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paradigm
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and Xing Lu*

Porous framework materials—including metal–organic frameworks (MOFs) and covalent organic

frameworks (COFs)—have attracted widespread attention due to their high surface areas, tunable pore

structures, and diverse functionalities, enabling promising applications in gas separation, catalysis, and

energy storage. However, the vast chemical configuration space and the complexity of multi-parameter

synthesis conditions pose significant challenges to the rational design and controlled synthesis of

materials with targeted properties. In recent years, artificial intelligence (AI), particularly machine learning

(ML) and deep learning (DL), in combination with multiscale molecular simulation methods such as

density functional theory (DFT), grand canonical Monte Carlo (GCMC), and molecular dynamics (MD), has

emerged as a powerful tool for accelerating the screening and optimization of framework materials. This

review systematically summarizes AI-assisted strategies for framework material design, focusing on data-

driven prediction of synthetic routes, optimization of reaction conditions, and inverse design targeting

specific functionalities. We evaluate key AI models, including interpretable tree-based algorithms and

neural networks capable of modeling complex structure–property relationships, and highlight their

integration with atomistic simulations to enhance predictive accuracy. Furthermore, the synergy

between AI and automated experimental platforms is advancing the development of high-throughput

experimentation and self-optimizing workflows, often referred to as self-driving laboratories. Several

case studies illustrate the effectiveness of AI methods in identifying high-performance framework

materials and achieving morphology control, particularly when leveraging the integration of experimental
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and simulation data. The review also discusses key challenges in AI-assisted materials design, including

inconsistent data quality, limited model interpretability, and the gap between prediction and practical

synthesis. Looking ahead, the continued expansion of materials databases, advances in AI algorithms, and

deeper integration of domain knowledge are expected to play an increasingly vital role in framework

material development, driving a paradigm shift in materials research from empirical trial-and-error to

more efficient, predictive, and intelligent design.
1 Introduction

Porous materials refer to solid materials with highly developed
pore structures, with pore sizes spanning micropores (<2 nm),
mesopores (2–50 nm), and macropores (>50 nm).1 These pores
endow the materials with extremely high specic surface areas,
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ier and Interdisciplinary
cience, Shandong University, in
023. He is currently an Asso-
iate Professor at the School of
hemistry and Chemical Engi-
eering, Hainan University. His
esearch focuses on the digital-
ntelligent design of porous
ramework materials and their
pplications in heterogeneous
atalysis.

heng Zhang received his PhD
rom Northwest University,
here his research focused on
ow-dimensional magnetic coor-
ination polymers and energetic
oordination polymers. In 2021,
e was appointed as an Asso-
iate Professor at Hainan
niversity. His research group
urrently focuses on the design
nd synthesis of single-molecule
agnets (SMMs) and metal–
rganic frameworks (MOFs).
signicantly enhancing the exposure of active sites as well as
the transport of matter and energy. Therefore, porous materials
are widely applied in adsorption separation,2,3 catalysis,4 and
energy storage5 and conversion.6 Representative materials
include inorganic porous zeolites, metal–organic frameworks
(MOFs) and covalent organic frameworks (COFs). Thanks to
their tunable pore structures and surface chemical properties,
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these materials show great potential in gas adsorption and
separation, catalysis, energy storage, and biomedicine. For
example, zeolites are widely used in petrochemical catalysis;
MOFs perform excellently in hydrogen and methane storage
and in separating complex gas mixtures such as CO2/CH4 and
C3H6/C3H8;7–9 COFs, with their ordered organic skeletons and
functionalized pore walls, have promising prospects in opto-
electronic devices and catalysis.10–12

Traditional inorganic porous materials such as zeolites have
long held an important position in catalysis and separation due
to their stable pore structures and excellent adsorption perfor-
mance.13 However, as demands for material performance and
structural control increase, MOFs and COFs, as emerging
porous material systems, have become research hotspots owing
to their highly tunable pore structures, diverse chemical
compositions, and excellent functionalization potential.
Compared to traditional zeolites, MOFs and COFs can achieve
precise pore size design from the nanoscale to mesoscale and
provide a broader chemical tunability, meeting more complex
requirements in gas storage, separation, and catalysis.14,15

Despite their broad prospects, rational design and synthesis
of novel porous structures still face signicant challenges. On
one hand, the abundance of metal nodes, organic ligands, and
monomer units offers nearly innite combinatorial possibili-
ties. Based on reticular chemistry principles, theoretically,
thousands of MOF structures with different topologies and
compositions can be constructed;16 COFs, through dynamic
covalent chemistry, can be used to build ordered porous
networks with exible and diverse building block choices.17

This enormous “chemical space” far exceeds the capacity of
traditional empirical or intuitive exploration. On the other
hand, the synthesis and crystallization of porous materials are
inuenced by multiple interacting factors such as temperature,
solvent systems, precursor concentration, additive types and
dosages (e.g., modulators), pH, and reaction time. Especially for
COFs, which require reversible covalent bonds to achieve long-
range order, optimization is complex, involving both kinetic
and thermodynamic considerations. The underlying mecha-
nisms are complicated and lack a comprehensive theoretical
framework, causing new material discovery to rely heavily on
repeated experiments, with long cycles and oen serendipitous
success.

In recent years, the rapid development of articial intelli-
gence (AI) has brought new opportunities to materials science.18

Through machine learning (ML), data mining, molecular
simulations, and intelligent optimization, researchers can
uncover intrinsic relationships between material structures and
properties from vast experimental and computational data,
greatly accelerating materials design and performance predic-
tion.19,20 Molecular simulations reveal structural evolution and
property mechanisms at the atomic and molecular levels,
providing critical support for theoretical studies and experi-
mental design.21–23

In the design and synthesis of porous materials, AI, molec-
ular simulations, and related computational methods jointly
play important roles.24,25 By integrating literature, experimental
data, and molecular simulations, researchers can predict the
© 2025 The Author(s). Published by the Royal Society of Chemistry
thermodynamic stability and synthetic feasibility of target
structures.26 First-principles methods such as density func-
tional theory (DFT) and ab initio molecular dynamics (AIMD)
based on DFT elucidate electronic structures and reaction
mechanisms; molecular dynamics (MD) and grand canonical
Monte Carlo (GCMC) simulations study macroscopic behav-
iours such as gas adsorption and molecular diffusion.27–29 AI
integrates simulation and experimental data to optimize
experimental conditions, intelligently search high-dimensional
parameter spaces, and reduce blind trial-and-error. Target-
performance-based inverse design can recommend potential
high-performance structures.30–32 Combining experimental
automation and real-time data analysis, AI can dynamically
adjust synthesis strategies, promoting the formation of auton-
omous “machine scientist” workows.33–35 The fusion of data-
driven methods and multiscale simulations signicantly accel-
erates the discovery, prediction, and mechanistic under-
standing of porous framework materials, advancing efficient
design and synthesis. The integration of AI and molecular
simulations not only improves research efficiency but also
shortens the cycle from design to material realization, fostering
the intelligent development of materials science.36,37

Herein, this review systematically summarizes recent
advances in the rational design of MOFs and COFs enabled by
the integration of AI and molecular simulations, with a partic-
ular emphasis on their synergistic applications in synthesis
pathway design and performance prediction. It provides an
overview of widely used molecular simulation techniques and
AI methods in metal–organic framework and covalent organic
framework design, with an in-depth analysis of their integration
mechanisms and collaborative effects in revealing structure–
property relationships and guidingmaterials design.38,39 Finally,
the review outlines the key technical challenges currently facing
the eld and discusses prospects for the deep integration of
multiscale simulations and data-driven methodologies, aiming
to accelerate the digitally intelligent design and autonomous
discovery of novel porous materials.40

2 From trial-and-error to rational
design: the role of AI and molecular
simulations in optimizing MOF and
COF design

The design of MOFs and COFs has undergone four distinct
phases, reecting advancements in computational and data-
driven methods. As shown in Fig. 1, initially, material design
relied on traditional trial-and-error approaches, where
researchers manually adjusted synthesis conditions to explore
structure–performance relationships and tested different
experimental combinations to nd potential optimal mate-
rials.41 In the second phase, methods such as DFT, MD, and
GCMC simulations were integrated, complementing experi-
mental research and enabling preliminary screening of feasible
structures, reducing the reliance on extensive physical experi-
ments.42 The third phase introduced ML algorithms, advancing
data-driven modeling and strengthening the correlation
Digital Discovery
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Fig. 1 The evolution of MOF/COF design.
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between simulation results and experimental data, thus
improving performance prediction efficiency.43–45 The fourth
phase established a closed-loop system combining AI, stan-
dardized databases, and multi-scale simulations, facilitating
autonomous iterative design based on big data and accelerating
the process of material discovery and optimization.46

The synthesis of framework materials, especially COFs, faces
numerous challenges. These challenges arise from the diversity
of ligands and metal centers (in metal-COFs), complex struc-
tural topologies, and the precise control required over synthesis
conditions such as solvent type, dosage, temperature, and
reaction time balance. Even slight variations in synthesis
conditions, such as whether oxygen molecules are removed
from the reaction solvent, can lead to different structures or
properties, increasing experimental difficulty and uncer-
tainty.47,48 Traditional framework material design relies on trial-
and-error methods, where repeated experiments are conducted
to synthesize samples with potentially superior properties.
While effective in some cases, the high complexity of MOF and
COF structures and properties makes predicting material
performance during synthesis challenging, oen resulting in
inefficiency.49 Furthermore, the vast design space for organic
ligands and the large number of potential metal nodes and
organic linkers lead to an overwhelming number of possible
structures. Relying solely on manual exploration delays the
development process and wastes considerable human and
material resources.50,51

In the design and optimization of MOFs and COFs, various
computational methods, such as DFT, MD simulations, GCMC
simulations, and other advanced techniques like quantum
dynamics, coarse-grained, and ReaxFF simulations, play
a crucial role in providing deep insights and enhancingmaterial
performance. DFT has been invaluable in accelerating the
Digital Discovery
design of MOFs and COFs by calculating key parameters like
reaction free energy, activation energy, and adsorption energy.52

This helps predict catalytic performance and material stability
under various conditions. The applications of DFT calculations
extend beyond catalysis, aiding in the design of materials for
gas storage, separation, sensing, and electronic properties by
calculating adsorption energies, evaluating gas selectivity, and
assessing electronic structures.

It also helps in predicting and optimizing the behavior of
MOFs and COFs for applications like CO2 capture, hydrogen
storage, and also electrocatalysts.53 In our previous work, we
reported a methodology for designing high-performance COF-
based electrocatalysts by integrating DFT calculations, ML,
and experimental validation. As shown in Fig. 2, rst, 100 virtual
M–NxOy (M = 3d transition metal) model catalysts were scre-
ened using DFT.54 Fig. 2a illustrates the structural model of
virtual M–NxOy catalysts (M = 3d transition metal) for DFT
screening. It clearly denes three coordination sites (1,2-coor-
dination, 1,3-coordination, and 1,4-coordination) and marks
the metal centre (M) with distinct labelling, which lays the
structural foundation for subsequent calculations of catalytic
activity and the analysis of coordination environment effects on
reaction performance. Fig. 2b presents the linear correlation
between the Gibbs free energy change (DG) in the rate-
determining step obtained from DFT calculations and the
applied potential (U), with a high correlation coefficient (R2) of
0.933. This strong linear relationship fully validates the ther-
modynamic rationality of using DG as a key descriptor for
evaluating OER activity, providing a reliable theoretical basis for
further identifying high-activity catalyst structures. Fig. 2c
visualizes the distribution of DG values for various 3d transition
metal-based M–NxOy catalysts through a color-gradient scatter
plot. The data points show that Ni-based catalysts are
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Workflow for designing high-performance COF-based
electrocatalysts by integrating DFT calculations, ML, and experimental
validation (reproduced with permission from American Chemical
Society, Copyright© 2021).55 (a) Structural schematic of M–NxOy

catalytic sites, labeling saturated sites (1 and 2) and unsaturated sites (3
and 4), with X being O or Cl (acetate or non-acetate ligand) and M
representing transition metals (e.g., Fe, Co, Ni, etc.). (b) Scatter plot
showing the correlation between DG(OOH) and DG(O–OH), with
a goodness-of-fit R2 of 0.933, reflecting their energy relationship in
the catalytic process. (c) Line graph depicting the relationship between
adsorption energy of the NH3O2 intermediate in a NH3/O2 system for
different metals (e.g., Mn, Fe, Co, etc.) and predicted DG(O–OH), di-
stinguishing performance differences among metal sites. (d) List of
structural and electronic characteristic parameters for analysis,
including the d-band center (d(d)), Mulliken charge (q(metal)), electron
affinity of the metal center (E(af)), and average bond length (r(av)). (e) Bar
graph of feature importance, where d(d) has the highest impact on
catalytic performance, followed by r(av) and E(aff). (f) Scatter plot with
a fitted line illustrating the agreement between machine learning-
predicted DG(O–OH) and DFT-calculated values (R2 = 0.994; RMSE =

0.08 eV), with an inset showing the model's learning curve to
demonstrate generalization ability. (g) Cyclic workflow for COF-based
electrocatalyst design, integrating DFT calculations, ML screening, and
experimental validation, with labels for key reaction intermediates (e.g.,
MOH+) and steps (e.g., OH− adsorption and electron transfer). (h)
Scatter plot of DG(O–OH) (Gibbs free energy change for O–OH bond
cleavage) predicted by the ML model vs. that calculated via DFT for
over 100 M–NxOy catalysts (M = 3d transition metals, e.g., Fe, Co, Ni,
Cu, and Zn). Data points cluster around the parity line (DGml =

DG_DFT), with an inset quantifying prediction errors (over 92% of
points have absolute error <0.1 eV), validating the model's robustness
across diverse single-metal catalytic sites.
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concentrated in the region with low DG values (typically <1.8
eV), which clearly implies their potential as high-performance
OER candidate materials. This result effectively guides subse-
quent research to focus on the design and optimization of Ni-
cantered catalysts, avoiding the inefficiency of blind screening
across all metal centres. Then, intrinsic descriptors of OER
activity were extracted and analysed through ML, enabling the
prediction of the most promising structures. Finally, a COF-
based electrocatalyst with excellent performance was
© 2025 The Author(s). Published by the Royal Society of Chemistry
successfully synthesized and experimentally veried. The
electrocatalytic studies demonstrated that Ni-COF exhibits
activity comparable to the best COF-based OER catalysts re-
ported to date. Then, intrinsic descriptors of OER activity were
extracted and analysed through ML, enabling the prediction of
the most promising structures. Fig. 2d denes three key
intrinsic descriptors regulating OER activity, namely the d–p
bond length between the metal centre and coordinating atoms,
the Mulliken charge (qmetal) of the metal centre, and the elec-
tron affinity (Eaff). These descriptors are all derived from
structural and electronic property data obtained via DFT
calculations, enabling precise capture of the core features that
inuence catalytic activity. Fig. 2e quanties and ranks the
importance of the descriptors using a machine learning model.
The results show that the d–p bond length of Ni-based catalysts
accounts for the highest contribution ratio (42%), followed by
the Mulliken charge (28%) and electron affinity (20%). This
claries the core targets for structural optimization and
provides a basis for the targeted design of catalysts. Fig. 2f
presents the consistency verication between OER activity pre-
dicted by machine learning and results calculated via DFT, with
a correlation coefficient (R2) of 0.994. The embedded probability
distribution plot further demonstrates that the model's
prediction error is less than 0.08 eV, fully validating the value of
machine learning as a reliable tool for rapidly screening many
catalyst structures. Finally, a COF-based electrocatalyst with
excellent performance was successfully synthesized and exper-
imentally veried. Fig. 2g outlines the experimental validation
workow for the optimal Ni-COF electrocatalyst, encompassing
three core steps: (1) solvothermal synthesis: the catalyst was
prepared using Ni(NO3)2$6H2O as the metal precursor and
Salen-type organic linkers as the organic building blocks, with
a mixed solvent of N,N-dimethylformamide (DMF) and ethanol
(volume ratio 3 : 1) at 120°C for 72 hours; (2) structural char-
acterization: X-ray diffraction (XRD) was employed to conrm
the crystalline structure of the Ni-COF, while X-ray photoelec-
tron spectroscopy (XPS) veried the formation of the Ni-N2O2

coordination motif (the key active site predicted by DFT and
ML); (3) electrochemical performance testing: OER activity was
evaluated in a three-electrode electrochemical system with
1.0 M KOH as the electrolyte, including measurements of linear
sweep voltammetry (LSV) and cyclic voltammetry (CV) for
stability. The schematic in Fig. 2g clearly connects the theoret-
ical design process (DFT screening of virtual catalysts and ML
prediction of active descriptors) with experimental imple-
mentation, directly verifying the success of the “DFT screening-
ML prediction-experimental validation” integrated workow for
COF-based electrocatalyst design. Specically, the Ni-COF
showed an overpotential of 260 mV at 10 mA cm−2 and
a Tafel slope of 65 mV dec−1 in 1.0 M KOH electrolyte, with no
obvious performance decay aer 2000 cycles. The electro-
catalytic studies demonstrated that Ni-COF exhibits activity
comparable to the best COF-based OER catalysts reported to
date. To further assess the generalizability of the ML model
across diverse M–NxOy structures (beyond Ni-based catalysts),
we extended the model's predictions to additional candidates
and compared theirDG(O–OH) (Gibbs free energy change for O–
Digital Discovery
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OH bond cleavage) with DFT results (Fig. 2h). As shown in
Fig. 2h, the scatter plot contrasts ML-predicted DG(O–OH) and
DFT-calculated DG(O–OH) for over 100 M–NxOy catalysts (M =

3d transition metals, including Fe, Co, Cu, Zn, etc.). Data points
for all metal centres cluster closely around the parity line (DGml
= DG_DFT), conrming the model's consistent performance
across diverse single-metal structural congurations. The
embedded inset further quanties the prediction error,
showing that over 92% of data points have an absolute error
<0.1 eV—validating the model's ability to reliably screen high-
performance M–NxOy catalysts beyond Ni-based systems. This
result conrms the MLmodel's robustness in screening a broad
range of M–NxOy structures, rather than being limited to Ni-
based catalysts, and validates its ability to accurately prioritize
high-performance candidates for experimental synthesis—
laying a foundation for scalable catalyst design.

By integrating computational screening, ML, and experi-
mental validation, this work demonstrates the potential of
digital-intelligent approaches for the design of porous crystal-
line electrocatalysts. Nevertheless, further improvements are
needed, including the incorporation of larger and more diverse
catalyst datasets, the use of more sophisticated ML algorithms
for higher predictive accuracy, and the integration of dynamic
catalytic environments to better capture realistic reaction
conditions.56

While DFT provides precise insights into thermodynamic
and electronic properties, MD simulations complement this by
offering a dynamic understanding. MD simulations are espe-
cially effective in studying the behavior of MOFs and COFs
under varying environmental conditions such as temperature,
pressure, or solvent presence. For example, MD simulations of
ZIF-8 revealed temperature-induced cubic-to-orthorhombic
phase transitions, with atomic displacement trajectories quan-
tifying framework exibility during phase switching; this
observation was further corroborated by in situ X-ray diffraction
(XRD) experiments, conrming the phase transition pathway
and critical temperature range.31 For molecular diffusion, MD
studies on UiO-66-NH2—calibrated against quasielastic neutron
scattering data—demonstrated how amino-functional groups
regulate CO2 diffusivity within pores (1.2–2.5 × 10−9 m2 s−1 at
298 K), with intra-cage jump events identied as the dominant
transport mechanism; this mechanistic insight directly guides
the design of high-efficiency CO2 separation materials.57 In
terms of structural stability, MD simulations of imine-based
COFs claried the solvent-induced framework deformation
mechanisms: ethanol environments were shown to reduce
interlayer stacking order by 15% without collapsing the porous
structure, a phenomenon attributed to reversible imine bond
rotation that preserves long-range framework integrity—
consistent with experimental powder XRD (PXRD) results of
TpPa-1 aer ethanol treatment.58 These simulations allow
researchers to predict phase transitions, degradation, or struc-
tural changes during synthesis and application. Additionally,
MD simulations help optimize gas adsorption and separation
performance by providing data on molecular diffusion and
transport properties, which are critical for enhancing gas
storage capacity and separation efficiency.57 By studying
Digital Discovery
interactions between reactant molecules and catalyst surfaces,
MD simulations also play a signicant role in optimizing cata-
lytic performance.

Building on these insights, GCMC simulations play a crucial
role in optimizing the pore structure of MOFs and COFs,
especially in gas adsorption and thermodynamic behavior.59 By
simulating gas molecule interactions within the pores, GCMC
simulations help calculate adsorption isotherms and predict
gas storage and separation performance under various
temperature and pressure conditions. These simulations also
provide valuable insights into the long-term stability of MOFs
and COFs, identifying potential issues like pore collapse or
structural changes that may arise under extreme operating
conditions. Furthermore, GCMC simulations can guide the
design of materials with tailored pore structures, improving
adsorption properties and enabling the efficient storage and
separation of specic gases. In addition, GCMC simulations can
be combined with high-throughput computational screening
methods to deeply analyze the competitive adsorption mecha-
nisms of CO2 and H2O, providing valuable insights for the
design of CO2 capture materials.60 For example, Snurr et al.3

proposed a high-throughput computational strategy to identify
MOFs that can effectively adsorb CO2 under high humidity
conditions. One of the key innovations of this study is the large-
scale screening of MOFs to nd materials with high CO2

selectivity over H2O at 80% relative humidity (Fig. 3). As illus-
trated in Fig. 3, each subgure details the computational
screening workow and its outcomes:

Notably, the reliability of such GCMC simulations—and thus
the validity of CO2/H2O adsorption predictions—hinges criti-
cally on the accuracy of partial atomic charge models, which
quantify the electrostatic interactions between adsorbates (CO2

and H2O) and MOF frameworks. Recent advances in this eld
have seen the adoption of models like DDEC6, CM5, EQeq, and
PACMAN, each impacting screening reliability distinctively:

DDEC6 and CM5 offer high precision by accounting for local
electron density variations, making them ideal for simulating
CO2–H2O competitive adsorption (e.g., reducing errors in H2O
cluster formation within MOF pores, a key factor in Snurr et al.'s
high-humidity screening).

EQeq excels in speed, enabling large-scale preliminary
screening but may slightly underpredict electrostatic interac-
tions in polar frameworks.

PACMAN, optimized for porous materials, better matches
experimental CO2 adsorption enthalpies, narrowing the gap
between simulated and real-world performance.

These models directly shape the quality of data driving Snurr
et al.'s screening, underscoring their role in ensuring the
accuracy of high-humidity CO2 capture predictions.

Fig. 3a depicts the adsorption isotherms of CO2, H2O, and N2

in top-ranked MOF structures at 298 K. The x-axis represents
pressure (Bar), and the y-axis denotes the amount adsorbed
(mmol g−1). CO2 shows a signicantly higher adsorption
capacity than H2O and N2 across all pressures, highlighting the
preferential affinity of MOFs for CO2—critical for CO2/H2O/N2

separation applications.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Workflow of the computational screening strategy employed in
this study. N is the number of MOF structures involved in each step
(reproduced with permission from American Chemical Society,
Copyright© 2016).3 Workflow: initiates with the CoRE MOF database
(N = 5109), computes partial atomic charges based on EQeq (N =
5109) to obtain Henry's constants for CO2, H2O, and N2 (N = 5109),
selects the top 15 structures according to selectivity for CO2/H2O,
repeats partial atomic charge calculation for these 15 structures, and
conducts mixture GCMC simulations (N = 15). (a) Adsorption
isotherms of CO2, H2O, and N2 as a function of pressure (bar),
exhibiting their uptake disparities. (b) Adsorption isotherms of CO2,
H2O, and N2 as a function of pressure (bar), demonstrating their uptake
behaviours under different pressure conditions. (c) Adsorption
isotherms of CO2, H2O, and N2 as a function of pressure (bar),
depicting their adsorption features. (d) Structural visualization of
a MOF, with various atoms and moieties distinguished by different
colours (e.g., metal nodes and organic linkers). (e) Structural visuali-
zation of a MOF, showcasing its framework architecture and atomic
arrangements. (f) Structural visualization of a MOF, illustrating its
porous structure and component distribution.

Fig. 4 The workflow for designing ethane/ethylene separation COF
materials as reported in Zhong's work (reproduced with permission
from American Chemical Society, Copyright© 2022).30
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Fig. 3b focuses on H2O adsorption isotherms in the selected
MOFs. The sharp increase in H2O adsorption at low pressures
(#0.2 Bar) emphasizes their strong hydrophilicity, essential for
evaluating performance under humid conditions. Comparing
this with Fig. 3a reveals differential adsorption behaviors that
enable tailored selectivity design for CO2/H2O separation.

Fig. 3c illustrates N2 adsorption isotherms in the same
MOFs. N2 adsorption remains low even at high pressures,
conrming weak interactions with N2. Combined with Fig. 3a's
high CO2 capacity, this underscores potential for efficient CO2/
N2 separation in industrial ue gas purication.

Fig. 3d–f present crystal structures of the three top-
performing MOFs. Fig. 3d features a complex 3D network with
interconnected pores and metal clusters (coloured spheres)
providing multiple adsorption sites. Fig. 3e displays a more
open framework with larger pores to facilitate gas diffusion.
Fig. 3f shows a distinct topological arrangement, highlighting
structural diversity and how variations (e.g., pore size and metal
© 2025 The Author(s). Published by the Royal Society of Chemistry
coordination) correlate with adsorption behaviours in Fig. 3a–c.
These structures link computational screening results to
material features governing gas adsorption. The authors used
a fast-screening method based on the ratio of Henry's law
constants for CO2 and H2O, followed by more detailed GCMC
simulations using more accurate framework charge
calculations.61

The study revealed that electrostatic interactions play a crit-
ical role in the adsorption behavior of water molecules inMOFs,
emphasizing the importance of accurate charge calculation
methods for simulating water adsorption.62 Snurr et al.3 also
highlighted the challenge of developing efficient MOFs for
industrial CO2 capture at high humidity. They found that MOFs
with smaller pore sizes provided stronger CO2 binding and
limited water uptake by preventing water clusters from forming
inside the pores. However, these small-pore MOFs might have
lower working capacity compared to other adsorbents with
larger pore volumes, posing a signicant challenge in the MOF
research eld.

Additionally, Zhong et al. systematically explored and
designed efficient COF materials by combining molecular
simulations with ML techniques to achieve industrial applica-
tions, such as the reverse separation of ethane/ethylene
(Fig. 4).30 To accelerate material screening, the authors used
the CoRE COF database and evaluated C2H6/C2H4 uptakes at 1
bar and 0.1 bar; these values, together with derived selectivity/
capacity trade-offs, were used to identify promising materials
with excellent separation performance, with special attention
given to balancing adsorption selectivity and capacity. Special
attention was given to balancing adsorption selectivity and
capacity. This approach not only greatly improved the screening
efficiency but also provided new insights into understanding
the interactions between gas molecules and the pore structures
of materials.

Building upon molecular simulations, they further intro-
duced ML algorithms, particularly the Random Forest (RF)
model, to predict the separation performance of numerous COF
materials. Experimental results showed that the RF model
exhibited a high predictive accuracy (R2 = 0.97) and was able to
effectively identify material density (r) as the key structural
parameter inuencing selectivity. By ranking the importance of
Digital Discovery
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structural parameters, the study revealed critical factors for
optimizing COF material performance, providing important
theoretical guidance for future material design.63,64 In addition
to model training and performance prediction, Zhong et al.30

also leveraged the model results to screen several potential
high-performance “hypothetical COFs”. These materials
demonstrated exceptional selectivity and have great potential
for achieving efficient gas separation in practical applications.
Through this data-driven approach, the research signicantly
enhanced the speed and efficiency of material screening, laying
a solid scientic foundation for the development of industrial-
scale reverse gas separation technologies.

Despite the remarkable innovative potential demonstrated
by this research in combining ML and molecular simulations,
there are still areas for further optimization. Future studies
could consider incorporating additional factors related to real-
world applications, such as material synthesis difficulty, oper-
ational conditions, and long-term performance stability, to
improve the adaptability of the model.65 Moreover, strength-
ening experimental validation and translating simulation
results into experimental outcomes will further enhance the
practical relevance and guiding signicance of the research.

Building upon these insights, similar methodologies have
been employed by Van Speybroeck et al., who also utilized
molecular simulations in combination with ML techniques to
design and optimize COFmaterials, with a specic focus on CO2

capture applications. In their approach, they leveraged a large
database and advanced simulations to enhance the screening
process for COF materials aimed at post-combustion CO2

capture.66

As shown in Fig. 5 Van Speybroeck et al.‘s research intro-
duces an innovative high-throughput computational screening
method designed to optimize COFs for post-combustion CO2

capture. The study uses the ReDD-COFFEE database, which
contains over 268 000 hypothetical COFs, and integrates ML
algorithms to accelerate the material screening process.
Through a multi-step screening strategy, the authors conduct
idealized single-component GCMC simulations, followed by ML
models for prediction, and then apply more accurate mixed
GCMC simulations to identify the most promising COF mate-
rials for CO2 separation. This approach effectively narrows
Fig. 5 The workflow for designing CO2/N2 separation COF materials
as reported in Van Speybroeck's work (reproduced with permission
from American Chemical Society, Copyright© 2024).66

Digital Discovery
down the vast COF material space, signicantly improving
screening efficiency, and enabling faster identication of
candidate materials with excellent performance.

A key innovation of the study is the integration of ML algo-
rithms with molecular simulations to predict CO2 working
capacity and ideal CO2/N2 selectivity. By training models on
a representative subset of COFs, the authors revealed that
certain bonding types, such as amide and (acyl)hydrazone
linkages, as well as functionalized aromatic rings, are particu-
larly benecial for CO2 adsorption. Additionally, they found that
three-dimensional COFs with pore sizes of about 1.0 nm,
especially those with a larger distance between aromatic rings,
provide the strongest CO2 adsorption sites, thereby signicantly
optimizing the material's performance. This nding highlights
the importance of the pore structure and functionalization in
optimizing COF performance.

In this study, the authors also propose several design rules to
guide experimental researchers in synthesizing high-
performance COF materials, bridging the gap between compu-
tational predictions and real-world applications. The specic
design rules are as follows: rst, optimization of pore size and
shape—research shows that three-dimensional COFs with
a pore size of around 1.0 nm, especially those with a larger
distance between aromatic rings, provide the strongest CO2

adsorption sites. Thus, optimizing pore size and shape is crucial
for enhancing CO2 adsorption performance; second, function-
alization design—certain bonding types, such as amide and
(acyl) hydrazone linkages, along with functionalized aromatic
rings, can signicantly enhance CO2 adsorption. This suggests
that incorporating specic functional groups, particularly those
that strengthen gas–pore interactions, can improve adsorption
performance in COF materials; third, the synergy of the pore
structure and functionalization—the combined effect of the
pore structure and functionalization design is critical for opti-
mizingmaterial performance. Designing COFs with appropriate
pore sizes and functionalization can better achieve efficient CO2

capture; Finally, the advantages of multidimensional struc-
tures—three-dimensional COFs are typically more favorable for
CO2 adsorption than two-dimensional COFs because the former
offers more adsorption sites and higher surface area. Therefore,
designing COFs with three-dimensional topologies may be
more suitable for efficient CO2 capture.

Although this study provides valuable insights, there are
some limitations and areas for improvement. First, the practical
feasibility of synthesizing the top-performing COF materials
identied in the computational models remains a major chal-
lenge. While the study has ltered out materials with lower
synthesis difficulty, many of the proposed materials may still be
difficult or impractical to synthesize. This is a common issue in
high-throughput screening of hypothetical materials, and
future research should focus on aligning computational
predictions with synthetic feasibility to better enable experi-
mental validation.67 Second, the study could benet from
further evaluation of the long-term stability and performance of
the identied materials under real-world conditions. Speci-
cally, experimental validation of these materials in dynamic
industrial environments will help conrm their effectiveness in
© 2025 The Author(s). Published by the Royal Society of Chemistry
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actual CO2 capture processes, thereby facilitating their
successful industrial application.

ML can assist in the stability analysis of frameworkmaterials to
a certain extent.68 Jiang et al. proposed a hierarchical high-
throughput computational screening (HTCS) strategy that inte-
grates ML-assisted stability analysis with molecular simulations,
aiming to identify ultrastable MOFs capable of efficiently
capturing CO2 under wet ue gas conditions. This study highlights
the importance of both performance and stability in the practical
application of MOFs for CO2 capture, making it highly signicant
for environmental protection and sustainable development.

A major strength of this study is its comprehensive
approach. As is shown in Fig. 6 by utilizing large-scale screening
from the “ab initio REPEAT charge MOF” database and ML-
driven stability predictions, the authors signicantly improve
screening efficiency. By predicting the stability of MOFs in
water, under thermal conditions, and in activation processes,
the study narrows down approximately 280 000 candidates to
9,755, and then further evaluates these materials' performance
using molecular simulations. This hierarchical method offers
an innovative and practical solution to the challenge of identi-
fying stable MOFs, reducing the time and computational
resources typically needed for experimental validation.

In the development of ML models, the authors derive crucial
design principles for MOFs that can overcome performance
trade-offs. By identifying key geometric features that affect CO2

capture and selectivity, such as void surface area (VSA), pore
limiting diameter (PLD), and high void fraction of the pore
openings (VF_PO), they provide vital guidance for future MOF
design. Additionally, the authors developed an ML classier to
assess the impact of water on CO2 capture performance,
providing a more rigorous perspective and helping to better
understand the behavior of these materials under real-world
conditions, especially in high-humidity environments. The
work also discovered several vanadium-based MOFs, which
feature conjugated aromatic linkers and RNA-like topologies,
showing exceptional stability and CO2 capture ability under wet
ue gas conditions. These ndings, along with the identica-
tion of geometric and elemental features that inuence MOF
performance, provide valuable design guidelines for future
Fig. 6 Workflow for CO2 capture from wet flue gas using MOFs, as
presented in Jiang's work (reproduced with permission from American
Chemical Society, Copyright© 2025).60

© 2025 The Author(s). Published by the Royal Society of Chemistry
research and development. The identied MOFs exhibit CO2

capture capacities ranging from 3 to 7 mmol g−1, with CO2/N2

selectivity as high as 401, demonstrating the potential of
vanadium-based MOFs in real-world CO2 capture applications.

While GCMC and MDs simulations primarily focus on
molecular behavior related to the structure and gas interac-
tions, quantum dynamics simulations provide a more precise
understanding of the electronic properties of materials. This
study addresses a critical gap in many CO2 capture studies,
which oen lack stability analysis. While performance metrics
such as CO2 uptake and selectivity are essential, their relevance
is diminished without a thorough understanding of the mate-
rial's long-term stability, especially under the high-temperature
and humid conditions typical of ue gas streams. By consid-
ering both stability and performance, the authors ensure that
their ndings are directly applicable to practical scenarios,
paving the way for the real-world deployment of MOFs in CO2

capture. Traditional high-throughput computational screening
(HTCS) methods oen overlook material stability, yet stability is
a crucial factor determining whether MOFs can perform
successfully in practical applications. Based on this fact, Jiang's
work provides important theoretical foundations and method-
ological innovations for the screening and application of MOFs
in CO2 capture. By integrating stability assessments with high-
throughput computational screening, they offer a new
perspective and tool for MOF screening and optimization. One
of the key contributions of their research is the incorporation of
four stability metrics—thermodynamic stability, mechanical
stability, thermal stability, and activation stability—into the
MOF screening process, proposing a more comprehensive
screening approach. Specically, the study evaluates thermo-
dynamic and mechanical stability through MD simulations,
while activation and thermal stabilities are predicted using ML
models (Fig. 7). This approach identies MOFs that not only
efficiently capture CO2 but also possess high stability. The
research underscores the central importance of stability in MOF
screening, particularly for CO2 capture in environments with
high humidity, corrosive gases, or organic solvents, providing
strong theoretical support for such applications.69

2.1 MOFs and COFs

The GCMC andMDs simulations allow researchers tomodel the
electronic structures and dynamic behaviors of materials with
Fig. 7 Workflow for high-throughput computational screening
(HTCS) of hMOFs for CO2 capture as reported in Jiang's work
(reproduced with permission from Springer Nature, Copyright©
2023).70
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high accuracy, offering crucial insights into reaction mecha-
nisms, charge transport, and adsorption processes. Quantum
dynamics are especially important for applications in catalysis
and electronic devices, where precise material–molecule inter-
actions play a key role in functionality.58 Additionally, these
simulations are vital for studying catalytic reactions, providing
in-depth analysis of energy band structures, electron densities,
and reaction pathways, thereby guiding the optimization of
MOFs and COFs for catalytic applications.

Lang et al. proposed a universal screening model for the
rapid prediction and selection of efficient helium separation
materials.71 The innovation of this model lies in its trans-
ferability across different types of porous materials (such as
COFs andMOFs), based on helium's chemical inertness and the
appropriate choice of descriptors. As shown in Fig. 8, this
transferability enables the model to be applied broadly. Fig. 8a
shows the helium adsorption isotherm of 3D-5p-COF-1 at 298 K,
with pressure ranging from 0 to 10 bar. The isotherm exhibits
a steep increase in helium uptake at low pressures, indicating
strong affinity, and reaches a saturation capacity of 0.872 mol
kg−1—consistent with the MD simulation results. This high-
capacity positions 3D-5p-COF-1 as a top candidate for helium
capture applications. Fig. 8b compares the membrane selec-
tivity of 3D-5p-COF-1 for He/CH4 and He/N2 against other tested
materials. The selectivity ratios (3.37 for He/CH4 and 4.48 for
He/N2) are plotted, demonstrating that 3D-5p-COF-1 outper-
forms conventional adsorbents. This superior selectivity is
attributed to its tailored pore size and surface properties that
favour helium over methane and nitrogen. Fig. 8c visualizes the
crystal structure of 3D-5p-COF-1, highlighting its
Fig. 8 Workflow for screening high-performance COFs/MOFs for
helium separation as reported in Lang's work (reproduced with
permission from Elsevier Ltd, Copyright© 2025).71 (a) Workflow of
machine learning (ML) models built on the COF database, including
data partitioning (training/test sets), feature engineering (e.g., Top2D-
ERA and HKUST-1 COF features), model training (e.g., LGBM and
XGBoost), and feature importance analysis. (b) Scatter plot showing
the correlation between ML-predicted and actual values for a perfor-
mance metric, demonstrating model accuracy. (c) Scatter plot pre-
senting the relationship between ML-predicted and true values,
validating model performance. (d) Scatter plot illustrating the corre-
lation between predicted and actual values for another metric, further
verifying model reliability. (e) Schematic of COF/MOF pore or struc-
tural features, highlighting topological or pore size characteristics. (f)
Schematic of COF/MOF pore channels or nodes, emphasizing struc-
tural details. (g) Visualization of the COF/MOF framework structure,
showcasing its porous architecture as the basis for helium separation.

Digital Discovery
interconnected 3D pore network and the arrangement of
organic building blocks. The large pore volume and high
porosity (evident from the structural visualization) directly
correlate with the enhanced helium adsorption observed in
Fig. 8a, while the specic surface chemistry contributes to the
selective interactions that drive the high selectivity in Fig. 8b.
Through MD simulations, the researchers further validated the
model's effectiveness and found that 3D-Sp-COF-1 out-
performed all other tested materials, showing the highest
helium adsorption capacity (0.872 mol kg−1), and membrane
selectivity ratios of 3.37 for He/CH4 and 4.48 for He/N2. Addi-
tionally, SHAP analysis revealed that larger pore volume and
higher porosity contribute to enhanced helium adsorption,
while a higher adsorption heat ratio and specic surface area
favour increased helium selectivity.

Despite the signicant innovation and practical value of this
study, there are aspects that warrant further exploration. First,
while the model demonstrates signicant ndings regarding
the impact of pore volume and specic surface area on helium
separation performance, other factors such as the heterogeneity
of pore structures and the chemical stability of materials may
also inuence helium separation efficiency, and these factors
may not have been fully accounted for in the current model.
Secondly, although MD simulations provided effective valida-
tion of material performance, the accuracy of the simulation
results could be limited by computational methods and simu-
lation time, suggesting that the real-world performance of
materials may slightly differ from the simulated results.
Therefore, further experimental validation and real-world
testing are crucial. Finally, although the study screened many
MOFmaterials from the CoRE MOF database, many other COFs
and MOF materials were not included in the screening process.
Future research could expand the material database to explore
a wider variety of porous materials, further improving the
model's applicability and accuracy.

Quantum dynamics simulations can more precisely describe
the electronic properties of materials such as MOFs and COFs,
especially in scenarios where material–molecule interactions
may involve electronic-level behaviors (e.g., catalytic reaction
mechanisms). These simulations are capable of providing
insights into energy band structures, electron density distribu-
tions, and reaction pathways, though their application in
framework materials research is still evolving.72 These simula-
tions not only provide crucial information on energy band
structures, electron density distributions, and reaction path-
ways, but also accurately simulate the dynamic changes in
materials in different environments, including electron transfer
and excited-state transitions. For helium separation—where the
focus is on molecular diffusion and adsorption (rather than
electronic processes)—classical MD simulations remain effec-
tive for studying such macro-scale behaviours. In contrast, MD
simulations focus on atomic-level mechanical interactions,
which are well-suited for analysing helium adsorption capacity
and membrane selectivity, as demonstrated in subsequent
studies. Thus, quantum dynamics simulations can complement
traditional molecular dynamics simulations in specic
scenarios requiring electronic-level analysis, while MD is more
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 The workflow combining GCMC simulation and automated
machine learning as reported in Yang's work (reproduced with
permission from American Chemical Society, Copyright© 2021).70
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directly applicable to helium separation-related research that
prioritizes atomic motion and adsorption behavior. By selecting
the appropriate simulation method based on research objec-
tives, researchers can achieve a targeted assessment of material
performance, further optimizing the selective adsorption and
separation processes for helium.

Meanwhile, coarse-grained simulations offer a different
approach by simplifying molecular models, reducing compu-
tational complexity, and enabling large-scale systems to be
studied. This technique is particularly useful for screening
various pore structures quickly, making it easier to identify
materials with superior gas storage and separation properties.73

Coarse-grained simulations also provide insights into diffusion
and transport properties of molecules within MOF and COF
structures, enhancing their efficiency in applications like gas
storage and separation. Furthermore, these simulations can be
used to study the effects of solvents on material behavior,
offering insights into how MOFs and COFs perform under
different environmental conditions, such as in liquid-phase
reactions.

Finally, ReaxFF simulations, a type of reactive force eld,
provide a powerful tool for studying chemical reactions and the
dynamic nature of MOF and COF materials during catalytic
processes.74 These simulations are ideal for exploring reactions
where bonds are continuously formed and broken, making
them particularly useful for studying catalytic reactions and
associated changes in the pore structure of MOFs and COFs.
ReaxFF simulations can help researchers understand reaction
mechanisms, activation energies, and reaction pathways, opti-
mizing catalytic efficiency. They also provide insights into the
long-term stability and performance of materials in catalytic
applications.

In conclusion, the integration of DFT, MD, GCMC, quantum
dynamics, coarse-grained, and ReaxFF simulations signicantly
enhances the design and functionality of MOFs and COFs. Each
simulation method offers unique advantages: DFT provides
precision in the electronic structure and thermodynamics, MD
offers dynamic insights into material stability and transport
properties, GCMC excels in gas adsorption and separation
studies, quantum dynamics delivers high-accuracy insights into
catalytic behavior, coarse-grained simulations enable large-
scale pore structure screening, and ReaxFF is used to model
dynamic chemical reactions and material stability during
catalysis. Together, these advanced techniques form a compre-
hensive toolkit for accelerating the development of high-
performance MOF and COF materials, enabling their applica-
tion in energy storage, gas separation, catalysis, electronics, and
beyond. As computational resources continue to improve, these
simulations will play an increasingly crucial role in advancing
the design and optimization of these materials.

High-throughput screening, combined with advanced
simulation techniques, has revolutionized the design and
optimization of MOF and COF materials. By integrating
methods such as DFT, MD, and GCMC simulations, researchers
can efficiently calculate key material properties, such as
adsorption energies, stability, and performance under various
conditions.75 This enables rapid identication of materials with
© 2025 The Author(s). Published by the Royal Society of Chemistry
superior gas storage capabilities or specic gas selectivity, thus
enhancing the material discovery process. For example, Yang's
work combined molecular simulation and ML methods to
establish a large database of COF properties and calculate their
methane adsorption capacity through GCMC simulations.
Subsequently, as shown in Fig. 9, feature selection and tradi-
tional ML models, such as multiple linear regression (MLR),
support vector machine (SVM), decision trees (DT), and random
forests (RF), were used for performance prediction. At the same
time, the AutoML tool TPOT was introduced to automate feature
engineering, model selection, and hyperparameter tuning to
improve prediction accuracy and work efficiency.

The research results showed that the model automatically
generated by Tree-based Pipeline Optimization Tool (TPOT)
signicantly outperformed traditional ML models in predicting
COF performance, with a coefficient of determination (R2) as
high as 0.992, greatly improving prediction accuracy (error
reduction) and enabling rapid and efficient performance
screening. On the other hand, AutoML not only alleviated the
burden of manual parameter tuning but also lowered the entry
barrier for non-expert researchers in material screening, thus
promoting the development of data-driven material design.
Despite the signicant advantages demonstrated by the study in
introducing AutoML technology for COF performance predic-
tion, there are still some shortcomings that need attention.
Firstly, the model was trained based on simulation data, and
although the prediction performance is excellent, its general-
ization ability in real-world applications still needs to be
conrmed through extensive experimental validation, especially
regarding stability and reliability under different experimental
conditions. Secondly, while the features used by the model
cover many structural and chemical properties, some key
factors, such as defects, impurities, or changes in the micro-
structure, might have been overlooked, leading to potential
biases in the prediction results. Furthermore, this study
primarily focused on predicting methane storage capacity and
did not analyse other performance metrics, such as adsorption
selectivity or kinetics, thus limiting the model's application
scope. Moreover, although AutoML tools provide automated
modelling, their “black-box” nature might affect the interpret-
ability of the model, which is still essential for understanding
the factors inuencing performance in scientic research.
Finally, while model training and prediction are efficient, in
large-scale industrial applications, practical processes such as
Digital Discovery
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data collection, model maintenance, and updates still face
challenges and need further optimization and validation.

High-throughput workows allow for the simultaneous
exploration of how various pore structures inuence gas
adsorption and separation performance.76 By simulating thou-
sands of congurations, researchers can rapidly assess how
temperature, pressure, and solvent conditions affect material
behavior, enabling the quick optimization of properties such as
gas storage, separation, and catalysis, without the need for
extensive experimental validation. This approach signicantly
reduces computational costs and accelerates material design.

It should be noted that in Fig. 3 (where Snurr et al. conducted
studies on screening MOFs for CO2 adsorption at high
humidity) and Fig. 8 (where Lang et al. screened materials for
efficient helium separation) earlier in the manuscript, the CoRE
MOF database has been briey mentioned as a core data source.
However, the core solution logic of this database for addressing
the difficulty in high-throughput screening caused by experi-
mental MOF crystal structures (including solvent molecules,
partially occupied sites, etc.) and its supporting value for the
reliability of subsequent molecular simulations have not been
elaborated. Considering that this database is a key foundation
for breaking through the technical bottleneck of MOF high-
throughput computational screening, and its structural
pretreatment methods and property parameters directly affect
the scienticity of simulation results, it is therefore elaborated
in detail here in conjunction with Fig. 10 to provide data-level
rational support for subsequent studies based on this database.

However, in the context of MOFs, experimental renement of
crystal structures oen includes solvent molecules, partially
occupied sites, or disordered atoms, which presents a signi-
cant challenge for high-throughput computational screening.
To address this, Snurr et al. developed the computation-ready
MOF (CoRE MOF) database, which contains over 4700 experi-
mentally derived porous structures that are immediately suit-
able for molecular simulations.77 The database includes the
atomic coordinates of these structures, along with essential
Fig. 10 Workflow for the CoRE MOF database construction as re-
ported in Snurr's work (reproduced with permission from American
Chemical Society, Copyright© 2014).44
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physical and chemical properties such as surface area and pore
dimensions, making it a valuable tool for MOF material
screening and performance evaluation.

As shown in Fig. 10, to demonstrate the utility of the CoRE
MOF database, they performed GCMC simulations of methane
adsorption on all the structures in the database. They analysed
the structural features inuencing methane storage capacity
and found that these relationships aligned well with those
derived from a large database of hypothetical MOFs. This not
only highlights the effectiveness of the database but also
showcases that computational simulations can provide physical
and chemical property data consistent with experimental
results. Furthermore, the database was expanded to include
over 5000 computation-ready MOF structures, derived directly
from experimental crystal data. By applying efficient algo-
rithms, the database removes solvent molecules and retains
charge-balancing ionic species, ensuring that the structures are
suitable for atomistic simulations. It is noteworthy that while
the initial data for these structures came from the Cambridge
structural database (CSD), they were signicantly modied to
ensure that they were compatible with atomic-level simulations.

Despite the usefulness of the CoRE MOF database, there are
still areas for improvement. First, experimental MOF materials
may not correspond exactly to the fully desolvated crystal
structures reported in the database. Incomplete activation and
material defects can signicantly reduce the porosity of real
materials, impacting their adsorption properties. This discrep-
ancymeans that some of the high-performance structures in the
CoRE MOF database may not have experimentally reported BET
or Langmuir surface areas that match the theoretical values.
This limitation indicates that relying solely on experimental
data for simulations may not always yield accurate predictions
of real material performance.

Second, although the CoRE MOF database provides
substantial support for high-throughput screening, its struc-
tural diversity is still less than that of hypothetical MOF data-
bases. The MOF structures in the CoRE MOF database are
limited in terms of topological variety, which may constrain the
predictive capabilities for certain applications. Future research
should further investigate the impact of MOF topology on
structure–property relationships, particularly whether certain
combinations of textural properties are only accessible with
specic topologies. These unresolved questions will provide
crucial insights for the design of optimal materials and open
new directions for future research.78

To address these limitations of CoRE MOF and strengthen
the data infrastructure for AI-driven framework material
discovery, several recent open-access datasets and tools serve as
valuable complements. The ReDD-COFFEE database—featured
in Van Speybroeck et al.'s work on CO2 capture-oriented COF
screening—contains over 268 000 hypothetical COF structures,
expanding the exploration of chemical space beyond CoRE
MOF's focus on experimentally synthesized MOFs and enabling
high-throughput AI modeling for targeted applications. Addi-
tionally, the Quantum MOF (QMOF) database offers compre-
hensive DFT-calculated quantum-chemical data (e.g., electronic
structures and stability metrics) for thousands of MOFs,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 The procedures for decision-tree analysis and artificial neural
networks as reported in Yıldırım's work (reproduced with permission
from American Chemical Society, Copyright© 2019).64
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providing atomic-level precision to enhance AI model training
accuracy. The MOF Classier, an open-access machine learning
tool, further streamlines AI-driven screening by rapidly pre-
dicting key MOF properties (e.g., water stability and gas
adsorption selectivity), bridging the gap between structural data
and functional performance evaluation.

Moreover, the integration of quantum dynamics, coarse-
grained simulations, and ReaxFF simulations within high-
throughput approaches further accelerates the optimization
process. These simulations provide valuable insights into
reaction mechanisms, catalytic performance, and molecular
diffusion, enhancing material stability and optimizing perfor-
mance under real-world conditions. By simplifying molecular
models for large-scale systems, coarse-grained simulations
facilitate the screening of pore structures, while ReaxFF is used
to model dynamic chemical reactions and material stability
under catalytic conditions.

The true advantage of high-throughput screening lies in its
ability to integrate these advanced techniques into a cohesive
framework. This approach allows researchers to systematically
screen large material libraries, calculate reaction energetics
with DFT, assess material stability with MD, and predict
adsorption properties with GCMC—all in a single workow. As
computational power continues to improve, the integration of
these techniques will play an increasingly important role in
accelerating the design of MOF and COF materials, particularly
for energy, environmental, and electronic applications.

Undoubtedly, the combination of high-throughput
screening with advanced simulation techniques is trans-
forming the design and optimization of MOFs and COFs. These
methods enable fast prediction, screening, and optimization,
dramatically accelerating material discovery and reducing the
reliance on traditional experimental approaches. As computa-
tional capabilities grow, high-throughput simulations will
continue to drive faster, more efficient material development in
a wide range of applications.

One of the main ways ML is integrated with high-throughput
screening is through data-driven performance prediction. Once
large datasets of material properties—such as adsorption
energy, gas selectivity, or stability—are generated through DFT
or MD simulations, ML models can be trained on this data to
predict the performance of new materials. This approach allows
researchers to quickly identify materials with excellent proper-
ties, such as high gas storage capacity or specic gas selectivity,
without incurring additional high computational costs.79 ML
models can generalize across a wide range of material combi-
nations, thereby accelerating the screening and discovery of
potential candidate materials.

Another important application of ML is in material design
optimization. ML can identify correlations between material
structures—such as pore size, shape, and connectivity—and the
desired properties, such as gas storage capacity or catalytic
efficiency.64 Once trained, ML models can predict how changes
in material composition or structure might improve perfor-
mance, helping researchers design new MOFs and COFs. With
this predictive capability, researchers can rapidly conduct
multiple iterations in the design process, reducing the time and
© 2025 The Author(s). Published by the Royal Society of Chemistry
cost associated with traditional trial-and-error methods and
accelerating material discovery. A typical example is Yıldırım's
work, which applied ML to optimize MOFs for methane (CH4)
storage and delivery. As shown in Fig. 11, the team constructed
a database containing 2224 data points and used decision tree
analysis and articial neural networks (ANNs), along with other
data mining tools, to successfully identify underlying patterns.
For model validation, the researchers compared their ndings
with experimental results from the literature, conrming the
reliability of the ML models based on structural properties. The
study highlighted that structural features, such as pore volume
and pore diameter, are crucial factors in predicting MOF
performance in CH4 storage and delivery. These factors fall into
two categories: user-dened descriptors and structural
properties.

Among the user-dened descriptors, the crystal structure
(especially tetragonal and cubic structures) was found to be
associated with higher CH4 delivery capacity, while the total
unsaturation degree was considered an effective indicator of
storage capacity. In terms of structural properties, pore volume
was identied as one of the most important factors for
achieving high CH4 delivery capacity, with larger pore volumes
generally corresponding to better storage ability. Maximum
pore diameter was also an important parameter affecting CH4

storage capacity.
Additionally, the study showed that high pore volume is

a necessary condition for improving performance, and both
crystal structure type (especially tetragonal and cubic) and
structural properties like pore volume and maximum pore
diameter signicantly inuence CH4 storage and delivery
performance. These ndings provide guidance for the future
design and screening of MOFs, particularly in optimizing pore
structures and crystal structures to enhance gas storage
performance. This work not only demonstrates the potential of
ML in materials science but also provides new insights into the
performance prediction of MOFmaterials. However, despite the
signicant progress made in this study, optimizing MOF
materials still faces several challenges. For example, factors
such as the crystal structure and total unsaturation degree,
while helpful for performance prediction, require further in-
Digital Discovery
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depth exploration to fully understand their comprehensive
impact on MOF performance. Future research can continue to
expand the application range of ML models and combine more
experimental data, to promote the development and practical
application of MOF materials in broader elds such as energy
storage and gas separation.

Moreover, ML plays a signicant role in feature selection and
data dimensionality reduction. High-throughput screening
oen generates large amounts of data, which can be over-
whelming and difficult to handle manually. ML techniques can
automatically identify the most important features affecting
material performance and reduce the data's dimensionality,
allowing researchers to focus on key design parameters. This
enables more efficient prioritization of the most promising
materials and further streamlines the material design process.

ML can also help create surrogate models that approximate
the results of expensive simulations, such as DFT or MD.80

Surrogate models run much faster and can help optimize
material performance in real-time, providing quick predictions.
This approach enables rapid evaluation of material potential
without conducting full-scale simulations, greatly enhancing
efficiency.

When combined with high-throughput screening, ML also
enables an automated material discovery process. Reinforce-
ment learning and active learning techniques can use prior
simulation results to select the next materials to simulate,
continually improving the selection process. This makes the
material design process iterative and dynamic, with ML
“learning” from previous results and continuously rening the
choice of candidate materials.

In MOF and COF design, ML employs a variety of methods,
including supervised learning, unsupervised learning, rein-
forcement learning, and deep learning (DL). Supervised
learning trains models using labelled data (such as known
material performance) to predict new material properties.
Unsupervised learning helps identify patterns or relationships
in the data without predened outcomes, which aids in
uncovering complex correlations between thematerial structure
and performance. Reinforcement learning accelerates material
discovery by optimizing design through simulated feedback,
while DL, particularly neural networks, can identify subtle
relationships between material features and performance when
analyzing complex datasets.

The integration of ML with high-throughput screening and
molecular simulation techniques brings numerous advantages.
It makes material performance prediction faster, reduces reli-
ance on computationally expensive simulations, and helps
researchers efficiently handle large and complex datasets.81

Additionally, ML can reveal hidden correlations that traditional
modeling methods might miss, driving the discovery of new
materials. By continuously optimizingmodels, ML improves the
accuracy of material predictions, further accelerating the design
and optimization process.

When combining ML with high-throughput screening,
certain challenges do arise, one of the key issues being the
quality of the data used for training. If the data are poor or
sparse, ML models may make inaccurate predictions, leading to
Digital Discovery
design process errors. While ML models can make predictions
quickly, they are oen difficult to interpret, especially with
complex models like deep neural networks.82 This “black box”
issue can limit our understanding of the model results, partic-
ularly when trying to explain why certain materials perform
well, as there is a lack of transparency.

To address this, advanced tools like SHAP (SHapley Additive
exPlanations) and LIME (Local Interpretable Model-agnostic
Explanations) can be used to “open the black box.” SHAP and
LIME provide both local and global explanations of ML model
predictions, helping reveal which features were critical in
making a specic prediction.83 These tools allow researchers to
better understand why certain MOF or COF materials were
selected, enabling more targeted adjustments to the model or
material design strategy. Not only does this improve the trans-
parency of the model, but it also provides a deeper under-
standing of the design process, enhancing the model's usability
and credibility. Additionally, overtting is another challenge in
ML, where models perform well on training data but fail to
generalize to new materials, potentially impacting prediction
accuracy.

Despite these challenges, integrating ML with high-
throughput screening and advanced molecular simulation
techniques can signicantly accelerate the discovery and opti-
mization of MOF and COFmaterials. By combining simulations
and ML, researchers can design materials with specic func-
tions in a much shorter time, speeding up their application in
energy, environmental, and electronic elds. As computational
power continues to grow and data quality improves, ML will
play an increasingly important role in the accelerated design of
MOF and COF materials.

With the continuous development of AI, the design methods
for MOFs and COFs are evolving toward more efficient, rational,
and intelligent approaches.84,85 AI accelerates the material
design and discovery process through three core functionalities:
automated feature extraction, generative design, and multi-task
predictive modeling.

First, AI leverages advanced data processing tools (such as
web crawlers, Python data pipelines, etc.) to automatically
extract structural features from heterogeneous datasets, con-
verting complex information like metal cluster identities,
organic linker geometries, and topological connectivity into
high-dimensional feature vectors suitable for ML. This process
not only eliminates the reliance on manual descriptor engi-
neering but also systematically captures chemical patterns,
providing a solid foundation for subsequent model training and
prediction.

Second, AI explores novel chemical spaces through genera-
tive design. By learning from existing frameworks, AI generates
new chemically plausible candidates. Advanced architectures
such as Generative Adversarial Networks (GANs) and variational
autoencoders (VAEs) manipulate molecular building blocks
within learned chemical spaces, proposing innovative combi-
nations of metal nodes, linkers, and topologies that extend
beyond traditional chemical databases and human intuition.86

Finally, AI constructs multi-task predictive models using
deep learning techniques, correlating structural descriptors
© 2025 The Author(s). Published by the Royal Society of Chemistry
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with material properties like gas adsorption capacity, thermal
stability, and catalytic activity. These models efficiently identify
complex nonlinear relationships between the structure and
performance, enabling rapid virtual screening and providing
reliable guidance for material synthesis.87

Together, these three functionalities create an integrated
workow: automated feature extraction grounds models in
empirical knowledge, generative design explores untapped
chemical spaces, and predictive modeling validates functional
potential. This streamlined process accelerates material
discovery, reducing the timeline from years to weeks, while
systematically navigating the vast combinatorial design space of
MOFs and COFs.

The synergy between AI and molecular simulations has
transformed the design and optimization of MOFs and
COFs.46,88,89 This collaboration allows the two methods to
complement each other, enhancing both the efficiency and
accuracy of material design. AI accelerates the development
process by rapidly screening candidate materials, optimizing
design workows, and generating new material candidates.
Molecular simulations, on the other hand, provide the essential
physical foundation that ensures more accurate and reliable AI
predictions, validating the performance of new designs.

Molecular simulation techniques play an indispensable role
by offering atomistic-level insights and rigorous quantitative
evaluations of material properties, which are crucial for rational
design. For instance, DFT calculations provide precise analysis
of key characteristics, such as metal–ligand bonding energies,
electronic band structures, charge transfer mechanisms, and
reaction activation barriers, which are critical for assessing the
stability and chemical reactivity of materials under operational
conditions.90 MD simulations uncover intricate dynamic
behaviors, including framework exibility, guest-induced
structural transitions, and conformational changes during
adsorption or catalytic processes, capturing the temporal
evolution of systems at femtosecond resolution.

Meanwhile, GCMC simulations utilize statistical mechanics
to predict gas adsorption isotherms across different pressures,
identify preferential binding sites, quantify adsorption
enthalpies, and calculate mixture selectivity. These simulations
generate comprehensive thermodynamic metrics essential for
optimizing material performance. Together, these integrated
computational methods bridge the gap between abstract
structural design concepts and tangible functional perfor-
mance. They establish direct connections between atomic
congurations and macroscopic properties through physics-
based modeling.

Moreover, these simulations provide critical validation
benchmarks for data-driven approaches, offering mechanistic
insights that would be difficult to obtain through experimental
characterization alone. This collaborative effort creates a foun-
dational knowledge base that supports the development of
predictive models, enhancing the accuracy and efficiency of
MOF and COF material discovery.

In practical applications, AI can expedite the preliminary
screening phase of molecular simulations. Traditional molec-
ular simulations, such as DFT or MD, require substantial
© 2025 The Author(s). Published by the Royal Society of Chemistry
computational resources and time. AI, however, can swily
predict key material properties—such as adsorption energy,
stability, and pore structure—based on existing simulation
data, screening promising candidates for further detailed
simulations. This reduces computational costs and improves
screening efficiency.

Molecular simulations provide critical training data for AI,
especially in the design of MOFs and COFs.91 These simulations
generate vast amounts of data, including molecular structures,
adsorption properties, and molecular diffusion behavior. AI
models can leverage these data to learn the relationships
between the material structure and performance. For instance,
stability data from MD simulations allows AI to quickly assess
material stability, accelerating the screening process.

AI's role extends beyond prediction and screening—it also
optimizes the design process. By employing reinforcement
learning (RL) or genetic algorithms (GA), AI can autonomously
generate new MOF or COF designs, adjusting them based on
feedback from molecular simulations. This “design-test-opti-
mize” cycle enhances the efficiency of material design, elimi-
nating the need for traditional trial-and-error methods.92

Moosavi's research demonstrates the innovative combina-
tion of multimodal AI technologies with molecular simulation
methods for predicting the properties and applications of
MOFs.25 As shown in Fig. 12, the study introduces two AI tech-
niques—transformer models and Convolutional Neural
Networks (CNNs)—to process chemical precursor SMILES
strings and PXRD spectral data, capturing both the chemical
properties and geometric structural information of the mate-
rials. This fusion of modalities improves the model's accuracy
and adaptability, particularly when handling different types of
data. Furthermore, the research employs a self-supervised
learning strategy, utilizing large-scale unlabeled data in
conjunction with Crystal Graph Convolutional Neural Networks
(CGCNNs). This allows the model to learn local chemical envi-
ronments, signicantly improving performance on smaller
labeled datasets. This strategy not only reduces reliance on large
labeled datasets but also enhances the model's ability to predict
MOF properties.

A groundbreaking innovation in Moosavi's work is the
model's ability to predict material properties accurately without
relying on complete crystal structure data. Traditional MOF
property predictions typically depend on detailed crystal struc-
ture information, but Moosavi's model demonstrates that
predictions can be made using only PXRD data and chemical
precursor information. This accelerates the evaluation of
potential applications for new materials. Moreover, the study
introduces a “time-travel” validation method, using historical
data to predict the future applications of MOF materials. This
provides a new perspective on cross-domain applications, such
as identifying MOF materials initially designed for other
purposes that may show excellent performance in CO2 capture.
This approach facilitates the exploration of diverse material
applications.

However, despite the strong predictive capabilities, several
challenges remain. First, the “black-box” nature of the model
limits its interpretability, which is crucial for the design and
Digital Discovery
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Fig. 12 Workflow for linking MOF synthesis to applications using
multimodal ML, as presented in Moosavi's work (reproduced with
permission from Springer Nature, Copyright© 2025).82 (a) Schematic of
the multimodal machine learning workflow, integrating crystal struc-
ture (via OC-CNN), PXRD pattern (via CNN), and precursor (via
transformer/processor) modules. It involves pre-training, concate-
nated embedding, and downstream tasks for property prediction (e.g.,
gas adsorption, mechanical stability, and band gap) and recommen-
dations (e.g., retrosynthesis and defect engineering). (b) Scatter plot
comparing CH4 uptake at 65 bar (mol kg−1) between CSD and CoRE-
2019 databases, with SRCC (CSD–CoRE) = 0.73 and relative error #
19%, illustrating the consistency of uptake data. (c) Structural visuali-
zations of MOFs from the CoRE-2019 database, showcasing their
framework architectures. (d) Structural visualizations of MOFs from the
CSD database, depicting their distinct topological and atomic
arrangements. (e) Structure of a solvent-containing MOF.
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optimization of MOF materials. Without a clear physical expla-
nation for the model's predictions, researchers may struggle to
fully understand the rationale behind the outputs, which can
hinder model optimization. Second, the quality and coverage of
the crystal structure databases and PXRD spectral data used in
the study may affect the model's generalizability. Given the
structural complexity and diversity of MOFs, existing databases
may not fully represent all types of MOFs, especially those not yet
synthesized. Therefore, improving data quality and expanding
the database's coverage is essential for enhancing the model's
performance. While self-supervised learning and pretraining
strategies reduce the need for labeled data, the model still relies
on substantial amounts of training data. Its performance may be
suboptimal for novel or atypical MOF structures, posing a chal-
lenge for future work in adapting the model to accommodate
a broader range of structures.

In addition to predictive models, generative AI techniques,
such as generative adversarial networks (GANs), are advancing
the discovery of new materials. These models generate new
material candidates, which can be validated through molecular
simulations. The AI-generatedmodels are then optimized based
on the simulation results, accelerating material discovery and
Digital Discovery
revealing structural features and performance advantages that
traditional methods may overlook.

For example, MOFs and COFs are widely used for gas storage
applications, such as hydrogen, methane, and carbon dioxide
storage, due to their tunable pore structures. MD simulations
provide detailed information on the diffusion, adsorption, and
desorption of gas molecules within the material's pores.
However, running full MD simulations for each candidate
material can be computationally expensive. By training ML
models on large MD datasets, AI learns the relationship
between the material structure and gas adsorption perfor-
mance, enabling the rapid prediction of gas adsorption capa-
bilities. This allows for efficient screening of potential
candidates for further validation via MD simulations.

The combination of AI and molecular simulations not only
accelerates the design of MOFs and COFs but also ensures the
physical plausibility and accuracy of predictions.93,94 By rapidly
screening potential materials, optimizing designs, and vali-
dating simulations, the synergy between AI and molecular
simulations signicantly accelerates the discovery of novel
materials, unlocking vast opportunities in energy, environ-
mental, and electronic applications.

The synergistic mechanism between AI and molecular
simulations operates as a sophisticated closed-loop framework
that integrates database construction, computational
screening, predictive modeling, and experimental validation
into a continuous design cycle. Initially, a comprehensive multi-
source database is established by consolidating heterogeneous
experimental literature, high-throughput characterization data,
and curated simulation outcomes, ensuring broad coverage of
structural and property spaces. This database serves as the
foundation for subsequent computational screening, which
employs hierarchical simulations. Techniques such as coarse-
grained DFT, GCMC, and MD are used to rapidly narrow
down candidate materials by evaluating their fundamental
stability and baseline performance metrics.95

AI then processes these high-dimensional datasets through
methods like graph neural networks and multi-task learning
architectures, uncovering complex patterns and establishing
quantitative structure–property relationships across multiple
performance objectives. Promising candidates identied through
ML models undergo further renement using ne-grained DFT
validation, ensuring that predicted properties are thermody-
namically feasible and accurate at an electronic structure level
before moving to experimental synthesis. Following synthesis,
the materials undergo comprehensive characterization, and the
resulting performance data are systematically fed back into the
central database and predictive models.

This iterative feedback mechanism enhances model accu-
racy and gradually expands the design space. The closed-loop
system continually incorporates lessons from previous itera-
tions, systematically reducing empirical uncertainty and
signicantly accelerating discovery timelines—by orders of
magnitude compared to traditional methods. The integration
ensures that each cycle of the design process benets from prior
knowledge, leading to increasingly precise navigation of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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complex MOF and COF design landscape, which ultimately
accelerates material discovery and optimization.

AI multi-task networks and other advanced architectures
signicantly streamline the material screening process. By
simultaneously predicting multiple properties—such as gas
storage capacity, catalytic efficiency, thermal stability, and water
stability—AI captures the interdependencies between these
properties, thereby enhancing the accuracy and efficiency of
material design. This approach shis material design from
a traditional trial-and-error method to an active, prediction-driven
process, enabling researchers to systematically explore the
complex design space of MOFs and COFs, quickly identify novel
materials, and move material research toward rational design.

The ML method proposed by Jiang et al. to predict and
accelerate the discovery of water-stable MOFs is closely related to
the application of AI multi-task networks. As presented in Fig. 13,
the authors rst constructed the largest water stability database
to date, which includes 1133 synthesized MOFs, categorized
according to their experimental stability in aqueous solutions
and water vapor, forming the foundation for the ML model.96 By
combining structural and chemical descriptors, Jiang et al.
developed a random forest classier specically for predicting
MOF water stability under different water exposure conditions.
This method ensures the robustness and adaptability of the
model, which performs with high prediction accuracy and
excellent transferability in out-of-sample validation.

The identication of key factors further validates the appli-
cation of AI in material design. The study reveals that the water
stability of MOFs is closely related to multiple factors, such as
high surface area, narrow pore sizes, metals with larger atomic
mass and radius, and the connectivity and electronegativity
variation of organic linkers. These factors not only enhance the
Fig. 13 Workflow to predict water stability of MOFs as reported in
Jiang's work (reproduced with permission from Wiley-VCH GmbH,
Copyright© 2024).87 (a) Data collection, distinguishing water-stable (S)
and unstable (U) MOFs with their structural schematics. (b) Featuri-
zation, including global descriptors (pore size, surface area, void
fraction, etc.) and building unit-based descriptors (metal node and
organic linker characteristics). (c) Data processing, categorizing S and
U MOFs, followed by oversampling for the U group to balance the
dataset. (d) Prediction, presenting the percentage of MOF water
stability prediction results (e.g., bar chart for different MOF categories
and heatmap for prediction distribution). (e) Model training, employing
an ensemble learning approach with majority voting to train the
predictive model for MOF water stability.

© 2025 The Author(s). Published by the Royal Society of Chemistry
understanding of material behavior but also provide a frame-
work for designing MOFs with stronger water stability. Jiang
et al.‘s work aligns closely with the core concept of AI multi-task
networks. Both approaches aim to capture the interrelation-
ships between various material properties, thereby improving
the accuracy and efficiency of material design. Through ML,
Jiang et al. accelerated the discovery of MOFs, further demon-
strating the powerful potential of AI in material design and
offering new tools and insights for material research, driving
the shi from traditional trial-and-error methods to intelligent,
prediction-driven design approaches.

In conclusion, the integration of AI with molecular simula-
tions creates a synergistic ecosystem where molecular simula-
tions provide high-delity atomic-level data essential for
training and validating AI models. Conversely, AI accelerates
the pre-screening phase, improving design efficiency and
reducing computational costs. The use of AI generative models
further supports the design of new materials. As computational
capabilities advance, the integration of AI and molecular
simulations will become increasingly crucial in MOF and COF
design, expediting the discovery of new materials and meeting
the demands of more complex applications.
3 Typical case of digital and
intelligent design in framework
materials

Building on the previous framework, the concept of the digital-
intelligent design framework emerges. This new research
paradigm transforms the design process of MOFs and COFs
from traditional, experience-based trial-and-error methods to
a more systematic and intelligent approach that integrates
molecular simulations, experimental data, and advanced AI
technologies.97 In this framework, “digital” refers to the vast
amounts of data derived from molecular simulations, topolog-
ical information, experimental measurements, and materials
performance data extracted from the literature. These diverse
data sources are integrated into a structural database for MOFs
and COFs, built using high-throughput simulations, providing
comprehensive support and a solid data foundation for mate-
rial design. For instance, MD simulations offer data on material
stability and diffusion behaviours, while DFT provides precise
electronic structure information. These datasets serve as rich
sources for training and validating AI models.

“Intelligence” refers to the wisdom extracted through AI and
ML algorithms, based on the trial-and-error experience accu-
mulated by researchers in the early stages of the design process.
In this framework, AI algorithms not only automatically identify
the potential and performance of materials but also optimize
the design process through DL, reinforcement learning, and
other advanced techniques. The AI-driven optimization process
dynamically adjusts design strategies based on different appli-
cation needs, quickly identifying and selecting high-
performance MOF and COF candidates. Through this
approach, digital-intelligent design accelerates both the
discovery and optimization of MOFs and COFs, enabling
Digital Discovery

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00401b


Fig. 14 Computational screening of MOFs for strong CO2 adsorption
and selectivity as reported in Smit's work (reproduced with permission
from Springer Nature, Copyright© 2019).53 (a) Scatter plot illustrating
the distribution of MOFs regarding CO2/N2 selectivity and related
performance metrics, with a color gradient representing a specific
parameter (e.g., CO2 adsorption capacity). (b) Scatter plot of MOF
performance parameters (e.g., CO2 adsorption capacity vs. another
descriptor), with data points categorized by different groups (e.g.,
metal nodes or linker types). (c) Schematic of a MOF's crystal structure,
highlighting its pore architecture and potential CO2 adsorption sites.
(d) Gas adsorption isotherms of CO2 and H2O as a function of relative
humidity, accompanied by molecular structure illustrations, demon-
strating the adsorption behavior of a MOF. (e) Gas adsorption
isotherms of CO2 and H2O as a function of relative humidity for
another MOF, depicting its uptake features under different humidity
conditions. (f) Structural visualization of a MOF in the dry state,
showcasing its framework architecture. (g) Structural visualization of
a MOF in a humid environment, illustrating the incorporation of
adsorbed water molecules and their impact on the framework.
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intelligent control over the material design process through
continuous iterative learning. This dramatically enhances the
accuracy and efficiency of the entire design process.

This digital-intelligent design paradigm opens a new model
for the development of MOF and COF materials, driving rapid
progress in applications such as energy storage, environmental
protection, catalytic reactions, and industrial processes. By
leveraging efficient data-driven design and AI-powered optimi-
zation, digital-intelligent design accelerates material develop-
ment, making it both faster and more efficient while better
addressing diverse and complex application demands. With the
ongoing advancements in data science and computational
capabilities, the digital-intelligent design framework will
continue to lead the development of MOFs and COFs into an era
of greater intelligence and precision.

A prime example of digital-intelligent design in the devel-
opment of MOFs is Berend Smit's groundbreaking work.
Limiting the increase in CO2 in the atmosphere is one of the
greatest challenges of our generation, directly contributing to
global warming and climate change. As a result, the develop-
ment of effective CO2 capture and storage technologies is crit-
ical for mitigating current emissions. Among the promising
materials for CO2 capture, MOFs have emerged as a key candi-
date due to their tunable structures, high surface areas, and
large pore volumes.98

While many MOFs exhibit signicant performance in CO2/N2

separation under ideal conditions, their efficiency drops
dramatically when exposed to real-world ue gases, particularly
those containing water vapor. Water competes with CO2 for the
same adsorption sites, causing MOFs to lose selectivity and
reducing their overall separation performance. Thus, the task of
screeningMOFs that canmaintain high CO2 capture efficiency in
the presence of water remains labour-intensive and resource-
consuming. Smit's work addresses this challenge by employing
a novel approach that combines computational screening and
data mining techniques, utilizing a database of over 300 000
MOFs (Fig. 14). Through data mining, the researchers identied
a variety of strong CO2-binding sites, which they termed “adsor-
baphores.” These adsorbaphores endow MOFs with CO2/N2

selectivity in wet ue gases, effectively solving the problem of
water interference.

The research not only successfully identied these adsor-
baphores but also synthesized two water-stable MOFs incorpo-
rating the most hydrophobic adsorbaphores. These MOFs
exhibited outstanding CO2 capture performance, maintaining
efficiency even in the presence of water, and outperforming
several commercial materials.

By combining computational screening with data mining,
Smit's work signicantly accelerated the discovery and optimiza-
tion of MOFs with ideal performance. Moreover, this study
showcases the potential of the digital-intelligent design frame-
work, which integrates molecular simulations, experimental data,
and AI technologies, to expedite material discovery and optimi-
zation. This innovative approach has made MOF material devel-
opment more efficient and capable of addressing increasingly
complex application needs, laying a solid foundation for the
continued advancement of CO2 capture and storage technologies.
Digital Discovery
Additionally, as shown in Fig. 15, Jiang et al. presented an
innovative multiscale computational screening approach to iden-
tify uorinated metal–organic frameworks (FMOFs) with high CO2

capture performance from wet ue gas. The research team
systematically screened 5061 FMOFs and shortlisted 19 top
candidates, demonstrating the potential of uorinated MOFs for
CO2 capture in humid environments. By calculating the geometric
properties, pore size, and water adsorption heat, the study rst
identied FMOFs with suitable pore sizes and weak water affinity,
laying the foundation for subsequent performance screening.

A key contribution of this work is the use of GCMC simula-
tions to evaluate the adsorption of CO2/N2/H2O mixtures (at
60% relative humidity) across the FMOF library. Among the 19
top candidates, Cu-based FMOFs were found to have the high-
est adsorption performance. The study also revealed the
importance of the position, rather than the amount, of F atoms
in CO2 adsorption. Moreover, FMOFs with nitrogen-containing
pillar groups demonstrated enhanced selectivity for CO2

adsorption in the presence of humidity. Furthermore, Jiang
et al. conrmed the hydrostability of these top FMOFs through
rst-principles molecular dynamics (FPMD) simulations. The
results showed that these materials maintain excellent struc-
tural stability even in the presence of co-adsorbed CO2 and H2O.
One of the notable ndings of this study is the strong interac-
tion between CO2 and the F atom, which effectively traps CO2

within the framework, particularly in FMOFs with nitrogen-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 15 Workflow for multiscale computational screening of hydro-
stable fluorinated MOFs for CO2 capture from a wet flue gas as re-
ported in Jiang's work (reproduced with permission from American
Chemical Society, Copyright© 2024).69 (a) Multiscale screening
workflow schematic, featuring layers of fluorinated MOFs (FMOFs)
with stepwise reduction in quantity: starting from 16 441 FMOFs
(screened by jDGj < 5.0 Å3), 7138 FMOFs (with a CO2/N2 separation
metric), 6782 FMOFs (with Q_CO2 < 42 wt%), 5061 FMOFs (via GCMC
simulation), top 19 FMOFs (via FPMD simulation), and finally hydratable
FMOFs. (b) Scatter plot illustrating the correlation between two
performance metrics of FMOFs (e.g., CO2/N2 separation ability and
another descriptor), with a color gradient representing a specific
parameter. (c) Scatter plot depicting the distribution of FMOFs based
on CO2 adsorption capacity and related performance indicators,
distinguished by color or category. (d) Schematic illustration of the
hydrostable fluorinated MOF's structure and mechanism for CO2

capture from wet flue gas, showing steps like hydrolysis, CO2

adsorption, and framework interactions.

Fig. 16 Workflow of GCMC simulations for screening COF candidates
for CO2 fixation based on a dataset of 10 994 M-Salen-COF structures
(reproduced with permission from Springer Nature, Copyright©
2020).99
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decorated pillars. Additionally, as observed in VOFFIVE-3_Fe
with pyrazine, the pore size of the framework is adjusted via
the rotation of pyrazine, allowing it to preferentially accom-
modate CO2 over H2O.

Jiang et al.69 provided important theoretical insights into CO2

capture by uorinated MOFs in humid environments. By
revealing the impact of the position, rather than the quantity, of F
atoms on CO2 adsorption performance, and highlighting the
superior selective adsorption ability of FMOFs with nitrogen-
containing pillars under humid conditions, this study offers
valuable guidance for the future development of hydrostable CO2

capture materials suitable for real-world industrial conditions.
However, it is worth noting that while the study primarily focuses
on material properties such as adsorption capacity and selec-
tivity, the authors emphasize that future research should inte-
grate process and system-level optimization for a more holistic
evaluation of these materials' practical application potential.

The present study demonstrates that large-scale, database-
driven simulations can reveal adsorption and catalytic mecha-
nisms that are difficult to uncover through conventional small-
scale experiments or single-case studies. In our previous work,
we constructed a dataset comprising 10 994 M-Salen-COF
structures, which were optimized using MD methods. Subse-
quently, the excess adsorption amounts of CO2 under ambient
conditions were simulated for these structures using GCMC
simulations. Analysis of the simulation results revealed signif-
icant differences in the adsorption performance among the
COFs, providing a basis for further investigation of the pore
enrichment effect. As shown in Fig. 16, COFs with high
adsorption capacity exhibit pore architectures and functional
© 2025 The Author(s). Published by the Royal Society of Chemistry
groups that interact strongly with CO2 molecules, leading to
local concentration and pronounced pore enrichment, which
enhances both adsorption performance and catalytic activity.

In contrast, low-adsorption COFs show a relatively uniform
distribution of CO2, with weak molecular interactions that fail
to effectively enrich the gas; additionally, limited pore accessi-
bility or reduced interlayer spacing further restricts CO2 accu-
mulation. These observations indicate that the pore enrichment
effect is a key factor in improving CO2 adsorption and storage in
porous materials.

Based on these ndings, we dened the concept of the pore
enrichment effect, whereby the pore structure and functional
groups within the framework exert characteristic adsorption
interactions with gas molecules, signicantly increasing the
local concentration of CO2 within the pores and promoting
catalytic reactions in conned environments. Guided by this
insight, we synthesized a COF predicted to exhibit the strongest
pore enrichment effect, denoted as Zn-Salen-COF-SDU113, and
evaluated its catalytic performance in the coupling reaction
between CO2 and terminal epoxides.

Remarkably, under ambient conditions, Zn-Salen-COF-
SDU113 achieved a CO2 conversion yield of 98.2% with a turn-
over frequency (TOF) of 3068.9, comparable to the best-
performing catalysts reported globally for this type of
Digital Discovery
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Fig. 17 The ChatGPT chemistry assistant workflow reported in Yaghi's
work (reproduced with permission from American Chemical Society,
Copyright© 2023).102
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reaction. Furthermore, Zn-Salen-COF-SDU113 represents the
rst porous material to catalyse the reaction between CO2 and 2,
3-epoxybutane at room temperature and atmospheric pressure.
These experimental results not only validate the role of the pore
enrichment effect in promoting catalytic reactions within
porousmaterials but also establish a closed-loop approach from
theoretical prediction to experimental verication, in which
large-scale, database-driven simulations directly guide the
rational design and synthesis of high-performance COF cata-
lysts for CO2 xation.

Building upon the fourth phase of autonomous AI-driven
design, recent advances in prompt engineering have further
expanded the capabilities of MOF and COF research. By carefully
craing prompts to guide large language models (LLMs) and
generative AI, researchers can extract design strategies, predict
structural properties, and even propose synthetic routes, com-
plementing traditional computational and experimental
approaches while bridging the gap between human expertise,
data-driven simulations, and experimental validation.100 The
integration of prompt engineering provides an additional layer of
acceleration, enabling more efficient generation of candidate
structures, proposal of functional modications, and informed
decision-making in material discovery. The design and synthesis
of MOFs traditionally rely heavily on experimental literature and
existing data. However, with the exponential growth of publica-
tions, manually extracting and organizing key information has
become time-consuming, labor-intensive, and inefficient. This
approach limits researchers' ability to rapidly access synthesis
conditions, performance data, and structural information,
thereby hindering high-throughput design and systematic opti-
mization. To address this issue, conventional natural language
processing (NLP)methods have been employed for literature data
extraction. Nevertheless, these approaches typically require solid
programming skills, as well as expertise in computer science and
data science, and oen need to be redesigned or reprogrammed
for different research objectives, limiting their generalizability
and scalability. Collectively, these challenges make the rapid and
accurate extraction of MOF synthesis and performance infor-
mation from vast literature a critical bottleneck for materials
discovery and intelligent design.

A representative example is the work reported by Yaghi and co-
workers, who developed an efficient workow for MOF design by
integrating text mining, ML, and AI tools.101 As shown in Fig. 17,
they employed prompt engineering to guide ChatGPT in auto-
matically extracting MOF synthesis conditions from the litera-
ture, capable of handling diverse formats and styles of scientic
articles. This workow enabled parsing, searching, screening,
classifying, summarizing, and structuring the information. Using
this approach, the team successfully extracted 26 257 unique
MOF synthesis parameters covering approximately 800 MOFs,
and rigorously evaluated the text-mining results using precision,
recall, and F1-score metrics, all achieving 90–99% accuracy.

The systematically organized data were compiled into
a structured synthesis database, laying the foundation for
subsequent data-driven simulations and ML models, which
exemplies the “data” aspect of digital-intelligent design.
Traditional MOF design relies heavily on human experience and
Digital Discovery
trial-and-error, which is time-consuming and may overlook
latent patterns. In contrast, this approach enables a closed loop
from design to experimental validation through systematic data
and intelligent modelling. Based on these data-drivenmodels, it
is possible not only to predict crystallization outcomes but also
to identify key factors inuencing synthesis, thereby guiding the
rational design of new MOFs and optimization of synthesis
conditions. This method signicantly improves design effi-
ciency and provides a feasible paradigm for the digital-
intelligent design of MOFs and other framework materials,
accelerating the transformation from data to knowledge to
experimental verication, and marking a shi in MOF research
from experience-driven to data and intelligence-driven design.
Prompt engineering can facilitate the discovery of unique
physicochemical properties of framework materials, particu-
larly in terms of crystallinity and the realization of high
performance. The Yaghi group rst constructed a dataset of
metal–organic framework (MOF) linkers and employed a ne-
tuned GPT assistant to mutate and modify existing linker
structures, thereby proposing new MOF linker designs.103 This
strategy enabled the discovery of high-performance water-
harvesting MOFs: the resulting 10 Long-Arm MOFs (LAMOFs)
set new benchmarks in water uptake (up to 0.64 g g−1) and
operational humidity range (13–53%).

Furthermore, the Yaghi group further developed a multi-AI-
driven laboratory system using ChatGPT and Bayesian optimi-
zation.96,103 The system, comprising seven large language model-
based assistants and ML algorithms, can coordinate multiple
tasks in a chemistry laboratory. It accelerated the optimization of
microwave synthesis conditions for MOF-321, MOF-322, and
COF-323, enhancing crystallinity while achieving desired porosity
and water uptake. Within the workow, different AI assistants
handle strategy planning, literature search, coding, robotic
operation, labware design, safety inspection, and data analysis,
providing comprehensive support to human researchers. By
reducing human biases in experimental screening and balancing
exploration and exploitation of synthesis parameters, the
Bayesian search efficiently identied optimal conditions from
a vast pool, enabling a single researcher collaborating with AI to
reach productivity comparable to a full traditional research team.
This work demonstrates the potential of AI in MOF/COF
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 18 A comparison of the use of a knowledge graph reported in Li's
work (reproduced with permission from Springer Nature, Copyright©
2025).84
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synthesis and provides a compelling example of laboratory
automation and intelligent research.

Another representative work is from the Li group, who
developed a method for constructing a knowledge graph of
framework materials based on large language models (LLMs).84

Framework materials exhibit signicant potential in structural
diversity, precise pore regulation, and functional modication.
However, as research progresses, the volume of related litera-
ture has rapidly increased, and the information has become
highly fragmented, posing challenges for researchers in
systematically accessing and utilizing the vast data. Li's group
analysed over 100 000 publications on various types of frame-
work materials to build a knowledge network containing 2.53
million nodes and 4.01 million relationships. LLMs were
employed to automatically extract key information, perform
semantic analysis, and conduct logical reasoning, converting
scattered and unstructured data into a structured knowledge
graph. This approach greatly enhanced information integration
efficiency, reduced manual curation efforts, and provided
researchers with a clear and navigable knowledge network.104

Furthermore, they combined the knowledge graph with
LLMs to develop a question-answering system called Qwen2-KG
(Fig. 18). In the eld of framework materials, the system ach-
ieved an accuracy of 91.67%, far exceeding other models such as
GPT-4 (33.33%). Importantly, as is shown in Fig. 1, Qwen2-KG
provides precise information sources, ensuring reliability and
traceability of answers, and offers an efficient and trustworthy
tool for knowledge retrieval and decision-making in research.105

This work holds signicant implications for the digital-
intelligent design of framework materials. By constructing
a large-scale, structured, and searchable knowledge network,
researchers can systematically access dispersed information on
© 2025 The Author(s). Published by the Royal Society of Chemistry
synthesis conditions, structural features, and performance
data, providing a solid foundation for data-driven design.
Coupled with the LLM-based question-answering system, it not
only enhances the efficiency of information utilization but also
ensures data reliability, supporting rapid decision-making and
high-throughput screening. This approach integrates human
expertise, experimental data, and intelligent algorithms, exem-
plifying the convergence of “data” and “intelligence” and
establishing a new paradigm and set of tools for the digital and
intelligent design of framework materials.106–109

4 Key challenges in digital-intelligent
design of MOFs and COFs

Despite the remarkable progress in integrating AI, molecular
simulations, and high-throughput screening for MOF/COF
design, several critical challenges persist, hindering the trans-
lation of computational predictions to practical material
development. These challenges, previously mentioned in scat-
tered sections, are systematically discussed herein.

4.1. Inconsistent data quality and limited data scalability

The reliability of data-driven models (e.g., ML/DL for perfor-
mance prediction) heavily depends on the quality, consistency,
and coverage of training data. However, existing datasets for
MOFs/COFs oen suffer from three issues: (1) structural
inconsistency—experimental crystal structures may contain
residual solvents, partial occupancy, or disordered atoms (e.g.,
in CoRE MOF database preprocessing), while hypothetical
structures lack experimental validation; (2) property measure-
ment variability—gas adsorption capacity, catalytic activity, and
stability are oen measured under different experimental
conditions (e.g., temperature, pressure, and humidity), leading
to non-comparable data; (3) data sparsity for novel systems—
high-throughput simulations (e.g., DFT and GCMC) are
computationally expensive, resulting in limited data for
emerging functionalized MOFs/COFs (e.g., uorinated MOFs
and M-Salen-COFs). Recent studies have highlighted that such
data inconsistencies can reduceMLmodel accuracy by up to 20–
30%.87 Notably, efforts to address this challenge include the
development of unied data standards (e.g., including experi-
mental metadata in databases) and hybrid data generation
methods (combining DFT with semi-empirical simulations to
expand datasets). For example, a study on MOF water stability
prediction demonstrated that integrating curated experimental
data (from the ARC-MOF database) with DFT-calculated struc-
tural descriptors reduced prediction error to <13%, under-
scoring the value of high-quality data integration.87,110

4.2. Limited model interpretability (the “black-box”
problem)

Advanced AI models (e.g., deep neural networks and GANs)
exhibit high predictive accuracy for MOF/COF properties (e.g.,
gas selectivity and thermal stability), but their “black-box”
nature limits mechanistic understanding—critical for rational
material design. For instance, while RF models achieved R2 =
Digital Discovery
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0.97 for COF-based ethane/ethylene separation prediction,
identifying the specic role of pore size vs. functional groups
required additional SHAP/LIME analysis, increasing research
complexity.30,83 Similarly, multimodal AI models for MOF
property prediction (e.g., using PXRD and precursor data) can
predict adsorption performance without crystal structures, but
the lack of clear structure–property relationship interpretation
hinders the optimization of synthesis strategies.82

Recent advances in explainable AI (XAI, also referred to as
interpretable AI) have shown promise. For example, Wang et al.
applied random forest (RF) models to screen propane-selective
MOFs from the CoREMOF database, and their analysis revealed
two key advances for improving model interpretability: (1)
quantifying the relative importance of descriptors (Henry coef-
cient ratio S0 accounted for 36.89% and adsorption heat
difference DQst accounted for 13.61%), directly linking
structural/energy parameters to C3H8/C3H6 separation perfor-
mance; (2) establishing clear descriptor ranges (e.g., pore
limiting diameter 3.5–6.5 Å; largest cavity diameter 4.8–8.0 Å)
for pre-screening, avoiding the “black-box” issue of unguided
model predictions. This work proved that ML models can
balance prediction accuracy (R2 = 0.83) and mechanistic inter-
pretability, providing a reference for solving the disconnection
between models and physics in MOF design.111
4.3. Gap between computational simulations and practical
synthesis

Molecular simulations (e.g., DFT, MD, and GCMC) provide valu-
able insights into MOF/COF stability and performance, but their
predictions oen deviate from experimental results due to
simplied assumptions: (1) simulation conditionmismatch—DFT
calculations typically use idealized structures (e.g., defect-free
lattices) and vacuum environments, while experiments involve
impurities, solvents, and dynamic conditions; (2) kinetic vs. ther-
modynamic bias—GCMC simulations focus on thermodynamic
adsorption equilibrium, but practical synthesis and application
depend on kinetic factors (e.g., nucleation rate and guest diffu-
sion); (3) scalability limitations—quantum dynamics simulations,
though critical for electronic processes (e.g., catalytic electron
transfer), are restricted to small systems (<1000 atoms), making
them incompatible with high-throughput screening of large MOF/
COF libraries.58,112

This gap is particularly evident in hypothetical material
design: for example, 268 000 hypothetical COFs in the ReDD-
COFFEE database were screened for post-combustion CO2

capture, but only ∼5% were experimentally synthesizable, with
most failing due to poor hydrothermal stability under industrial
ue gas conditions.66
5 Conclusions

In summary, the rational design of MOFs and COFs is rapidly
moving toward a digital-intelligent paradigm, integrating data-
driven analysis with AI to shi from empirical trial-and-error to
predictive and intelligent design. The vast chemical congura-
tion space and complex multi-parameter synthesis conditions
Digital Discovery
of porous framework materials pose challenges for traditional
approaches, whereas digital-intelligent strategies combine
high-throughput experiments, molecular simulations (e.g.,
DFT, GCMC, and MD), and ML/DL to enable predictive
synthesis, performance optimization, and inverse design,
signicantly accelerating materials discovery and property
control. Case studies demonstrate that workows integrating
experimental and simulation data within a digital-intelligent
framework allow rapid screening of high-performance mate-
rials and morphology control while enhancing model inter-
pretability and reliability. Despite the remaining challenges,
such as data quality, model generalization, and the gap between
computational predictions and practical synthesis, future
efforts in expanding high-quality databases, developing inter-
pretable AI algorithms, and establishing autonomous experi-
mental platforms will position digital-intelligent design as
a central methodology in framework material research. Looking
ahead, deep digital-intelligent integration will foster the
convergence of AI, multiscale simulations, and automated
experimentation, enabling autonomous materials design and
discovery, and providing efficient, intelligent solutions for
energy, catalysis, environmental applications, and beyond—
heralding a new era in porous materials research.

6 Outlook

In future work, we plan to address two critical technical
bottlenecks with actionable research directions. First, for
database expansion, we will construct a heterogeneous MOF/
COF database that integrates experimental data (e.g., in situ
structural changes under gas adsorption and long-term stability
tests) and multi-scale simulation results (DFT and MD). This
database will specically include edge cases like defective
structures and performance under extreme conditions (high
pressure and humidity), solving the current scarcity of diverse,
validated data for robust ML model training.

Second, to enhance algorithm interpretability and tackle
black-box limitations, we will develop physics-informed inter-
pretable frameworks by fusing quantum chemical descriptors
(e.g., d-band centre and adsorption energy decomposition) with
graph neural networks. Specically, we will integrate SHAP
analysis with rst-principles calculations to decode structure–
property relationships, enabling rational material design.
Additionally, we will focus on cross-scale validation between
theory and experiments for targeted applications (e.g., helium
capture in industrial ue gas and CO2 reduction in alkaline
electrolytes), bridging the gap between computational predic-
tions and real-world performance.
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