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cale electronic structure with
sample-based quantum bootstrap embedding

Joel Biermana and Yuan Liu *abc

One of the main applications for which quantum computers are hoped to find utility is in simulating ground

state energies and other observables of molecular chemical systems. The recently proposed sample-based

diagonalization method is a readily implementable method for this task on current-day hardware using

short circuit depths and has been demonstrated on as many as 85 qubits in recent studies. In this work,

we combine the recently proposed quantum bootstrap embedding (QBE) method with sampled-based

diagonalization (QBE-SQD) and present the first benchmarking study of the QBE method on real

quantum hardware, ibm_pittsburgh, a Heron r3 processor with 156 qubits. Our test system is a hydrogen

ring with 8 hydrogen atoms in the cc-pVDZ basis. We show that for this system, QBE-SQD using an

active space of (8e, 19o) per fragment with a 43 qubit footprint produces a ground state energy

accuracy which exceeds that of an SQD calculation with an (8e, 30o) active space with a 67 qubit

footprint when using a comparable number of Slater determinants. This demonstrates that the use of

quantum bootstrap embedding techniques is a promising path towards extending the capabilities of

state-of-the-art quantum eigensolvers on near-term devices.
1 Introduction

One of the key areas where quantum computers are expected to
demonstrate an advantage over classical computers is the
simulation of physical quantum systems such as the electronic
structure problem in molecular chemistry and materials
science.1–3 That is, we want to compute observables for the
ground state of the Hamiltonian

Ĥ ¼ �
XNe

i¼1

1

2
V2

i þ
XNe

i¼1

XNe

j. i

1��ri � rj
���XNe

i¼1

XNn

l¼1

Zl

jRl � rij þ Enuc (1)

for a system of Ne electrons and Nn nuclei, where Rl and ri
denote the position in real space of a nucleus and an electron,
respectively. Zl represents the charge of the lth nucleus. We
further use the Born–Oppenheimer approximation wherein the
nuclei are modeled as having xed positions contributing
a constant nuclear repulsion energy Enuc. In the second-
quantization formulation, this Hamiltonian is truncated
using a nite set of No single-particle wavefunctions (orbitals)
{f1(x), f2(x), ., fNo(x)} as

Ĥ ¼
XNo

p;q

hpqâ
†
pâq þ

1

2

XNo

p;q;r;s

vpqsrâ
†
pâ

†
qârâs (2)
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where â†p and âp are the particle creation and annihilation
operators, respectively, for orbital p. hpq and vpqsr are the one-
and two-body integral tensor elements dened as

hpq ¼
ð
f*
pðrÞ
 
� 1

2
V2 �

X
l

Zl

jRl � rj

!
fqðrÞdr (3)

vpqsr ¼
ð
f*
pðr1Þf*

qðr2Þ
1

jr1 � r2jfsðr1Þfrðr2Þdr1dr2: (4)

As the quality and quantity of qubits on quantum computers
have improved in recent years, experiments relevant to such
physical systems on quantum computers are shiing from
small-scale proof-of-concept simulations4–6 to near utility-scale
experiments at the limits of what can be accomplished on
a classical computer.7,8 Simultaneously, quantum error correc-
tion experiments demonstrating logical qubits achieving error
rates modestly lower than those of their physical unencoded
counterparts are beginning to emerge.9–11 While this progress is
encouraging, these simulations are run on quantum devices
which lack fault-tolerance for the number of logical qubits
needed to demonstrate quantum utility. Current-day devices
can at most utilize error mitigation schemes such as zero-noise
extrapolation, probabilistic error cancellation, and dynamical
decoupling.12–14 This precludes the demonstration of algo-
rithms such as quantum phase estimation15–19 (QPE), which is
expected to require hundreds of logical qubits with logical error
rates several orders of magnitude below what is achievable on
Digital Discovery
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current-day devices in order to demonstrate an advantage over
classical computers.2

Embedding methods such as density matrix embedding
theory20–23 (DMET) and quantum bootstrap embedding24–31

(QBE) provide a feasible approach to simulate large-scale elec-
tronic structure problems on small quantum computers. These
methods take the approach of fragmenting a large system into
several subsystems and variationally optimize the energy
subject to a set of constraints related to the self-consistency of
each of these fragment wavefunctions. Consequentially, one
only has to run an eigensolver subroutine for each of the smaller
fragments rather than the system as a whole. In the classical
setting, the superlinear scaling of both approximate and exact
eigensolvers implies that the memory footprint and runtime
associated with running eigensolvers for the collection of frag-
ments can oen be made less severe than for the large
unfragmented system. It could even be reasonably argued that
the potential benets of using embedding are even more
pronounced in the quantum setting due to additional
constraints of current-day machines. These include (1) a limited
number of qubits, (2) non-negligible error rates which limit the
size of individual circuits that can be run, and (3) limited qubit-
connectivity that can limit the expressivity of ansatz circuits.
The use of DMET in combination with SQD has recently been
demonstrated on real quantum hardware.32 However it remains
to be seen which embedding method works better on quantum
computers.

To unleash the power of quantum embedding methods on
near-term quantum hardware, the choice of quantum
eigensolvers is important. Even for small fragments, phase
estimation has a high-overhead cost that oen requires a deep
depth circuit. Variational quantum eigensolver33–35 (VQE) was
proposed as an alternative phase estimation to be run on near-
term quantum devices. Even though VQE does not explicitly
require deep circuits, it is known to suffer from other issues
which present a formidable barrier to its use for large-scale
(dozens to hundreds of qubits) simulations on any quantum
computer, both near-term and long-term. It has been estimated
that for utility-scale systems (∼102 qubits), measuring the
energy of a molecular Hamiltonian a single time on a quantum
computer could have a wall clock runtime on the order of days
to months.36 Even if these resource estimates could be improved
drastically, the barren plateaus problem37–39 where the variance
of the gradient of the cost function landscape vanishes expo-
nentially with the size of the system, could still make conver-
gence to the global minimum exponentially slow.

The long runtime expected from variational methods for
simulating physical systems has led to the emergence of
quantum selective conguration interaction (QSCI)
methods,8,40–42 which avoid this long runtime problem by not
measuring expectation values of observables on the quantum
computer at all. Instead, this class of methods reduces the role
of the quantum computer to nding an optimal subspace onto
which the Hamiltonian can be projected and subsequently
diagonalized on a quantum computer. This has allowed QSCI to
be demonstrated with simulations as large as 85 qubits under
the name sample-based diagonalization (SQD).41 Similarly,
Digital Discovery
adapting quantum Monte Carlo methods to quantum
computers has been proposed as a means to avoid the optimi-
zation challenges of VQE.43 Meanwhile, much attention has
been paid towards developing ways of enhancing existing
eigensolvers by reducing their qubit footprint on the quantum
computer. Orbital optimization methods,44–47 for example,
introduce the matrix elements of a single-particle wavefunction
rotation operator as additional parameters to be optimized in
a larger minimization problem. Thesemethods tend to generate
more compact basis sets than those generated by canonical
molecular orbitals.

By combining bootstrap embedding with a quantum
eigensolver such as SQD, we can potentially reduce the impact
of the constraints of current quantum hardware. This presents
the opportunity to either simulate systems larger than what can
be achieved with SQD alone or simulate similar system sizes
with higher accuracy. Another benet of using SQD as the
eigensolver in QBE lies in evaluating the matching conditions.
When VQE or QPE is the eigensolver, one either uses (i)
coherent matching (SWAP test), or incoherent matching by (ii)
measuring the full qubit RDM on the overlapping region, or (iii)
the corresponding fermionic 1-RDM.24 The rst of these needs
more than doubling the qubit count and implementing
a sequence of controlled SWAP gates that are not easily mapped
to the heavy-hex topology of IBM machines without too much
overhead. The second involves exponentially costly state
tomography. The third of these is likely to incur a signicant
(but polynomial) measurement overhead as well. Instead, in
SQD, aer the eigensolver subroutine is nished, one obtains
the 1-RDM needed for the matching conditions at negligible
cost.

The potential challenge in combining bootstrap embedding
with SQD is that noise on the quantum device, the limited
ansatz expressiveness, and limited sampling have the potential
to disrupt the convergence of the BE optimization that is
necessary for the advantages of bootstrap embedding to be
realized.

In this work, we combine sample-based diagonalization with
bootstrap embedding and investigate the extent to which QBE-
SQD can be used to enhance the capabilities of SQD. We present
the rst benchmarking study of QBE-SQD on real quantum
hardware in chemically realistic basis sets for a moderate size
molecular system H8 across different bond lengths. This system
provides a good test of the performance of the methods from
weakly to strongly correlated regimes. By comparing QBE-SQD
on the 156-qubit Heron r3 processor ibm_pittsburgh with
vanilla SQD, we show that QBE-SQD using an active space of (8e,
19o) per fragment with a 43 qubit footprint produces a ground
state energy accuracy at near-equilibrium geometries which
exceeds that of an SQD calculation in a larger active space (8e,
30o) with a 67 qubit footprint by several mHa when using
a comparable number of Slater determinants while maintaining
a stronger usable signal for the conguration recovery process.
This demonstrates that the use of QBE techniques is a prom-
ising path towards extending the capabilities of state-of-the-art
quantum eigensolvers on near-term devices. For stretched bond
geometries, we show that the convergence of bootstrap
© 2026 The Author(s). Published by the Royal Society of Chemistry
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embedding becomes increasingly challenging, increasing the
density matching error as the bonds are progressively stretched.
We show that this effect can bemitigated by only optimizing the
chemical potential.

The rest of the paper is organized as follows. Sec. 2 reviews
background information relevant to bootstrap embedding and
sample-based diagonalization individually and details how
these methods may be combined. Sec. 3 details our experi-
mental set-up and results on ibm_pittsburgh. Sec. 4 ends with
concluding discussions of the implication of the results and
potential future directions of research.
2 Methods

In Sections 2.1 and 2.2, we review background information for
sample-based diagonalization (SQD) and quantum bootstrap
embedding (QBE), respectively. In Sec. 2.3 we describe how
sample-based diagonalization and bootstrap embedding may
be combined.
2.1 Sample-based diagonalization

Quantum Selective Conguration Interaction (QSCI) methods,40

of which sampled-based diagonalization8,42,48 (SQD) is a partic-
ular example, use quantum computers to nd an estimate for
the support of the ground state jj0i of a Hamiltonian Ĥ,
modeling some physical system, and then offload the diago-
nalization of Ĥ in this approximate support to a classical
computer.

This is done by sampling from an ansatz circuit UAjJii
(where jJii is a reference state that is usually taken to be the
Hartree–Fock state) in the computational basis {jxi} to obtain
a measurement outcome probability distribution P(x) =

jhxjUAjJiij2 and measurement outcomes c. In the presence of
noise, one would instead obtain a noisy probability distribution
~P(x) and a set of noisy measurement outcomes c̃.

Many of the elements of c̃will not have the correct spin-z and
particle numbers due to noise on the device and will thus not be
usable in their current form. Instead of naively post-selecting
based on measurement outcomes with the correct quantum
numbers, the original SQD work48 proposed passing elements
in c̃ to a self-consistent conguration recovery subroutine
wherein individual bits in basis states with incorrect spin and
particle numbers are ipped according to a probability distri-
bution that depends on a current best estimate of the average
occupation number of the orbital for which that bit encodes.
This probability distribution is chosen to more heavily weight
bits whose values xp are more distant from the current best
guess of np, the average occupation number of spin-orbital p.

This set of recovered bitstrings is denoted as cR. From here,
one classically subsamples K batches of bitstrings from cR of
size Nb to obtain d(k) unique basis states, where k = 1, 2, ., K.
Each of these sets of basis states denes a subspace S(k) onto
which the Hamiltonian Ĥ can be projected

Ĥ
ðkÞ ¼ P̂SðkÞĤP̂SðkÞ (5)
© 2026 The Author(s). Published by the Royal Society of Chemistry
P̂SðkÞ ¼
X
x˛SðkÞ

jxihxj (6)

and subsequently diagonalized on a classical computer to
obtain eigenvalue/eigenstate pairs {E(k), jj(k)i}. The ground state
wave functions and energies from each of these K subspaces are
used to re-compute the average occupation number for each
spin-orbital as

np ¼ 1

K

XK
k¼1

D
jk

���â†pâp���jk

E
: (7)

These values are then used for a subsequent iteration of
conguration recovery. This self-consistent loop is repeated
until convergence, aer which the solution is taken to be the
eigenvalue/eigenstate pair with the lowest eigenvalue among
the K batches. The details of how these subspaces are generated
and how the conguration recovery loop probabilistically ips
bits on basis states are given in ref. 48.

Importantly, these “quantum-assisted” selective CI methods
do not require measuring any observables on the quantum
computer and in this way they sidestep the long runtimes
associated with VQE and its variants. It is important to note two
main drawbacks of QSCI methods. Because the diagonalization
step is done classically in a subspace spanned by a subset of the
basis states sampled on the quantum computer, the true
ground state which we are trying to approximate must be well-
approximated by a state with polynomial support. If this was
not the case, then not only would an exponential number of
measurements need to be conducted on the quantum
computer, but the diagonalization step itself would be classi-
cally intractable as well. Thus, it is likely that there are many
quantum systems which cannot be well-approximated using
QSCI methods.

The second is that the ansatz UAjJii from which we are
drawing samples must have a support that has sufficient over-
lap with the support of a state which well-approximates the true
ground state. The samples we draw from it must also produce
a compact diagonalization subspace. That is, we do not want to
draw a large number of unimportant basis states. At
a minimum, we want QSCI to be more efficient in terms of
subspace size than, for instance, classical SCI methods.
Choosing an ansatz with these properties is not necessarily
trivial and how best to achieve both of them is an open
question.
2.2 Bootstrap embedding

Bootstrap embedding24–28 is a method wherein it is assumed
that the entanglement of a large molecular system has a struc-
ture that is sufficiently local under some easy-to-nd basis such
that the system can be broken down into non-disjoint subsys-
tems. The correlation energy between fragments is approxi-
mately recovered by enforcing matching conditions on
overlapping regions of neighboring fragments. For instance,
one can match the qubit or 1-electron RDMs.

In this work, we focus on matching conditions that use the
fermionic 1-RDM as this method is the most straightforward to
Digital Discovery
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apply when using SQD as the eigensolver. In particular we
match the “center” of a fragment with the “edge” of its
neighbor. The intuition behind this is that the center region of
a fragment should be insulated from the error associated with
the fragmentation, whereas the edge of the fragment is spatially
closer to where the molecule was fragmented and thus should
suffer from a larger approximation error. By enforcing the
constraint that the RDMs of all edges of all fragments match the
RDMs of the centers of all fragments for which their overlap is
non-zero, we reduce the error associated with the edge regions.

These matching conditions are not, however, sufficient for
minimizing the error in correlation energy incurred from the
fragmentation process. To this end, for each fragment “A”, a set
of bath orbitals jb(A)i i is dened through the Schmidt decom-
position of the Hartree–Fock state:

jJHFi ¼
"XNf

i¼1

���f ðAÞi

E
5
���bðAÞi

E#
5
��JðAÞ

env

�
(8)

where Nf is the number of orbitals associated with fragment “A”,
jf(A)i i are the fragment orbitals, and jJ(A)

envi is a linear combina-
tion of orbitals not in the span of the fragment and bath
orbitals. Nominally, this would imply that each embedded
subsystem consists of exactly 2Nf orbitals; however, in practice,
this decomposition is equivalent to performing the singular
value decomposition of the off-diagonal block of the 1-RDM
corresponding to the set of fragment orbitals and its comple-
ment. The right singular vectors of this decomposition corre-
sponding to non-zero singular values dene an orbital rotation
matrix transforming the set of non-fragment orbitals into bath
orbitals. The number of bath orbitals may be less than Nf

depending on how many of these singular values are either
identically zero or below some user-specied threshold. This
transformation from the non-fragment orbitals to the entangled
bath orbitals, together with a unitary transformation of the
fragment orbitals (which can be taken to be the identity),
denes a basis which is referred to as the embedded basis.

The number of fragments is denoted by Nfrag. The set of edge
orbitals in two fragments are denoted as fragment “A” and
fragment “B” using EA and EB, respectively. The sets of center
orbitals in these fragments are likewise denoted by ℂA and ℂB.
A Hamiltonian in the embedded basis for fragment A is denoted
as ĤA. A trial wavefunction for the fragment-bath subsystem
associated with fragment A is denoted by jJAi. For all Nfrag

fragments, we want to perform the minimization problem

min
jJðAÞi

D
JðAÞ

���ĤA
���JðAÞ

E
(9)

subject to the constraintD
JðAÞ

���aðAÞ†p aðAÞq

���JðAÞ
E
¼
D
JðBÞ

���aðBÞ†p aðBÞq

���JðBÞ
E

(10)

for all p and q in the overlapping region between A and B
ðEA X ℂBÞ for all B s A. We also require that the total number
of electrons occupying the union of the center regions for all the
fragments sums to the number of electrons in the unfrag-
mented system, Ne:
Digital Discovery
XNfrag

A

X
p˛ℂA

D
JðAÞ

���aðAÞ†p aðAÞp

���JðAÞ
E
¼ Ne: (11)

We perform this constrained minimization problem by nding
stationary points of the Lagrangian:

L ¼
XNfrag

A¼1

D
JðAÞ

���ĤðAÞ���JðAÞ
E

þ
X
BsA

X
p˛EAXℂB

�
l
ðAÞ
B

�
pq

hD
JðAÞ

���aðAÞ†p aðAÞq

���JðAÞ
E

�
D
JðBÞ

���aðBÞ†p aðBÞq

���JðBÞ
Ei

þm

"XNfrag

A

X
p˛ℂA

D
JðAÞ

���aðAÞ†p aðAÞq

���JðAÞ
E
�Ne

#
(12)

with respect to m and the sets {l(A)pq },{jJ(A)i}. For xed values of
the conditions in eqn (10) and (11), nding xed points of the
Lagrangian with respect to the fragment wavefunctions is
equivalent to solving the following eigenvalue equation for each
of the embedded subsystems:24�

Ĥ
ðΑÞ
emb þ blðΑÞ���JðΑÞ� ¼ �EðΑÞ

0

��JðΑÞ� (13)

blðAÞ ¼X
B

X
p;q˛EAXℂB

�
l
ðAÞ
B

�
pq
âðAÞ†p âðAÞq þ m

X
p˛ℂA

âðAÞ†p âðAÞp : (14)

The coefficients of l̂(A) enter as the arguments of an optimiza-
tion that can be carried out using a wide range of optimizers
such as gradient descent or quasi-Newton methods.

2.3 QBE-SQD

In contrast to the cases using either VQE or QPE with quantum
bootstrap embedding, where it is necessary to evaluate the
matching conditions using either the SWAP test or the qubit or
fermionic RDMs,24 the fragment wavefunctions output by QBE-
SQD are already in a classical form which can be used to readily
produce 1-RDMs at negligible cost. This is because the role of
the quantum computer in SQD is to inform the subspace in
which a classical diagonalization subroutine is performed. This
allows one to utilize the 1-RDM matching condition as given in
eqn (10) and the particle number constraint in eqn (11) in much
the same way as that for BE-FCI or other classical solvers.

For clarity, we outline the entire QBE-SQD procedure in
Fig. 1. In step 1, the system is fragmented and the bath orbitals
are generated via the Schmidt decomposition of the mean-eld
state. The effective potential l̂(A) is initialized to 0. SQD is then
run for the effective Hamiltonians Ĥ(A)

emb + l̂(A) for each of the
fragments in step 2. SQD returns the embedded subsystem
wavefunctions jj(A)i which we use to evaluate the matching
conditions. The evaluatedmismatch is used to evaluate whether
or not the BE optimization has converged. If the method has
converged, we stop the method. Otherwise, the mismatch is
used to calculate an updated effective potential l̂(A) for each of
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 The QBE-SQD procedure wherein we fragment the large system and subsequently generate the embedded subsystem Hamiltonians
using a Schmidt decomposition. An effective one-body potential l̂(A) is added to each embedded Hamiltonian to enforce the matching
conditions. This effective Hamiltonian is passed to SQD (with re-computed LUCJ parameters), where the effective potential coefficients enter as
the arguments of the BE optimization loop.
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the fragments. This is then used to generate the effective
Hamiltonian for which SQD performs the diagonalization. This
loop is repeated until convergence, at which point we return the
ground state energy.
3 Results
3.1 Simulation and experimental details on ibm_pittsburgh

All experiments were run using code produced by adding the
PySCF49 2.9.0 implementation of the SQD solver provided by the
qiskit-addon-sqd 0.11.0 package as a solver to the bootstrap
embedding package QuEmb.50 Qiskit51 2.1.0 is used for all
quantum experiments. Classical SHCI (semistochastic heat
bath conguration interaction) calculations are carried out
using the solve_hci function of qiskit-addon-dice-solver 0.3.0,
which performs the variational stage of SHCI for a xed 31 using
DICE.52,53 We use block2 (ref. 54) to carry out DMRG (density
matrix renormalization group)55 calculations with a bond
dimension of 500. CASCI (complete active space conguration
interaction) calculations are carried out using PySCF.
Fig. 2 The 8-atom hydrogen ring simulated in the current work. QBE
fragments consist of 3 hydrogen atoms each. The 0th fragment is
highlighted and labeled. The fragment procedure loops over all atoms
in the molecule, generating 8 such fragments.

© 2026 The Author(s). Published by the Royal Society of Chemistry
Our test system is a hydrogen ring, i.e. 8 equally spaced
hydrogen atoms arranged in a ring with radius r= 1.3, 1.8, 2.2 Å
in the cc-pVDZ basis, as illustrated in Fig. 2. The r = 1.3 Å
geometry tests the accuracy for near-equilibrium geometries
whereas r = 1.8, 2.2 Å represent progressively stretched geom-
etries. Nominally, treating this system would require 80 spin-
orbitals without any fragmentation or active space truncation.
For both SQD and QBE-SQD we use the 2-LUCJ ansatz with
parameters taken to be double-factorized t1 and t2 amplitudes
from a classical CCSD calculation using PySCF and ffsim56

0.0.45 as described in ref. 48. In the case of QBE-SQD, these
CCSD parameters are re-computed for every fragment at every
BE iteration using the given effective fragment Hamiltonians at
the given iteration. Representative (the exact numbers can
uctuate mildly from fragment to fragment and from iteration
to iteration) gate counts and circuit depths are provided in
Table 1. The LUCJ ansatz uses nearest-neighbor coupling terms
mapped to the qubits illustrated in Fig. 3b. Fig. 3a indicates the
qubits used for QBE-SQD. Fig. 3b indicates the qubits used for
SQD (8e, 30o). No error mitigation techniques are used aside
from the conguration recovery process.48 Both BE-FCI and
QBE-SQD use the default orbital localization technique of
Table 1 Qubit counts and representative circuit depths and gate
counts for the circuits of QBE-SQD and SQD experiments

Method Qubits Circuit depth 2-Qubit gates 1-Qubit gates

QBE-SQD
r = 1.3 Å

43 505 1638 8244

QBE-SQD
r = 1.8 Å

43 497 1638 8526

QBE-SQD
r = 2.2 Å

43 496 1642 8512

SQD (8e, 30o)
r = 1.3 Å

67 752 3876 20 700

SQD (8e, 30o)
r = 1.8 Å

67 744 3868 21 117

SQD (8e, 30o)
r = 2.2 Å

67 749 3906 21 738
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Fig. 3 A diagram of the qubits on ibm_pittsburgh used for the 2-LUCJ
ansatz for (a) QBE-SQD and (b) SQD. Red circles indicate qubits used
for alpha spin-orbitals and blue circles indicate beta spin-orbitals.
Purple circles indicate ancilla qubits used for coupling terms that
entangle alpha and beta spin-orbitals. Orbital coupling terms are only
included for those circles which are connected either by a bar of the
same color or a purple bar.
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QuEmb : Löwdin localized orbitals. Furthermore, the “BE2”
fragmentation scheme is used for all experiments. This method
loops over all atoms and considers fragments to consist of an
atom and its nearest neighbors.
3.2 QBE-SQD

QBE fragments this hydrogen ring into 8 subsystems by looping
over all atoms and taking a fragment to be a particular atom and
its nearest neighbors. Thus, we get 8 fragments, each of which
consists of 30 fragment spin-orbitals. The singular value
decomposition adds 8 bath orbitals to each fragment for a total
of 38 spin-orbitals per embedded subsystem. Five batches and
ve conguration recovery iterations are used for each frag-
ment. A batch size of 2500 samples is used for each fragment
batch sample eigensolver call. The actual number of Slater
determinants used in the diagonalization uctuates from frag-
ment to fragment and iteration to iteration; however we note
Fig. 4 Convergence of QBE-SQD and BE-FCI for the 8-atom hydrogen
consist of ring radii of (a) 1.3 Å, (b) 1.8 Å, and (c) 2.2 Å.

Digital Discovery
that the number of Slater determinants typically falls within the
range of 15% to 24% of the embedded subsystem FCI dimen-
sion size every time the classical diagonalization subroutine is
run.

We use 105 shots per circuit run for each fragment. With this
conguration, each call to SQD in QBE uses approximately 30
seconds of QPU runtime. Fig. 4a illustrates the convergence of
the energy and density matching errors for H8 with a radius of
1.3 Å as a function of the bootstrap embedding optimization
iteration. We compare bootstrap embedding using SQD as the
eigensolver on ibm_pittsburgh to bootstrap embedding using
classical full conguration interaction (BE-FCI). The top gure
plots the convergence of the BE ground state energy error (as
compared to unfragmented DMRG in the cc-pVDZ basis with an
active space of (8e, 40o)) as a function of the BE iteration,
whereas the bottom gure plots the norm of the error vector
associated with the RDM constraint terms in eqn (12). We note
that in both measures of the convergence, QBE-SQD closely
agrees with BE-FCI.

Fig. 4b and c illustrate the analogous comparisons for r= 1.8
Å and r = 2.2 Å, respectively. It is at these stretched geometries
where differences in the convergence behavior of QBE-SQD and
BE-FCI emerge. For instance, at r = 1.8 Å, the convergence of
QBE-SQD closely matches that of BE-FCI up until iteration 3,
aer which they begin to diverge slightly, but still agree to
within approximately 1 mHa. This is to be expected given the
noise on the quantum device and the xed batch size. For
moderately stretched geometries, the number of nearly degen-
erate Slater determinants increases, which leads to a larger
number of Slater determinants that contribute non-negligibly to
the exact ground state. Because the batch size for QBE-SQD is
kept at 2.5 × 103 for all geometries, we do not systematically
expand the number of Slater determinants used for each frag-
ment wavefunction and the accuracy decreases as a result. We
also note that compared to the r = 1.3 Å density matching error
convergence, the r = 1.8 Å convergence is both less consistently
ring using the full RDM matching conditions. The geometries tested

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Convergence of QBE-SQD and BE-FCI for the 8-atom hydrogen ring using only chemical potential optimization. The geometries tested
consist of ring radii of (a) 1.3 Å, (b) 1.8 Å, and (c) 2.2 Å.
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monotonic and less accurate. Whereas both QBE-SQD and BE-
FCI can converge the density matching error to 2 × 10−4 and
an energy error to 16 mHa at the near-equilibrium geometry, at
this stretched geometry, BE-FCI can only converge the density
matching error to 2 × 10−3 and the energy error to 20 mHa at
iteration 5. This indicates that the decreased energy accuracy is
a property of bootstrap embedding more generally rather than
being completely attributable to either the noise on the
quantum device or the quality of the subspace spanned by the
Slater determinants that SQD selects. The picture for the further
stretched r = 2.2 Å geometry is qualitatively similar except
notably that QBE-SQD can converge the energy to approximately
10 mHa.

We note that aside from utilizing other orbital localization
schemes, another way to improve the convergence of the BE
optimization procedure is to forgo optimization of the param-
eters associated with the 1-RDM matching entirely and only
optimize the chemical potential (the diagonal 1-RDM elements
in the third summation term in eqn (12)). One might be
(reasonably) worried that neglecting the RDM matching
constraints would compromise the accuracy of the energy at the
end of the optimization. We demonstrate that this is not the
case for the system studied in this work. For all three geometric
congurations studied in this work, optimizing only the
chemical potential converges more quickly to a more accurate
energy. We can see from comparing Fig. 4a and 5a that the
improvement in the energy accuracy for the r = 1.3 Å geometry
is modest, improving upon the RDM matching scheme by less
than 1 mHa. The difference is more pronounced for the two
stretched geometries that were not observed to converge to the
same density matching error as the equilibrium case. For
example, we can see from comparing Fig. 4b and 5b that using
the chemical potential optimization improves the energy accu-
racy by approximately 6 mHa for the r = 1.8 Å geometry. The
corresponding improvement for the r = 2.2 Å geometry is
approximately 3.6 mHa.
© 2026 The Author(s). Published by the Royal Society of Chemistry
We note that it was found in ref. 57 that the use of Löwdin
localized orbitals in combination with extended basis sets such
as cc-pVDZ can lead to poor spatial localization of the orbitals,
which leads to poor convergence of the BE optimization. The
use of intrinsic atomic orbitals (IAOs) (as the authors suggest)
could improve upon the results we were able to achieve in our
current work. We further note that ref. 29 reported a ∼ 6 mHa
error per hydrogen atom for a hydrogen chain of length 30 for 3-
atom BE fragments using the cc-pVDZ basis. This is qualita-
tively consistent with our results, which achieved energy errors
of approximately 1 to 2.5 mHa per atom. Notably, this work was
published several years before the work revealing that IAOs offer
more consistent convergence than localized orbitals with large
basis sets.
3.3 Comparison with SQD

Onemight also be interested in how the energy accuracy of QBE-
SQD compares to SQD. To this end, we have run SQD in an
active space of (8e, 30o) for the hydrogen ring (r = 1.3, 1.8, 2.2
Å). These radii correspond to H–H distances of 0.995, 1.3777,
and 1.6838 Å, respectively. Classical SHCI for an active space of
(8e, 30o) is also run. These active spaces are truncated according
to their mean-eld orbital energies.

We note that in this section, a CASCI calculation in an (8e,
30o) active space is used as the reference energy, whereas in the
previous section a DMRG (8e, 40o) calculation was used to
assess the accuracy of QBE-SQD. This is primarily to keep the
comparison with SQD (8e, 30o) fair. However, in the interest of
keeping track of how far these energies differ from our best
available reference energy, we explicitly state the values of these
two reference energies to ve decimal places. CASCI (8e, 30o)
calculations yield total energies of −4.37710, −4.29319, and
−4.16879 Ha for the r = 1.3, 1.8, and 2.2 Å geometries, respec-
tively. The corresponding DMRG (8e, 40o) energies are
−4.38533, −4.30252, and −4.17430 Ha.
Digital Discovery
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Fig. 6 The energy accuracy obtained (as compared to CASCI (8e,
30o)) for QBE-SQD and SQD for three different geometries at r = 1.3,
1.8, 2.2 Å. Each dot represents an outcome of a particular circuit run for
a particular batch size.
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Ten circuit runs are performed for each geometry for SQD.
105 shots are used per circuit run with ve batches and ve
conguration recovery iterations. For each circuit run, the
classical diagonalization and conguration recovery steps are
performed for a variety of batch sizes of 5 × 102 and n × 103 for
n = 1, 2, 3, 4, 5 in order to study the convergence of the energy
accuracy as a function of the number of Slater determinants
used. We note that nominally this system consists of 80 spin-
orbitals and 8 electrons when no active space truncation is
used. However, when using an active space of (8e, 40o) was
attempted, none of the 105 measurement outcomes yielded
a basis state with the correct particle and spin numbers,
resulting in no usable signal for SQD. These circuits used a total
of 89 qubits, circuit depths of 1042, 6856 2-qubit gates, and 45
650 1-qubit gates. Moreover, the average occupation particle
number was approximately 40, indicating that the output was
almost entirely noise. When the active space is truncated to (8e,
Digital Discovery
30o), 8 out of the 10 circuit runs had a non-zero usable signal for
r = 1.3 Å, 3 for r = 1.8 Å, and 4 for r = 2.2 Å.

The results for the r = 1.3 Å geometry are shown in Fig. 6. In
this gure, the reported number of Slater determinants for SQD
is that used by the solution state, which may deviate slightly
from the maximum number of Slater determinants used by all
batch states for all conguration recovery iterations. We observe
that the number of Slater determinants used by QBE-SQD for
each fragment may uctuate considerably throughout the
optimization process. For this reason, the number of Slater
determinants used by QBE-SQD is taken to be the maximum
number among all fragments for all batch samples for all
optimization iterations for an individual fragment. We observe
that QBE-SQD agrees with the CASCI (8e, 30o) calculation to
approximately 8 mHa. Thus, QBE-SQD is observed to outper-
form SQD by approximately 7 mHa (when the number of Slater
determinants is comparable) despite using a fraction of the
number of qubits.

We include classical SHCI using xed selective cut-off values
of 31 = 10−4 and 10−5 to assess the compactness of the subspace
found by SQD. The implementation used is the one provided in
qiskit-addon-dice-solver 0.3.0, which acts as a wrapper for DICE
hard-coded to only carry out the variational stage and skip the
perturbative stage of SHCI. In this implementation, one has the
option of providing a list of a and b substrings to use in the
initialization. We have observed that when the Hartree–Fock
state is used as the initialization, SHCI frequently converges to
the rst excited state for stretched bond geometries. This effect
was noted previously.48 Providing substrings (for both a and
b corresponding to the Hartree–Fock state and excitations into
the lowest unoccupied orbital in the Hartree–Fock state (i.e.
HOMO to LUMO excitations)) is effective at mitigating this
effect. We nd that SHCI outperforms both QBE-SQD and SQD
for all geometries studied. We note that qiskit-addon-sqd uses
the PySCF implementation of SCI, which is known to be inef-
cient in terms of the number of Slater determinants used. This
is likely a signicant factor in the compactness of the SQD
subspace size.

Looking at the results for the r= 1.8 Å geometry in Fig. 6, the
rst feature that we note is that when using a comparable
number of Slater determinants, QBE-SQD is less accurate than
SQD by approximately 1 to 3 mHa when using the full 1RDM
matching constraint; however when optimizing only the
chemical potential, QBE-SQD outperforms SQD by approxi-
mately 3 mHa. SQD achieves an accuracy of approximately
8 to 10 mHa at this comparison point and 1 mHa at a batch size
of 5 × 103.

We now move on to the comparison for the r = 2.2 Å
geometry in the lower panel of Fig. 6. Here we observe that when
using the full 1RDM matching constraints, QBE-SQD outper-
forms SQD (when using a comparable number of Slater deter-
minants) by approximately 2 to 5 mHa. When only the chemical
potential constraint is enforced, this gap is extended to
approximately 5 to 8 mHa. QBE-SQD is seen to differ from
CASCI by approximately 5 mHa when using the full 1RDM
matching constraints and approximately 2 mHa when only the
chemical potential is optimized.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 The number of Slater determinants (averaged over 5 batches)
used by SQD (8e, 30o) and 2 fragment instances (f7 and f4) of QBE-
SQD throughout the configuration recovery process.
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3.4 Role of conguration recovery

The energy accuracy as a function of the number of Slater
determinants does not, however, paint the entire picture of the
resource requirements for each of these two methods. The
degree to which each of these methods relies on the congu-
ration recovery process is also a relevant quantity.

To this end, we have plotted the average number of Slater
determinants used at each conguration recovery iteration for
SQD (8e, 30o) with a batch size of 103 and QBE-SQD. This choice
of SQD batch size corresponds roughly to solution states whose
numbers of Slater determinants are comparable to the number
of Slater determinants used by QBE-SQD per fragment. Two
particular fragment instances in the QBE-SQD optimization
process are chosen to be representative of the range of possible
outcomes in terms of the number of Slater determinants used in
the 0th iteration. These results are plotted in Fig. 7. We observe
that in the absence of error mitigation outside of conguration
recovery, the number of Slater determinants in the 0th cong-
uration recovery iteration is typically on the order of 101.
Starting at the 1st iteration, this number jumps drastically to
being on the order of 106. For QBE-SQD, the number of Slater
determinants at the 0th iteration can range anywhere from 105

to 106. This conrms our intuition regarding the benets of
using bootstrap embedding on a quantum computer: frag-
menting the system reduces the qubit footprint linearly without
sacricing the accuracy too much, but reduces the average
number of errors per circuit run which in turn signicantly
strengthens the signal used by the classical diagonalization.
Consider a simplied error model where the probabilities of
error for n gates are modeled as independent, biased coin ips
with probability of error p. The probability that no gate errors
occur is (1 − p)n, where for small n, p is approximately 1 − np.
However, when n is not small (as is the case here where the gate
counts are on the order of 103 to 104), the probability that no
gate error occurs drops exponentially with n. Embedding
methods afford us the opportunity to linearly decrease the
maximum qubit footprint thus reducing the overall gate count n
linearly (for circuits such as LUCJ whose gate count scales
linearly with the number of qubits), which in turn exponentially
improves the average number of errors per circuit.
© 2026 The Author(s). Published by the Royal Society of Chemistry
4 Conclusions

In this work, we have performed what are, to our knowledge, the
rst experimental demonstrations of the quantum bootstrap
embedding method for the ground state electronic structure on
real quantum hardware. To achieve this, we employed sampled-
based diagonalization as an eigensolver subroutine. We have
benchmarked the resulting QBE-SQD method on a hydrogen
ring consisting of 8 atoms in the cc-pVDZ basis. These results
have been compared to those of the classical methods DMRG,
SHCI (DICE), CASCI, and BE-FCI.

We have shown evidence that QBE-SQD can outperform SQD
with a much smaller circuit volume. By examining the number
of Slater determinants during the conguration recovery
process, we have discovered that this favored performance is
because the fragmentation process in QBE naturally reduces the
impact of noise on near-term quantum hardware at a faster rate
than the energy accuracy reduction from the fragmentation
itself. These results together suggest that quantum bootstrap
embedding provides a feasible pathway toward a utility-scale
electronic structure on quantum computers.

Looking forward, several challenges remain towards real-
izing this goal of large utility-scale quantum computational
chemistry. One challenge is the performance of QBE-SQD for
strongly correlated systems, for example, the H8 ring at
stretched bond distances, where the optimization in bootstrap
embedding is more difficult than it is for equilibrium ones. It is
known that the use of Löwdin localized orbitals in combination
with large basis sets such as cc-pVDZ can lead to suboptimal BE
convergence,57 which we have also noted in the current work. An
optimal choice of basis set or orbital localization method that
can minimize the BE error and maximize the convergence rate
would be desired.

It has been claimed that there are circuits one can sample
from, which will generate more compact subspaces than some
classical SCI methods using LUCJ circuits with optimized
parameters.48 However, such circuits were not found to be able
to outperform DMRG and it is unclear whether or not the
classical SCI methods used represent the current state of the art.
This raises several important questions for the practicality of
SQD for utility-scale simulations. Can one systematically and
efficiently nd such circuits that outperform not just SHCI, but
the best available classical methods? How shallow are these
circuits? Are the probability distributions resulting from such
circuits such that the measurement overhead is tractable?
Additionally, there is the issue that SQD in its current form can
only sample a number of basis states which scales polynomially
with the system size. How restrictive is this in practice? Can one
nd relevant chemical systems whose ground states require
only a polynomial number of basis states, but for which all
classical methods fail to describe accurately? Can one develop
a “more coherent” version of SQD for which this limitation is
less restrictive? We note that there have been recent attempts to
address this question. These include Krylov diagonalization
methods,8,58 Hamiltonian simulation-based methods,59,60 and
LUCJ circuits with numerically optimized parameters.61
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From a quantum soware development viewpoint, there is
also a lack of cohesive integration of classical HPC and
quantum hardware for quantum chemistry applications. QBE-
SQD must make (at a minimum) dozens of calls to the
quantum eigensolver with large classical diagonalization
subroutines done on a classical HPC cluster in between such
calls. Under the current paradigm where only a small number of
quantum computers are available through cloud computing,
the wait time in the queue for these machines can be on the
order of hours or even days for a single job, which becomes
a signicant bottleneck when a large number of such job
submissions is necessary. Furthermore, when the number of
Slater determinants used by SQD in the classical diagonaliza-
tion subroutine becomes large, the use of many nodes on a large
HPC cluster will likely become necessary. Thus, for large-scale
demonstrations of QBE-SQD, the options available to an
experimentalist would be to (1) have a reserved on-site quantum
computer and HPC cluster, (2) use quantum cloud computing
and absorb the cost of reserving large amounts of idle classical
HPC time, or (3) design the soware and job scheduling inter-
actively between quantum and classical computers in such
a way that the classical HPC job is canceled aer each quantum
job submission and then restarted at a checkpoint once the
quantum job nishes. We look forward to future development
to push forward the frontier of quantum computational
chemistry.
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