Potentials Reposi-
tory.11 This fragmented collection of tools and processes intro-
duces challenges in interoperability, reproducibility and
scalability, especially for high-throughput or exploratory simu-
lations. It also limits accessibility for non-specialists and poses
a signicant challenge for integrating simulations into autono-
mous or data-driven materials design pipelines.

Recent advances in large language models (LLMs) and agent-
based AI systems offer promising routes toward automating
complex scientic workows that lower the barrier for scientic
usage by non-expert users.12–16 There has been a signicant surge
in the development of agentic pipelines designed to automate
experimental workows, simulation tools and the subsequent
data analysis processes.17–20 These workows aim to leverage
intelligent agents, oen powered by machine learning or AI, to
orchestrate complex computational tasks, streamline parameter
exploration, and autonomously extract insights, thereby acceler-
ating scientic discovery and reducing human intervention in
traditionally labor-intensive simulation pipelines.21,22 For example
MDCrow introduced a single agent system built on LangChain,23
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leveraging GPT-4o and Llama3-405B to automate biomolecular
MDworkows using tools like OpenMM,MDTraj, and PDBFixer.24

Similarly, DynaMate offers modular multi-agent pipeline for
scientic workows built on a exible Python template that
leverages LLM agents to automate molecular simulations across
diverse domains mainly focused on solvents and metal–organic
frameworks.25 El Agente demonstrated a hierarchical framework
for complex computational and quantum chemistry workows by
integrating with GPT-4 to autonomously plan, execute, and debug
DFT-based computations using tools like ORCA and xTB.26

AtomAgents, on the other hand applied multi-modal GPT-4 based
Fig. 1 Overview of the multi-agent system for molecular dynamics (MD
simulations and analysis through coordinated agents. The administrator a
assigns tasks to specialized agents. These include: (i) the structure a
requirements, (ii) the simulation agents, which prepare input files for ex
performance computing cluster (HPC) (https://wiki.anl.gov/cnm/HPC/N
with functions tailored to specific materials properties and (v) the an
outputs and generates property specific plots. Each agent operates with
registered functions via the administrator agent.

Digital Discovery
multi-agent system, where each agent is designed to act like
planner, scientist and engineer to automate alloy design coordi-
nating MD workows.26 More recently, DREAMS framework was
used for DFT calculations on a materials benchmark, demon-
strating comparable performance to human DFT experts.27 While
each of these agentic systems contribute valuable ideas, they oen
rely on static templates, lack exibility in input generation, and do
not fully support classical MD workows involving multiple
diverse tasks ranging from structure generation, interatomic
potential selection by searching the web, visual inspection of the
structures, or trajectory analysis.
) simulations. The system enables end-to-end automation of atomistic
gent receives high-level natural language instruction from the user and
gent, which generates initial candidate structures that satisfy user
ecution, (iii) the HPC agent, which submits jobs to an external high-
etwork_Access), (iv) specialized property agents, which are integrated
alysis agent, which performs multimodal reasoning over simulation
in a focused scope defined by its system message and interacts with

© 2025 The Author(s). Published by the Royal Society of Chemistry
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In this work, we introduce a multi-agent AI framework for
automating the full pipeline of atomistic simulations, from
structure generation to post-processing and visualization. Each
agent is provided with a specialized set of domain-specic tools
and a clearly dened role. This modular, role-specialized
architecture is motivated by recent studies showing that
distributing reasoning and tool control across multiple collab-
orating agents improves robustness and reasoning efficiency
compared to single-agent systems.28–30 Such architectures
reduce the contextual load on any single agent and enable
complex workows to be decomposed into manageable
subtasks, mitigating context-window limitations observed in
single-agent designs.26 Unlike prior works which are largely
focused on single-agent systems, our framework distributes
tasks across agents that can reason, self-correct, and collaborate
dynamically via agent-to-agent communication through
a shared memory and execution interface. This enables our
system to respond autonomously to simulation errors, adapt
tool selection based on material context, and incorporate
human guidance for learning and explainability. To demon-
strate the capabilities of this agentic platform, we apply it to
several distinct simulation tasks of increasing complexity, from
static properties such as lattice parameter and cohesive energy
calculation, elastic constant computation and extraction, and
phonon dispersion calculation, to dynamical properties such as
melting point estimation for representative elemental and
binary alloy structures that span across different crystal systems
(Fig. 1).
2. Methods
2.1 Agentic architecture

The three core components of the system are: (i) the agent
factory, where all agents are instantiated and assigned an LLM
Table 1 Overview of the agents designed for the multi-agent MD system
to specialized functions. The table summarizes the main responsibilities

Agent

Structure creation agent
LAMMPS input agent

LAMMPS input reviewer agent

Potential agent

Web scraper agent

Melting point calculation agent
Elastic constants agent
Phonopy agent
Results analysis agent

HPC agent
Administrator with integrated executor

© 2025 The Author(s). Published by the Royal Society of Chemistry
conguration along with a system prompt that denes their
roles and available tools, (ii) a suite of specialized tools, which
includes functions for materials property calculations, simula-
tion input generation and le handling and (iii) a function
registry, which maps specic functions to the appropriate
agents (see SI Section S1 and Fig. S1). The agentic infrastructure
builds upon the AutoGen framework (AG2), which enables
dynamic agent selection, supports human-in-the-loop feedback,
and allows agents to collaborate adaptively to complete complex
tasks.29 Each agent is designed with a narrow, expert-level task
denition, enabling more focused reasoning and minimizing
prompt complexity. The full list of agents used in this work and
their capabilities is provided in Table 1.

The agents were assigned with several domain-specic so-
ware libraries through wrapper functions exposed in the func-
tion registry. Table 2 lists themain soware tools and the agents
they were assigned to.
2.2 LAMMPS simulation workows

We utilize LAMMPS, a widely adopted open-source molecular
dynamics (MD) simulation package, for modeling and
analyzing materials at the atomic scale.8 Its exibility and
extensibility make it well-suited for simulating a broad range of
materials phenomena, from lattice dynamics and defect
behavior to phase transitions and interfacial properties.
LAMMPS is typically used to compute a range of material
properties and dynamics. Lattice constants and cohesive ener-
gies are used to predict phase stability and guide alloy or
semiconductor design. Elastic constants inform mechanical
reliability of materials used in structural, aerospace, and
microelectronic applications. Phonon dispersion of materials
underpins predictions of thermal conductivity, thermoelectric
performance, and superconductivity. Together, calculation of
these properties by users is oen aimed at bridging atomistic
. Each agent has a focused, expert-level task and equipped with access
of each agent within the system

Description

Responsible for creating the appropriate structure le
Responsible for the generation of the LAMMPS input le tailored to the
property prediction requested from the user
Responsible to review the LAMMPS input les when an execution error
appears and provide feedback and corrections
Responsible for identifying the correct potential les and checking their
validity. The agent can download les from existing known resources.
Collaborates with the WebScraper agent in case Google search is
required to nd the potential le
Data extraction (e.g., CIFs, potential les, thermophysical constants).
Web scraper agent enhanced to: fetch known lattice parameters, elastic
constants, and empirical potentials. Validate against computed values
Responsible for handling calculations for melting point estimation
Responsible for handling calculations for elastic constants calculation
Responsible for handling calculations for phonon dispersion calculation
With integrated vision: responsible for analysis the results of the
simulations by checking the output les
Responsible for working on an HPC cluster (carbon cluster)
Coordinates the interactions between the human user and the agents.
Executes the functions that are associated with the agents

Digital Discovery
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Table 2 The main packages used in this work with their description and the agent they are assigned to

Tool/package Description Agent

Atomsk Generates crystal structures with dened lattices, defects or supercells Structure creation agent
LAMMPS Molecular dynamics code used for all simulations LAMMPS input agent
Phonopy Computes phonon band structures using nite displacements Results analyzer agent
OVITO Parses and visualizes simulation trajectories and outputs Results analyzer agent
Playwright Webscraping and le downloading from online sources with potentials, like NIST Web scraper agent
ASE Atomistic structure manipulation and le conversion Phonopy agent
Custom tools Includes HPC management scripts and le converters HPC agent, admin agent
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simulations with practical materials design and engineering. In
our agentic pipeline, each property calculation using LAMMPS
requires a different set of agents and workow routines. At the
core of each property calculation is the automated generation
and execution of a LAMMPS input script tailored to the task and
the selection of the appropriate force eld le. Depending on
the task, the LAMMPS input agent can use pre-dened
templates and dynamically inserted parameters such as time-
step, ensemble type, temperature, pressure, and dump
frequency or create and save a new input le. Note that we
initiate the pipeline via generation of a crystal structure, the
selection of the appropriate potential le and the creation of
a LAMMPS input script. The associated main routines for each
of the simulations performed are described below.

2.2.1 Lattice parameters and cohesive energy calculations.
To calculate lattice parameters and cohesive energy using
LAMMPS, a user would perform a series of energy minimiza-
tions across different lattice constants and identify the value
that yields the lowest potential energy, which gives the equi-
librium lattice parameter. Cohesive energy is then determined
by subtracting the energy per atom in the bulk solid from the
energy of an isolated atom. The bulk energy is obtained from
a relaxed crystal structure, while the isolated atom energy is
calculated by placing a single atom in a large vacuum box to
eliminate interactions. For many interatomic potentials like
EAM, the isolated atom energy is effectively zero, so cohesive
energy equals the negative of the bulk energy per atom. Calcu-
lating lattice parameters and cohesive energy involves an input
le that denes the simulation cell and atomic structure
(generated via Atomsk in this work). The pair_style and pair_-
coeff commands specify the interatomic potential (e.g., EAM for
metals), while minimize performs energy minimization to relax
the structure. For cohesive energy, one script is used to compute
the energy per atom in the bulk, and a separate script places
a single atom in a large box (vacuum) to compute its isolated
energy. Output quantities like potential energy are accessed
using the appropriate keywords in the thermo_style parameter
for appending the LAMMPS output le with the dimensions of
the cell of the relaxed structure. By looping over lattice
constants and analyzing the energy trends, users can extract
both equilibrium lattice constants and cohesive energy.

2.2.2 Elastic constants computation and extraction. This
includes the creation of the starting crystal structure le,
selection of the appropriate potential, relaxation of the struc-
ture using the appropriate LAMMPS input, and the use of
Digital Discovery
predened LAMMPS template les for the elastic constants
simulation. The template les are ‘in.elastic’, ‘potential.mod’,
‘displace.mod’, ‘init.mod’. Aer the template les are copied to
the working directory, the ‘init.mod’ requires modications,
such that the correct name of the structure le will be added
and also several values for the ‘variable up equal’ parameter
should be selected with possible values of 0.0001, 0.001, 0.01.
The ‘potential.mod’ le should also be updated with the correct
potential. The expected output of this simulation is a 6 × 6
matrix i.e. Cij with the elastic constants, where C_11, C_22, C_33
represent the longitudinal elastic moduli and the C_44, C_55,
C_66 the shear elastic moduli. The off-diagonal terms represent
the coupling between stress and strain components. To ensure
a reliable simulation, at least two different values of the ‘vari-
able up equal’ should be tested and the resulting tables should
have comparable values.

2.2.3 Phonon dispersion calculation. Phonon dispersion
calculations in LAMMPS involve analyzing the vibrational
properties of a crystal by constructing and diagonalizing the
dynamical matrix, typically using the nite displacement
method. This is oen done in conjunction with external pack-
ages like Phonopy, which interfaces with LAMMPS to generate
displaced structures, compute forces, and extract phonon
frequencies and dispersion relations across the Brillouin zone.
Phonon dispersion calculation includes the initial creation of
the structure with a unit cell above 3 × 3 × 3, downloading the
correct potential le, run the initial relaxation and then prepare
for the Phonopy workow. Phonopy calculation steps involve
converting the structure le to POSCAR format, generating
supercells and displacement les aer applying modications
to the starting structure. A force calculation LAMMPS simula-
tion is performed for each of the displacement structures and
then all the forces are compiled, and a FORCE_SETS le is
generated for band structure analysis.

2.2.4 Melting point estimation. Unlike static material
properties such as elastic or lattice constants, the melting point
is signicantly more challenging to compute, both numerically
and computationally.31 The method to determine the melting
point at constant pressure is by nding the temperature at
which the Gibbs energy of the solid and liquid phases are equal.
In LAMMPS, melting point estimation is typically performed by
gradually heating a solid system under canonical ensemble
(constant number of particles N, volume V, temperature T) or
isothermal-isobaric ensemble (constant number of particles N,
pressure P, temperature T), while monitoring structural and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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thermodynamic indicators such as abrupt changes in volume,
potential energy, or radial distribution functions.32 This
approach provides insight into the thermal stability of materials
and serves as a critical validation metric for interatomic
potentials, ensuring accurate reproduction of phase transitions
and high-temperature behavior.

We employed the interface method (coexistence approach)
for melting point estimation,33,34 which involves simulating
a system containing both crystallize and disordered phases
within the same periodic simulation box, separated by a well-
dened interface. The high-level procedure for the melting
point estimation is a multi-step process that involves three
main steps: (i) generation and relaxation of the crystalline
structure generated by Atomsk, (ii) creation of the solid–liquid
interface and (iii) melting point simulation via heating of the
system created in step (ii). The rst (i) part is the standardized
protocol followed previously for the structure relaxation. The
second (ii) part includes the identication of the top half of the
structure using box-bound variables (e.g., bound(all, zmax) and
bound(all, zmin)), so the region denition is independent of the
system size. Then this top half structure should be frozen using
x setforce 0.0 0.0 0.0 to prevent atomic motion in that region.
Then the initial velocities to the bottom half using should be
assigned and apply a high temperature thermostat (e.g., 3000 K)
using canonical ensemble (NVT) to melt that part. The simula-
tion should run for sufficient time (e.g., 50 ps or longer) to allow
a solid–liquid interface to form naturally.35 The resulting
structure of the solid–liquid interface is saved for use in the
melting point simulation. An OVITO visualization is then
generated by saving the front view of the last frame of the
melting point simulation le and visually verify the two phases
(solid/liquid). If the structure is half melted, we can proceed to
the melting point estimation. Otherwise, a new LAMMPS input
le should be generated for rerunning the interface simulation
by applying higher temperature or for longer time. Once a 50 :
50 solid–liquid ratio is visually conrmed, the nal step (iii)
involves a heating simulation starting from room temperature
and ramping up beyond and expected melting point (e.g. by
1000 K). The system is monitored until full melting is observed.
This marks the upper bound of the melting point for the given
interatomic potential.
2.3 Error detection and autocorrection routines

A core ability of our agentic system is the ability to detect,
explain, and correct execution failures. The LAMMPS input
creator rst calls an integrated function to check the workow
status for the existence of a valid potential and a valid structure
le at the working directory. Only if the workow status result is
true, the agent will proceed to create the LAMMPS input le.
Furthermore, the LAMMPS input reviewer agent monitors the
output logs from each simulation and parses for known failure
signatures, including invalid commands (e.g., misnamed
keywords or deprecated syntax), numerical instabilities (e.g.,
atom loss, box deformation) and missing potential les or
incorrect atom types. Upon detection, the reviewer agent
collaborates with the relevant task agent (e.g., potential agent,
© 2025 The Author(s). Published by the Royal Society of Chemistry
LAMMPS input agent) to regenerate or x the input scripts. This
autocorrection loop is repeated until the simulation is executed
without any errors. In cases of failure, the user has also the
option to interact with the administrator agent and suggest
improvements or provide guidance.

2.4 High-performance computing execution

The simulations were executed on the carbon HPC cluster
located within the Center for Nanoscale Materials at Argonne
(https://wiki.anl.gov/cnm/HPC/Network_Access) or using a local
installation of LAMMPS soware (version 29 Aug 2024 – update
3). Carbon HPC uses a torque-based job scheduler. The HPC
agent is responsible for packaging simulation les (structure,
potential, input scripts), uploading via secure copy protocol
(SCP), submitting jobs, monitoring job completion, and
downloading results and notifying downstream agents for
analysis.

2.5 Human expert evaluation

In all case study simulations, we validated the capabilities of the
agentic pipeline by comparing all the results with human
experts. For consistent comparison and due to the deterministic
nature of the LAMMPS simulations, the human expert evalua-
tion used the same initial structure and same potential les as
those generated by the structure agent and the potential agent
respectively. Note that the choice of interatomic potential exerts
the largest inuence on all computed physical properties, oen
leading to signicant variability in lattice constants, cohesive
energies, and elastic moduli across different parameterizations.
Such variability stems from the intrinsic limitations and
transferability of the potential itself, rather than from the
agent's operation. Consequently, the agent should not be held
responsible for errors originating from the underlying potential
choice. These decisions inherently require human scientic
oversight, as the selection of a physically appropriate potential
remains a knowledge-driven step that depends on system
chemistry, training data quality, and intended property
predictions. The % error was then measured by the following
equation:

%Error ¼ abs

�
A�H

H

�
� 100%

where A is agent and H is human. The human output is treated
as the correct value (general truth).

3. Results and discussion

The agentic system was extensively tested for static and dynamic
analysis pipelines using a representative set of structures and
crystal systems, i.e., gold (Au),36 iron (Fe),37 titanium (Ti),38

silicon (Si),39 nickel–copper alloy (Ni–Cu), gold–copper alloy
(Au–Cu).40 Static simulations typically aim to nd the minimum
energy conguration of a system or properties of a system at
0 kelvin (or a specic, non-evolving atomic conguration).
LAMMPS commands usually involve functions to relax struc-
tures or to compute properties of a given state without
Digital Discovery
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advancing time, whereas the dynamic properties are obtained
by integrating the equations of motion over nite time steps. In
this case, simulations capture the temporal evolution of atomic
trajectories, enabling the calculation of temperature-dependent
quantities such as thermal conductivity, or structural phase
transitions. Together, these complementary modes of operation
allowed us to benchmark the system across both equilibrium
property calculations and time-dependent processes, ensuring
robustness and generality of the pipelines.
3.1. Static property simulations

3.1.1 Lattice constants calculation. The initial task
includes calculation of the lattice parameters and cohesive
energy for the selected systems (Fig. 2). The expected output is
a list of 6 numbers that represent the length along different unit
cell axes and the angles between them. A detailed system
message was provided to the LAMMPS input creator for
enabling the creation of the correct input les to perform these
calculations (Fig. S3). The agentic system initially created the
structure using the structure agent, then the potential agent
identied and downloaded the correct potential le from the
web, and LAMMPS input agent created the input le with the
appropriate thermo keywords. The les were uploaded to HPC
through the HPC agent. Once the simulation was successfully
Fig. 2 An example of a typical agentic workflow for the calculation o
simulations. The administrator agent coordinates the task, while speciali
potential, prepare and submit the LAMMPS input, and parse the simulat
lattice constant 4.078 Å and cohesive energy −3.789 eV per atom which

Digital Discovery
completed, all the les were downloaded and the log.lammps
le was read by the results analysis agent to extract the required
quantities and provide a response to the user (Fig. S4).

To ensure transferability to several crystal systems, we
further tested the framework using an extensive selection of
crystal systems, i.e., face centered cubic (FCC), BCC, HPC. The
system achieved average errors below x% compared to the
results of human LAMMPS simulation experts. Comparison of
all agents vs. human results are demonstrated in Tables 3, 4 and
S3.

3.1.2 Elastic constants calculation. The high-level pipeline
for performing an elastic constants calculation with the agentic
system is described in Fig. 3a. The LAMMPS elastic agent plays
a key role in this process and is provided with detailed
prompting for retrieving/modifying the appropriate les
(Fig. S5). In the case of an FCC gold crystal, the crystal structure
was generated with a lattice parameter of 4.078 Å in a 5 × 5 × 5
supercell conguration containing 500 atoms. The interatomic
interactions were described using the embedded atom method
(EAM) potential (Au_u3.eam) obtained from the LAMMPS
repository. The elastic constants calculation utilized a nite
deformation approach, where small strain perturbations (d =

0.001) were systematically applied to the simulation cell in
different directions, followed by energy minimization using the
conjugate gradient method with convergence criteria of
f the lattice constants and cohesive energy for gold (Au) using MD
zed agents generate the crystal structure, locate and validate the EAM
ion output from HPC. The results yield a stable FCC Au structure with
is consistent with predictions by expert human users.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Comparison between the results obtained from a human vs.
an agentic pipeline on the calculated values of lattice constants for
various elemental and alloy systems

System Lattice parameters – agent Lattice parameters – human

Fe (BCC) a = b = c = 2.866 Å a = b = c = 2.866 Å
a = b = g = 90° a = b = g = 90°

Au (FCC) a = b = c = 4.078 Å a = b = c = 4.078 Å
a = b = g = 90° a = b = g = 90°

Ni–Cu (FCC) a = b = c = 3.58177 a = b = c = 3.58177 Å
a = b = g = 90° a = b = g = 90°

Ti (HPC) a = 2.96357 Å a = 2.96357 Å
b = 2.5665 Å b = 2.5665 Å
c = 4.7034 Å c = 4.7034 Å
a = b = 90° a = b = 90°
g = 120° g = 120°

Si–diamond a = b = c = 5.43094 Å a = b = c = 5.43094 Å
a = b = g = 90° a = b = g = 90°

Au–Cu (FCC) a = b = c = 3.8465 Å a = b = c = 3.8388 Å
a = b = g = 90° a = b = g = 90°

Table 4 Comparison between the results obtained from a human vs.
an agentic pipeline on the calculated values for the cohesive energy
for various elemental and alloy systems. The percentage of error (%
error) measures the deviation of the agent relative to the human expert
which we treat as the ground truth

System
Cohesive energy
(eV per atom) – agent

Cohesive energy
(eV per atom) – human % Error

Fe (BCC) −4.3159 −4.3159 0%
Au (FCC) −3.789 −3.789 0%
Ni–Cu (FCC) −3.9682 −3.9682 0%
Ti (HPC) −4.8525 −4.8525 0%
Si–diamond −4.3366 −4.3366 0%
Au–Cu (FCC) −3.8239 −3.8246 0.018%
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10−10 eV Å−1 for forces. The full 6 × 6 elastic constant tensor
was extracted from the stress–strain relationships, yielding the
key elastic properties: bulk modulus of 166.89 GPa, primary
shear modulus of 44.73 GPa, and Poisson ratio of 0.46. The
computed elastic matrix was validated for physical consistency
through symmetry checks and Born stability criteria, and the
results were visualized through comprehensive plots showing
both the elastic constant tensor and convergence behavior
during the calculations. The elastic constants simulations part
involves the modication of the variable to generate a 6 × 6
matrix. The generated elastic constant matrices are shown in
Fig. 3b and S6 conrms that the agentic system has correctly
calculated the stiffness tensor for gold in GPa. A table
summarizing the elastic constants calculation of both agent
and human expert for all six atomic systems (Fe, Au, Au–Cu Ni–
Cu, Ti, Si) is provided in Table S4. The low % error for each of
the systems shows that the agentic pipeline can perform these
simulations at a human level.

3.1.3 Phonon dispersion. In this workow, the user initi-
ated a request to calculate the phonon dispersion of an element
or alloy using an automated LAMMPS-Phonopy pipeline (Fig. 4a
© 2025 The Author(s). Published by the Royal Society of Chemistry
and S7). For the gold example, the agent began by generating an
FCC crystal structure of gold with a 2 × 2 × 2 supercell and
a lattice parameter of 4.078 Å. An appropriate EAM potential
(Au_u3.eam) was fetched from an online repository aer initial
download attempts failed. A LAMMPS input script was created
to relax the gold structure, but the simulation initially failed due
to unrecognized or invalid commands (aer read pause 0, then
aer minimize). These errors were progressively corrected,
leading to successful relaxation and generation of a relaxed
structure. The relaxed structure was then used to generate
a POSCAR and displacement les required for phonon calcu-
lations. Aer uploading all 192 displacement directories to the
HPC system and running them in batch, the forces were
collected, and phonon band structure data was generated.
Finally, the phonon dispersion was successfully computed and
visualized in a band.pdf le along theG/ X/W/ K/G/

L/ U path for the cubic gold system, completing the workow
(Fig. 4b). In Fig. 4c, the same process was performed for the
nickel–copper alloy. The agenting approach was tested for the
exemplary systems with all the results and comparison with the
human derived plots shown in the Fig. S8–S13.
3.2. Dynamical property simulations

The scope of our study was extended beyond static property
simulations by exploring the thermodynamic properties for the
exemplary materials systems. Melting properties play a key role
for the in-depth understanding of a material as they affect the
synthesis method, processing and performance in various areas
of application.41 We evaluated the agentic system's ability to
perform time-dependent molecular dynamics (MD) simulations
to explore melting behavior using automated orchestration of
the process. A critical part for the understanding of the process
is the visual inspection of the structures during the melting,
which is performed by human experts that have an under-
standing on how a melted structure should look like. In this
work we tried to map the human perception of an image with
the use of advanced reasoning multimodal models that can not
only look at the generated image, but also take critical decisions
during the simulation and propose ways forward based in the
observations (SI Section S1.4 and Fig. S2). These workows
require agents to operate across long MD trajectories, manage
temperature control, and extract properties like melting point
and heat capacity from post-processed data.

The main corpus of the agentic simulation consists of three
sequential MD simulations, (i) generation of an energy
minimum conguration, (ii) solid–liquid interfacial pre-
melting, (iii) full melting (Fig. S13). The term pre-melting
refers to the formation of thermodynamically stable liquid
lms at solid interfaces subjected to temperatures below but
near the bulk melting temperature (Tm).42 The role of the visual
inspection is particularly important for parts ii and iii, as the
vision model should verify the successful completion of these
tasks or propose changes in the MD workow otherwise until
the nal goal of each stage is reached (Fig. 5a). Aer each of the
main steps, an image of the nal frame of the completed
simulation is given to the vision agent for inspection. An
Digital Discovery
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Fig. 3 Agent vs. human calculated elastic constants simulation for FCC gold. (a) Schematic of the agentic workflow for generating the elastic
constants matrix for gold. The structure agent generated a gold (Au) crystal in a 5× 5× 5 supercell configuration, the potential agent selected an
EAM file, and the elastic constants agent applied six independent strain deformations. (b) Elastic constants matrix computed by the multi-agent
system after setting the variable up equal to 0.001 and 0.01. The matrices show the full symmetric stiffness tensor Cij, where cubic symmetry is
preserved. All results are in GPa. Since both matrices are exactly the same, the agent concludes that the simulation is successful and can be
terminated without the need to apply different variable up equal values. (c) Elastic constants matrix computed by a human expert.
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exemplary structural evolution of an AuCu alloy during the
melting point simulation performed by the agent is shown in
Fig. 5b. Once the simulation is completed successfully, the
melting characteristics can be concluded following the changes
in potential energy and heat capacity as functions of tempera-
ture (Fig. 5c). Similar analysis and results for all the explored
systems is provided in the SI Fig. S15 and S18–S22.
Digital Discovery
The key component of the process is the integration of the
results analyzer agent with two vision models which are
assigned with different observatory tasks and are based on o3
vision model. The vision models are called to operate every time
a new OVITO frame is saved in the working directory during the
melting point calculation (Fig. S14). The rst vision model is
assigned the task of observing the solid–liquid interface frame
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Agent vs. human calculated phonon dispersion for Au and NiCu alloy. (a) Schematic of the steps performed from the agents to execute
a phonon dispersion simulation following a user prompt. (b) Phonon dispersion plots generated by human vs. agent for Au. (c) Phonon dispersion
plots generated by human vs. agent for NiCu. The human and agents generated results were identical.
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and critically decide whether the composition of the solid liquid
phase is around the intended 50 : 50 ratio. If that is not the case,
then the LAMMPS simulation is resubmitted aer xing or
unxing the atoms in the structure accordingly. The second
vision agent is responsible for understanding if a structure has
fully melted or not. Conclusions are made by checking whether
the distribution of the atomic positions appear to be random,
the absence of lattice structures, non-aligned packing and
disordered uid-like appearance. If the structure is not fully
melted the agent recommends parameter adjustments, such as
increasing the temperature range, extending the simulation
time by increasing the timesteps or adjusting the heating rate
for slower heating. The detailed prompts and benchmarking of
the vision agents is provided in the SI Section S1.4, Fig. S2 and
© 2025 The Author(s). Published by the Royal Society of Chemistry
S3. The results generated by the human expert are also
described in the SI. The comparison between the human
experts and agent is provided in the Table S5.

Briey, the simulations are executed by our workow on
a high-performance computing (HPC) resource, where large-
scale molecular dynamics runs provide statistically reliable
sampling across a broad temperature range as shown in Fig. 5.
As the NiCu system is progressively heated, the potential energy
vs. temperature trajectory reveals the gradual destabilization of
the ordered lattice, with a pronounced change in slope marking
the onset of melting. To pinpoint the transition more rigor-
ously, the heat capacity curve is computed from uctuations in
enthalpy, and it exhibits a sharp peak at approximately 1604 K,
which corresponds to the alloy's melting point. Our agentic
Digital Discovery
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Fig. 5 Melting point predictions made by agentic workflow. (a) Agentic pipeline demonstrating the sequential steps for performing an end-to-
end melting point simulation starting from a simple user prompt. When the process is terminated, a report is generated as shown in (c). (b)
Progression of the melting simulation observed by the OVITO frames acquired after each simulation. The vision agent encodes these images to
base 64 string and decides whether a simulation is complete or not. The main decisions the vision agent has to make is whether a 50 : 50 solid–
liquid interface has been created and whether the structure is fully melted. (c) Melting characteristics were studied by following the changes in
potential energy and heat capacity as functions of temperature. Report generated by the results analysis agent at the end of the whole process.
The analysis plot displays a scatterplot with the potential energy versus temperature (left) and a plot with the heat capacity versus temperature
(right).
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workow not only reproduces the expected thermodynamic
signature of melting but also highlights how multi-agent
orchestration—spanning structure preparation, simulation
setup, execution, and analysis—can seamlessly integrate with
physics-based MD to deliver accurate, reproducible predictions
of key material properties. All the potential les identied by
the potential agent and web scraper agent for each system and
task are summarized in the Table S6.

3.3 Limitations and future work

While our multi-agent framework demonstrates substantial
improvements in automation, modularity, and reproducibility
for atomistic simulations, several limitations and opportunities
for enhancement remain. First, dependency management and
environment reproducibility, especially for tools like LAMMPS,
Atomsk, and Phonopy, can become brittle across platforms or
HPC systems. We currently address this with curated environ-
ments, but robust containerization and environment self-
checks will be important in future iterations.

Second, although the system is capable of autonomous
decision-making and error recovery, the trustworthiness and
explainability of some AI-driven actions, particularly LLM-based
Digital Discovery
reasoning, remain open challenges. Future work should incor-
porate transparent logging, agent-level condence scores, and
potentially symbolic reasoning layers to increase interpret-
ability. Third, while our framework already scales to a broad
class of static and dynamic materials properties, accuracy vs.
automation trade-offs become critical for complex tasks such as
phonon dispersion, thermal conductivity, or defect energetics.
These simulations may benet from adaptive sampling,
uncertainty quantication, and self-correction loops that trigger
convergence checks or higher-delity reruns when needed.

In addition, we note that there are already several agentic
frameworks available in the community (e.g., LangChain,
AutoGen, CrewAI), and our approach is intentionally designed
to be framework-agnostic. The predened functions, system
messages, and agent roles that we developed can be readily
transferred or recongured within other pipelines, making the
framework portable and easy to integrate with emerging
ecosystems. Beyond this, opportunities exist to build stan-
dardized APIs for agent–simulation interaction, incorporate
benchmarking datasets for cross-framework comparisons, and
establish community-driven best practices for reproducibility,
logging, and evaluation. Such steps will help ensure that agentic
© 2025 The Author(s). Published by the Royal Society of Chemistry
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AI for materials science evolves not only as a powerful tool for
automation but also as a sustainable, extensible infrastructure
that supports long-term collaboration between computational
scientists, AI developers, and experimentalists.

Looking forward, we envision integrating the framework
with HPC job schedulers for intelligent resource management
and embedding it within closed-loop inverse design pipelines
that use reinforcement learning or Bayesian optimization. The
multi-agent design, with its modular and extensible structure,
offers a natural pathway to scale toward increasingly complex
materials discovery tasks and tighter integration with experi-
mental or autonomous laboratory workows.

4. Conclusion

We investigate the application of generative approaches to
materials science, and for automating MD simulations. In
particular, we introduced a multi-agent AI framework that
automates the end-to-end pipeline of atomistic simulations,
from structure generation to property analysis. By coordinating
specialized agents equipped with domain-specic tools, our
system successfully reproduced both static properties (lattice
constants, cohesive energies, elastic constants, phonon
dispersion) and dynamic properties (melting points) across
a diverse set of elemental and alloy systems with accuracy
comparable to human experts. Our results highlight that multi-
agent orchestration is not only capable of reproducing core
methodologies in LAMMPS but also ensures reproducibility,
modularity, and scalability across different workows.

Our agentic AI pipeline, which is a coordination of multiple
agents with diverse tasks, presents our multi-agent system for
automating the atomistic simulations and the running of
scientic workows with LLMs. If we want computational tools
to be widely used and help us accelerate the discovery, they
should be easy to use from a broader audience – for example,
even human experimentalists with little computational back-
ground should be able to describe their problem and the agents
help them develop solutions and understand their materials.
The agentic pipeline could be also combined with autonomous
laboratories and enable physics informed pipeline design. We
used the GPT o3 model as the primary vision agent, as it
consistently yielded the most accurate image-based reasoning
results. However, we also benchmarked GPT-4o and the Qwen3-
VL-8B-Thinking model under identical settings. While both
GPT-4o and Qwen showed slightly lower accuracy for complex
atomic structures, they remain reliable and consistent, making
them a promising and accessible alternative for future multi-
modal agentic workows. We demonstrated the utility of our
agentic workow by running both static and dynamic simula-
tions to capture the core methodology used in LAMMPS. Our
multi-agentic system showed that it can effectively work when
looking for a time-averaged property or a time-evolving process
(dynamic workow) or when looking for the lowest energy state
or the properties of a xed atomic arrangement (static). At the
end of the day, we want to design systems that learn and are
adaptable. Although we have demonstrated our workow for
inorganic alloys and materials, our framework is easily
© 2025 The Author(s). Published by the Royal Society of Chemistry
customizable and can potentially serve a wide range of simu-
lation tasks for so materials as well. Our future work includes
adding more capabilities to the agentic system such as con-
necting Bayesian optimization interfaces for parameter tuning
or adaptive sampling. Finally, tighter integration with HPC job
schedulers and autonomous laboratories will transform the
framework into a powerful “digital twin” engine for closed-loop
discovery, bridging AI-driven simulations with experimental
validation in a reproducible and scalable manner.
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