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simulation of non-adiabatic
molecular dynamics with precise electronic
structure

Tianyi Li, ab Yumeng Zeng,a Qiming Ding, a Zixuan Huo,a Xiaosi Xu,c Jiajun Ren,d

Diandong Tang, *e Xiaoxia Cai*f and Xiao Yuan*a

In the study of non-adiabatic chemical processes such as photocatalysis and photosynthesis, non-adiabatic

molecular dynamics (NAMD) is an indispensable theoretical tool, which requires precise potential energy

surfaces (PESs) of ground and excited states. Quantum computing offers promising potential for

calculating PESs that are intractable for classical computers. However, its realistic application poses

significant challenges to the development of quantum algorithms that are sufficiently general to enable

efficient and precise PES calculations across chemical systems with diverse properties and to seamlessly

adapt existing NAMD theories to quantum computing. In this work, we introduce a quantum-adapted

extension to the Landau–Zener-Surface-Hopping (LZSH) NAMD. This extension incorporates curvature-

driven hopping corrections that protect the population evolution while maintaining the efficiency gained

from avoiding the computation of non-adiabatic couplings (NACs) and preserving the trajectory

independence that enables parallelization. Furthermore, to ensure the high-precision PESs required for

surface hopping dynamics, we develop a sub-microhartree-accurate PES calculation protocol. This

protocol supports active space selection, enables parallel acceleration either on quantum or classical

clusters, and demonstrates adaptability to diverse chemical systems—including the charged H3
+ ion and

the C2H4 molecule, a prototypical multi-reference benchmark. This work paves the way for practical

application of quantum computing in NAMD, showcasing the potential of parallel simulation on

quantum-classical heterogeneous clusters for ab initio computational chemistry.
Introduction

Ab initio molecular dynamics (AIMD) simulations are indis-
pensable for elucidating mechanisms underlying chemical and
biological processes, providing atomistic insights into
phenomena ranging from charge carrier dynamics in mate-
rials,1 excited-state dynamics of transition metal complexes,2

and proton transfer in solvation processes3 to photochemical
reactions.4,5 A foundational early approach of AIMD is the Born–
Oppenheimer molecular dynamics framework, which leverages
the Born–Oppenheimer approximation to decouple electronic
and nuclear degrees of freedom. This approach has been proven
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valuable for simulating equilibrium properties and slow
dynamic processes in systems where the Born–Oppenheimer
approximation holds.6–9

However, the Born–Oppenheimer approximation breaks
down when the energy gap between electronic states becomes
close, leading to strong non-adiabatic effects, which is crucial
for understanding a broad spectrum of chemical phenomena.
This occurs in scenarios involving conical intersections, avoi-
ded crossings, or ultra-fast electronic transitions, such as in
photochemistry,10–12 charge transfer,13–15 or vibronic relaxation
processes.16–23 Under these conditions, Born–Oppenheimer
molecular dynamics fails to capture the traveling of nuclear
wavepackets across multiple potential energy surfaces (PESs)
and is not able to describe excited-state dynamics and simulate
photophysics and photochemistry reactions.

To fully simulate those processes, non-adiabatic molecular
dynamics (NAMD) is necessary. Full quantum dynamics treats
both electronic and nuclear degrees of freedom quantum
mechanically, with the multi-congurational time-dependent
Hartree24 method being a prominent example; however, its
computational cost escalates rapidly with system size. In
contrast, mixed quantum-classical dynamics approximates
nuclear motion classically while retaining quantum-mechanical
Digital Discovery
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treatment of electrons, enabling efficient simulations of larger
systems over relevant timescales. Several schemes fall under
this category, including mean-eld approaches, ab initio
multiple spawning, and trajectory surface hopping.25–28 Among
surface hopping methods, the widely adopted fewest switches
surface hopping (FSSH)29 propagates nuclear trajectories clas-
sically on a single active PES while allowing stochastic hops
between states based on transition probabilities. These proba-
bilities are computed equally from three key quantities: non-
adiabatic coupling (NAC), which represents the interaction
between electronic states induced by nuclear motion; the
nuclear time step, which scales the probability to ensure proper
integration over the trajectory; and electronic coefficients,
which encode the quantum amplitudes and coherences among
states—though the update of these electronic coefficients itself
relies on NAC to capture non-adiabatic effects during propa-
gation. In addition to NAC, energy gaps between PESs and their
derivatives offer more accessible electronic properties for
driving state transitions, leading to efficient variants such as
Landau–Zener-Surface-Hopping (LZSH),30 Zhu–Nakamura
surface hopping (ZNSH),31–33 and curvature-driven surface
hopping (kSH).34–36 These protocols construct hopping events
without explicit computation of NAC, making them well-suited
for interfacing with electronic structure methods that may not
readily provide such quantities.37

Despite these advances, solving the multi-state electronic
structure remains a major challenge for NAMD on classical
computers. Accurate treatment of conical intersections and
strongly correlated systems oen requires full conguration
interaction (FCI), which scales exponentially with the number of
orbitals and electrons, necessitating an exponential number of
Slater determinants,38 which is intractable for classical
computers. While density functional theory (DFT) provides
a computationally efficient alternative with O(N3) or O(N4)
scaling, it faces challenges in accurately describing multi-
congurational wavefunctions and excitation energies in non-
adiabatic regimes.39,40 These challenges motivate the explora-
tion of quantum algorithms, which inherently exploit super-
position and entanglement to efficiently solve the electronic
Schrödinger equation for correlated systems, promising expo-
nential speedups for NAMD in regimes inaccessible to classical-
computing methods.41–43

Quantum algorithms for chemistry simulation are exempli-
ed by the quantum phase estimation (QPE) method in the
fault-tolerant quantum computing (FTQC) regime, which can
theoretically achieve accuracy comparable to FCI, provided
a suitable initial state is prepared (e.g., via adiabatic state
preparation).44,45 Nevertheless, current quantum devices fall
short in supporting QPE circuits of practical width, depth, qubit
delity, and gate delity, compounded by the immaturity of
quantum error correction. Near-term quantum algorithms,
represented by Variational Quantum Eigensolver (VQE), offer
a compromise by adopting a heuristic time complexity and
tolerating moderate noise levels.46,47 Grounded in the varia-
tional principle, VQE optimizes parametrized quantum circuits
to approximate molecular energy spectra and corresponding
electronic states. For larger-scale systems, the second-
Digital Discovery
quantization on which the VQE framework is based enables
the selection of chemically signicant molecular orbitals (MOs),
forming an active space that captures essential chemical prop-
erties within constrained circuit sizes.45,48 This complete active
space (CAS) method is particularly vital for extending quantum-
computing simulations to realistic molecular systems without
exceeding resources of noisy intermediate-scale quantum
(NISQ).49

Advancements in NISQ algorithms have signicantly
enhanced the computation of molecular excited states. Among
these, the variational quantum deation (VQD) method extends
the VQE by incorporating overlap penalties to enforce approxi-
mate orthogonality with previously computed states, enabling
sequential search of higher-energy eigenstates.50,51 However, its
iterative framework escalates computational demands, limits
parallelization, and propagates errors in noisy settings. In
contrast, subspace-based approaches enhance efficiency by
restricting calculations to predened excitation sectors. For
instance, the subspace-search VQE (SSVQE) simultaneously
optimizes a set of orthogonal initial states, reducing optimiza-
tion iterations compared to serial search.52 Complementing
subspace concepts with a sampling strategy, sample-based
quantum diagonalization (SQD) constructs and diagonalizes
effective Hamiltonian matrices via quantum sampling, claimed
to support large qubit systems and mitigate noise effects, yet it
relies heavily on ample sampling for achieving high preci-
sion.53,54 Building on similar foundations, Quantum Subspace
Expansion (QSE) employs explicit projections onto Fermionic
subspaces, yielding physically guaranteed variational upper
bounds for excited-state energies.55–58 Another prominent
approach, the quantum equation-of-motion (QEOM), leverages
subspace concepts while incorporating equation-of-motion
(EOM) formalisms in classical-computing quantum chemistry,
could ensure size-intensity and inherently introduce the
contribution of de-excitation.59–61 However, for QSE and QEOM,
the choice and number of operators used in subspace
construction determine the algorithm's ability to capture
physical properties62 and efficiency and robustness. The exqui-
site design of subspaces tailored to specic systems remains an
on-going topic. Furthermore, to meet the NISQ constraints,
optimization strategies at the implementation level leave
a valuable area for exploration.

In this work, we introduce a practical quantum-computing
NAMD framework, seamlessly integrated with our sub-
microhartree-accuracy calculations of PESs across diverse
chemical systems, including H3

+ and C2H4, and compatible
with parallel acceleration on both real quantum computers and
quantum algorithm simulators on classical computers. While
recent explorations62,63 have advanced quantum-computing
electronic structure solvers by comparing methods such as
QEOM, QSE, and de-excited QSE, or employing VQD for
sequential orthogonal excited-state searches, our approach
pursues a distinct goal of achieving sub-microhartree precision
through a hybrid subspace-based quantum-computing elec-
tronic structure solver that adapts operator selections to
different chemicals, enhancing accuracy via problem-adapted
subspace operator selection and integration of SSVQE for
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Work flow of on-the-fly quantum solver for electronic-structure observables, with parallelization of QSE.
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parallel optimization of multiple reference states prior to QSE
application. We also rigorously assess the numerical stability of
quantum-computed PESs and incorporate an efficient
curvature-driven correction scheme for state transitions tailored
to quantum-computing electronic structure solvers. In the
NAMD evolution, whereas prior studies focused on FSSH
requiring NAC computations, we focus on adapting LZSH for
quantum algorithms, introducing an improved LZSH scheme
that stabilizes dynamics more efficiently. These innovations,
combined with a two-level parallelization framework and task-
specic algorithmic extensions, yield substantial speedups
without compromising PES precision, collectively elevating the
robustness, efficiency, and practical viability of quantum-
enhanced LZSH-NAMD simulations for broader chemical
research (Fig. 1).

Methods
Capturing molecular properties on a quantum computer

Solving the electronic structure in active spaces. To simulate
the molecular electronic structure on a quantum computer with
exibility, we employ the second-quantized representation of
the molecular Hamiltonian within a selected complete active
space (CAS).64 In quantum chemistry, CAS classies molecular
orbitals into core (always doubly occupied), active (partially
occupied), and virtual (always unoccupied) sets, generating
a wavefunction as a conguration interaction expansion within
the active orbitals, which resolves the electron correlation
problem in strongly correlated systems such as bond dissocia-
tion or transition metal complexes.

The electronic molecular Hamiltonian in second quantiza-
tion is expressed as65

Ĥ ¼
X
pq

hpqâ
†
pâq þ

1

2

X
pqrs

gpqrsâ
†
pâ

†
qârâs; (1)
© 2026 The Author(s). Published by the Royal Society of Chemistry
where â†p and âp are the fermionic creation and annihilation
operators for orbital p, hpq are the one-electron integrals, and
gpqrs are the two-electron integrals. These integrals are obtained
using classical-computing quantum chemistry soware, typi-
cally through Hartree–Fock calculations. The indices p, q, r,
and s run over the MOs.

In the CAS framework,66 we partition the orbitals into core
(inactive), active, and virtual (inactive) sets. The core orbitals are
doubly occupied, and their contributions are incorporated into
an effective one-electron potential. The active space consists of
m orbitals and n electrons, where strong correlations are ex-
pected, such as in bond-breaking regions or excited states.
Selecting the active orbitals is crucial for accuracy and effi-
ciency. General strategies include identifying orbitals based on
chemical intuition, such as valence orbitals involved in bonding
or antibonding interactions, or using orbital energies and
occupancies from preliminary calculations. For smaller active
spaces (e.g., CAS(2,2) or CAS(4,4)), manual selection is common,
visualizing molecular orbitals from Hartree–Fock calculations
to choose frontier orbitals such as the highest occupied
molecular orbital, the lowest unoccupied molecular orbital, or
those directly participating in the chemical process of interest,
ensuring that the space captures the dominant static correla-
tion with minimal computational cost. For larger active spaces
(e.g., CAS(10,10) or beyond), automated strategies are preferred
to handle complexity, such as the ranked-orbital approach,67

entropy-based selection from uncorrelated natural orbitals
combined with the density matrix renormalization group,68 or
machine learning selection,69 which systematically expand the
space while maintaining convergence. In this work, we use
a selection strategy based on orbital energies and occupancies
from preliminary calculations, where the active space
comprises contiguous frontier orbitals around the Fermi level
to efficiently capture dominant static correlations.
Digital Discovery
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The Hamiltonian is then restricted to excitations within this
active space, yielding

ĤAS ¼
X
pq˛AS

heffpq â
†
pâq þ

1

2

X
pqrs˛AS

gpqrsâ
†
pâ

†
qârâs; (2)

where heffpq includes corrections from the inactive orbitals.
Since quantum computers operate on qubits rather than

fermions, the fermionic Hamiltonian must be mapped to
a qubit Hamiltonian to enable simulation via quantum circuits.
To achieve this, we apply the Jordan–Wigner (JW) trans-
formation.70 The JW mapping encodes fermionic operators into
an O(1) number of Pauli strings as

â†p ¼
1

2

�
Xp � iYp

�Yp�1

j¼0

Zj ; âp ¼ 1

2

�
Xp þ iYp

�Yp�1

j¼0

Zj ; (3)

where Xp, Yp, and Zp are Pauli operators acting on qubit p, and
the product of Z operators enforces Fermionic anti-
commutation relations. This transformation requires 2m qubits
for a spin–orbital basis (or m qubits with spin-symmetry adap-
tations). Substituting eqn (3) into (2) results in a qubit
Hamiltonian

Ĥqubit ¼
X
k

ckP̂k; (4)

where P̂k are Pauli strings mapped from effective one-electron
integral terms and two-electron integral terms and ck are coef-
cients obtained by summing the coefficients of the same Pauli
strings.

Variational quantum algorithms for the reference state. The
VQE is employed to approximate the ground state of the qubit
Hamiltonian. VQE leverages the variational principle, mini-
mizing the expectation value hĤqubiti over a parametrized
quantum state jj(q)iQC, prepared on a quantum circuit.71 The
ansatz state is generated by applying a unitary operator Û(q) to
an initial reference state jF0i, typically the Hartree–Fock state:71

jj(q)iQC = Û(q)jF0i. (5)

Common ansatzes include the unitary coupled-cluster (UCC)
form, such as UCCSD, which approximates the exponential
cluster operator:71

ÛðqÞ ¼ exp

 X
i

qibsi � q*i bs†i
!
; (6)

where t̂i are excitation operators mapped to qubits. The energy
expectation value is

EðqÞ ¼
D
jðqÞ��Ĥqubit

��jðqÞE
QC

¼
X
k

ck

D
P̂k

E
; (7)

and is evaluated by measuring the Pauli strings on the quantum
device. Classical-computing optimization algorithms, such as
gradient descent or BFGS, minimize E(q) to nd the optimal
parameters q*.72 Building upon the CAS and the VQE frame-
work, the derived method provides a powerful hybrid approach
for NISQ simulation. Here, VQE is applied to variationally solve
the eigenvalue problem within the active space, serving as
Digital Discovery
a quantum analogy to classical-computing CASCI.73 Classical-
computing CASCI expresses the wave function as a full linear
combination of Slater determinants in the active space and
solves the eigenstates via direct diagonalization. However, on
the classical computer, the active space dimension grows fac-
torially with the number of active orbitals and electrons,
making classical-computing CASCI intractable for large spaces.
The CAS-VQE method makes this tractable by exploiting
quantum computers' ability to encode spin orbitals,74 where the
VQE ansatz spans the Hilbert space of active orbitals and gives
compact parametrization of correlations.75 Optimization of the
CAS-VQE follows standard VQE but employs the active space-
restricted Hamiltonian, simulating only relevant electronic
degrees of freedom. This enables accurate ground-state ener-
gies in static-correlation regimes while ensuring computational
tractability.

Beyond the canonical single-reference VQE in selected active
spaces, multi-reference features can be incorporated to enhance
the ground-state search in systems exhibiting strong static
correlation. One such extension is the SSVQE, which expands
the variational search into a larger subspace spanned by
multiple orthogonal reference states52 in selected active spaces.

In SSVQE, a set of k mutually orthogonal initial reference
states {jfji}j=1

k is selected, oen including the Hartree–Fock
state and additional congurations to introduce multi-
reference features. The same parametrized unitary operator
Û(q) is applied to each reference, producing trial states jjj(q)i =
Û(q)jfji. The variational cost function is dened as a weighted
sum of the energy expectation values:

EðqÞ ¼
Xk
j¼1

wj

D
jjðqÞ

��Ĥ��jjðqÞ
E
; (8)

where the weights wj could be chosen to be positive and
decreasing (w1 > w2 > . > wk > 0) to encourage the mapping of
the trial states onto the lowest-energy eigenstates of the
Hamiltonian. Classical-computing optimization minimizes E(q)
to yield optimal parameters q*, effectively projecting the initial
subspace onto the low-lying eigensubspace. The lowest-energy
state among the optimized set, typically jj0(q*)i, serves as the
variational ground state.

Quantum subspace expansion toolbox for excited states. To
access excited states in quantum computing simulations, the
QSE method projects the Hamiltonian into a subspace spanned
by variationally prepared states and their excitations, followed
by classical-computing diagonalization of the subspace Hamil-
tonian to obtain excited states.55 This approach provides
a physically ensured way of calculating excited states with
a given reference state and avoids the limitations of methods
relying on parameter optimization.

In the Tamm-Dancoff Approximation for QSE (TDA-QSE),76

the subspace is constructed by applying low-rank excitation
operators Êm to a reference state jjkiQC, generating basis vectors;
the excitations only include single excitations â†pâq and double
excitations â†pâ

†
qârâs:

jfmi = ÊmjjkiQC. (9)
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Note that the reference state jjkiQC is prepared on a quantum
circuit by applying the optimal gate parameters (which are given
by VQE) onto the ansatz circuit (i.e. UCCSD).The projected
Hamiltonian and overlap matrices are dened as

Hmn = hfmjĤqubitjfni, Smn = hfmjfni, (10)

Hc = ESc. (11)

The Fermion operators Êm and Ên could be transformed and
decomposed into the O(1) number of Pauli operators by the
Jordan–Wigner transformation just like how ĤAS transformed
into Ĥqubit in eqn (3). Excited-state energies and eigenvectors
are obtained by solving the generalized eigenvalue problem:

The number of matrix elements scales as Oðm8Þ, where m is
the number of selected orbitals. This results in an overall
operator complexity of Oðm4Þ.

Beyond TDA-QSE, the general QSE framework supports
a versatile set of fermionic operators in second quantization,
enabling exible subspace construction for systems with
specic electron structures, such as those near conical inter-
sections or avoided crossings. Each operator has an inverse (its
Hermitian adjoint, e.g., de-excitations for excitations), which
can enhance the description of physical properties.62 Below, we
list extensible operator classes, their second quantization
forms, and their computational complexities, assuming a spin-
orbital basis withm active spatial orbitals. Summations (e.g., p >
q) ensure proper antisymmetrization, and spin-adapted forms77

are used where applicable to target singlet states (S2 = 0).
� Higher-order excitations: these extend single and double

excitations to triples, quadruples, and beyond, capturing
higher-order electron correlations critical for multi-reference
systems. For a triple excitation (from occupied orbitals i, j,
and k to virtual orbitals a, b, and c):

Êabc
ijk = aâ†aâ

†
bâ

†
câkâjâi. (12)

The inverse is Êijkabc = aâ†i â
†
j â

†
kâcâbâa. The number of triple exci-

tation operators scales as Oðm6Þ, quadruples as Oðm8Þ, and
general k-th order excitations as Oðm2kÞ, with de-excitations
sharing the same complexity. Spin-adapted forms, constructed
analogously to single and double excitations, commute with Ŝ2,
reducing the constant factor in the subspace dimension.

� Spin-ip operators: these alter spin multiplicity by ipping
electron spins while conserving orbital occupancy, useful for
describing open-shell congurations. A single spin-ip (e.g.,
a to b in orbitals p and q):cSFpb;qa ¼ â

†
pbâqa: (13)

The inverse is â†qaâpb. Double spin-ips are naturally spin-
adapted and follow similarly (e.g., â†pbâ

†
qbâsaâra). Single spin-

ips scale as Oðm2Þ and double spin-ips as Oðm4Þ. These
operators are not naturally restricted to singlet states, as they
couple different spin sectors, increasing the subspace dimen-
sion unless ltered by Ŝ2 commutation.

� Spin-mixing operators: these couple different spin sectors
without ipping spins, enabling transitions between states of
© 2026 The Author(s). Published by the Royal Society of Chemistry
differing spin multiplicities while preserving total spin projec-
tion. A representative operator:

M̂pqrs = â†paâ
†
qbâsbâra. (14)

The inverse is â†raâ
†
sbâqbâpa. These operators scale asOðm4Þ and,

like spin-ip operators, are not inherently restricted to singlets,
requiring Ŝ2 ltering to target singlet states.

� Orbital rotations: these unitary transformations mix
orbitals within the active space, optimizing orbital bases for
response properties or strong correlation. The generator is anti-
Hermitian:

bk ¼
X
p.q

kpq

�
â†paâqa � â†qaâpa þ â

†
pbâqb � â

†
qbâpb

�
: (15)

The inverse is −k̂, as (k̂)† = −k̂. Orbital rotations scale as Oðm2Þ
and are naturally spin-adapted, commuting with Ŝ2, making
them efficient for singlet subspaces.

� Non-diagonal couplings: these couple congurations
across the orbital space without strict occupancy constraints,
enhancing subspace exibility. A general non-diagonal double
coupling:

Ĉpqrs = â†pâ
†
qâsâr. (16)

The inverse is â†r â
†
sâqâp. These operators scale asOðm4Þ, and the

inverse form would be in the form of â†r â
†
sâqâp. Spin adaptation

could be achieved by symmetrically (or antisymmetrically)
combining a–b pairs, yielding operators that commute with Ŝ2

and reduce the effective dimensionality of the excitation
subspace.

� Electron–electron interaction operators: these directly
incorporate two-body interaction terms from the molecular
Hamiltonian, capturing dynamic and static electron correla-
tions. These are derived from the Hamiltonian's two-electron
integrals Vpqrs. Including these operators enhances the
subspace's ability to describe correlation effects, but requires
careful selection of signicant integrals (e.g., jVpqrsj > 3) to
manage computational cost. A representative operator is

V̂pqrs = gpqsrâ
†
pâ

†
qâsâr. (17)

The inverse is â†r â
†
sâqâp. The number of such operators scales as

Oðm4Þ, matching double excitations. Spin-adapted forms are
constructed similarly by ensuring commutation with Ŝ2.

Implementation-level adaptations and optimizations could
ameliorate the constant-factor overhead. When the number of
selected expansion operators is large, the S matrix may become
ill-conditioned.78 We could adopt regularization methods to
maintain numerical stability at the implementation level.79

Beyond its role in accessing excited states, QSE also serves as
a powerful quantum error mitigation technique by projecting
noisy or non-optimal reference states into a carefully con-
structed subspace that isolates and corrects errors inherent to
near-term quantum hardware.80–82 In this context, QSE leverages
excitation operators to expand the reference state, enabling the
identication and suppression of noise-induced artifacts
through the diagonalization of the projected Hamiltonian and
Digital Discovery
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overlap matrices, effectively restoring physical delity without
requiring full error correction protocols. This application of
QSE for error mitigation represents a distinct research branch,
complementary to its excited-state computations, with ongoing
developments focusing on adaptive operator selection and
regularization to enhance robustness against quantum errors.

Obtaining nuclear force. To simulate the time evolution of
the molecular system in the context of surface hopping
dynamics, quality nuclear forces are essential. These forces are
derived from the gradients of the PESs corresponding to
different electronic states.83,84

In our approach, the reference state jJ0i is obtained using
VQE or SSVQE. Excited states could be constructed using the
result of QSE, where the excited state wavefunctions jJki (for k
$ 1) could be written as linear combinations of the reference
state and applications of excitation operators Ei:57

jJki ¼ ck0jJ0i þ
XM
i¼1

ckiEijJ0i; (18)

where ck = (ck0,ck1,.,ckM)
T is the k-th eigenvector from the QSE

diagonalization and Ei are excitation operators. The coefficients
ck are obtained by solving the generalized eigenvalue problem in
the QSE subspace. Note that this does not mean to explicitly
prepare an excited-state wave function on a quantum computer,
but through such representation, we could nally construct
observables and estimate corresponding expectations as in
25.

Nuclear forces are the negative gradients of the electronic
energy with respect to nuclear coordinates R:

Fk(R) = −VREk(R), (19)

where Ek(R) = hJkjĤ(R)jJki is the energy of the k-th state and
Ĥ(R) is the molecular Hamiltonian.

Two primary methods exist for computing these gradients:
the nite difference method (FDM) and Hellmann–Feynman
method (HFM).

The FDM provides a numerical gradient. It could approxi-
mate the gradient via central differences85

vEk

vRa

z
EkðRþ 3eaÞ � EkðR� 3eaÞ

23
; (20)

where 3 is the displacement step size and ea is the unit vector
along coordinate a.

The HFM provides analytical gradients. The Hellmann–
Feynman theorem states that for an exact or variationally opti-
mized wavefunction jJi of a Hamiltonian Ĥ(l) depending on
a parameter l, the derivative of the energy E(l) = hJjĤjJi
(assuming normalization hJjJi = 1) with respect to l is given
by86,87

dE

dl
¼
*
J

�����vĤvl
�����J
+
: (21)

This result follows from differentiating the energy
expression:
Digital Discovery
dE

dl
¼
�
vJ

vl

��Ĥ��J�þ
*
J

�����vĤvl
�����J
+

þ
�
J
��Ĥ�� vJ

vl

�
: (22)

If jJi is a normalized eigenstate of Ĥ, the sum

hvJ
vl

��Ĥ��Ji þ hJ��Ĥ�� vJ
vl

i vanishes, as required by the eigenvalue

equation (Ĥ − E)jJi = 0 and the normalization condition
hJjJi = 1. Furthermore, upon adopting a gauge where the

global phase of jJ(l)i is chosen such that hJ
���� vJvl i ¼ 0, each

term vanishes individually. For a variationally prepared wave-
function, if it is optimal with respect to its parameters, the
response term will be zero by the variational principle, making
the theorem applicable to states given by VQE or QSE.87

In implementation, we would use the nite basis set to
construct the wave function. When using atom-centered basis
sets (e.g., Gaussian orbitals), the basis functions will depend
implicitly on nuclear positions, and since l corresponds to
nuclear coordinates Ra, the force will be −hJjvĤ/vRajJi. This
would introduce additional contributions known as Pulay terms
or Pulay forces. These arise because the derivative must account
for the basis set's coordinate dependence:88

vĤ

vRa

¼ vĤ

vRa

�����
c

þ
X
mn

vcm

vRa

ĥmn þ/; (23)

where c denotes basis functions, and the Pulay correction
includes terms from the overlap matrix derivatives and density
matrix responses. In practice, for MO-based methods, the force
operators incorporate these via the gradient of the core
Hamiltonian and electron-repulsion integrals in the MO basis,
augmented by Pulay contributions from the atomic orbital (AO)
to MO transformation.85

The derivative Hamiltonian vĤ/vRa is thus computed in the
MO basis, incorporating electron integrals transformed via the
MO coefficients from a preceding Hartree–Fock calculation.
Specically, the force operators are derived as89

F̂a ¼
X
pq

hapqa
†
paq þ

1

2

X
pqrs

vapqrsa
†
pa

†
rasaq; (24)

where hapq and napqrs are the derivative core-Hamiltonian and
electron-repulsion integrals, respectively, including Pulay terms
for basis set dependence on nuclear positions. In our imple-
mentation, we compute the energy gradients using the Hell-
mann–Feynman theorem by obtaining the derivative of one-
and two-electron integrals (including Pulay terms) on a classical
computer.

Finally, on a quantum computer, these Fermionic operators
are mapped to qubit operators using the Jordan–Wigner
transformation, and expectation values are evaluated via

hjkjFajjki ¼
X
i;j

�
cj

k
�*
$ci

k
D
jVQE

���Ê†

j AÊ i

���jVQE

E
(25)

Quantum computation for molecular Hessian. For surface
hopping dynamics, second derivatives of the energy (the
Hessian matrix) are crucial for computing vibrational
© 2026 The Author(s). Published by the Royal Society of Chemistry
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frequencies and ensuring initial conditions for the
propagation.90–92 The Hessian element for coordinates a and b is

Hab ¼ v2Ek

vRavRb

¼ vFk;b

vRa

: (26)

Direct analytical computation of the Hessian on a quantum
computer is challenging due to the need for higher-order
responses. Instead, we could compute the Hessian via nite
differences of the Hellmann–Feynman gradients:

Hab z
Fk;bðRþ 3eaÞ � Fk;bðR� 3eaÞ

23
: (27)

Here, 3 should be properly chosen to balance numerical stability
and accuracy, minimizing the deviation propagation from the
electronic structure solver while capturing curvature.

For each displacement, the molecular geometry is updated,
and a new Hartree–Fock calculation provides updated MO
coefficients. The calculation of electronic-structure observables
is then repeated to obtain the ground-state energy and gradient
at the perturbed geometry. The full Hessian is assembled as
a (3N × 3N) matrix (N: the number of atoms).
Time evolution as a surface hopping dynamics

Wigner sampling and Landau–Zener surface hopping
dynamics. To propagate the nuclear dynamics while accounting
for non-adiabatic effects, we initialize an ensemble of classical
trajectories (in the classical physics sense, they were also
computed on a classical computer) using Wigner sampling and
employ a LZSH algorithm. This combination allows for the
incorporation of initial quantum-mechanical nuclear effects
and efficient treatment of electronic state transitions without
requiring explicit computation of NAC vectors, which is partic-
ularly efficient.

Wigner sampling provides a phase-space distribution that
approximates the quantum mechanical density for the initial
vibrational state, typically the ground state at zero tempera-
ture.93 For a molecule treated as a set of harmonic oscillators
derived from the Hessian matrix, the Wigner distribution in
normal coordinates Q and conjugate momenta P is given by

rWðQ;PÞ ¼
Y3N�6

l¼1

al

pħ
exp

	
� 2

ħul

	
Pl

2

2
þ 1

2
ul

2Ql
2




; (28)

where ul is the frequency of the l-th normal mode and al =

tanh(ħul/2kBT) approaches 1 at T = 0 K (the regime considered
here).94 For the ground state, each mode's position Ql and
momentum Pl (scaled by the reduced mass) are independently
sampled from Gaussian distributions:

Ql � N

	
0;

ħ
2ul



; Pl � N

	
0;

ħul

2



: (29)

On the classical computer, these normal-mode samples are
transformed back into Cartesian coordinates and velocities
using the eigenvectors from the Hessian diagonalization,
ensuring that the initial ensemble captures zero-point energy
© 2026 The Author(s). Published by the Royal Society of Chemistry
and quantum-mechanical delocalization effects.93 The sampled
trajectories are then propagated on the adiabatic PESs
computed via VQE and QSE.72,95 Non-adiabatic transitions are
handled via the LZSH algorithm, a computationally efficient
variant of Tully's FSSH that approximates hopping probabilities
using the Landau–Zener formula without needing time-
dependent electronic coefficients or NAC.29 In LZSH, at each
time step Dt, for the current active state k and each other state l
s k, the energy gap Dkl = jEk − Elj is monitored. A hop is
considered only if the gap reaches a local minimum (i.e., Dkl(t) >
Dkl(t − Dt) and Dkl(t) < Dkl(t + Dt) in a retrospective check),
indicating passage through an avoided crossing.96 The hopping
probability from k to l is then given by the Landau–Zener
formula for the transition probability:97,98

Pk/l ¼ exp

 
� p

2ħ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dkl;min

3��€Dkl;min

��
s !

; (30)

In the implementation, if a random number x ˛ [0, 1] is less
than Pk/l, a hop occurs, and the velocity is rescaled along the
force difference direction to conserve energy; otherwise, the
trajectory continues on the current surface.99

A challenge of LZSH NAMD is its sensitivity to the choice of
the nuclear time step, and it could be less reliable for systems
involving more than two electronic states due to oversimplied
multi-state interactions. Another critical challenge in LZSH
NAMD is the presence of discontinuities in the PESs, which can
manifest as articial local minima in the energy gap when the
dynamics reach the far end of the dissociation region where
PESs are closely spaced. These artifacts, arising from numerical
instabilities in electronic structure solvers (despite high accu-
racy), lead to erroneous transition probabilities and non-
physical dynamics. Hard-coded ltering risks losing valuable
information, so, inspired by J́ıra et al.,100 we implement
a curvature-induced transition protection algorithm tailored for
quantum-computing electronic solvers. This approach
suppresses spurious transitions from PES fractures over small
displacement intervals, relying solely on energy gap informa-
tion already available in the LZSH procedure (thus requiring no
additional electronic-structure calculations) and efficiently
renes the dynamics for more physically consistent system
evolution (Fig. 2).

Specically, the algorithm computes a coefficient a that
measures the relative change in the second derivative (curva-
ture) of the energy gap Dkl between the step immediately
preceding the detected minimum and the minimum itself:

a ¼
�����€Dkl;prev � €Dkl;min

€Dkl;min

�����; (31)

where €Dkl,prev and €Dkl,min are the curvatures at those respective
steps. The purpose of a is to detect whether the minimum is
likely an unphysical artifact (e.g., from a discontinuity-induced
fracture) rather than a genuine physical feature: a large a indi-
cates an abrupt, suspicious change in the curvature. If a > cblock,
the hop is blocked as the minimum is deemed discontinuity-
induced (i.e., a trivial crossing); if calert # a # cblock, a warning
is issued (potentially agging a sharp but physical conical
Digital Discovery
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Fig. 2 Work flow of parallel LZSH dynamics (represented by eqn (30)) that co-operates with an on-the-fly quantum-computing electronic-
structure property solver.
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intersection, akin to a nontrivial crossing); otherwise, the hop
proceeds normally. The thresholds calert and cblock are empirical
values, summarized as 0.3 and 1.3.100 This safeguard promotes
smooth curvature changes to eliminate spurious crossings
arising from numerical artifacts, while preserving physically
meaningful ones, thereby improving stability without resorting
to hard-coded lters or additional quantum evaluations.

Implementations

Surface-hopping NAMD simulations require repeated execution
of electronic structure solvers. In subspace quantum electronic
structure solvers, QSE incurs a signicant cost, requiring the
estimation of Oðm8Þ matrix elements, inspired by the serial
prototype,101 noting that the computation of QSE matrix
elements in eqn (10) can be parallelized. Each expectation value
hP̂ki for Pauli strings in decomposed operators can be estimated
independently. We leverage this by performing parallel
computations across multiple processors for classical-
computing quantum algorithm simulation or real-device
quantum computing. On the theoretical level, we exploit the
Hermitian feature of QSE matrices to halve the matrix estima-
tion overhead, which is a general strategy. Another optimization
applies to systems where dynamics simulations involve only
singlet excited-state energies: by selecting operators that
commute with Ŝ2, we achieve a fourfold reduction in the oper-
ator count. Furthermore, for specic target states in particular
systems, operators with negligible contributions could also be
eliminated based on their respective physical nature, enabling
problem-specic operator savings.

The surface hopping framework requires a sufficiently large
ensemble of trajectories to mitigate statistical noise and accu-
rately capture the underlying physical behavior. Given the
resource-intensive nature of quantum algorithm simulators, we
leverage the inherent independence of trajectories within the
Digital Discovery
ensemble to enhance computational efficiency at the engi-
neering level. Each trajectory, initialized from the Wigner
distribution by calling the program immigrated from Newton-X-
2.4-B06,102 evolves autonomously under the surface hopping
dynamics, allowing for parallelization across multiple proces-
sors or computational nodes. In implementation, the initial
phase-space points Ql, and Pl are assigned to parallel workers.
Each worker propagates its assigned subset of trajectories
forward in time using the classical-computing integrator on the
active surface, interspersed with hop evaluations at each step.
The quantum computations for energies Ek and forces Fk are
invoked on-demand for each trajectory's current geometry. On
the other hand, the curvature-induced hopping correction
could maintain computational efficiency. The parameter a in
eqn (31) can be obtained using a backward difference of the
energy-gap curvatures between the current and previous time
steps, eliminating the need for additional wavefunction calcu-
lations beyond those already performed in the standard LZSH
propagation. The curvature at each time step is computed via
the central difference of the energy gaps at neighboring steps:

€Dkl;t ¼ Dtþ1 þ Dt�1 � 2Dt

ðsÞ2 (32)

where s is the time step size. Note that the energy gap at the
trial step t + 1 is already calculated in the standard LZSH algo-
rithm to locate the local minimum that triggers surface hopping
according to eqn (30). By estimating a using a backward
difference of curvatures (relying only on information up to step t
+ 1), we avoid any additional propagation to a hypothetical t + 2
step that would otherwise be required for a forward or central
difference.

The simulator programs for subspace quantum algorithms
are implemented using MindSpore Quantum 0.11.0,103 Quri-
© 2026 The Author(s). Published by the Royal Society of Chemistry
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parts 0.19.0,104 and Qulacs 0.5.6.105 To construct our hybrid
quantum-classical (both in the physical sense and computa-
tional sense) program, we referred to a canonical implementa-
tion of the classical AIMD framework in MLatom 3.10 (ref.
106–109) as an initial baseline.

We use PySCF 2.8.0 (ref. 110) to perform the classical-
computing reference calculation at the same level correspond-
ing to the quantum-computing solver as the exact solution. All
electronic-structure property calculations employ the STO-3G
basis set. We pick the UCCSD ansatz111 for the C2H4 use case
and k-UpUCCGSD ansatz112 for the H3

+ use case respectively. For
the VQE parameter optimizer, we use LBFGS.113,114 In the LZSH
program, we pick the time step to be 0.2 fs. On the Wigner
sampling for the initial condition preparation, we assume
a simple 0 K temperature and d impulse for excitation, without
the ltering using the excitation window. During the NAMD
propagation, velocities are rescaled uniformly along their
current direction upon a successful hop to compensate for the
energy difference between the target and initial electronic
states, with the kinetic energy adjusted by the negative of this
gap to maintain total energy conservation. A frustrated hop will
leave the trajectory at the current electronic state. At the step of
curvature-induced hopping correction, given that the instability
only occurs at the nal stage of dissociation where PESs are very
close (see 5d), we set calert = 0.3 and cblock = 0.9.
Results

In the rst subsection, we focus on the 3-orbital-2-electron
(CAS(3,2)) space with the charged H3

+ ion. For this system, we
compare PESs along dissociation geometries using the TDA-QSE
(as introduced in eqn (9), we denote as “QSE” in the following
discussions for simplicity) and operator extended QSE methods
(e.g. for electron–electron interaction in eqn (17) or other
Fig. 3 PES result along demonstrative disassociation geometries of H3
+

denote the singlet-adapted QSE results, and green markers denote the
interaction operators that preserve singlet spin multiplicity, as introduced
0.05 Å between adjacent points. (b) PES results around the intersection

© 2026 The Author(s). Published by the Royal Society of Chemistry
operators introduced, we denote as “QSE*“), highlighting the
systematic accuracy improvement of the QSE* approach. We
then evaluate two gradient computation methods (FDM and
HFM) under QSE and QSE*, including a comparison of different
FDM step lengths. Additionally, we present LZSH-NAMD simu-
lation results using QSE and QSE* as electronic structure solvers,
augmented with the curvature-induced hopping correction.

In the second subsection, we would demonstrate adapt-
ability by focusing on a larger molecule C2H4. Using hybrid
subspace quantum-computing electronic structure solvers, we
capture key chemical properties within a selected 2-orbital-2-
electron active space (CAS(2,2)): the conical intersection
during the ‘pyramidalization’ process of C2H4. We validate
high-accuracy quantum-computed PESs along the model path
on the quantum simulator, followed by nuclear forces
computed via the FDM. Finally, we validate our method along
a NAMD trajectory.

We compute all the PESs and forces of both H3
+ and C2H4

without the geometric symmetry assumption, which validates
the practicality of the electronic structure solvers in NAMD. We
selected small basis sets and active spaces to balance compu-
tational resources, which necessitate numerous repeated
quantum algorithm executions on classical-computing simula-
tors. A larger basis set or active spaces would increase qubit
requirements, substantially prolonging VQE and QSE times,
escalating overall computation demands despite our parallel
optimizations. We opt Hartree as the energy unit which is
related to the electronvolt (eV) by the conversion factor of 1
hartree z 27.211 eV.

In the remaining subsections, to further evaluate the near-
term practical potential, we calculated these observables with
a noisy quantum algorithm simulator on a classical computer.
As a complement to the long-term potential, we validated some
PES calculations for triplet states of H3

+ and CH2O,
in CAS(3,2). Gray lines represent the reference results, purple markers
singlet-adapted QSE* results (augmented with the electron–electron
in eqn (17)). (a) PES results compare two methods, with an interval of

region comparing two methods, with an interval of 0.0005 Å.
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Table 1 Comparison of PES errors with different interval lengths of different solvers for H3
+ in CAS(3,2)

DE (Hartree) VQE S0 QSE* S1 QSE* S2 QSE S1 QSE S2

0.05 Å interval
RMSE 9.59 × 10−14 2.02 × 10−13 1.49 × 10−14 9.23 × 10−3 5.40 × 10−3

Max error 4.49 × 10−13 1.34 × 10−12 8.56 × 10−14 4.88 × 10−2 3.14 × 10−2

MAE 3.87 × 10−14 6.62 × 10−14 5.73 × 10−15 3.35 × 10−3 2.02 × 10−3

0.0005 Å interval
RMSE 6.97 × 10−14 1.48 × 10−14 1.50 × 10−14 1.20 × 10−3 4.37 × 10−3

Max error 1.39 × 10−13 3.31 × 10−14 4.56 × 10−14 2.65 × 10−3 6.77 × 10−3

MAE 5.12 × 10−14 8.87 × 10−15 6.29 × 10−15 7.22 × 10−4 3.49 × 10−3
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preliminarily exploring quantum simulations of open-shell
systems. Finally, we validate the speedup of our two-level
parallelization framework by comparing it to the serial versions.
Use case I: H3
+ results in CAS(3,2)

The PESs for the H3
+ cation in its CAS(3,2) space were computed

along a dissociation coordinate, where one hydrogen atom is
displaced from the equilateral triangular equilibrium geometry.
This path encompasses regions of conical intersection between
the S1 and S2 excited states near rz 0.85 Å. The singlet adapted
VQE (single reference version, as introduced in eqn (7), with the
Fig. 4 HFM force results and FDM force results with different step le
comparison between QSE and QSE* of different FDM step lengths.

Digital Discovery
k-UpUCCGSD ansatz) was employed for the S0 state, while the
singlet adaptation, in both QSE and QSE* variants, was utilized
for the S1 and S2 states. The QSE* approach, incorporating
additional electron–electron interaction operators, thus
provides a more accurate description of electron correlation
energy for the ion system.

Fig. 3(a) illustrates the PESs over an extended dissociation
range (0–3 Å) with an interval of 0.05 Å between adjacent points,
comparing the computed energies against exact FCI references
(note that for H3

+, CAS(3,2) already takes all the electrons and
orbitals, so here in this case, UCCSD equals FCI). The VQE S0
ngths. (a) QSE*-HFM force of each excited state. (b)–(d) FDM force

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Comparison of y-axis force error for HFMs in different states (S0, S1, and S2) for the middle H atom of H3
+

DF (Ha Å−1) VQE-HFM S0 QSE-HFM S1 QSE*-HFM S1 QSE-HFM S2 QSE*-HFM S2

RMSE 9.53 × 10−8 1.96 × 10−2 2.00 × 10−10 6.59 × 10−3 0.00
Max error 9.60 × 10−7 7.97 × 10−2 2.10 × 10−9 3.80 × 10−2 0.00
MAE 2.37 × 10−8 1.05 × 10−2 0.00 1.94 × 10−3 0.00
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curve closely tracks the exact ground-state PES, exhibiting
a deep potential well at equilibrium bond length, followed by
a smooth rise to the dissociation limit. For the excited states,
the QSE method yields noticeable deviations, which fail to
accurately capture the critical behavior, resulting in oscillations
and energy offsets. In contrast, the QSE* method demonstrates
good delity, with both S1 and S2 curves overlaying the exact
references across the entire coordinate, including the at
dissociation plateau beyond r z 2.0 Å.

A magnied view around the conical intersection region
(0.852–0.86 Å) is provided in Fig. 3(b), highlighting the PES
accuracy even with an interval of 0.0005 Å between adjacent
points. The QSE* results reproduce the conical intersection
with high precision, whereas the QSE introduces erratic uc-
tuations indicative of subspace incompleteness due to inade-
quate selection of operators.

Quantitative energy errors, summarized in Table 1, further
underscore these observations. For the PES with an interval of
0.5 Å, VQE achieves root-mean-square error (RMSE) and mean
absolute error (MAE) values on the order of 10−14 hartree,
affirming its robustness for ground-state simulations. The
extended method attains comparable sub-microhartree accu-
racy for S1 (RMSE = 2.02 × 10−13 hartree) and S2 (RMSE = 1.49
× 10−14 hartree), with maximum errors below 10−11 hartree-
orders of magnitude better than the QSE, which incurs
RMSEs of 9.23 × 10−3 hartree and 5.40 × 10−3 hartree for S1
and S2, respectively. Similar trends persist in the regime with an
interval of 0.0005 Å, where QSE* errors remain at the 10−14

hartree level, while QSE errors escalate to the millihartree scale
(e.g., RMSE = 4.37 × 10−3 hartree for S2), reecting its numer-
ical instability near the intersection.
Table 3 Comparison of y-axis force error on the middle H atom of H3
+

DF (Ha Å−1) VQE-FDM S0 QSE-FDM S1

d = 0.001
RMSE 1.23 × 10−6 4.74
Max error 9.32 × 10−6 2.56 × 101

MAE 3.62 × 10−7 1.47

d = 0.010
RMSE 1.23 × 10−4 6.09 × 10−1

Max error 9.33 × 10−4 2.55
MAE 3.62 × 10−5 2.64 × 10−1

d = 0.100
RMSE 1.27 × 10−2 2.41 × 10−1

Max error 9.73 × 10−2 1.31
MAE 3.66 × 10−3 9.40 × 10−2

© 2026 The Author(s). Published by the Royal Society of Chemistry
The results presented in Fig. 4, Tables 2 and 3 provide
evaluations of the accuracy and robustness of the quantum-
computing electronic structure solver for computing nuclear
forces. Specically, we compare the HFM (as in eqn (21)) and
FDM (as in eqn (20)) applied within VQE and QSE frameworks,
including a QSE* variant. These approaches are assessed
against exact analytical forces of reference. Since the calculation
of H3

+ is naturally located on a plane, here on the model
trajectory (freezing the positions of the rst and third hydrogen
atoms), we dene the le and right hydrogen atoms as being on
the x-axis, and the middle hydrogen atom as starting from the
midpoint and moving to one side along the y-axis. We focus on
the y-component of the force on the central hydrogen atom as
a function of separation distance r.

The HFM results, as illustrated in the noiseless simulations
shown in Fig. 4(a), demonstrate that the QSE*-HFM approach
yields forces that closely track the exact curve across all exam-
ined states (S0, S1, and S2), with minimal deviations even in
regions of steep potential gradients or of conical intersection.
Quantitative errors of forces in Table 2 underscore this delity:
for the QSE*-HFM method, RMSEs are on the order of 10−10 Ha
Å−1 or lower for S1 and S2, with max error not exceeding 2.1 ×

10−9 Ha Å−1 and MAE effectively zero within numerical preci-
sion. In contrast, QSE-HFM exhibits signicantly higher errors
for excited states, with RMSE values of 1.96× 10−2 Ha Å−1 for S1
and 6.59× 10−3 Ha Å−1 for S2, reecting challenges in capturing
subspace instabilities. For the ground state (S0), VQE-HFM
achieves sub-microhartree accuracy (max error 9.60 × 10−7 Ha
Å−1). These ndings highlight the applicability of the QSE*,
which incorporates additional operators to replenish the
with different FDMs and step lengths

QSE*-FDM S1 QSE-FDM S2 QSE*-FDM S2

4.28 × 10−6 2.81 × 10−1 4.32 × 10−6

3.44 × 10−5 1.78 3.51 × 10−5

1.13 × 10−6 8.90 × 10−2 1.24 × 10−6

4.27 × 10−4 2.37 × 10−1 4.31 × 10−4

3.41 × 10−3 1.36 3.47 × 10−3

1.13 × 10−4 8.04 × 10−2 1.24 × 10−4

3.15 × 10−2 2.32 × 10−1 3.21 × 10−2

2.02 × 10−1 1.37 2.13 × 10−1

9.95 × 10−3 8.15 × 10−2 1.11 × 10−2

Digital Discovery

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00433k


Fig. 5 50-trajectory NAMD population evolution of H3
+ with different electronic structure solvers and hopping rules. The initial state at S2. (a)

Exact FCI as the electronic structure solver, without curvature-induced hopping correction. (b) VQE-QSE, without curvature-induced hopping
correction. (c) VQE-QSE*, without curvature-induced hopping correction. (d) VQE-QSE*, with curvature-induced hopping correction applied.
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subspace, thereby enabling the HFM to deliver accurate forces
for multi-state dynamics without empirical corrections.

Turning to the FDM in Fig. 4(b)–(d), the force proles reveal
a strong dependence on the nite-difference step size d. For
small d (e.g., 0.001 Å), both QSE-FDM and QSE*-FDM approxi-
mate the exact forces well. Table 3 quanties this trend: at d =

0.001 Å, RMSE for VQE-FDM S0 is 1.23 × 10−6 Ha Å−1, while
QSE-FDM S1 balloons to 4.74 Ha Å−1, indicative of amplied
errors. Increasing d to 0.01 Å and 0.1 Å systematically degrades
accuracy across all methods, with RMSE rising by 2 orders of
magnitude. Notably, QSE* consistently outperforms QSE in
FDM contexts, suggesting that the extended subspace better
stabilizes nite differences.

Fig. 5 demonstrates the population evolution during the
NAMD simulations of the H3

+ dissociation process, comparing
the performance of the reference classical-computing exact
solver with that of quantum computing approaches, including
the VQE, QSE and QSE*methods. Fig. 5(a) and (b) illustrates the
state populations as a function of time for the reference FCI
(le, on the classical computer) and VQE-QSE (right, simulated
on the classical computer via a quantum algorithm simulator)
methods. In the FCI-driven simulation, which serves as a refer-
ence, the state S1 (blue) depopulates gradually over the initial 4
Digital Discovery
fs, transferring population primarily to S1 (orange), which peaks
around 5 fs before decaying. Aer 5 fs, S0 (blue) receives
a smaller but steady population increase. This behavior is
indicative of efficient non-adiabatic transfer driven by conical
intersections in the H3

+ PESs, which are well-known to facilitate
ultra-fast relaxation in this system.115 In contrast, the VQE-QSE
based simulation exhibits more oscillatory population trans-
fers, with S1 showing pronounced uctuations between 2 and 6
fs and S2 displaying erratic rises and falls, indicative of PES
fractures and instability.

The population evolution by the VQE-QSE* with canonical
LZSH (Fig. 5(c)) and VQE-QSE* with curvature-induce-corrected
LZSH (Fig. 5(d)) is presented. Fig. 5(c) exhibits a smooth tran-
sition but instantly turns to oscillations aer 6 fs, suggesting
sudden emergence of hopping events at the late stage of
dissociation, which we ascribe to the discontinuity of PESs with
a small displacement interval at the far dissociation plateau,
where PESs tend to be close and parallel. In Fig. 5(d), the
application of the curvature-driven hopping correction tech-
nique (as introduced in eqn (31)) signicantly stabilizes the
dynamics and makes populations evolve more smoothly,
without losing the essential physical picture of the evolution,
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (a) PESs at the end of the dissociation and their instability, taking the view that the displacement interval of geometry is small. (b) Geometry
trajectories of the ensemble during the NAMD simulation.
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with S2 smoothly depopulating and S1 & S0 stabilizing, closely
mimicking the reference population behavior.

In addition, the sharp oscillations observed in Fig. 5(b) and
(c) arise not only from the numerical instability of the quantum-
computing PES solver but also from an insufficient number of
trajectories. In surface-hopping NAMD simulations, a suffi-
ciently large number of trajectories is essential for mitigating
statistical noise and achieving reliable ensemble averaging.
However, emulating quantum algorithms on classical
computers is computationally demanding; thus, to accommo-
date limited resources, all simulations presented in Fig. 5
employ only 50 trajectories. The erratic uctuations in panel (b)
persist throughout the dynamics, highlighting the inherent
instability of the VQE-QSE solver and the inadequacy of the
trajectory count. Panel (c), which employs the improved VQE-
QSE* method without curvature-induced hopping correction,
Fig. 7 PES results along demonstrative pyramidalization geometries o
markers denote those obtained via quantum electronic structure solvers
SSVQE[0]-QSE indicates the singlet-adapted QSE based on the reference
only single–double excitation operators used to expand subspaces. SSVQ
de-excitation operators, expanding subspaces upon the reference state s
data points’ rotation angle interval of 0.3°, also demonstrating comparison
method.

© 2026 The Author(s). Published by the Royal Society of Chemistry
exhibits smooth initial behavior but deviates from the exact
reference. A similar trend is observed in panel (d) upon appli-
cation of the curvature correction, where the population
evolution does not precisely match the reference. These arti-
facts primarily originate from the insufficient number of
trajectories in the LZSH ensemble.

To quantify the accuracy of the quantum electronic structure
solver and to reveal the underlying cause of the late-6 fs oscil-
lation, Fig. 6(a) compares the PESs at late dissociation times
from 4 fs onward, where the surfaces S0, S1, and S2 of both
reference and VQE-QSE* converge smoothly and closely. Dotted
lines depict the absolute energy errors relative to the exact
solution, revealing that VQE-QSE* errors remain below 10−7

hartree but spike intermittently. Note that the initial guess
heritage of VQE during the PES calculation could not fully
smoothen such microscopic spikes. These artifacts, though
f C2H4 in CAS(2,2). Gray lines represent the reference results, while
. (a) PES result with a 3°'s rotation angle interval between data points.
state given by SSVQE with the UCCSD ansatz in the active space, with
E[0]-QSE* indicates the singlet-adapted QSE* with single and double

earched by SSVQE. (b) PESs around the conical intersection region with
between SSVQE-QSE(QSE*) integratedmethods and the SSVQE-solo
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Table 4 Comparison of macroscopic and microscopic C2H4 PES errors for different solvers

DE (Hartree) SSVQE[0] SSVQE[0]-QSE SSVQE[0]-QSE* SSVQE[1]

3-Degree interval angle
RMSE 1.033 × 10−13 7.666 × 10−14 7.415 × 10−13 —
Max error 2.416 × 10−13 1.847 × 10−13 9.948 × 10−13 —
MAE 8.266 × 10−14 5.921 × 10−14 7.375 × 10−13 —

0.3-Degree interval angle
RMSE 1.033 × 10−13 7.666 × 10−14 7.415 × 10−13 8.67 × 10−3

Max error 2.416 × 10−13 1.847 × 10−13 9.948 × 10−13 9.03 × 10−3

MAE 8.266 × 10−14 5.921 × 10−14 7.375 × 10−13 8.60 × 10−3

Fig. 8 Electronic-structure property results necessary for NAMD. (a) x-axis force results along demonstrative pyramidalization geometries of the
first carbon atom of C2H4 in CAS(2,2). Gray lines represent the reference results, while markers of different colors denote those obtained via
SSVQE-QSE with different FDM step lengths. (b) PES result by SSVQE-QSE* along a reference LZSH-NAMD trajectory, 30 fs, 75 steps.

Table 5 Comparison of force errors on the first carbon atom of C2H4

with different FDM steps

DF (Hartree Angstrom−1) S S
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small, can induce unphysical hops in regions of near-
degeneracy.

The geometric trajectories of the molecular ensemble, visu-
alized in Fig. 6(b), demonstrate the realistic dissociation
trajectories in the x–y plane, given by the hopping corrected
LZSH-NAMD with the VQE-QSE* solver. The trajectories fan out
symmetrically from the central equilibrium geometry, with
clusters branching toward positive and negative y-directions.
The multi-colored lines indicate temporal evolution, with
earlier times near the origin and later dispersion. Atoms in the
same trajectory share the same color, whose initial positions
and momentum are determined by Wigner sampling.
0 1

d = 0.001hartree
RMSE 3.740 × 10−7 2.187 × 10−7

Max error 6.312 × 10−7 4.209 × 10−7

Mean absolute error 3.238 × 10−7 1.946 × 10−7

d = 0.010hartree
RMSE 3.29165 × 10−5 1.78885 × 10−5

Max error 5.12144 × 10−5 2.91406 × 10−5

Mean absolute error 2.94293 × 10−5 1.48558 × 10−5

d = 0.100hartree
RMSE 3.2648329 × 10−3 1.7893454 × 10−3

Max error 5.0488511 × 10−3 2.9237422 × 10−3

Mean absolute error 2.9277802 × 10−3 1.4836350 × 10−3
Use case II: C2H4 results in CAS(2,2)

To assess the adaptability of the subspace-based quantum
electronic structure solvers in capturing the PESs, we examine
the pyramidalization pathway of C2H4 within the complete
active space (CAS(2,2)) framework, which encompasses the p

and p* orbitals. Fig. 7(a) illustrates the PES with a large
displacement interval along the pyramidalization angle f,
comparing the exact diagonalization results (gray lines) with
SSVQE[0]-QSE and SSVQE[0]-QSE*.

Quantitative energy errors for these solvers are summarized
in Table 4. Among PESs with an interval degree of 3 and 0.3
Digital Discovery
between data points, all the hybrid subspace-based solvers
reached sub-microhartree accuracy. Compared to the CAS(3,2)
ionic system examined in the preceding section, the current
system features a smaller active space, enabling QSE to exhibit
high accuracy in the exemplied regime as well. This under-
scores the utility of QSE in certain scenarios. However, the QSE*
demonstrates slightly lower delity because expanding
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 6 Comparison of PES errors for C2H4 along the NAMD
trajectory

DE (Hartree) S0 S1

RMSE 1.57 × 10−13 2.5747180 × 10−8

Max error 7.53 × 10−13 1.06571761 × 10−7

Mean absolute error 1.12 × 10−13 1.1482544 × 10−8

Table 7 Comparison of noisy PES errors of H3
+

DE (Hartree) S0 S1 S2

RMSE 3.556 × 10−2 2.240 × 10−2 1.409 × 10−2

Max error 7.966 × 10−2 5.650 × 10−2 3.961 × 10−2

MAE 3.092 × 10−2 1.917 × 10−2 9.822 × 10−3

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 5

:1
0:

02
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
subspaces with extra operators would introduce more linear
independence, which leads to a larger condition number of
overlapping matrix S, affecting numerical stability.

Here, we present the results prior to energy ordering of the
states. Unlike the conventional scenario, where VQE is used to
search the ground state followed by QSE to obtain excited states,
here, SSVQE (as introduced in eqn (8)) yields the higher-
energy V state116 in the region before the conical intersection. In
contrast, QSE, by expanding the subspace, expands the lower-
energy N state in this region. Furthermore, SSVQE demonstrates
robust state-tracking capabilities. Aer the conical intersection,
SSVQE continues to track the V state (which now becomes the
Fig. 9 Noisy PES and force results of C2H4 in CAS(2,2) and H3
+ in CAS(3,2

obtained via a noisy quantum algorithm simulator on a classical compute
step lengths of C2H4. (c) Noisy PES result of H3

+. (d) Noisy FDM and HFM
noise with a probability of 0.01 for the double-qubit gate and 0.001 for

© 2026 The Author(s). Published by the Royal Society of Chemistry
ground state), while QSE, leveraging the reference state from
this region, accurately extends to the higher-energy excited
state.

A more detailed examination of the region of PESs with an
interval of 0.3° around the conical intersection is provided in
Fig. 7(b), where we compare the energy of the N-state and V-state
directly from SSVQE. The hybrid subspace-based solvers main-
tain high delity to the exact curves, with correct transitions
through the conical intersection region. In contrast, the SSVQE-
solo results deviate noticeably. This behavior indicates that
where the weighted sum of energies from orthogonal references
(eqn (8)) is insufficient to resolve all subspaces without addi-
tional constraints, it requires a more advanced SSVQE extension
or other methods.
). Gray lines represent the reference results, while markers denote those
r. (a) Noisy PES result of C2H4. (b) Noisy FDM force result with different
force results with different step lengths of H3

+. We add depolarization
the single-qubit gate.
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Fig. 10 Triplet PES results by QSE. (a) CAS(3,2) T1 and T2 of H3
+ and (b) CAS(3,2) T1 of CH2O.
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The force calculations along the pyramidalization coordinate
of the rst carbon atom in C2H4 within the CAS(2,2) active space
reveal the efficacy of the FDM integrated with quantum elec-
tronic structure solvers for excited-state properties. As illus-
trated in Fig. 8 and Table 5 taking the x-axis for demonstration,
the reference exact forces (gray lines) are closely reproduced by
both the hybrid subspace-based solvers, with deviations
becoming more pronounced at larger FDM step lengths (d). For
d = 0.001, the computed forces overlay nearly identically with
the exact prole across the full range of dihedral angles,
capturing changes around the conical intersection. In contrast,
larger steps (d = 0.01 and 0.1) introduce systematic errors,
manifesting as offsets.

Complementing the static analysis, Fig. 8(b) and Table 6
present the SSVQE-QSE* PESs along the geometry of a LZSH-
NAMD reference trajectory, capturing the temporal evolution of
S0 and S1 energies in 30 fs. However, along this realistic trajec-
tory, QSE fails largely at many geometries; thus only QSE* results
are presented. The SSVQE-QSE* energies for S0 and S1 faithfully
reproduce the result using the exact reference electronic solver.
Table 8 Comparison of QSE T1 and T2 DE errors (Hartree) for H3
+ and

CH2O

DE (Hartree) T1 average T2 average T1 middle T2 middle

H3
+

RMSE 1.14 × 10−3 1.83 × 10−4 0.0 0.0
Max error 5.65 × 10−3 9.99 × 10−4 0.0 0.0
MAE 4.19 × 10−4 3.75 × 10−5 0.0 0.0

CH2O
RMSE 6.80 × 10−8 — 0.0 —
Max error 3.40 × 10−7 — 0.0 —
MAE 1.36 × 10−8 — 0.0 —
Noisy results

In Fig. 9 and Table 7 we demonstrate the PES and nuclear forces
of two chemical systems C2H4 and H3

+, under noisy quantum
simulation conditions. For C2H4, in the range before the conical
intersection, the noisy QSE fails to expand the N-state based on
the V-state searched by noisy SSVQE. This revealed that
quantum noise signicantly impacts the cooperation of the
hybrid subspace-based quantum solver, preventing it from
reaching the target states.

In contrast, the H3
+ system exhibits a smoother response to

noise, manifesting as a consistent offset in the PES and nuclear
forces. Notably, QSE calculations based on noisy ground states
yielded excited-state deviations smaller than those of the cor-
responding noisy ground states. This behavior is attributed to
the error mitigation capabilities inherent in the QSE framework
(as introduced in the previous section), showing its robustness
in noisy environments.
Digital Discovery
Triplet results

To further explore the utility of the subspace quantum-
computing electronic structure solver, we evaluated its perfor-
mance in computing triplet state energies, as shown in Fig. 10
and Table 8. For CH2O, the CAS(3,2) active space consisted of
the three Hartree–Fock canonical orbitals straddling the Fermi
level. Here, the QSE consistently yields three degenerate or near-
degenerate energy values for triplet states. We explored two
strategies for processing these values: averaging the three
energies or selecting the median value, with the latter oen
proving more accurate. These ndings demonstrate QSE's
potential for investigating more sophisticated excited-state
dynamics in future studies.
Computational resource analysis

To quantify the impact of our parallelization strategies on
computational efficiency, we present benchmark results from
executing the QSE algorithm via a quantum algorithm simu-
lator on a classical computer, focusing on wall-clock times for
key components of the excited-state dynamics simulation.
Fig. 11(a) illustrates the CPU times required for ground-state
energy evaluations using VQE with UCCSD (1a: 4.86 s) and its
noisy variant (1b: 72.42 s), excited-state subspace diagonaliza-
tions via various QSE implementations (2a–2g), and force
computations employing FDM or HFM approaches (3a–3d).
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 CPU time comparison and estimation of the simulation. Except for 2e cases in plot (a), all the QSE implementations are tested on
CAS(3,2). (a) CPU time of different QSE implementations on calculating energies and forces. (b) Legend for plot (a). (c) CPU time estimation for
classical-computing simulation of different quantum-computing LZSH parallel strategies.
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Notably, the parallelized QSE implementations demonstrate
substantial speedups over their serial counterparts. For the
spin-adapted singlet variant, the parallel QSE (2a: 8.93 s) ach-
ieves approximately a 12-fold reduction compared to the serial
QSE (2c: 104.91 s), attributable to the concurrent evaluation of
expectation values for the independent Pauli strings in the H
and S matrices (eqn. (10)). Similarly, for the triplet QSE, para-
llelization (2b: 84.35 s) yields a comparable 12× speedup rela-
tive to the serial case (2d: 990.99 s). The CAS(4,2) (4o2e) QSE-
triplet (2e: 1617.02 s), which incorporates excitation operators,
incurs additional overhead due to the increased subspace
dimension, highlighting the trade-off between accuracy and
efficiency in a larger subspace. Under noisy conditions,
emulating realistic quantum hardware errors, the parallel
singlet QSE (2f: 131.35 s) remains efficient. For QSE*, since we
have expanded more operators and conducted parallel
© 2026 The Author(s). Published by the Royal Society of Chemistry
estimation on these operators, the acceleration effect will be
more signicant if there is sufficient hardware.

At the force computation level, the HFM approach (3b: 6.09
s) outperforms the FDM (3a: 248.90 s) by 41× in the noiseless
regime, reecting the lower measurement demands of direct
derivative evaluations compared to the FDM. Noise channel
simulation amplies this disparity, with the noisy FDM (3c:
2553.15 s) being 21× slower than the noisy HFM (3d: 119.31 s).

Extending to full trajectory propagation, Fig. 11(c) depicts
the cumulative computation time as a function of time steps for
a representative non-adiabatic dynamics simulation under
LZSH, comparing noiseless and noisy scenarios with parallel
versus serial QSE integrated into VQE for ground-state prepa-
ration, alongside HFM or FDM for forces. The parallel QSE
congurations consistently exhibit shallower slopes, indicating
reduced per-step overhead. For instance, the noiseless VQE with
Digital Discovery
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parallel-QSE and HFM (blue line) accumulates 105 s by 10 000
steps, whereas the serial-QSE equivalent (green line)
approaches 106 s, a 10× difference arising from the distributed
measurement strategy. This gap widens in noisy emulations,
where parallel-QSE with the FDM (purple line) remains below
107 s, while serial-QSE with the FDM (magenta line) exceeds it,
emphasizing the robustness of parallelization to noise channel
computation. The HFM variants are generally preferred over
their FDM counterparts within each category, aligning with the
single-point benchmarks, though the asymptotic scaling
remains dominated by the QSE matrix construction.

Beyond the per-trajectory level, our trajectory-level para-
llelization exploits the parallel nature of the ensemble, distrib-
uting independent Wigner-sampled trajectories across
computational nodes. While not explicitly benchmarked here
due to hardware constraints, scaling analyses suggest near-
linear speedups with the number of processors, limited only
by load balancing in asynchronous hop events. Collectively,
these optimizations reduce overall simulation wall times by 1–2
orders of magnitude for typical photochemistry applications
with 10–100 trajectories and active spaces of 4–8 orbitals, paving
the way for efficient quantum-classical hybrid simulations.

While our benchmarks focus on validating the efficiency
gains from parallelization (via classical-computing emulations
of quantum algorithms), it is important to contextualize these
results against traditional classical computational chemistry
soware. At present, simulations of quantum algorithms on
a classical computer are substantially slower than well-
optimized classical programs (e.g., those implemented in C++/
Fortran with extensive algorithmic renements), stemming
from the emulation's need to mimic quantum operations
through matrix-vector computations (or matrix–matrix compu-
tation for a noisy quantum circuit) with limited optimizations to
preserve universality. Moreover, current quantum hardware
lacks the necessary delity for high-precision electronic struc-
ture calculations, precluding direct comparisons of real
quantum runtimes.

In terms of user experience, classical soware programs (e.g.
Pyscf,110 Molpro,117 Psi4,118 etc.) offer seamless access to a broad
array of properties beyond energies, such as spin expectation
values (S2) and conguration interaction coefficients facilitated
by storing the full wavefunction in classical memory for efficient
post-processing. Quantum approaches, by contrast, require
explicit measurements for each desired observable—e.g., addi-
tional shots for S2 via spin operators—and accessing congu-
ration interaction coefficients demands quantum state
tomography to retrieve all 2n amplitudes (n being the number of
spin orbitals), which is exponentially challenging and resource-
intensive. Thus, while quantum methods hold promise for
scaling to larger systems, classical quantum chemistry soware
currently provides a more convenient and comprehensive
workow.

Conclusion

In this work, we have developed an efficient quantum compu-
tational framework for NAMD, in which parallelization is
Digital Discovery
supported for both high-precision PES calculation and
quantum-algorithm adapted LZSH trajectory simulation. Our
approach integrates the CAS framework with VQE and its
subspace variant SSVQE, to adaptably prepare reference states.
Additionally, we incorporate QSE and its extended variant QSE*
for accurate excited-state calculations. Beyond energy spectrum
computation, our method enables the calculation of nuclear
forces by interfacing quantum-computing PES solvers with the
HFM and FDM. Another advancement is the seamless integra-
tion of quantum algorithms with the LZSH framework,
augmented by curvature-induced hopping corrections to miti-
gate PES uctuations at dissociation limits.

Numerical benchmarks on H3
+, C2H4, and CH2O demon-

strate sub-microhartree accuracy on PESs by our hybrid
subspace quantum-computing electronic structure solvers. By
validating the problem-tailored QSE operator extension, we
enhance the adaptability of our approach across those diverse
chemical systems. The incorporation of quantum-computing
electronic structure solvers and curvature-driven hopping
correction in LZSH signicantly improves the robustness of
NAMD simulations while preserving efficiency, as evidenced by
comparisons with exact reference results. Furthermore,
computational resource analysis shows that our two-level
parallelization framework delivers substantial computational
speedups, fully transferable to a real quantum computer,
without compromising precision.

This work advances quantum computational NAMD by
addressing critical bottlenecks in efficiency and robustness at
both the trajectory level and electronic structure levels, while
enhancing the adaptability and precision of PES calculation.
These advancements pave the way for exploring non-adiabatic
effects in polyatomic molecules beyond classical computa-
tional limits while facilitating the practical utility of quantum
computing. However, challenges persist, including the system-
atic handling of S matrix ill-conditioning in QSE, ansatz
expressivity in VQE, and integration with advanced infrastruc-
tures to handle quantum noise. Future efforts will focus on
integrating orbital optimization techniques, such as the
complete active space self-consistent eld (CASSCF) method,
developing systematic QSE extension strategies, and exploring
the embedding of quantum computing in other NAMD
frameworks.
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