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One of the main bottlenecks for the wide adoption of atomistic simulation pipelines for computational
materials design is the high complexity of the workflows which many times requires the use of a diverse
set of specialized toolkits and libraries. Here, we introduce a multi-agent artificial intelligence (Al)
framework that autonomously performs end-to-end atomistic simulations, i.e. molecular dynamics (MD),
with automated input and associated full suite of analyses, using large language models (LLMs) and
multiple specialized Al agents. Our system orchestrates the entire simulation pipeline, from structure
generation via Atomsk and interatomic potential discovery through automated web mining, to simulation
setup and execution using LAMMPS on high-performance computing (HPC) platforms. Post-simulation,
our agentic framework performs automated data analysis and visualization with popular analysis tools
like OVITO and Phonopy. Each expert agent operates within a defined role, equipped with domain-
specific functions and a shared memory context for coordination. Using a diverse set of representative
elemental and alloy systems, we demonstrate the capability of our framework to execute a range of
static and dynamic materials modeling tasks, including lattice parameter and cohesive energy estimation,

elastic constants computation, phonon dispersion analysis, as well as perform MD simulations to
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Accepted 8th December 2025 determine dynamical properties that aid estimation of melting point. The results produced by the agents
show strong agreement with those obtained by a human expert, highlighting the reliability of the agentic

DO!: 10.1039/d5dd00435g approach. By combining automation, reproducibility, and human-in-the-loop control, our framework

rsc.li/digitaldiscovery lowers the barrier to the widespread adoption of scalable, Al-driven discovery tools in materials science.

structure generation,” LAMMPS for dynamics simulation,® Pho-
nopy for simulation analysis,” and OVITO for visualization,

1. Introduction

Atomistic simulations represent a popular and powerful method
to understand structure and dynamics of complex systems in
materials science spanning a broad range of applications from
energy to environment."? In particular, techniques such as
molecular dynamics (MD) provide detailed insights into atomic-
scale behavior, enabling the study of structural relaxation, phase
transitions,* transport phenomena,” and thermomechanical
properties of solids and fluids. The level of accuracy is deter-
mined by an interatomic potential (force field) which defines the
potential energy of the system as a function of atom positions.®
However, despite their wide adoption and availability, these
simulation workflows remain fragmented, manual, and highly
dependent on domain expertise. Researchers must typically
integrate multiple tools such as, for example, Atomsk for
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alongside literature or web search to retrieve force fields from
relevant databases like the NIST Interatomic Potentials Reposi-
tory."* This fragmented collection of tools and processes intro-
duces challenges in interoperability, reproducibility and
scalability, especially for high-throughput or exploratory simu-
lations. It also limits accessibility for non-specialists and poses
a significant challenge for integrating simulations into autono-
mous or data-driven materials design pipelines.

Recent advances in large language models (LLMs) and agent-
based AI systems offer promising routes toward automating
complex scientific workflows that lower the barrier for scientific
usage by non-expert users.””™® There has been a significant surge
in the development of agentic pipelines designed to automate
experimental workflows, simulation tools and the subsequent
data analysis processes.” These workflows aim to leverage
intelligent agents, often powered by machine learning or Al, to
orchestrate complex computational tasks, streamline parameter
exploration, and autonomously extract insights, thereby acceler-
ating scientific discovery and reducing human intervention in
traditionally labor-intensive simulation pipelines.”*** For example
MDCrow introduced a single agent system built on LangChain,*
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leveraging GPT-40 and Llama3-405B to automate biomolecular —multi-agent system, where each agent is designed to act like
MD workflows using tools like OpenMM, MDTraj, and PDBFixer.**  planner, scientist and engineer to automate alloy design coordi-
Similarly, DynaMate offers modular multi-agent pipeline for nating MD workflows.>® More recently, DREAMS framework was
scientific workflows built on a flexible Python template that wused for DFT calculations on a materials benchmark, demon-
leverages LLM agents to automate molecular simulations across strating comparable performance to human DFT experts.” While
diverse domains mainly focused on solvents and metal-organic each of these agentic systems contribute valuable ideas, they often
frameworks.” El Agente demonstrated a hierarchical framework rely on static templates, lack flexibility in input generation, and do
for complex computational and quantum chemistry workflows by not fully support classical MD workflows involving multiple
integrating with GPT-4 to autonomously plan, execute, and debug  diverse tasks ranging from structure generation, interatomic
DFT-based computations using tools like ORCA and xTB.** potential selection by searching the web, visual inspection of the
AtomAgents, on the other hand applied multi-modal GPT-4 based  structures, or trajectory analysis.

User prompts
“Calculate the phonon dispersion of gold”
“Calculate the melting point of a gold-copper alloy”
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Fig.1 Overview of the multi-agent system for molecular dynamics (MD) simulations. The system enables end-to-end automation of atomistic
simulations and analysis through coordinated agents. The administrator agent receives high-level natural language instruction from the user and
assigns tasks to specialized agents. These include: (i) the structure agent, which generates initial candidate structures that satisfy user
requirements, (ii) the simulation agents, which prepare input files for execution, (iii) the HPC agent, which submits jobs to an external high-
performance computing cluster (HPC) (https://wiki.anl.gov/cnm/HPC/Network_Access), (iv) specialized property agents, which are integrated
with functions tailored to specific materials properties and (v) the analysis agent, which performs multimodal reasoning over simulation
outputs and generates property specific plots. Each agent operates within a focused scope defined by its system message and interacts with
registered functions via the administrator agent.
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In this work, we introduce a multi-agent AI framework for
automating the full pipeline of atomistic simulations, from
structure generation to post-processing and visualization. Each
agent is provided with a specialized set of domain-specific tools
and a clearly defined role. This modular, role-specialized
architecture is motivated by recent studies showing that
distributing reasoning and tool control across multiple collab-
orating agents improves robustness and reasoning efficiency
compared to single-agent systems.”®*?° Such architectures
reduce the contextual load on any single agent and enable
complex workflows to be decomposed into manageable
subtasks, mitigating context-window limitations observed in
single-agent designs.”® Unlike prior works which are largely
focused on single-agent systems, our framework distributes
tasks across agents that can reason, self-correct, and collaborate
dynamically via agent-to-agent communication through
a shared memory and execution interface. This enables our
system to respond autonomously to simulation errors, adapt
tool selection based on material context, and incorporate
human guidance for learning and explainability. To demon-
strate the capabilities of this agentic platform, we apply it to
several distinct simulation tasks of increasing complexity, from
static properties such as lattice parameter and cohesive energy
calculation, elastic constant computation and extraction, and
phonon dispersion calculation, to dynamical properties such as
melting point estimation for representative elemental and
binary alloy structures that span across different crystal systems

(Fig. 1).

2. Methods

2.1 Agentic architecture

The three core components of the system are: (i) the agent
factory, where all agents are instantiated and assigned an LLM
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configuration along with a system prompt that defines their
roles and available tools, (ii) a suite of specialized tools, which
includes functions for materials property calculations, simula-
tion input generation and file handling and (iii) a function
registry, which maps specific functions to the appropriate
agents (see SI Section S1 and Fig. S1). The agentic infrastructure
builds upon the AutoGen framework (AG2), which enables
dynamic agent selection, supports human-in-the-loop feedback,
and allows agents to collaborate adaptively to complete complex
tasks.”® Each agent is designed with a narrow, expert-level task
definition, enabling more focused reasoning and minimizing
prompt complexity. The full list of agents used in this work and
their capabilities is provided in Table 1.

The agents were assigned with several domain-specific soft-
ware libraries through wrapper functions exposed in the func-
tion registry. Table 2 lists the main software tools and the agents
they were assigned to.

2.2 LAMMPS simulation workflows

We utilize LAMMPS, a widely adopted open-source molecular
dynamics (MD) simulation package, for modeling and
analyzing materials at the atomic scale.® Its flexibility and
extensibility make it well-suited for simulating a broad range of
materials phenomena, from lattice dynamics and defect
behavior to phase transitions and interfacial properties.
LAMMPS is typically used to compute a range of material
properties and dynamics. Lattice constants and cohesive ener-
gies are used to predict phase stability and guide alloy or
semiconductor design. Elastic constants inform mechanical
reliability of materials used in structural, aerospace, and
microelectronic applications. Phonon dispersion of materials
underpins predictions of thermal conductivity, thermoelectric
performance, and superconductivity. Together, calculation of
these properties by users is often aimed at bridging atomistic

Table1l Overview of the agents designed for the multi-agent MD system. Each agent has a focused, expert-level task and equipped with access
to specialized functions. The table summarizes the main responsibilities of each agent within the system

Agent

Description

Structure creation agent
LAMMPS input agent

LAMMPS input reviewer agent

Potential agent

Web scraper agent

Melting point calculation agent
Elastic constants agent
Phonopy agent

Results analysis agent

HPC agent
Administrator with integrated executor

© 2025 The Author(s). Published by the Royal Society of Chemistry

Responsible for creating the appropriate structure file

Responsible for the generation of the LAMMPS input file tailored to the
property prediction requested from the user

Responsible to review the LAMMPS input files when an execution error
appears and provide feedback and corrections

Responsible for identifying the correct potential files and checking their
validity. The agent can download files from existing known resources.
Collaborates with the WebScraper agent in case Google search is
required to find the potential file

Data extraction (e.g., CIFs, potential files, thermophysical constants).
Web scraper agent enhanced to: fetch known lattice parameters, elastic
constants, and empirical potentials. Validate against computed values
Responsible for handling calculations for melting point estimation
Responsible for handling calculations for elastic constants calculation
Responsible for handling calculations for phonon dispersion calculation
With integrated vision: responsible for analysis the results of the
simulations by checking the output files

Responsible for working on an HPC cluster (carbon cluster)
Coordinates the interactions between the human user and the agents.
Executes the functions that are associated with the agents
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Table 2 The main packages used in this work with their description and the agent they are assigned to

Tool/package Description Agent

Atomsk Generates crystal structures with defined lattices, defects or supercells Structure creation agent
LAMMPS Molecular dynamics code used for all simulations LAMMPS input agent
Phonopy Computes phonon band structures using finite displacements Results analyzer agent
OVITO Parses and visualizes simulation trajectories and outputs Results analyzer agent
Playwright Webscraping and file downloading from online sources with potentials, like NIST Web scraper agent

ASE Atomistic structure manipulation and file conversion Phonopy agent

Custom tools

simulations with practical materials design and engineering. In
our agentic pipeline, each property calculation using LAMMPS
requires a different set of agents and workflow routines. At the
core of each property calculation is the automated generation
and execution of a LAMMPS input script tailored to the task and
the selection of the appropriate force field file. Depending on
the task, the LAMMPS input agent can use pre-defined
templates and dynamically inserted parameters such as time-
step, ensemble type, temperature, pressure, and dump
frequency or create and save a new input file. Note that we
initiate the pipeline via generation of a crystal structure, the
selection of the appropriate potential file and the creation of
a LAMMPS input script. The associated main routines for each
of the simulations performed are described below.

2.2.1 Lattice parameters and cohesive energy calculations.
To calculate lattice parameters and cohesive energy using
LAMMPS, a user would perform a series of energy minimiza-
tions across different lattice constants and identify the value
that yields the lowest potential energy, which gives the equi-
librium lattice parameter. Cohesive energy is then determined
by subtracting the energy per atom in the bulk solid from the
energy of an isolated atom. The bulk energy is obtained from
a relaxed crystal structure, while the isolated atom energy is
calculated by placing a single atom in a large vacuum box to
eliminate interactions. For many interatomic potentials like
EAM, the isolated atom energy is effectively zero, so cohesive
energy equals the negative of the bulk energy per atom. Calcu-
lating lattice parameters and cohesive energy involves an input
file that defines the simulation cell and atomic structure
(generated via Atomsk in this work). The pair_style and pair_-
coeff commands specify the interatomic potential (e.g., EAM for
metals), while minimize performs energy minimization to relax
the structure. For cohesive energy, one script is used to compute
the energy per atom in the bulk, and a separate script places
a single atom in a large box (vacuum) to compute its isolated
energy. Output quantities like potential energy are accessed
using the appropriate keywords in the thermo_style parameter
for appending the LAMMPS output file with the dimensions of
the cell of the relaxed structure. By looping over lattice
constants and analyzing the energy trends, users can extract
both equilibrium lattice constants and cohesive energy.

2.2.2 Elastic constants computation and extraction. This
includes the creation of the starting crystal structure file,
selection of the appropriate potential, relaxation of the struc-
ture using the appropriate LAMMPS input, and the use of

Digital Discovery

Includes HPC management scripts and file converters

HPC agent, admin agent

predefined LAMMPS template files for the elastic constants
simulation. The template files are ‘in.elastic’, ‘potential.mod’,
‘displace.mod’, ‘init.mod’. After the template files are copied to
the working directory, the ‘init.mod’ requires modifications,
such that the correct name of the structure file will be added
and also several values for the ‘variable up equal’ parameter
should be selected with possible values of 0.0001, 0.001, 0.01.
The ‘potential.mod’ file should also be updated with the correct
potential. The expected output of this simulation is a 6 x 6
matrix i.e. C; with the elastic constants, where C_11, C_22, C_33
represent the longitudinal elastic moduli and the C_44, C_55,
C_66 the shear elastic moduli. The off-diagonal terms represent
the coupling between stress and strain components. To ensure
a reliable simulation, at least two different values of the ‘vari-
able up equal’ should be tested and the resulting tables should
have comparable values.

2.2.3 Phonon dispersion calculation. Phonon dispersion
calculations in LAMMPS involve analyzing the vibrational
properties of a crystal by constructing and diagonalizing the
dynamical matrix, typically using the finite displacement
method. This is often done in conjunction with external pack-
ages like Phonopy, which interfaces with LAMMPS to generate
displaced structures, compute forces, and extract phonon
frequencies and dispersion relations across the Brillouin zone.
Phonon dispersion calculation includes the initial creation of
the structure with a unit cell above 3 x 3 x 3, downloading the
correct potential file, run the initial relaxation and then prepare
for the Phonopy workflow. Phonopy calculation steps involve
converting the structure file to POSCAR format, generating
supercells and displacement files after applying modifications
to the starting structure. A force calculation LAMMPS simula-
tion is performed for each of the displacement structures and
then all the forces are compiled, and a FORCE_SETS file is
generated for band structure analysis.

2.2.4 Melting point estimation. Unlike static material
properties such as elastic or lattice constants, the melting point
is significantly more challenging to compute, both numerically
and computationally.®® The method to determine the melting
point at constant pressure is by finding the temperature at
which the Gibbs energy of the solid and liquid phases are equal.
In LAMMPS, melting point estimation is typically performed by
gradually heating a solid system under canonical ensemble
(constant number of particles N, volume V, temperature 7) or
isothermal-isobaric ensemble (constant number of particles N,
pressure P, temperature 7), while monitoring structural and

© 2025 The Author(s). Published by the Royal Society of Chemistry
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thermodynamic indicators such as abrupt changes in volume,
potential energy, or radial distribution functions.** This
approach provides insight into the thermal stability of materials
and serves as a critical validation metric for interatomic
potentials, ensuring accurate reproduction of phase transitions
and high-temperature behavior.

We employed the interface method (coexistence approach)
for melting point estimation,*?* which involves simulating
a system containing both crystallize and disordered phases
within the same periodic simulation box, separated by a well-
defined interface. The high-level procedure for the melting
point estimation is a multi-step process that involves three
main steps: (i) generation and relaxation of the crystalline
structure generated by Atomsk, (ii) creation of the solid-liquid
interface and (iii) melting point simulation via heating of the
system created in step (ii). The first (i) part is the standardized
protocol followed previously for the structure relaxation. The
second (ii) part includes the identification of the top half of the
structure using box-bound variables (e.g., bound(all, z,,,) and
bound(all, z,,y)), so the region definition is independent of the
system size. Then this top half structure should be frozen using
fix setforce 0.0 0.0 0.0 to prevent atomic motion in that region.
Then the initial velocities to the bottom half using should be
assigned and apply a high temperature thermostat (e.g., 3000 K)
using canonical ensemble (NVT) to melt that part. The simula-
tion should run for sufficient time (e.g., 50 ps or longer) to allow
a solid-liquid interface to form naturally.®® The resulting
structure of the solid-liquid interface is saved for use in the
melting point simulation. An OVITO visualization is then
generated by saving the front view of the last frame of the
melting point simulation file and visually verify the two phases
(solid/liquid). If the structure is half melted, we can proceed to
the melting point estimation. Otherwise, a new LAMMPS input
file should be generated for rerunning the interface simulation
by applying higher temperature or for longer time. Once a 50:
50 solid-liquid ratio is visually confirmed, the final step (iii)
involves a heating simulation starting from room temperature
and ramping up beyond and expected melting point (e.g. by
1000 K). The system is monitored until full melting is observed.
This marks the upper bound of the melting point for the given
interatomic potential.

2.3 Error detection and autocorrection routines

A core ability of our agentic system is the ability to detect,
explain, and correct execution failures. The LAMMPS input
creator first calls an integrated function to check the workflow
status for the existence of a valid potential and a valid structure
file at the working directory. Only if the workflow status result is
true, the agent will proceed to create the LAMMPS input file.
Furthermore, the LAMMPS input reviewer agent monitors the
output logs from each simulation and parses for known failure
signatures, including invalid commands (e.g;, misnamed
keywords or deprecated syntax), numerical instabilities (e.g.,
atom loss, box deformation) and missing potential files or
incorrect atom types. Upon detection, the reviewer agent
collaborates with the relevant task agent (e.g., potential agent,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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LAMMPS input agent) to regenerate or fix the input scripts. This
autocorrection loop is repeated until the simulation is executed
without any errors. In cases of failure, the user has also the
option to interact with the administrator agent and suggest
improvements or provide guidance.

2.4 High-performance computing execution

The simulations were executed on the carbon HPC cluster
located within the Center for Nanoscale Materials at Argonne
(https://wiki.anl.gov/cnm/HPC/Network_Access) or using a local
installation of LAMMPS software (version 29 Aug 2024 — update
3). Carbon HPC uses a torque-based job scheduler. The HPC
agent is responsible for packaging simulation files (structure,
potential, input scripts), uploading via secure copy protocol
(SCP), submitting jobs, monitoring job completion, and
downloading results and notifying downstream agents for
analysis.

2.5 Human expert evaluation

In all case study simulations, we validated the capabilities of the
agentic pipeline by comparing all the results with human
experts. For consistent comparison and due to the deterministic
nature of the LAMMPS simulations, the human expert evalua-
tion used the same initial structure and same potential files as
those generated by the structure agent and the potential agent
respectively. Note that the choice of interatomic potential exerts
the largest influence on all computed physical properties, often
leading to significant variability in lattice constants, cohesive
energies, and elastic moduli across different parameterizations.
Such variability stems from the intrinsic limitations and
transferability of the potential itself, rather than from the
agent's operation. Consequently, the agent should not be held
responsible for errors originating from the underlying potential
choice. These decisions inherently require human scientific
oversight, as the selection of a physically appropriate potential
remains a knowledge-driven step that depends on system
chemistry, training data quality, and intended property
predictions. The % error was then measured by the following
equation:

A—-H
%Error = abs( ) x 100%
where A is agent and H is human. The human output is treated
as the correct value (general truth).

3. Results and discussion

The agentic system was extensively tested for static and dynamic
analysis pipelines using a representative set of structures and
crystal systems, ie., gold (Au),* iron (Fe),” titanium (Ti),*®
silicon (Si),* nickel-copper alloy (Ni-Cu), gold-copper alloy
(Au-Cu).* Static simulations typically aim to find the minimum
energy configuration of a system or properties of a system at
0 kelvin (or a specific, non-evolving atomic configuration).
LAMMPS commands usually involve functions to relax struc-
tures or to compute properties of a given state without
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advancing time, whereas the dynamic properties are obtained
by integrating the equations of motion over finite time steps. In
this case, simulations capture the temporal evolution of atomic
trajectories, enabling the calculation of temperature-dependent
quantities such as thermal conductivity, or structural phase
transitions. Together, these complementary modes of operation
allowed us to benchmark the system across both equilibrium
property calculations and time-dependent processes, ensuring
robustness and generality of the pipelines.

3.1. Static property simulations

3.1.1 Lattice constants calculation. The initial task
includes calculation of the lattice parameters and cohesive
energy for the selected systems (Fig. 2). The expected output is
a list of 6 numbers that represent the length along different unit
cell axes and the angles between them. A detailed system
message was provided to the LAMMPS input creator for
enabling the creation of the correct input files to perform these
calculations (Fig. S3). The agentic system initially created the
structure using the structure agent, then the potential agent
identified and downloaded the correct potential file from the
web, and LAMMPS input agent created the input file with the
appropriate thermo keywords. The files were uploaded to HPC
through the HPC agent. Once the simulation was successfully
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completed, all the files were downloaded and the log.lammps
file was read by the results analysis agent to extract the required
quantities and provide a response to the user (Fig. S4).

To ensure transferability to several crystal systems, we
further tested the framework using an extensive selection of
crystal systems, i.e., face centered cubic (FCC), BCC, HPC. The
system achieved average errors below x% compared to the
results of human LAMMPS simulation experts. Comparison of
all agents vs. human results are demonstrated in Tables 3, 4 and
S3.

3.1.2 Elastic constants calculation. The high-level pipeline
for performing an elastic constants calculation with the agentic
system is described in Fig. 3a. The LAMMPS elastic agent plays
a key role in this process and is provided with detailed
prompting for retrieving/modifying the appropriate files
(Fig. S5). In the case of an FCC gold crystal, the crystal structure
was generated with a lattice parameter of 4.078 Aina5 x 5 x 5
supercell configuration containing 500 atoms. The interatomic
interactions were described using the embedded atom method
(EAM) potential (Au_u3.eam) obtained from the LAMMPS
repository. The elastic constants calculation utilized a finite
deformation approach, where small strain perturbations (6 =
0.001) were systematically applied to the simulation cell in
different directions, followed by energy minimization using the
conjugate gradient method with convergence criteria of

Calculate the lattice constants and cohesive energy of Au

v

AdministratorAgent
* receives user request
* selects participating agents
* sends tasks to relevant agents

A
r . D :
Structure Agent Potential Agent Results Analysis Agent
create_structure with arguments: * Searches the web for * Parses log.lammps
{"crystal_type":"fcc""lattice_param":4.078," the EAM file
element":"Au","size":"1 1 « Validates format ### Results:
1""output_format":"lammps"} **Cohesive Energy**: -3.789
eV/atom

LAMMPS input Agent

Response from calling tool
[ Crystal structure created successfully:
File: au_structure.lmp

£ Structure: fcc Au

* Generates

**Lattice Constants**:

Lattice parameter: 4.078 A

© Size: 111 *
Atoms: 4

minimization input a:4.078
i b:4.078
fite c:4.078
Execution Agent alpha: 90°
beta : 90°

Uploads files
*  Submit simulation
* Downloads files

gamma : 90°

Fig. 2 An example of a typical agentic workflow for the calculation of the lattice constants and cohesive energy for gold (Au) using MD
simulations. The administrator agent coordinates the task, while specialized agents generate the crystal structure, locate and validate the EAM
potential, prepare and submit the LAMMPS input, and parse the simulation output from HPC. The results yield a stable FCC Au structure with
lattice constant 4.078 A and cohesive energy —3.789 eV per atom which is consistent with predictions by expert human users.
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Table 3 Comparison between the results obtained from a human vs.
an agentic pipeline on the calculated values of lattice constants for

various elemental and alloy systems

System Lattice parameters — agent Lattice parameters — human
Fe (BCC) a=b=c=2.866A a=b=c=2.866A
a=0f=vy=090° a=pf=+vy=090°
Au (FCC) a=b=c=4078A a=b=c=4078A
a=0f=vy=090° a=pf=vy=090°
Ni-Cu (FCC) a=b =c = 3.58177 a=b=c=358177A
a=0=vy=90° a=0=vy=90°
Ti (HPC) a=2.96357 A a=2.96357 A
b = 2.5665 A b = 2.5665 A
c=4.7034 A c=4.7034 A
=B =90° a =4 =90°
v = 120° v = 120°
Si-diamond a = b = ¢ = 5.43094 A a=b=c=543094 A
a=0=ry=90° a=LF=ry=90°
Au-Cu (FCC) a:b:c:38465A a=hb=c=3.8388A
=B=v= a=pF=y=90°

Table 4 Comparison between the results obtained from a human vs.
an agentic pipeline on the calculated values for the cohesive energy
for various elemental and alloy systems. The percentage of error (%
error) measures the deviation of the agent relative to the human expert
which we treat as the ground truth

Cohesive energy Cohesive energy

System (eV per atom) - agent (eV per atom) - human % Error
Fe (BCC) —4.3159 —4.3159 0%
Au (FCC) —3.789 —3.789 0%
Ni-Cu (FCC) —3.9682 —3.9682 0%
Ti (HPC) —4.8525 —4.8525 0%
Si-diamond —4.3366 —4.3366 0%
Au-Cu (FCC) —3.8239 —3.8246 0.018%

107" ev A™* for forces. The full 6 x 6 elastic constant tensor
was extracted from the stress-strain relationships, yielding the
key elastic properties: bulk modulus of 166.89 GPa, primary
shear modulus of 44.73 GPa, and Poisson ratio of 0.46. The
computed elastic matrix was validated for physical consistency
through symmetry checks and Born stability criteria, and the
results were visualized through comprehensive plots showing
both the elastic constant tensor and convergence behavior
during the calculations. The elastic constants simulations part
involves the modification of the variable to generate a 6 x 6
matrix. The generated elastic constant matrices are shown in
Fig. 3b and S6 confirms that the agentic system has correctly
calculated the stiffness tensor for gold in GPa. A table
summarizing the elastic constants calculation of both agent
and human expert for all six atomic systems (Fe, Au, Au-Cu Ni-
Cu, Ti, Si) is provided in Table S4. The low % error for each of
the systems shows that the agentic pipeline can perform these
simulations at a human level.

3.1.3 Phonon dispersion. In this workflow, the user initi-
ated a request to calculate the phonon dispersion of an element
or alloy using an automated LAMMPS-Phonopy pipeline (Fig. 4a

© 2025 The Author(s). Published by the Royal Society of Chemistry
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and S7). For the gold example, the agent began by generating an
FCC crystal structure of gold with a 2 x 2 x 2 supercell and
a lattice parameter of 4.078 A. An appropriate EAM potential
(Au_u3.eam) was fetched from an online repository after initial
download attempts failed. A LAMMPS input script was created
to relax the gold structure, but the simulation initially failed due
to unrecognized or invalid commands (after read pause 0, then
after minimize). These errors were progressively corrected,
leading to successful relaxation and generation of a relaxed
structure. The relaxed structure was then used to generate
a POSCAR and displacement files required for phonon calcu-
lations. After uploading all 192 displacement directories to the
HPC system and running them in batch, the forces were
collected, and phonon band structure data was generated.
Finally, the phonon dispersion was successfully computed and
visualized in a band.pdf file along theI' > X > W > K —> T —
L— U path for the cubic gold system, completing the workflow
(Fig. 4b). In Fig. 4c, the same process was performed for the
nickel-copper alloy. The agenting approach was tested for the
exemplary systems with all the results and comparison with the
human derived plots shown in the Fig. S8-5S13.

3.2. Dynamical property simulations

The scope of our study was extended beyond static property
simulations by exploring the thermodynamic properties for the
exemplary materials systems. Melting properties play a key role
for the in-depth understanding of a material as they affect the
synthesis method, processing and performance in various areas
of application.” We evaluated the agentic system's ability to
perform time-dependent molecular dynamics (MD) simulations
to explore melting behavior using automated orchestration of
the process. A critical part for the understanding of the process
is the visual inspection of the structures during the melting,
which is performed by human experts that have an under-
standing on how a melted structure should look like. In this
work we tried to map the human perception of an image with
the use of advanced reasoning multimodal models that can not
only look at the generated image, but also take critical decisions
during the simulation and propose ways forward based in the
observations (SI Section S1.4 and Fig. S2). These workflows
require agents to operate across long MD trajectories, manage
temperature control, and extract properties like melting point
and heat capacity from post-processed data.

The main corpus of the agentic simulation consists of three
sequential MD simulations, (i) generation of an energy
minimum configuration, (ii) solid-liquid interfacial pre-
melting, (iii) full melting (Fig. S13). The term pre-melting
refers to the formation of thermodynamically stable liquid
films at solid interfaces subjected to temperatures below but
near the bulk melting temperature (7,,,).** The role of the visual
inspection is particularly important for parts ii and iii, as the
vision model should verify the successful completion of these
tasks or propose changes in the MD workflow otherwise until
the final goal of each stage is reached (Fig. 5a). After each of the
main steps, an image of the final frame of the completed
simulation is given to the vision agent for inspection. An
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Fig. 3 Agent vs. human calculated elastic constants simulation for FCC gold. (a) Schematic of the agentic workflow for generating the elastic
constants matrix for gold. The structure agent generated a gold (Au) crystalina 5 x 5 x 5 supercell configuration, the potential agent selected an
EAM file, and the elastic constants agent applied six independent strain deformations. (b) Elastic constants matrix computed by the multi-agent
system after setting the variable up equal to 0.001 and 0.01. The matrices show the full symmetric stiffness tensor Cj, where cubic symmetry is
preserved. All results are in GPa. Since both matrices are exactly the same, the agent concludes that the simulation is successful and can be

terminated without the need to apply different variable up equal values.

exemplary structural evolution of an AuCu alloy during the
melting point simulation performed by the agent is shown in
Fig. 5b. Once the simulation is completed successfully, the
melting characteristics can be concluded following the changes
in potential energy and heat capacity as functions of tempera-
ture (Fig. 5c). Similar analysis and results for all the explored
systems is provided in the SI Fig. S15 and S18-S22.

Digital Discovery

(c) Elastic constants matrix computed by a human expert.

The key component of the process is the integration of the
results analyzer agent with two vision models which are
assigned with different observatory tasks and are based on 03
vision model. The vision models are called to operate every time
a new OVITO frame is saved in the working directory during the
melting point calculation (Fig. S14). The first vision model is
assigned the task of observing the solid-liquid interface frame

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00435g

Open Access Article. Published on 09 December 2025. Downloaded on 1/9/2026 8:53:25 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Paper Digital Discovery
a)
HumEn; Structure agent: Potential agent: LAMMPS input
Calculate the phonon . .
. ) structure find and download agent: create
dispersion of " . |
z generation with the correct input for structure
gold/nickel-copper R .
alloy Atomsk potential file relaxation
TERMINATE
HPC agent: run Phohoby adent: HPC agent: run Results analysis
the simulation in handlegy hgnon. the simulation in agent: decide on
HPC and oS —_— HPC and — the k-points path
dispersion
download the : download the and create phonon
calculations - .
results results dispersion plots
b) Au human agent
3sf M B

Frequency

>
9
c
H]
=2
&
&

Frequency

Frequency

Fig. 4 Agent vs. human calculated phonon dispersion for Au and NiCu alloy. (a) Schematic of the steps performed from the agents to execute
a phonon dispersion simulation following a user prompt. (b) Phonon dispersion plots generated by human vs. agent for Au. (c) Phonon dispersion
plots generated by human vs. agent for NiCu. The human and agents generated results were identical.

and critically decide whether the composition of the solid liquid
phase is around the intended 50 : 50 ratio. If that is not the case,
then the LAMMPS simulation is resubmitted after fixing or
unfixing the atoms in the structure accordingly. The second
vision agent is responsible for understanding if a structure has
fully melted or not. Conclusions are made by checking whether
the distribution of the atomic positions appear to be random,
the absence of lattice structures, non-aligned packing and
disordered fluid-like appearance. If the structure is not fully
melted the agent recommends parameter adjustments, such as
increasing the temperature range, extending the simulation
time by increasing the timesteps or adjusting the heating rate
for slower heating. The detailed prompts and benchmarking of
the vision agents is provided in the SI Section S1.4, Fig. S2 and

© 2025 The Author(s). Published by the Royal Society of Chemistry

S3. The results generated by the human expert are also
described in the SI. The comparison between the human
experts and agent is provided in the Table S5.

Briefly, the simulations are executed by our workflow on
a high-performance computing (HPC) resource, where large-
scale molecular dynamics runs provide statistically reliable
sampling across a broad temperature range as shown in Fig. 5.
As the NiCu system is progressively heated, the potential energy
vs. temperature trajectory reveals the gradual destabilization of
the ordered lattice, with a pronounced change in slope marking
the onset of melting. To pinpoint the transition more rigor-
ously, the heat capacity curve is computed from fluctuations in
enthalpy, and it exhibits a sharp peak at approximately 1604 K,
which corresponds to the alloy's melting point. Our agentic

Digital Discovery


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00435g

Open Access Article. Published on 09 December 2025. Downloaded on 1/9/2026 8:53:25 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

a) Human:
Calculate the
melting point of a

gold-copper alloy

Structure agent:
structure
generation with
Atomsk

2
Potential agent:
find and download
the correct
potential file

LAMMPS input
agent: create
input for structure
relaxation

LAMMPS input
agent: create input

]
HPC agent: run
the simulation in

View Article Online

Paper

Structural evolution during the melting point simulation

HPC and — forgeneratinga <« — . —
download the 50:50 solid liquid | initial structure starting relaxed 50:50 solid-liquid half-melted fully-melted
results interface generated by structure interface system system
; | | Atomsk e ] '
HPC agent: run Is the | )
the simulation in <D structure No | Generated report
HPC and —_ 50:50 — . . .
ot bad e solid Potential Energy vs Temperature Heat Capacity Analysis
results iquid?
v liquid? saoo] © MO Tajectory 981 — Heat Capacity
es | = ~=- Peak: 1604 K !
v |
N HPC agent: run < —3450 < 06 !
> e
LAMN!PS |npl{t the simulation in ) = i
agent: input script HPC and 3 ~3500 C :
% : o >
for f"::"alr:j::{;gnm'm download the 2 _ass0 G 04 i
results = 2 i
7 = & |
4} l 2 -3600 o !
I g § 02 !
| & -3650 T :
Is i
| No structure e 00 i
e 1
fully % 600 800 1000 1200 1400 1600 1800 2000 600 800 1000 1200 1400 1600 1800 2000
melted? Temperature (K) Temperature (K)
TERMINATE fo—€5

Fig. 5 Melting point predictions made by agentic workflow. (a) Agentic pipeline demonstrating the sequential steps for performing an end-to-
end melting point simulation starting from a simple user prompt. When the process is terminated, a report is generated as shown in (c). (b)
Progression of the melting simulation observed by the OVITO frames acquired after each simulation. The vision agent encodes these images to
base 64 string and decides whether a simulation is complete or not. The main decisions the vision agent has to make is whether a 50 : 50 solid—
liquid interface has been created and whether the structure is fully melted. (c) Melting characteristics were studied by following the changes in
potential energy and heat capacity as functions of temperature. Report generated by the results analysis agent at the end of the whole process.
The analysis plot displays a scatterplot with the potential energy versus temperature (left) and a plot with the heat capacity versus temperature

(right).

workflow not only reproduces the expected thermodynamic
signature of melting but also highlights how multi-agent
orchestration—spanning structure preparation, simulation
setup, execution, and analysis—can seamlessly integrate with
physics-based MD to deliver accurate, reproducible predictions
of key material properties. All the potential files identified by
the potential agent and web scraper agent for each system and
task are summarized in the Table Sé6.

3.3 Limitations and future work

While our multi-agent framework demonstrates substantial
improvements in automation, modularity, and reproducibility
for atomistic simulations, several limitations and opportunities
for enhancement remain. First, dependency management and
environment reproducibility, especially for tools like LAMMPS,
Atomsk, and Phonopy, can become brittle across platforms or
HPC systems. We currently address this with curated environ-
ments, but robust containerization and environment self-
checks will be important in future iterations.

Second, although the system is capable of autonomous
decision-making and error recovery, the trustworthiness and
explainability of some Al-driven actions, particularly LLM-based

Digital Discovery

reasoning, remain open challenges. Future work should incor-
porate transparent logging, agent-level confidence scores, and
potentially symbolic reasoning layers to increase interpret-
ability. Third, while our framework already scales to a broad
class of static and dynamic materials properties, accuracy vs.
automation trade-offs become critical for complex tasks such as
phonon dispersion, thermal conductivity, or defect energetics.
These simulations may benefit from adaptive sampling,
uncertainty quantification, and self-correction loops that trigger
convergence checks or higher-fidelity reruns when needed.

In addition, we note that there are already several agentic
frameworks available in the community (e.g., LangChain,
AutoGen, CrewAl), and our approach is intentionally designed
to be framework-agnostic. The predefined functions, system
messages, and agent roles that we developed can be readily
transferred or reconfigured within other pipelines, making the
framework portable and easy to integrate with emerging
ecosystems. Beyond this, opportunities exist to build stan-
dardized APIs for agent-simulation interaction, incorporate
benchmarking datasets for cross-framework comparisons, and
establish community-driven best practices for reproducibility,
logging, and evaluation. Such steps will help ensure that agentic

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Al for materials science evolves not only as a powerful tool for
automation but also as a sustainable, extensible infrastructure
that supports long-term collaboration between computational
scientists, Al developers, and experimentalists.

Looking forward, we envision integrating the framework
with HPC job schedulers for intelligent resource management
and embedding it within closed-loop inverse design pipelines
that use reinforcement learning or Bayesian optimization. The
multi-agent design, with its modular and extensible structure,
offers a natural pathway to scale toward increasingly complex
materials discovery tasks and tighter integration with experi-
mental or autonomous laboratory workflows.

4. Conclusion

We investigate the application of generative approaches to
materials science, and for automating MD simulations. In
particular, we introduced a multi-agent AI framework that
automates the end-to-end pipeline of atomistic simulations,
from structure generation to property analysis. By coordinating
specialized agents equipped with domain-specific tools, our
system successfully reproduced both static properties (lattice
constants, cohesive energies, elastic constants, phonon
dispersion) and dynamic properties (melting points) across
a diverse set of elemental and alloy systems with accuracy
comparable to human experts. Our results highlight that multi-
agent orchestration is not only capable of reproducing core
methodologies in LAMMPS but also ensures reproducibility,
modularity, and scalability across different workflows.

Our agentic Al pipeline, which is a coordination of multiple
agents with diverse tasks, presents our multi-agent system for
automating the atomistic simulations and the running of
scientific workflows with LLMs. If we want computational tools
to be widely used and help us accelerate the discovery, they
should be easy to use from a broader audience - for example,
even human experimentalists with little computational back-
ground should be able to describe their problem and the agents
help them develop solutions and understand their materials.
The agentic pipeline could be also combined with autonomous
laboratories and enable physics informed pipeline design. We
used the GPT 03 model as the primary vision agent, as it
consistently yielded the most accurate image-based reasoning
results. However, we also benchmarked GPT-40 and the Qwen3-
VL-8B-Thinking model under identical settings. While both
GPT-40 and Qwen showed slightly lower accuracy for complex
atomic structures, they remain reliable and consistent, making
them a promising and accessible alternative for future multi-
modal agentic workflows. We demonstrated the utility of our
agentic workflow by running both static and dynamic simula-
tions to capture the core methodology used in LAMMPS. Our
multi-agentic system showed that it can effectively work when
looking for a time-averaged property or a time-evolving process
(dynamic workflow) or when looking for the lowest energy state
or the properties of a fixed atomic arrangement (static). At the
end of the day, we want to design systems that learn and are
adaptable. Although we have demonstrated our workflow for
inorganic alloys and materials, our framework is easily

© 2025 The Author(s). Published by the Royal Society of Chemistry
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customizable and can potentially serve a wide range of simu-
lation tasks for soft materials as well. Our future work includes
adding more capabilities to the agentic system such as con-
necting Bayesian optimization interfaces for parameter tuning
or adaptive sampling. Finally, tighter integration with HPC job
schedulers and autonomous laboratories will transform the
framework into a powerful “digital twin” engine for closed-loop
discovery, bridging Al-driven simulations with experimental
validation in a reproducible and scalable manner.
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