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Machine learning (ML) is increasingly central to chemical discovery, yet most efforts remain confined to

distributed and isolated research groups, limiting external validation and community engagement. Here,

we introduce a generalizable mode of scientific outreach that couples a published study to

a community-engaged test set, enabling post-publication evaluation by the broader ML community. This

approach is demonstrated using a prior study on AI-guided discovery of photostable light-harvesting

small molecules. After publishing an experimental dataset and in-house ML models, we leveraged

automated block chemistry to synthesize nine additional light-harvesting molecules to serve as a blinded

community test set. We then hosted an open Kaggle competition where we challenged the world

community to outperform our best in-house predictive photostability model. In only one month, this

competition received >700 submissions, including several innovative strategies that improved upon our

previously published results. Given the success of this competition, we propose community-engaged

test sets as a blueprint for post-publication benchmarking that democratizes access to high-quality

experimental data, encourages innovative scientific engagement, and strengthens cross-disciplinary

collaboration in the chemical sciences.
1 Introduction

Machine learning (ML) has become a transformative tool across
the chemical sciences,1 enabling advances in molecular prop-
erty prediction,2 reaction optimization,3 polymer science,4,5

materials discovery,6 and beyond. By identifying complex
patterns in high-dimensional data, ML allows chemists to
accelerate hypothesis generation, reduce experimental work-
loads, and uncover relationships that may elude traditional
scientic paradigms.7 As datasets grow in size and complexity,
and as computational tools become more accessible, ML is
increasingly positioned as a core competency of modern
chemical research.8 However, realizing the full potential of ML
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in chemistry demands robust, reproducible benchmarks and
strong collaboration across experimental and computational
domains throughout the world.

Despite the technological momentum of ML methods, there
is a growing awareness that the scientic community must
develop more inclusive and engaging ways of connecting with
the public. ML presents a rare opportunity: its widespread
accessibility, intuitive appeal, and applicability across disci-
plines make it an ideal entry point for engaging students,
hobbyists, and educators alike. Public enthusiasm for ML is
high, yet structured avenues for meaningful participation in the
chemical sciences are limited. Simultaneously, the need for
effective scientic communication has never been more urgent
in a global landscape shaped by rapid technological change and
distrust of expertise; the ability to convey the signicance and
impact of scientic discoveries is critical. Traditional modes of
scientic dissemination, such as peer-reviewed publications
and conference presentations, oen fall short in reaching broad
audiences. Taken together, these considerations motivate the
need for innovative frameworks that not only explain research
outcomes, but actively invite participation, deepen trust, and
demonstrate the relevance of scientic work to societal
challenges.

In this work, we introduce a new model of scientic
community engagement by directly interfacing experimental
chemistry with community-engaged test sets for ML. Building
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic of the community-engaged test set paradigm.
During our previous study of light-harvesting small molecules, we
performed in-house ML to predict photostability of our dataset.9 After
publishing our results, we hosted a global hackathon for photostability
prediction by synthesizing and characterizing an additional community
test set. Participants were provided with our published dataset (42
molecules) to train their ML models, which were then evaluated on the
unseen community test set photostability values (7 molecules).
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on a prior study of small-molecule photostability, we leveraged
automated block chemistry to construct a blinded test set
consisting of newly synthesized compounds and hosted
a public Kaggle competition in which participants predicted
degradation properties of the new molecules using open-source
tools and training data from the prior study (Fig. 1). This
approach, referred to as community-engaged test sets, invites
broad participation in post-publication model validation while
fostering dialogue between experimental chemistry and the
global community. Here, we describe the design, execution, and
outcomes of our approach, and propose this model as a scalable
framework for democratizing access to data, amplifying scien-
tic visibility, and accelerating innovation in chemistry.
2 Closed-loop transfer of small
molecule photostability

We previously reported the integration of closed-loop experi-
ments with physics-based feature selection and supervised
learning, known as closed-loop transfer (CLT), to yield chemical
insights together with the optimization of objective functions
(Fig. 2a).9 CLT was used to uncover the molecular properties
dictating the small molecule photostability, a ubiquitous pho-
tophysical property for which general chemical design princi-
ples are lacking.10 Key to this campaign was the automated
block-based synthesis of conjugated small molecules comprised
of three building blocks using an iterative cycle of deprotection
(D), coupling (C), and purication (P) steps (Fig. 2b). We found
that using Suzuki coupling conditions identied via a previous
AI-guided closed-loop process11 (GC1; Fig. 2b), and newly
discovered anhydrous slow-release coupling conditions12 (GC2;
© 2026 The Author(s). Published by the Royal Society of Chemistry
Fig. 2b) maximized the synthetic hit rate. Subsequently, the
photobleaching lifetime (T80), dened as the time required for
the observed absorbance spectrum to decay to 80% of its initial
value under constant irradiation, was measured for the small
molecules via solution-based photodegradation in a solar irra-
diation cell (Fig. 2c). In tandem with synthetic efforts, we
trained interpretable ML models drawing from physics-based
features to generate hypotheses relating molecular features to
photostability. Through this approach, we generated 114
features for our molecules using time-dependent density func-
tional theory (TDDFT) calculations and RDKit. We then trained
every combination of 4-feature support vector regression
models with the radial basis function kernel (∼2.5 million total
4-feature models) to predict the T80 of our 44-molecule dataset.
The best 4-feature model (heteroatoms, rotatable bonds, TDOS
3.9, TDOS 2.5) predicted T80 of our dataset with an R2 value of
0.95 (Fig. 2d). An important outcome of the interpretable ML
method was the nding that high-energy triplet density of states
(TDOS) is a primary determinant of T80, a key contributor to
overall molecular photostability. This campaign successfully
generated a high-quality experimental organic chemistry data-
set and demonstrated that a simple, interpretable supervised
ML model using physics-based features can provide new
fundamental chemical insights into complex molecular
systems.
3 Democratization of chemical
discovery
3.1 Community-engaged test set

The quality, quantity, and diversity of available data impose an
upper limit on the accuracy and generality of any ML model.13

Organic chemistry datasets generally struggle to maximize all
three of these requirements due to time, resource, and experi-
mental design constraints. For example, high-throughput
experimental datasets are large, but only focus on a narrow
scope,14 whereas literature-derived databases are also large but
lack quality control and balance of reported results.15 Although
smaller, high-quality, functional chemistry datasets exist such
as Burke and Aspuru-Guzik's 413 organic laser molecule data-
set16 and Tong's 56 aluminum complex dataset,17 the availability
of chemical datasets remains limited for establishing commu-
nity ML standards. Furthermore, most ML-ready chemical
datasets are locked behind paywalls or buried in opaque online
archives, which makes the barrier for engagement insur-
mountable for the average ML data scientist. Given the lack of
publicly available experimental organic chemistry datasets and
the room for growth of small-data ML, we envisioned that our
photostability dataset would be of interest to the ML
community.

Hackathons, events where computer scientists collabora-
tively build projects over a short, intense period of time, have
become a low-cost, high-reward outreach strategy.18 Recent
competitions such as Nomad2018 Predicting Transparent
Conductor,19 Novozymes Enzyme Stability Prediction,20 Pre-
dicting Molecular Properties,21 and Bristol-Myers Squibb –
Digital Discovery, 2026, 5, 304–309 | 305
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Fig. 2 Overview of our closed-loop transfer (CLT) campaign to optimize and understand photostability in light-harvesting small molecules. (a)
The CLT method integrates physics-based feature selection and supervised learning with closed-loop optimization. (b) Automated synthesis
used for roughly 60% of the molecules. (c) Solution characterization of the time-dependent spectral decay of absorption, which is used to
calculate T80. (d) Our highest performing 4-feature support vector regression with the radial basis function (SVR-RBF) T80 model trained on all 44
molecules from the campaign.
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Molecular Translation22 underscore the increasing intersection
of ML and chemistry. Moreover, a biennial competition that has
garnered success is the Critical Assessment of Protein Structure
Prediction (CASP) competition.23 For the CASP competition,
hundreds of research groups attempt to predict the three-
dimensional structure of a variety of proteins from only its
amino acid sequence. Notably, the winners of CASP in 2018 and
2020 were AlphaFold and AlphaFold2 respectively, demon-
strating the importance of hosting worldwide ML competi-
tions.24 Given the success of the global hackathon strategy in
engaging participation and inventing scientic breakthroughs,
we envisioned hosting our own hackathon based on our rela-
tively small experimental photostability dataset. Unlike
previous versions, our hackathon would be the rst to study
structure–function relations of small organic molecules,
a fundamental challenge in academia and industry. The
absence of such competitions in the organic chemistry domain
is largely attributed to the lack of modular synthetic methods as
well as automated characterization methods. The emergence of
automatable, AI-friendly block chemistry12,16,25–29 and many
advances in automated characterization have opened the door
for launching such competitions.

A potential challenge in hosting a hackathon using only the
photostability dataset from the prior study is the lack of hidden
data to evaluate public ML models, so any models trained on
the published data would be prone to overtting. We therefore
created a new test set specically intended for evaluating
community ML models in order to conduct a global ML
competition for molecular photostability. To this end, we
leveraged automated block chemistry to prepare nine
306 | Digital Discovery, 2026, 5, 304–309
additional light-harvesting small molecules consisting of aryl
and heteroaryl moieties and measured their photostability
exactly as reported in the previous campaign (Fig. 3, see SI for
synthesis details). The nine new molecules exhibited a broad
range of T80 values (Fig. 3b). Ester bearing molecule (H) and
extended bipyridine (I) were added to the training set to balance
chemical diversity in the train/test split, leaving the remaining
seven molecules to comprise the community-engaged test set. It
should be noted that four light-harvesting molecules from the
initial campaign were omitted from the dataset due to their T80
being too low to characterize.
3.2 Kaggle competition

With a training set (42 molecules) and test set (7 molecules) in
hand, we hosted a competition on Kaggle, an established plat-
form that has facilitated a diverse array of data science
contests.30 For each molecule in the dataset, we provided 144
chemical features calculated from RDKit and TDDFT as well as
the corresponding SMILES string (Fig. 4).31 Participants were
allowed to use as many or as few of the provided features for
their models, and they were free to generate additional features
from the SMILES strings. For the test set, the same set of
features was provided, and participants were tasked with pre-
dicting the associated T80 values. The submissions were evalu-
ated based on the mean squared log error (MSLE) between the
model predictions and experimental T80 values of the test set
molecules. As a reference, the 4-feature SVR-RBF model from
our previous campaign predicted the community test set pho-
tostability with an MSLE of 3.051. This high MSLE value stems
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Nine new light-harvesting molecules were synthesized and
characterized to serve as the community-engaged test set for the
hackathon. (b) Plot of the T80 and spectral overlap (SO) of the nine new
light-harvesting small molecules. Molecules H and I were incorporated
into the train dataset to balance out the chemical diversity in the train/
test split.
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from our previous campaign's emphasis on interpretability
rather than performance, as incorporating more features would
have improved accuracy at the expense of losing interpretability
and simple hypothesis generation.

We ran the competition between March 24, 2025 and April
26, 2025. At the conclusion, we received a total of 729 submis-
sions from 522 entrants. It is important to note is that our
competition only provided a total of $150 in prizes (compared to
other competitions that gave out up to $50 000), yet we were still
able to garner hundreds of participants in only one month.
These outcomes suggest a strong community interest in
participating in the scientic discovery process, even when
engaging a small but practically important chemistry dataset.
Fig. 4 Overview of the Kaggle competition. Participants were
provided a training set of 42 molecules, which included the SMILES
string, RDKit features, and TDDFT features and were tasked with pre-
dicting the T80 of seven test molecules. Model performance was
evaluated on the MSLE between predictions and experimental T80 of
the test set. We provided a total of $150 in prizes to incentivize
participation.

© 2026 The Author(s). Published by the Royal Society of Chemistry
Among the many excellent submissions, we highlight a few
of the highest performing submissions. The top performing
model, trained by a user who wished to remain anonymous,
predicted the photostability of the test set with an MSLE of
1.026 (Fig. 5a). For this user's strategy, they rst generated every
possible RDKit feature to supplement the 144 features we
provided. Then, they used the SelectFromModel class of scikit
learn to select the top 35 features when trained on log(T80)
rather than T80. Finally, they found that the SVR with a linear
kernel predicted the T80 with the lowest MSLE. Unlike our four-
feature model, one of the features they included was “fr_pyr-
idine,” which is the number of pyridine rings in the molecule.
Based on Fig. 3, all the bipyridines exhibited low T80 values, so
their model correctly identied that as the number of bipyridine
rings increases, the T80 decreases. This novel insight exem-
plies the utility of a blinded test set that extends into a chem-
ical space beyond that reported in the original published work.

The second-best model was trained by Valterri Valo (29 years
old, Finland, Data Science/ML consultant), who like the top per-
forming user, added over 100 RDKit features as well as 100
Morgan Fingerprints to the original dataset. Interestingly, Valterri
augmented the data by adding methyl groups or replacing halo-
gens on the original molecules while keeping the same T80 values
to generate 74 newmolecules. He ultimately chose 13 features and
trained an XGBoost model to produce an MSLE of 1.208 (Fig. 5a).

The best pretrained model was implemented by Nikita
Sharma (22 years old, India, Computer Science Undergraduate),
who used the seyonec/ChemBERTa-zinc-base-v1 (ref. 32) model
to embed each molecule, and trained a Ridge regressor on the
embeddings to produce an MSLE of 1.760 (Fig. 5a). Interest-
ingly, the pretrained model did not lead to the best results,
which supports the observation that issues arise when model
complexity outweighs the small dataset sizes that proliferate the
chemical sciences.
Fig. 5 (a) Results of the top performing models from the Kaggle
competition. (b) Distrubution of scores for all submissions from the
Kaggle competition.

Digital Discovery, 2026, 5, 304–309 | 307
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Overall, our Kaggle competition was successful in
engaging community scientists to improve upon our previ-
ously best-performing model. We were delighted to see that
our participants used a variety of strategies such as using a log
transformation of the T80 measurements or augmenting the
data with chemically modied molecules. In addition, the
participants uncovered new scientic trends in our dataset
such as the negative correlation between number of pyridine
rings and T80.
3.3 Potential for generalization

As the science community enters a new, automation-centric era
of innovation, the amount of high-quality data will only
increase. To fuel consistent scientic breakthroughs, it is
essential for ML techniques across scientic domains to keep
pace with the experimental technologies.

We envision the community-engaged test set paradigm as
a new direction for future community engagement and scien-
tic outreach in the natural sciences. Instead of publishing the
entire data set produced from a synthetic campaign, research
groups could (for example) withhold a small test set (∼10% of
the data) for a public Kaggle completion. A small amount of
work to clean up the dataset into Kaggle's ML-accessible format
and clearly explain features and targets paves the way for broad
engagement and ML-driven discovery in chemistry. Alterna-
tively, as automatable block chemistry has increased accessi-
bility to the synthesis and thus testing of new small molecules
with a wide range of useful functions, the bar is lowered for
researchers to generate post-publication datasets for commu-
nity testing.

We provide a playbook for hosting your rst Kaggle compe-
tition in the SI section. From a broad perspective, hosting
a Kaggle competition would give attention to the initial publi-
cation and garner interest for future advances on the topic. In
this way, the community-engaged test sets paradigm serves to
democratize scientic discovery and align the objectives of
experimental science and ML.

Provided the success of this Kaggle competition, it is inter-
esting to consider future adaptations to our approach to further
engage community interest. An obviously fruitful direction for
future competitions is to integrate experimental design and
validation more cohesively into the competition objective. For
example, rather than asking participants to regress over the
community-engaged test set, we could task competitors with
training models and directly suggesting the next best experi-
ments to run (i.e. the most informative molecule to synthesize
on the grounds of exploration and exploitation of the design
space). Subsequently, our automated synthesis robots could
synthesize the suggested molecules and validate the hypotheses
generated from the Kaggle competition participants. This
future paradigm would concurrently allow the participants to
directly contribute to the research and strengthen the chemical
interpretation of the ML models. Such improved outreach
strategies moving forward will aim to further increase democ-
ratization of ML and chemistry within the broader community.
308 | Digital Discovery, 2026, 5, 304–309
4 Conclusions

By creating an experimental test set explicitly for hosting
a community hackathon, we developed a new paradigm for the
democratization of ML in chemistry. Unlike previous ML efforts
that primarily involve one researcher performing ML on in-
house data, our global hackathon enabled hundreds of
researchers to tackle the grand challenge of predicting small
molecule photostability, a fundamental task that lacks
a complete molecular scale understanding in chemistry. The
competition successfully uncovered new strategies such as log
transformation of target data and data augmentation by func-
tional group modication. Additionally, this competition
engaged a diverse audience drawing from various countries,
professions, and ages. By successfully bridging the gap between
experimental chemistry and computer science, we envision that
the creation of a community-engaged test set will become
a standard for future community engagement and scientic
progress in the natural and applied sciences.
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A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl,
A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov,
R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy,
M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer,
S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior,
K. Kavukcuoglu, P. Kohli and D. Hassabis, Nature, 2021,
596, 583–589.

25 J. Li, S. G. Ballmer, E. P. Gillis, S. Fujii, M. J. Schmidt,
A. M. E. Palazzolo, J. W. Lehmann, G. F. Morehouse and
M. D. Burke, Science, 2015, 347, 1221–1226.

26 J. W. Lehmann, D. J. Blair and M. D. Burke, Nat. Rev. Chem.,
2018, 2, 0115.

27 M. Trobe and M. D. Burke, Angew. Chem., Int. Ed., 2018, 57,
4192–4214.

28 D. J. Blair, S. Chitti, M. Trobe, D. M. Kostyra, H. M. S. Haley,
R. L. Hansen, S. G. Ballmer, T. J. Woods, W. Wang,
V. Mubayi, M. J. Schmidt, R. W. Pipal, G. F. Morehouse,
A. M. E. Palazzolo Ray, D. L. Gray, A. L. Gill and
M. D. Burke, Nature, 2022, 604, 92–97.

29 T. Tyrikos-Ergas, S. Agiakloglou, A. J. LaPorte, W. Wang,
C.-K. Chan, C. E. Wells, C. K. Rakowski, R. I. Hammond,
J. Qiu, J. D. Raymond, T. Vieira, J. Limanto, M. N. Feiglin,
D. J. Blair and M. D. Burke, Angew. Chem., Int. Ed., 2025,
64, e202509974.

30 Kaggle, https://www.kaggle.com/, accessed 24 July 2025.
31 Molecular Data Machine Learning, https://kaggle.com/

molecular-machine-learning, accessed 25 July 2025.
32 S. Chithrananda, G. Grand and B. Ramsundar, arXiv, 2020,

preprint, arXiv:2010.09885, DOI: 10.48550/arXiv.2010.09885.
Digital Discovery, 2026, 5, 304–309 | 309

https://kaggle.com/nomad2018-predict-transparent-conductors
https://kaggle.com/nomad2018-predict-transparent-conductors
https://kaggle.com/novozymes-enzyme-stability-prediction
https://kaggle.com/novozymes-enzyme-stability-prediction
https://kaggle.com/champs-scalar-coupling
https://kaggle.com/champs-scalar-coupling
https://kaggle.com/bms-molecular-translation
https://kaggle.com/bms-molecular-translation
https://predictioncenter.org/
https://www.kaggle.com/
https://kaggle.com/molecular-machine-learning
https://kaggle.com/molecular-machine-learning
https://doi.org/10.48550/arXiv.2010.09885
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00424a

	Democratizing machine learning in chemistry with community-engaged test sets
	Democratizing machine learning in chemistry with community-engaged test sets
	Democratizing machine learning in chemistry with community-engaged test sets
	Democratizing machine learning in chemistry with community-engaged test sets
	Democratizing machine learning in chemistry with community-engaged test sets
	Democratizing machine learning in chemistry with community-engaged test sets
	Democratizing machine learning in chemistry with community-engaged test sets

	Democratizing machine learning in chemistry with community-engaged test sets
	Democratizing machine learning in chemistry with community-engaged test sets
	Democratizing machine learning in chemistry with community-engaged test sets
	Democratizing machine learning in chemistry with community-engaged test sets
	Democratizing machine learning in chemistry with community-engaged test sets


