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Solubility quantifies the concentration of a molecule that can dissolve in a given solvent. Accurate prediction
of solubility is essential for optimizing drug efficacy, improving chemical and separation processes, and
waste management, among many other industrial and research applications. Predicting solubility from

first principles remains a complex and computationally intensive physicochemical challenge. Recent

successes of graph neural networks for molecular learning tasks inspire us to develop HASolGNN,

a hierarchical-attention graph neural network for solubility prediction. (1) HASolGNN adopts a three-

level hierarchical attention framework to leverage atom-bond, molecular, and interaction-graph level

features. This allows a more comprehensive modeling of both intra-molecular and inter-molecular
interactions for solute-solvent dissolution as a complex system. (2) To mitigate the impact of small

amounts of annotated data, we also investigate the role of Large Language Models (LLMs), and introduce
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HASoIGNN-LLMs, an LLM-enhanced predictive framework that leverages LLMs to infer annotated

features and embeddings to improve representation learning. Our experiments verified that (1)
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1 Introduction

Solubility is broadly relevant to many applications, including
nuclear waste separation,™* environmental pollution control,?
development of advanced materials in the semi-conductor
industry,**> autonomous robotics synthesis,*” crystallization,?
and protein ligand bonding in the biomedical field.>* In
particular, aqueous solubility refers to the solubility of a solute
in water. It plays an essential role in pharmaceutical science,”**
since (1) accurate prediction of solubility is critical for selecting
promising drug candidates during the screening process, and
(2) all drugs in the body exert their therapeutic effects in the
form of aqueous solutions, which means lower solubility
diminishes both their efficacy and bioavailability. Therefore,
high-precision computational methods for solubility prediction
can substantially decrease the experimental costs and time
associated with drug development while enabling chemists to
develop formulations that maximize drug efficacy and improve
patient outcomes.

Fig. 1 shows a solubility prediction pipeline, involving four
components:  solubility dataset curation, description
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HASolGNN outperforms the state-of-the-art methods in solubility prediction; and (2) HASolGNN-LLMs
effectively exploits LLMs to enhance sparsely annotated data and further improves overall accuracy.

generation, model training, and solubility prediction. Solubility
data typically refer to the SMILES™ of solute and solvent pairs,
log S (log-scale solubility), as well as the molecular features such
as melting point (MP), molecular weight (MW), and volume.
The pipeline then converts the SMILES into (1) molecular
graphs and (2) molecular fingerprints (physiochemical
features). Molecular graphs will be used to train graph neural
networks (GNNs) and their variants (e.g., ref. 16-19), while
molecular fingerprints are typically used by traditional machine
learning and domain methods (e.g., ref. 20-23). Next, the
models predict solubility for critical applications in areas such
as drug discovery.

1.1 State-of-the-art

Solubility prediction has been a long-standing challenge. A host of
methods have been developed to predict the solubility of molec-
ular systems. Recent approaches fall into three categories: (1)
domain-specific methods, rooted in principles of quantum
mechanics and thermodynamics; (2) traditional ML-based
methods, which leverage established regression models and
ensemble learning to predict solubility; and more recently, (3)
graph neural network (GNN)-based methods, which utilize
molecular graphs to model atoms and bonds and train GNNs as
regression or classifiers.

(1) Domain-specific methods adhere to the quantitative struc-
ture-property relationship (QSPR) framework.> They regress
solubility against a selected set of molecular descriptors, capturing
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Fig.1 Solubility prediction pipeline. Solubility prediction models are categorized into three major types, with critical applications spanning fields

such as material separation and drug discovery.

the structural and physicochemical properties of compounds.
Depending on the underlying theoretical foundation, such
methods employ a range of mathematical models, including
differential and partial differential equations, to predict
solubility.>>**%*

(2) Among ML-based methods, boosting methods such as
XGBoost™ and random forest® have been widely applied. Other
ML models include multi-layer perceptron (MLP)** and artificial
neural networks (ANNs).”»* These methods take molecular
fingerprints as input features, leveraging the encoded molecular-
level structural information to predict solubility.

(3) Several GNN-based methods were developed, which exploit
graph convolutional networks (GCNs),'*"” gated graph neural
networks (GGNNs),**° node-level attention-based graph attention
networks (GATs),*** and molecular representation learning inte-
grating both node- and graph-level attention mechanisms (Atten-
tiveFP)."** Among these methods, AttentiveFP has demonstrated
superior performance, establishing itself as the current leading
approach in GNN-based solubility prediction.™®

Apart from the methods specifically developed for solubility
prediction, recent studies have extended graph neural networks to
related molecular property prediction tasks. Leenhouts et al**
introduced SolProp-mix, a GNN-based framework for predicting
solvation free energy and enthalpy in solvent mixtures. Building
on previous D-MPNN models for pure solvents, they proposed
a permutation-invariant pooling function (MolPool) that enables
learning across mixtures of arbitrary composition. Similarly, Jung
et al® developed a GNN framework to predict solubility in
multicomponent solvent systems. They compared two GNN
architectures: a concatenation model versus a subgraph model,
with the latter showing higher accuracy by better capturing solute-
solvent interactions. They incorporated a teacher-student semi-
supervised distillation (SSD) approach to expand chemical
coverage and improve prediction robustness.

1.2 Challenges & opportunities

While the aforementioned approaches have been applied for
solubility prediction, several data challenges, and hence
opportunities for improvement, remain.

Digital Discovery

(1) Rich features, “small” annotated data. Most methods fit
models on molecular fingerprints alone. Sequential encoding
often overlooks high-value features at the atom and bond
(“edges” between atoms), and topological features at the
molecular level. On the other hand, such features may be scarce
in small and heterogeneous sources, among which few are
annotated or labeled.

(2) Inter-molecular interaction: solubility is determined by
a dynamic interaction process involving solute and solvent pairs.
Existing GNN-based methods often model the solubility with
atom- and bond-level representations of the solute alone, but lack
the necessary expressiveness to explicitly and holistically char-
acterize the dynamic interactions of solute-solvent pairs, and
hence often hardly generalize for accurate solubility analysis.

(3) Existing domain-specific methods are often constrained by
domain hypotheses and models, mostly leading to case-by-case
analysis. Most methods are specialized for aqueous solubility or
limited to fixed groups of solvents. Hence existing methods are
often hard to be generalized for solubility prediction.

In response, we advocate the development of a solubility
predictive framework as a “general recipe” to be broadly applied
across diverse solute-solvent systems. Such a framework should
be able to (a) best harvest a “hierarchy” of features from atom-,
bond-, and molecular-level features, as well as environmental
and other external features; (b) characterize inter-molecular
interaction for more comprehensive and accurate modeling of
solubility; and (c) easily integrate, annotate and align hetero-
geneous features with few or no annotated data.

1.3 Contribution

To address these challenges, we propose HAS0IGNN, a physics-
informed graph model for solvent analysis.

(1) We propose HASOIGNN, an expressive framework that can
capture hierarchical, multi-level interactions and patterns
among atom, bond, and (inter- and intra-) molecular features.
HASO0IGNN enables solubility prediction across a wide range of
solute-solvent pairs, irrespective of solvent types. HASOIGNN
achieves this through the integration of hierarchical attention
mechanisms across three key components: the atom

© 2025 The Author(s). Published by the Royal Society of Chemistry
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embedding (AE) block, the molecular embedding (ME) block,
and the interaction-graph embedding (IE) block. Experimental
results demonstrate that HASoIGNN significantly outperforms
the state-of-the-art graph neural network methods, establishing
new benchmarks in performance.

(2) We further propose HASoIGNN-LLMs that integrates
large-language models (LLMs) as a modular component,
leveraging contrastive learning for fusion with HASoIGNN to
address the “small dataset” challenges frequently encountered
by the scientific community. Our experiments show that
HASOIGNN-LLMs yields substantial improvements in solubility
prediction under such data-scarce conditions, offering a poten-
tial solution to this common limitation.

(3) We conduct a new comprehensive evaluation of the
performance of diverse graph neural network variants on three
extensive and representative public solubility datasets, bench-
marking our method's performance against the state-of-the-art
methods. Our efforts offer valuable insights into the use of
GNNs for solubility prediction that benefit both the chemistry
and computer science communities.

We summarize other related work below.

1.4 Graph learning for system-level regression

Graph Neural Networks (GNNs)*® have been extensively studied for
general graph analysis tasks. A GNN may exploit spectral-based,
attention-based, and spatial-based convolutions to manipulate
node features, edge features, and graph-level representations.
Notable variants include graph convolutional networks (GCNs),*”
GraphSAGE,*® graph attention networks (GATs),* and graph
isomorphic networks (GINs).** While GNNs are widely adopted for
node classification or link prediction, the use of GNNs for system
modeling with multiple participating molecules has been much
less explored. As aforementioned, existing GNN-based methods,
while being adaptable for graph-based molecular property
prediction, rely on graph-level pooling strategies to produce
numeric predictions for solubility. Therefore, these approaches
overlook the potentially complex interactions among molecules, as
they remain constrained to explicitly model the interactions
among molecules in a dynamic system.

1.5 Graph learning for molecular property prediction

Recent effort has applied graph learning for molecular property
prediction. Recurrent graph neural networks (RGNNs)*'™** were
among the first GNNs utilized for molecular property predic-
tion. RGNNGs iteratively apply shared weight matrices, enabling
the model to capture dependencies over multiple iterations.
Conv-GNNs**** introduce iteration-specific weights, enhancing
flexibility and expressiveness. Specifically, spectral Conv-GNNs
operate in the spectral domain using graph Laplacian trans-
formations, while spatial Conv-GNNs directly aggregate features
from neighboring nodes. Architectural innovations such as
advance pooling strategies,”"** skip-connections,”»** and
architecturally distinct GNNs**® can be integrated into GNNs in
general to improve feature aggregation for molecular system
modeling. We consider these as potential opportunities to
improve our methods in the future.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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2 Methods

2.1 Preliminary

2.1.1 Molecule as a graph. We represent a molecule as
agraph G = (V,E,X,Y, &), where Vis a node set, in which each
node represents an atom; and E refers to the set of edges
(bonds) between atoms. X is a node feature matrix, where each
entry x, represents the node feature vector of node v € V. The
node feature vector includes atomic number, degree (number of
bonds connected to the atom), formal charge, number of
unpaired electrons (radical electrons), hybridization state (e.g.,
sp®, sp’, and sp), aromaticity, number of implicit hydrogen
atoms, chirality and chirality type.*®

Similarly, Y is a bond feature matrix, where for each edge
(bond) e € E, Y. is a feature vector that contains bond type
(single, double, triple, or aromatic), conjugation (binary, 1 if the
bond is conjugated, 0 otherwise), ring (1 if the bond is part of
a ring, 0 otherwise), and stereo (a one-hot encoded vector of
length 4 to represent the stereochemistry of the bond).*”

In addition, # contains graph-level features, encompassing
structural and functional characteristics (e.g. molecular weight
and total charge), along with environmental factors such as
temperature and pH, which influence the molecule's behavior.

2.1.2 Molecule system regression. We define molecule
system regression as a class of tasks on predicting properties
arising from complicated interactions among p molecules. Given
a series of molecular graphs Gy, G,, ..., G, and historical data of
their (chemical) reactions, it aims to derive a regression model to
predict a numeric value for system-level computable properties,
such as solubility, affinity, toxicity, and side effects.

Solubility prediction is a special case of the above system-level
regression problem when p = 2, specifying two interacting classes
of molecules: the solute (G,) and the solvent (G,). Our goal is to
train a GNN model M, which takes G; and G, as input to minimize
solubility prediction errors %s(Gy, G,, L, #), where L and 6 refer to
ground-truths and the set of parameters in M, respectively.

Conventional GNNs fall short of directly serving as a desired
model M due to limited expressiveness. Ideally, (1) M should be
able to exploit the rich features from different levels in G; and
G,, ranging from atom-level to molecule-level; (2) M should be
expressive enough to describe the physical nature of solubility
as an interactive system, which not only capture molecule-level
embeddings, but also capture complex atomic and bond inter-
actions, as well as the “non-local” interactions among the
molecules. This allows explicit modeling of the molecular
interactions between the solute and the solvent pairs, beyond
what a straightforward application of GNNs can express.

2.2 HASO0IGNN framework

We next introduce the HASOIGNN architecture and its key
components including the input layer, atom embedding block,
molecular embedding block, and interaction-graph embedding
block.

2.2.1 Model architecture. We start with the architecture of
HASOIGNN, as illustrated in Fig. 2. It consists of the following
key modules.
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2.2.1.1 Featurization and input layer. HASOIGNN converts
the SMILES representations of solute S; and solvent S, into the
featurized solute graph G; = (Vq,E;,X;,Y:, %) and solvent
graph G, = (V3,E»,X,, Y2, %,). The input layer standardizes
them into G; and G, by combining their node and bond
features;

2.2.1.2 Molecular fingerprint generation module (MFGM).
HASOIGNN fits G, and G, into MFGMs. Each MFGM is
composed of one Atom Embedding (AE) block and two Molecule
Embedding (ME) blocks. The AE block processes G, or G,, while
the ME blocks take G;M or G, as input. Here, G, (resp. G,™)
refines its original counterpart G, (resp. G,) with a simple “star-
structure”, each containing a centering “supernode” connected
to all the atoms in G; or G,. The embeddings produced by the
AE block are fed into the first ME block. In contrast, the second
ME block directly utilizes the initial node and bond features of
the molecular graphs;

2.2.1.3 Embedding fusion. HASOIGNN leverages a novel
fusion mechanism to combine the embeddings representing
molecule level representations of the solute and solvent from
the two MFGMs with graph-level features %, and &, to generate
the molecular fingerprints MFg,¢ for the solute and MFgoyene
for the solvent;

2.2.1.4 Interaction graph. HASOIGNN constructs the inter-
action graph comprising two nodes: G, representing the solute
with MFg, e as its node features, and G,, representing the
solvent with MFg,ene as its node features. The integration-
graph embedding (IE) block processes the interaction graph
to produce the system-level fingerprint MF,g, which is passed to
the output layer to predict solubility (Fig. 3).

We next detail the key components of HASOIGNN.

2.2.2 Input layer. For each node v € V, the input layer
concatenates the node features from the neighboring nodes and
edge features from the incident edges and unifies the node
representations across all nodes by taking both initial atom and
bond features into account. The input layer standardizes the
input and ensures that both the initial bond and atom features
participate in the following message passing. The input layer
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Fig. 3 Internals of the atom embedding block, molecule embedding
block, and interaction-graph embedding block (a series of GAT and
LSTM layers) and the fusion mechanism (fusion of graph-level struc-
tural representations and environmental factors).

generates the wupdated molecular graphs, incorporating
enhanced node features derived from the original node and
edge attributes. These updated graphs G; and G, are then
passed to the downstream AE block and one of the ME blocks in
the MFGM. Formally, we represent the input layer as follows:
h, = ReLU(Wy,x,), VveV;
h,’ = ReLU(W},,CONCAT(x,, yw.)), YueN(v);
a,." = Soft max (LeakyReLU(W[th, huOD);

h' = GRU (ELU ( Z . Wh‘,") hv‘))

ue N(v)

(1)

where Wy , Wi, and W are learnable weight matrices, and ELU
denotes the exponential linear unit activation function.

2.2.3 Atom Embedding (AE) block. As illustrated in Fig. 5,
the atom embedding (AE) block consists of an iterative process
comprising (1) a message-passing phase, implemented using
a Graph Attention Network (GAT) layer, followed by (2) a readout
phase utilizing a Long Short-Term Memory (LSTM) layer that
performs information filtering and models long-range depen-
dencies. The AE block fits directly on the output of the input
layer x, = A4, the updated node embedding derived by the input
layer. At the first iteration, both the hidden state #; and cell
state ¢, are initialized to x,. At the tth iteration (¢ > 1), A, is

|IE Block

Solubility

Fig.2 HASoIGNN framework. MFGM: molecular fingerprint generation module. Molecular graphs G, of the solute and G of the solvent are fitted
into different MFGMs, each consisting of one AE block and two ME blocks. The IE block fits on the interaction graph and outputs the system-level
representation. MF g is fitted into the output layer to generate solubility prediction.
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passed to the ¢th GAT layer to compute x;, which serves as the
input to the t-th LSTM layer. The ¢th LSTM layer updates its
hidden state to ., and cell state to c¢,;. We represent the
iterative refinement process as follows:

(hi+1,¢01) = LSTM(GAT (1, AG) (hiscr)), 1€ [1,K] (2)

After the k-th iteration, the final hidden state 4., will be for-
warded to the downstream tasks.

2.2.4 Molecular Embedding (ME) block. Within each
MFGM, two ME blocks that process synthetic graphs with
identical topology, where a single supernode connects to all
atoms in the molecular graph. However, the node features differ
between these blocks. For the top ME block, node features are
computed from the output of the AE block such that (1) the
initial supernode embedding is obtained by pooling %;.., and (2)
the node features of all atoms are directly inherited from the
their embeddings in %;.,. In contrast, the bottom ME block
constructs node features from the output of the input layer such
that (1) the initial supernode embedding is derived by pooling
k" and (2) the node features of all atoms directly inherited from
the updated molecular graphs from the input layers (Fig. 4).

2.2.5 Fusion mechanism. We propose a novel fusion
mechanism to integrate graph-level features &; and &, that
capture contextual information such as environmental factors
(EFs) with the embeddings from the output of the MFGM, which
convey structural relationships. Our fusion mechanism, illustrated
in Fig. 5, comprises two steps: (1) cross-attention and (2)
concatenation.

The cross-attention module consists of learnable parame-
ters: query Wq, key Wy, and value Wiy. These are used to
compute the cross-attention scores between the structural GNN
embeddings and the EFs. Specifically, it calculates the cross-
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Fig. 5 Internals of the atom embedding block, molecule embedding
block, and interaction-graph embedding block (a series of GAT and
LSTM layers) and the fusion mechanism (fusion of graph-level struc-
tural representations and environmental factors).

attention score between the molecule-level structural
representation s obtained from the MFGM and the environ-
mental factors vector e defined in Sec. 2, where s serves as the
key, representing the referenced information. The resulting
attention weight « transforms e into €/, which will be then
concatenated with s to derive the molecular fingerpints MFoyte
for the solute and MFg,en: for the solvent. Formally, we
represent the fusion mechanism as follows:

K™ |,
o = Soft max(Qﬁ);e =l
k

MF = CONCAT (s, e’)

(3)

where Q = Wqe, K = Ws, and V = Wye. The term dy denotes the
dimensionality of the key embeddings s.

2.2.6 Interaction-graph Embedding (IE) block. HASOIGNN
constructs the interaction by creating two interconnected
nodes, each representing the solute and solvent, respectively.
HASoIGNN fuses the outputs of the two MFGMs with

HASoIGNN :
1

MFsolute l_’(m]l

*. Interaction :

Graph I

=6y [(Pool)

\J e \J I

/, I

|V":solvent .

Projection .

» 1 g————»hym

Fig.4 HASOIGNN-LLMs. The LLM module collaborates with HASOIGNN to learn representations by aligning hy,, from GNNs and MF,g from LLMs
within a shared embedding space. A contrastive loss Z. enforces this alignment, ensuring that complementary knowledge can be effectively

leveraged from both sources.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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environmental factors (EFs) to derive the molecular fingerprint
for the solute MF,,e and the molecular fingerprint of the
solvent MFg,vent. These molecular fingerprints are assigned as
the node features for their corresponding nodes. The IE block
then processes the integration graph as the computation graph
to compute the system-level fingerprint, MFjg.

2.2.7 Hierarchical attention mechanism. HASOIGNN
employs GATs at every iteration of the message-passing phase
within the AE, ME, and IE blocks, as well as the input layer. This
design establishes a three-level hierarchical attention mecha-
nism: (1) node-level and bond-level attentions to capture fine-
grained features from the molecular graphs; (2) molecule-level
attention derived from synthetic graphs, where each graph
includes a supernode connected to all atoms in the corre-
sponding molecular graph; and (3) system-level attention to
extract high-level interactions from the interaction graph.
HASOIGNN leverages this hierarchical message-passing frame-
work to encode information in a progressively compact manner,
transforming detailed atom and bond features progressively
into a compact and structured system-level representation.

2.2.8 Loss function. During model training, the set of
parameters 6 of the HASOIGNN model M is optimized by mini-
mizing the errors between the solubility prediction of
HASO0IGNN and the ground-truth values:

N

75(Gy, G, L, 6) Z Pucy.0)(i) — L)) (4)
where N represents the number of solute-solvent pairs in the
training set, Py; denotes the predictions made by HASoIGNN,
and L corresponds to the ground-truth solubility values.

2.2.9 Cost analysis. The training complexity of HASOIGNN
is O(ek|E|dF* + ek|V|F®), and the inference cost is O(k|E|dF* +
k|VIF?). Here, |E| = |E4| + |E,| and |V| = |V4| + |V,l; e, k, F, and
d refers to the number of epochs, number of iterations in the AE
block, number of features per node, and the maximum node
degree of G; and G,, respectively. Please refer to the SI for
a detailed analysis and proof.

2.3 LLM-enhanced HASOIGNN

To mitigate the challenge posed by small datasets, we present
HASOIGNN-LLMs, an LLM-enhanced variant of HASoIGNN. It
leverages LLMs as (1) a feature enricher: expanding the feature
space and enhancing molecular representations to maximize the
utility of available context for solubility prediction from unstruc-
tured textual input such as lab, instrument or literature; and (2)
a pseudo-annotator: providing estimations of solubility that are
guided by proper prompting and conform to the context.

2.3.1 Architecture details. We next introduce the primary
components of the pluggable LLM module integrated into
HAS0IGNN-LLMSs.

2.3.1.1 Generating textual descriptions. HASOIGNN-LLMs
incorporates a customizable library of LLMs, including, for
example, GPT-4 (ref. 58) and Llama 3 (ref. 59), to generate
textual descriptions of solubility estimations based on their
structural and chemical properties of both solute and solvent

molecules. Specifically, given a solute-solvent pair, we
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incorporate the SMILES strings of the solute S; and solvent S,
to query LLMs with the following template P(S;, S5, Q)f:

“Given two molecules represented by SMILES strings: Solute: [S]; Solvent:
[S2]. We also know [Q]). Using explicit molecular structures, provide
precise, concise, and structure-based descriptions about the solubility of
[S1] in [S,]. Discuss chemical properties mentioned in [Q] that influence
solubility, such as polarity, hydrogen bonding, and molecular size. Avoid
speculative physicochemical inferences.”

Here Q refers to user-specified, task-specific domain knowl-
edge such as knowledge about the chemical structure.'®®* In
practice, Q consists of curated documents that outline key
factors influencing solubility, include illustrative examples and
contain answers from relevant literature. This ensures that the
generated descriptions are grounded in established chemical
knowledge.

2.3.1.2 Deriving the embedding hy;,,. Upon the generation of
textual descriptions by LLMs, HASOIGNN-LLMs utilizes a text
encoder such as SciBERT®* and PubmedBERT® to transform
chemical textual descriptions into global-level text embeddings
Temd Dy extracting the [CLS]* token embedding. Given the high
dimensionality of Tema, HASOIGNN-LLMs employs a multi-layer
perceptron (MLP) to project Temq into a low-dimensionality
latent space, Ay, aligning its dimensionality with that of the
MFj; to ensure compatibility. In the case of SciBERT, we specify
the process as follows:

I = MLP(SGiBERT(LLMSs(P(S1,52,0)))) (5)

2.3.1.3 Embedding enhancement. To integrate the embed-
dings from HASoOIGNN with the LLM module -effectively,
HASOIGNN-LLMs learns a joint representation by combining
the system-level HASOIGNN embeddings MF;s with the textual
embeddings Ay, derived from the LLM module. We employ an
unsupervised contrastive loss, L. (please refer to Eqn. (6)), to
minimize the distance between MF,g and Ay, for the same
solute-solvent pair. Besides, incorporate a negative
sampling strategy® to construct negative solute-solvent pairs (z,
'), where © = (S, S,) and 7 = (S, S,) such that t # 7. For these
negative pairs, L, maximizes the distance (minimizes the simi-
larity) between MF;; of t and Ay, of 7/, ensuring proper sepa-
ration between positive and negative pairs. This allows
HASOIGNN-LLMs to differentiate between positive and nega-
improving its predictive and representational

we

tive pairs,
capabilities.

2.3.1.4 Loss Function. The loss function of HASOIGNN-LLMs
& comprises (1) a supervised % that captures the solubility
prediction errors from HASoIGNN and (2) an unsupervised
contrastive loss Z. to ensure the proper enhancement by
combing the system-level MF;; from HASoIGNN and the pro-
jected Ay, derived from the LLM module. We formulate % as
follows:

T We showcase example prompts and LLM responses in the full version.*

© 2025 The Author(s). Published by the Royal Society of Chemistry
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“I have two molecules represented by SMILES strings: Solute:
[CCO]J; Solvent: [O]. Based on their molecular structures,
provide specific, compact, and tailored descriptions about the
solubility of the solute in the solvent. Discuss any chemical
properties that influence solubility, such as polarity, hydro-
gen bonding, molecular size, or others. ”

Fig. 6 An example of the prompt used to query the LLM.

Q(le G27L7 07 S17S21 Q) = QS(GH G27L7 0)

+ 22 (MF16(G1, Gy, 0), im (S1, 52, Q)); ©)
1

L=
2N

i {yi'Diz + (1 — ;) -max(0,m — D,—)z]

Here, D; is the distance equal to one minus the similarity
between the i-th MFyg and i-th Ay, m is a margin value, A
denotes the balancing factor between %5 and %., and y; indi-
cates whether the pair is positive (y; = 1) or negative (y; = 0).

2.3.2 An example of the prompt and LLM response. We
showcase an example of the prompt following the template P(S;,
S,, Q) and its corresponding response from the LLM. Fig. 6
illustrates an example of the prompt for querying the solubility
of solute [CCO] in solvent [O] . Fig. 8 provides the corresponding
response from GPT -4 for the above prompt. We highlight the
key words in different colors and their corresponding responses
in same color.

How LLMs help the small-data challenge? The LLM
component in HASoIGNN-LLMs is designed to address the
small-data limitation by infusing domain knowledge and
generating complementary representations that go beyond
what can be learned from limited labeled samples. Specifically,
LLMs act as both a feature enricher and a pseudo-annotator. (1)
As a feature enricher, the LLM leverages its pretrained knowl-
edge of chemical language and concepts to produce detailed,
structure-aware textual descriptions of solute-solvent pairs,
which are then encoded into dense embeddings. These
embeddings enrich the molecular feature space with contextual
chemical information that may not be directly observable from
graph structures alone. (2) As a pseudo-annotator, the LLM
provides approximate solubility estimations through guided
prompting, effectively augmenting supervision in low-data
regimes. By aligning these LLM-derived embeddings with the

graph-based representations using a contrastive loss,
Sdiute —_ (e : Input Layer HASOIGNN !
—— CCCCo ' :
";upe‘r‘node" : MFgoute :
Gl 1 ‘\ Interaction
sGbve | pa '
i ' Fi @) !
S1 Solvents—» G5, G3 Input Layer Fa, F3 :
[ G2 o/O\O Gs : L ’_ - @ 1
S5,83  "supernode" 1 MFGM MFsolvent '
’ M .~ R T il sl
l Gzo/d— ¥G3 Cg\o cantrastive‘lr.oss

Fig.7 Adapted variant of HASOlGNN-LLMs with cosolvents G, and Gs.

© 2025 The Author(s). Published by the Royal Society of Chemistry

“The solute is represented by the SMILES string "CCO", which
corresponds to the chemical structure of ethanol. Ethanol is
a two-carbon alcohol, with a hydroxyl (-OH) functional group
attached to one of the carbon atoms. The solvent is repre-
sented by the SMILES string "O", which corresponds to the
chemical structure of water. Water is a polar molecule with
two hydrogen atoms bonded to one oxygen atom. The solubil-
ity of a solute in a solvent is largely determined by the "like dis-
solves like" principle, which states that polar solutes dissolve
in polar solvents, and nonpolar solutes dissolve in nonpolar
solvents. Both ethanol and water are polar molecules, so we
would expect ethanol to be soluble in water. Ethanol is polar
because of the -OH group, which has a polar bond due to the
difference in electronegativity between oxygen and hydrogen.
This allows ethanol to form hydrogen bonds with water, fur-
ther enhancing its solubility. The two carbon atoms in ethanol
contribute some nonpolar character to the molecule, but this
is not enough to prevent it from dissolving in water. In terms
of molecular size, ethanol is a relatively small molecule, which
also favors solubility in water. Larger molecules tend to have
more nonpolar character and are therefore less soluble in po-
lar solvents. In conclusion, based on the polarity, ability to
form hydrogen bonds, and small size of ethanol, we would ex-
pect it to be highly soluble in water.”

Fig. 8 Response from GPT-4 for the prompt in Fig. 6.

HASO0IGNN-LLMs learns to transfer chemically relevant patterns
from the LLM's large-scale pretraining to the solubility predic-
tion task, thereby improving generalization and robustness
despite the small dataset size.

2.3.3 Extension of HASOIGNN-LLMs to other reactions.
HASO0IGNN-LLMs can be adapted to handle more critical reac-
tions such as co-solvents, counter-ions, and (de-)protonation
reactions. For example, Fig. 7 illustrates a variant of HASOIGNN-
LLMs that takes a pair of solvents as the input instead of just
one solvent. Note that, in this case, there are three nodes in the
interaction graph where two denote solvents and one represents
solute. Currently, the factors highlighted by the referee (co-
solvents, counter-ions, and (de-)protonation reactions) are not
reported in the datasets that we considered. Therefore, data
availability is a critical consideration in extending these models
towards more complex chemical spaces.

3 Results and discussion

We experimentally evaluate the performance of HASOIGNN,
comparing it with ten GNN baseline models. Moreover, we
evaluate the performance of HASoIGNN-LLMs to understand
whether or how LLMs may be exploited. Our source code,
datasets, and a full version of the paper are made available }.

3.1 Methods

3.1.1 Evaluation metrics. We evaluate the performance of
our solubility predictions and baselines using Mean Absolute
Error (MAE) and R-squared, where solubility predictions by

} https://github.com/Yangxin666/HASOIGNN
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HAS0IGNN, HASolGNN-LLMs, and all baselines are expressed
as the natural logarithm (base e) of the solubility values.

3.1.2 Datasets. To validate the effectiveness of our model,
we conduct experiments on three large-scale benchmark solu-
bility datasets. We clarified the overlaps among the three
curated datasets. Exp-DB contains the largest number of unique
solute-solvent pairs, while MolMerger, which integrates data
from BigSolDB, BNNLabs Solubility, and ESOL, exhibits
substantial overlap with BigSolDB (overlap size = 4964). In
contrast, the direct overlaps between Exp-DB and BigSolDB, and
MolMerger and Exp-DB are smaller (overlap size = 51 and 1189
respectively). To estimate dataset noise, we examined repeated
solubility measurements (e.g., identical solute-solvent pairs
measured under similar conditions). The per-pair standard
deviation across such duplicates indicates an intrinsic noise
level of approximately 0.53 log S units on average across the
three datasets, reflecting the experimental uncertainty inherent
in solubility measurements. HASOIGNN's test error (MAE =
0.73 log S for Exp-DB and = 0.75 log S for BigSolDB) is consis-
tent with statistical limit, suggesting that the performance is
noise-limited rather than model-limited, indicating that further
improvements are constrained by data noise rather than by the
expressiveness or capacity of HASOIGNN.

(1) Exp-DB:* this dataset contains 11 637 experimentally
measured solubility values at temperatures of 298 K (+2 K).
Each value corresponds to a unique solute-solvent pair. It is the
largest dataset in terms of unique pair counts. (2) MolMerger:*®
it comprises 6975 unique solute-solvent pairs, each with
a measured solubility value at temperatures near 273 K. The
MolMerger dataset integrates data from three distinct sources:
4964 values from BigSolDB," 1093 values from BNNLabs Solu-
bility,*” and 972 values from ESOL.*® (3) BigSolDB:* the largest
solubility dataset in terms of sample sizes. It includes 54 273
individual solubility values for 830 unique molecules and 138
distinct solvents, measured over a temperature range of 243.15
to 403.15 K at atmospheric pressure. Despite its size, BigSolDB
contains fewer unique solute-solvent pairs compared to the
other two datasets, with only 4964 unique pairs.

Table 1 Comparison of solubility prediction errors (MAE) for
HASolGNN and baselines — best results in bold

Methods Exp-DB ~ MolMerger  BigSolDB
GCN*® 0.9911 0.9450 1.2926
GAT* 0.9538 0.8856 1.3035
GraphSAGE®® 0.9971 0.9446 1.2851
GIN'® 0.9519 0.9520 1.2691
GatedGNN*° 0.9191 0.8518 1.2592
ResGatedGNN>° 0.9606 0.8754 1.2830
CGCN"° 1.0184 0.9758 1.3534
GraphTransformer”* 0.9452 0.9006 1.2737
MFGNN*® 0.9542 0.8425 1.2695
AttentiveFp*? 0.8688 0.8036 1.0521
XGBoost”? 1.0293 0.9847 1.3858
MPFP”? 0.9635 0.8702 1.2781
HASOIGNN (ours) 0.7315 0.7124 0.7408
Improvements over AttentiveFP  15.81% 11.35% 29.59%
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For Exp-DB and MolMerger, no environmental features are
reported. For BigSolDB, the only reported environmental
feature is temperature.

We ensure that data splitting for all datasets is performed
strictly based on unique solute-solvent pairs. In particular, Bi-
gSolDB contains multiple solubility measurements for identical
solute-solvent pairs across varying temperatures. To prevent
data leakage, we group all entries sharing the same solute-
solvent pair as a single unit before performing the split. This
guarantees that all temperature-dependent measurements of
a given pair remain entirely within one subset (training, vali-
dation, or testing). For Exp-DB and MolMerger, we partitioned
each dataset based on unique solute-solvent pairs, assigning
60% for training, 20% for validation, and 20% for testing to
ensure fair and consistent performance evaluation. For Bi-
gSolDB, because solute-solvent pairs exhibit distinct tempera-
ture ranges, we adopted a slightly adjusted split of 62.2% for
training, 18.5% for validation, and 19.3% for testing to main-
tain balanced coverage across temperature conditions.

3.1.3 Baselines. We compare HASoIGNN with following
baselines: (1) GCN:'* applies a localized first-order approxima-
tion of spectral graph convolutions; (2) GAT:*' graph attention
networks with a node-level attention mechanism, using self-
attention to learn the attention scores for the neighbors; (3)
GraphSAGE:* learns node embeddings by sampling and
aggregating features from a node's local neighborhood; (4)
GIN:*® graph isomorphic network aggregates node features
using a sum function, followed by a MLP to update embed-
dings. It is provably as powerful as the Weisfeiler Lehman graph
isomorphism test. (5) GatedGNN:** uses gated recurrent units
(GRUs) to propagate information across nodes in a graph over
multiple time steps, enabling the network to capture complex
dependencies; (6) ResGatedGNN:* incorporates residual
networks into multi-layer gated graph ConvNets. (7) CGCN:"
Crystal Graph Convolutional Neural Network (CGCN) is a graph
convolutional neural network framework to learn graph-level
properties from the connection of nodes in the graph,
providing a universal and interpretable graph-level representa-
tion. (8) GraphTransformer:”* utilizes multi-head attention to
enable attentive information propagation between nodes,
enhancing graph learning capabilities. (9) MFGNN:** MFGNN
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Fig. 9 Visualization of solubility prediction errors of HASOIGNN vs.
AttentiveFP on Exp-DB (MAE & R-squared).
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introduces a GNN that allows end-to-end learning of prediction
pipelines whose inputs are graphs of arbitrary size and shape.
(10) AttentiveFP:** the SOTA GNN molecular representation
learning method. AttentiveFP leverages both atom- and
molecule-level attention mechanisms by stacking graph atten-
tion networks with gated-recurrent units to capture the hierar-
chical molecular structures. AttentiveFP is capable of extracting
non-local intramolecular interactions that are intractable for
other graph-based representations. (11) XGBoost,”” an opti-
mized gradient boosting framework based on decision trees,
trained on hand-crafted molecular descriptors and fingerprints
rather than graph-based representations. (12) MPFP:”* message-
passing with fingerprints implements a message-passing neural
network (MPNN) using traditional circular fingerprints as node
features, bridging the gap between -classical molecular
descriptors and learned representations.

We trained all baselines with consistent settings (data splits,
hyperparameter tuning, etc.) for fair comparisons. Only Atten-
tiveFP adopted a two-level (atom and molecular) representation.
For the rest, we adopted, as a routine, the node-level features
(SMILES).

3.1.4 Hyperparameter tuning. We perform a grid search
over the validation loss to find the optimal set of hyper-
parameters, following the methodology outlined in ref. 74. We

HASOIGNN vs. HASoIGNN-LLMs
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Fig. 10 Test MAE and R-squared of HASolGNN vs. HASolGNN-LLMs
on a small dataset. Sample sizes from 116 to 1160 correspond to 1-10%
randomly sampled data from Exp-DB. The test MAE of each sample
size is averaged from 50 different samples.
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varied k of the AE block in the set {1, 2, 3, 4}, ¢ of the ME block in
the set {1, 2, 3, 4}, & of the IE block in the set {1, 2, 3, 4}, the
number of epochs e in the set {25, 50, 100, 150, 200}, the
learning rate Ir from {0.001, 0.01, 0.05, 0.1}, the contrastive
balancing term 2 in the set {0.5, 1, 5, 10, 25, 50, 100}. Within
GPT-4, we vary temperature in {0.1, 0.3, 0.5, 0.7, 0.9} and top_p
in{0.1, 0.3, 0.5, 0.7, 0.9}. Based on the validation loss, we choose
kequal to 3,t, h,and Ato be 3, 1, and 5, epochs to be 100, Ir to be
0.01, temperature to be 0.3 and top_p to be 0.7.

3.2 Results and discussion

3.2.1 Solubility prediction accuracy. We first report the
performance of HASoIGNN across all three datasets, compared
to ten GNN baselines. As shown in Table 1, AttentiveFP achieves
the best results across all baselines. HASOIGNN outperforms
AttentiveFP by further reducing MAE by 15.81%, 11.35%, and
29.59% on the Exp-DB, MolMerger, and BigSolDB dataset,
respectively. Fig. 9 visualizes the solubility prediction errors of
HASOIGNN compared to AttentiveFP on Exp-DB. The results
indicate that HASolGNN predictions align more closely with the
ideal fit (where predicted values equal actual values). Specifi-
cally, compared to AttentiveFP, HASoIGNN (1) achieves a lower
test MAE and a higher test R-squared; (2) produces 29.92% (178
compared to 254) fewer predictions with absolute errors
exceeding two (outside the two green lines). Next, we compare
the performance of HASoIGNN over non-GNN-based methods.
XGBoost uses handcrafted molecular descriptors and therefore
typically performs worse than GNNs, which learn molecular
structures directly. MPFP adds learned propagation over
fingerprint features and performs better than XGBoost, but
below mid-tier GNNs (e.g., GatedGNN, GIN).

How LLMs improve performance on “small” datasets? To
study how the LLM module potentially improves the perfor-
mance over the small dataset, we randomly sample subsets with
sample size ranging from 116 to 1160, corresponding to 1% to
10% the size of the Exp-DB dataset. For each sample size, we
randomly sample 50 different sample sets and calculate the
average and standard deviation from them, as shown in Fig. 10.
We follow the same training, validation, and test split propor-
tions described in Sec. 3.1. We observe the followings from
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Fig. 11 Visualization of solubility prediction errors of HASOIGNN vs.
HASolGNN-LLMs on a small dataset (test set size = 62).
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Out of Sample Solubility Prediction
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Fig. 12 An example of prediction of the solubility of a solute—solvent
pair across varying temperatures (BigSolDB).

Fig. 10: (1) HASoIGNN-LLMs consistently achieves lower test
MAE (higher test R-squared) compared to HASOIGNN as the
sample size grows from 1% to 10% of Exp-DB; (2) the error
reduction (improvements in R-squared) achieved by
HASOIGNN-LLMs gradually reduces as the sample size
increases; and (3) for both HASoIGNN and HASoIGNN-LLMs,
the errors decrease (R-squared increases) as the sample size
grows. The shrinking reduction of errors and improvements of
R-squared by HASoIGNN-LLMs can be attributed to the higher
data availability and quality as more samples are included,
which enhances the effectiveness of supervised graph learning.
Notably, at the 10% sampling rate, the performance gain
(reduction in MAE) achieved by HASoIGNN-LLMs is only 0.0114,
suggesting that the benefit of the LLM module gradually
diminishes. Nonetheless, performance at small data sizes is
extremely valuable given the significant cost of obtaining
effective experimental data for new classes of systems (Fig. 11).

We next investigate how incorporating the LLM module may
help under the inductive learning setting on BigSolDB. This
scenario presents challenges due to dataset sparsity, which
arises from the limited amount of unique solute-solvent pairs
in BigSolDB. Fig. 12 illustrates the performance of HASOIGNN-
LLMs and Attentive-LLM in predicting solubility of an out-of-
sample test solute-solvent pair across varying temperatures.

Robustness Comparison

1.0 +
09 --X\\\'____K
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Fig. 13 The robustness of HASolGNN vs. AttentiveFP in terms of
dataset size (sampled from Exp-DB).
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Table 2 Ablation studies w/o IE, ME, AE, or sum pooling
I: Interaction embedding (IE)  Exp-DB MolMerger  BigSolDB
HASOIGNN w. IE 0.7315 0.7124 0.7408
HASOIGNN w/o. IE" 0.8394 0.8014 1.0219
HASOIGNN w/o. IE w. CA” 0.7928 0.7657 0.8263
Improvements over’ 12.86% 11.11% 27.51%
Improvements over” 7.73% 6.96% 10.34%
II: Molecular embedding (ME) Exp-DB MolMerger  BigSolDB
HASOIGNN w. ME 0.7315 0.7124 0.7408
HAS0IGNN w/o. ME 0.7560 0.8354 0.8491
Improvements 3.24% 14.73% 12.75%
III: Atom embedding (AE) Exp-DB MolMerger  BigSolDB
HASOIGNN w. AE 0.7315 0.7124 0.7408
HAS0IGNN w/o. AE 0.7610 0.7720 0.7601
Improvements 3.89% 7.72% 2.54%
IV: Different pooling Exp-DB MolMerger  BigSolDB
HASOIGNN w. Average pooling  0.9033 0.7865 1.0214
HASOIGNN w. Maximal 0.8570 0.7643 0.8045
pooling
Improvements 17.17% 7.29% 8.60%

We observe that incorporating the LLM module to both Atten-
tiveFP and HASoIGNN can significantly improve the solubility
prediction in the inductive setting.

3.2.2 Robustness of HASOIGNN. We evaluate the robust-
ness of HASoIGNN against the state-of-the-art method Attenti-
veFP by randomly sampling the subsets of the Exp-DB dataset,
ranging from 20% to 100% of the size of the original Exp-DB
dataset. As the size of datasets increases, we observe two
major trends from Fig. 13: (1) the test MAE of both HASoIGNN
and AttentiveFP decreases slightly and (2) HASoIGNN consis-
tently outperforms AttentiveFP by maintaining comparable
performance gains across all sampling rates. The first trend
indicates that the larger datasets enhance the performance as
they provide enriched signals. In addition, the performance
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(a) AttentiveFP. (b) HASoIGNN.

Fig. 14 Visualization of solubility prediction errors of HASoOlGNN vs.
AttentiveFP on MolMerger (completely unseen setting, where both
solute and solvent in the test set are unseen during training).
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Table 3 Comparison of BigSolDB and BigSolDB v2 in terms of dataset size and test performance

Dataset Sample size Unique solutes Unique solvents Test MAE (trained on") Test MAE (trained on?)
BigSOlDB1 54273 830 138 0.7408 0.8521
BigSolDB v2? 103 944 1448 213 1.0932 0.9275

gains by both HASolGNN and AttentiveFP are relatively modest
between 20% and 100%. Even at the 20% sample rate, the
dataset contains a relatively large number of solute-solvent
pairs, given the large size of Exp-DB. The latter trend demon-
strates that HASOIGNN consistently delivers robust perfor-
mance gains over AttentiveFP. The improvements achieved by
HASOIGNN over AttentiveFP are non-trivial. As shown in Fig. 13,
across all sampling rates from 20% to 100%, HASoIGNN ach-
ieves an average 11.23% reduction in MAE, with performance
gains exceeding 10% at every sampling level. These consistent
improvements demonstrate the robustness of HASoIGNN in
capturing solute-solvent interactions across varying data sizes.

3.2.3 Ablation studies. We conduct four sets of ablation
studies to evaluate the effectiveness of the key components in
HASOIGNN: (1) w/o IE block: removing the Interaction-graph
Embedding (IE) block from HASoIGNN, case one: HASOIGNN
w/o IE, we replace the IE block by concatenation of both solute
embeddings MFg,uee and solvent embeddings MFggpen: With
a MLP layer; case two: HASOIGNN w/o. IE w. CA, we replace the
IE block by computing cross-attention between MFg, e and
MFovent and applied on MFpyee; (2) w/o ME block: the Mole-
cule Embedding (ME) blocks are removed, leaving only one
Atom Embedding (AE) block in both MFGMs (please refer to the
HASO0IGNN framework in Fig. 2); (3) w/o AE block: removing the
AE block from HASoIGNN (only one ME block left in both
MFGMs, please refer to Fig. 2); and (4) w/o sum pooling:
replacing all the sum pooling in HASoIGNN by either average
pooling or maximal pooling.

As illustrated in Table 2, we observe the followings: (1)
incorporating the IE Block into HASoIGNN reduces the test MAE
by an average of 17.16% across all three datasets compared to
HASOIGNN w/o. IE and an average of 8.34% compared to
HASO0IGNN w/o. IE w. CA; (2) adding the ME block improves test
MAE by an average of 10.24% across all datasets; (3) incorpo-
rating the AE block into HASoIGNN has less impacts on
prediction errors compared to IE and ME blocks, reducing the
test MAE by 4.72%; and (4) replacing the sum pooling with
average pooling increases the test MAE by 23.93% while
substituting it with maximal pooling results in an 11.02%
increase in test MAE. Our experiments have confirmed the
effectiveness of the key components and justify the design
choices including the IE block, ME block, AE block, and sum
pooling. Together, these components contribute significantly to
the improved solubility prediction achieved by HASOIGNN.

3.2.4 Generalization to new chemical classes. To evaluate
how HASOIGNN generalizes to out-of-the-sample test samples,
we partitioned the MolMerger dataset such that solutes and
solvents in the training, validation, and test sets are mutually
exclusive. This split follows a nearly 6: 2 : 2 ratio, as detailed in

© 2025 The Author(s). Published by the Royal Society of Chemistry

Sec. 3.1. Fig. 14 visualizes the solubility prediction errors of
HASO0IGNN compared to AttentiveFP on the completely unseen
test dataset of MolMerger. This test presents the most chal-
lenging solubility prediction scenario where both solute and
solvent graphs are unseen during the model training. The
results demonstrate that HASoIGNN predictions align more
closely with the ideal fit (where predicted values exactly match
actual values) in the most challenging case. Specifically,
compared to AttentiveFP, HASOIGNN (1) achieves a 9.93% lower
test MAE and (2) reduces the number of predictions with
absolute errors over two (outside the two green lines) by 35.32%.

We observe the larger prediction spread under the “new
chemical classes” setting, as shown in Fig. 14, compared to the
“pair-unseen” scenario illustrated in Fig. 9. This arises because
(1) both solutes and solvents in the test set are unseen during
training, forcing the model to extrapolate beyond its learned
chemical domain; (2) unlike the “pair-unseen” scenario, where
individual solute and solvent embeddings have been learned
previously—this case lacks familiar structural or interaction
patterns, leading to greater epistemic uncertainty and wider
residual variance; (3) the unseen molecules also introduce
distribution shifts in molecular features and interaction
behaviors, further increasing prediction dispersion. Despite
this challenge, HASoIGNN maintains lower bias and error than
AttentiveFP by leveraging its hierarchical solute-solvent
encoding and interaction fusion, which transfer generalizable
chemical relations across classes (Table 3).

Case study: trained on BigSolDB and tested on BigSolDB v2.
To evaluate the generalizability of HASoIGNN, we conduct a case
study by applying the HASOIGNN model M, originally trained on
BigSolDB," to BigSolDB v2,”® the most extensive and up-to-date
solubility dataset for organic compounds. Compared to Bi-
gSolDB, BigSolDB v2 contains 91.52% more solubility
measurements and 74.45% more unique compounds. On this
substantially larger dataset, the pre-trained M attains a MAE of
1.10 on BigSolDB v2. This is slightly higher than the test MAE of
0.93 achieved by a HASOIGNN model newly trained on BigSolDB
v2, which is expected given the sheer size and diversity of Bi-
gSolDB v2, as well as broader temperature range that is outside
the trained model.

4 Conclusion

We have proposed HASoIGNN, a novel graph learning frame-
work optimized to effectively exploit multi-level features, and
both intra- and inter-molecular interactions for solubility
analysis. HASoIGNN outperforms all the baseline models,
establishing a new benchmark in solubility prediction perfor-
mance. Notably, HASoIGNN outperforms the state-of-the-art
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AttentiveFP by further reducing MAE by 15.81%, 11.35%, and
29.59% on the Exp-DB, MolMerger, and BigSolDB dataset,
respectively. The superior performance of HASOIGNN benefits
from its novel and more intricate design compared to previous
methods, as verified by our ablation studies. Unlike previous
GNN methods for solubility prediction that focus only on atom-
and molecule-level interactions and often fail to capture the
complex dynamics of solute-solvent interplay, HASOIGNN
introduces a novel hierarchical encoding framework that
models the dissolution process across multiple scales. Atten-
tion mechanisms are integrated at each level, atom and bond
level (AE block), molecular (ME block), and system-level inter-
action (IE block), enabling HASoIGNN to jointly learn fine-
grained structural details and higher order solute-solvent
dynamics. Besides, our experiments also demonstrate the
robustness of HASolGNN, showing that it generalizes well to
new chemical classes and unseen solute-solvent pairs. On the
MolMerger split with mutually exclusive solutes and solvents,
HASO0IGNN reduces the amount of large-error (absolute error
over two) predictions by 35.52% compared to AttentiveFP.
When directly applied to BigSolDB v2 without retraining, the
pre-trained model trained by BigSolDB maintains strong
performance with a MAE of 1.10, close to 0.93 MAE achieved by
retraining. Critically, we have shown that HASOIGNN (MAE =
0.75 in BigSolDB) approaches the same aleatoric data limit
(MAE = 0.5-1 in log S) as identified in previous work, indicating
that a further improvement in the accuracy of our models likely
requires improved datasets.?®

We have also introduced a new variant of HASoIGNN with
the enhancement of LLMs, HASoIGNN-LLMs, which integrates
a pluggable and fine-tunable LLM module to tackle small-
dataset challenges such as data scarcity and biased sampling.
To evaluate the effectiveness of HASoIGNN-LLMs, we conducted
controlled experiments on Exp-DB by randomly sampling
subsets ranging from 1% to 10% the size of the Exp-DB dataset.
Across all sample sizes, HASOIGNN-LLMs consistently achieved
lower prediction errors than HASOIGNN, confirming the
advantage of leveraging LLM-enriched feature space in data-
limited regimes. We observe that the smaller the dataset, the
larger the performance gains achieved by HASOIGNN-LLMs. At
the 5% sampling level, the reduction narrows to about 0.03
while at the 1% sampling rate, HASOIGNN-LLMs reduces the
average MAE by more than 0.08 compared to HASoOIGNN. In
conclusion, our experimental studies have verified that
HASOIGNN-LLMs yields substantial improvements in solubility
prediction and remains robust for out-of-sample test pairs.
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