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Explainability methods in machine learning-driven research are increasingly being used, but it remains

challenging to assess their reliability without deeply investigating the specific problem at hand. In this

work, we present a Python-based Workflow for Interpretability Scoring using matched molecular Pairs

(WISP). This workflow can be applied to assess the performance of explainability methods on any given

dataset containing SMILES and is model-agnostic, making it compatible with any machine learning

model. Evaluation on two physics-based datasets demonstrates that the explanations reliably capture the

predictions of the respective machine learning models. Furthermore, our workflow reveals that

explainability methods can only meaningfully reflect the property of interest when the underlying models

achieve high predictive accuracy. Therefore, the explainability performance on a test set can function as

a quality measure of the underlying model. To ensure compatibility with any model type, we developed

an atom attributor, which generates atom-level attributions for any model using any descriptor that can

be obtained using SMILES representations. This method can also be applied as a standalone explainability

tool, independently of WISP. WISP enables users to interpret a wide range of machine learning models in

the chemical domain and gain valuable insights into how these models operate and the extent to which

they capture underlying chemical principles.
1 Introduction

Machine learning is a powerful tool to support decision-making
across many areas of the life sciences.1–3 It can save time and
resources for laboratory scientists, for example in the develop-
ment of new bioactive compounds through quantitative struc-
ture–activity relationship (QSAR) models, the optimization of
drug properties such as absorption, distribution, metabolism,
excretion, and toxicity (ADMET), or in computer-aided synthesis
planning (CASP).4–10 By incorporating model explanations11–13

into the workow, the ‘black-box’ nature of these models can be
reduced, trust in the predictions can be increased, and molec-
ular design can be enhanced when combined with chemical
intuition.14,15

Visualization techniques, such as heatmaps of model
explanations, can help clarify model behavior and inspire new
research directions.4–6,9,16–19 In this context, the model explana-
tions refer to attributions assigned to each atom by the
respective explainability method, indicating the contribution of
each atom to the predicted property of interest. Such visual
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tools can be valuable for both machine learning experts and
non-experts.6 Machine learning experts can use the heatmaps as
a sanity check to visually verify what their models have
learned.20 For non-experts, these heatmaps provide an acces-
sible tool to guide molecular design decisions without requiring
detailed knowledge of the underlying machine learning model.

Various approaches for interpretability have already been
described in the literature.21–23 For example, the XSMILES
approach by Heberle et al. assigns attributions to each character
in the input SMILES and presents them in an interactive
format.15 Besides understanding the behavior of ML models,
Humer et al. highlighted the challenge of comparing different
explainable AI (XAI) methods as an important open research
question.6 Being able to compare different XAI methods and
their performance gives users the opportunity to choose the
most suitable explainability approach for the problem at hand.
Humer et al. addressed these tasks through an interactive two-
dimensional visualization of molecules with their respective
heatmaps, as well as a table view summarizing model perfor-
mances.6 Building on this work, we introduce a workow for
interpretability scoring using matched molecular pairs (WISP)
and a descriptor- and model-agnostic chemical explainability
method — the atom attributor. Humer et al. also highlighted
the lack of a connection between performance metrics and
explainability in interactive tools, which is precisely one of the
key aspects WISP is designed to address.6
Digital Discovery
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Fig. 1 Workflow diagram of WISP. The feature function refers to the process that transforms SMILES strings into the input features used by the
machine learning model. Functionalities such as the ability to input a pre-trained model, as well as the inclusion of the SHAP and RDKit
attributors, are described in the second part of this series. As a result, the user obtains the corresponding performance plots and accuracy values.
If the model training was carried out within WISP, these plots are provided separately for the training and test sets.
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To assess the performance of different explainability
methods, we made use of matched molecular pairs (MMPs).
MMPs are pairs of chemically similar molecules that differ by
only a small, well-dened structural change, such as the
substitution of a functional group.24 The portion of the mole-
cule that changes is referred to as the variable part, while the
unchanged portion is called the constant part. Because only
a single structural modication separates the pair, changes in
molecular properties can oen be directly linked to this specic
difference.25 This connection between structural differences
and the resulting property change in the MMP can be used to
quantify explainability methods, since an effective explain-
ability method should be able to link the predicted property
change to the relevant chemical motif.26 This concept is similar
to the approach used by Wellawatte et al., who employed
counterfactuals to explain the inuence of functional group
changes on model outcomes.22 Counterfactuals describe the
minimal modication required to change an outcome,
a concept rooted in both philosophical reasoning and mathe-
matical analysis.13,14,27–29 Likewise, Vangala et al. used MMPs to
evaluate their explainability method pBRICS, which determines
fragment importances.30 With WISP, we are now able to quan-
titatively assess the performance of explainability methods,
providing broader and more robust insights than relying solely
on the analysis of specic MMPs within a dataset. By providing
a quantitative evaluation, these performance measures indicate
how well the explainability methods account for both the pre-
dicted outcomes and the property of interest, i.e., the extent to
which the model has learned the underlying chemistry of the
experimental data.

WISP enables us to assess whether a machine learning
model genuinely captures underlying chemical relationships, or
whether it merely learns numerical patterns without reecting
Digital Discovery
meaningful chemistry. We aim to quantify the chemical
understanding of the method's performance and use it to assess
the explainability performance for any given dataset (Fig. 1).
WISP allows users to either evaluate the explainability of an
existing model on a dataset or train a new model within its
workow, making it accessible to both experts and non-experts.
Aer preprocessing and model evaluation, WISP computes
attributions using model- and descriptor-agnostic methods,
allowing users to apply different explainers (e.g., the atom
attributor, RDKit or SHAP). This aligns with the ndings of Li
et al., who recommend employing multiple explainability
methods for comparative evaluation.31 Matchedmolecular pairs
(MMPs) are generated to quantitatively assess attribution
accuracy through parity plots and metrics, providing a measure
of how well explanations generalize to new data.

This workow (Fig. 1) enables users to gain valuable insights
into chemical data and model behavior, and to select models
that align more closely with chemical intuition. Reecting on
negative results can further help identify patterns or factors that
may contribute to inaccurate explanations—and, by extension,
to unreliable predictions. We also aim to evaluate how accurate
models need to be in order to reliably reect underlying
chemical relationships, providing valuable guidance for future
model development and application.

In this work, we describe the design and functionality of
WISP, detailing how each component of the code contributes to
quantifying different explainability methods (Sec. 2). We then
evaluate the model performances (Sec. 3.1) and apply WISP to
the Crippen log P (Sec. 3.2), experimental log P (Sec. 3.3), and
solubility datasets (Sec. 3.4) to demonstrate the workow's
outcomes and illustrate how these results can be interpreted
and used. Whether you are facing challenges for structural
changes in molecular design, want to evaluate the quality of
© 2026 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00398a


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Fe

br
ua

ry
 2

02
6.

 D
ow

nl
oa

de
d 

on
 2

/1
4/

20
26

 9
:4

7:
20

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
your machine learning model, or seek systematic ways to
improve it, WISP provides the necessary insights and tools to
support these tasks.
2 Methods
2.1 WISP workow

To quantify the performance of the explainability methods, we
examined the attributions in the context of matched molecular
pairs (MMPs). To achieve this, we summed the attributions of
each atom (attri) of the variable part (N1 and N2) for each
molecule and calculated the difference between these sums for
each matched molecular pair. Details on how the attributions
were calculated can be found in Section 2.4.

DAttributions MMP ¼
XN1

i¼1

attr1;i �
XN2

i¼1

attr2;i (1)

This difference is then compared with the difference in the
model predictions (pred1;2) for the pair,

DPredictions MMP = pred1 − pred2 (2)

Next, the squared Pearson correlation coefficient (eqn (3))
and the accuracy (eqn (4)) can be calculated for both
differences.

r2 ¼

 PK
j¼1

�
xj � x

��
yj � y

�!2

PK
j¼1

�
xj � x

�2PK
j¼1

�
yj � y

�2 (3)

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
(4)

For the squared Pearson correlation coefficient, the sums
iterate over the dataset with K datapoints. The index j refers to
a single datapoint, while �y and x�denote the respective means.
The accuracy indicates the percentage of molecules for which the
attributions are correctly assigned in terms of sign. In this
context, true positives (TP) and true negatives (TN) represent
molecules where the sign of the attribution matches the sign of
the prediction. Conversely, false positives (FP) and false negatives
(FN) correspond to molecules where this sign agreement is not
present. This allows the quantication of how well the explain-
ability methods capture the changes in the model's predictions.

Additionally, we created a histogram of the DAttributions
MMP for the constant part of each pair. Here, each data point
represents the change in the attributions within the constant
part of a single MMP.

For (mostly) group-additive tasks like Crippen log P, a robust
explainability method should yield a D of zero for the constant
part. By analyzing this histogram, one can assess how much
variability the constant part introduces and to what extent this
affects the reliability of the explainability method. In cases
where no intermolecular interactions between the molecules of
© 2026 The Author(s). Published by the Royal Society of Chemistry
the dataset play a role, this metric should correlate with the
variability in the constant part and thus with the quality of the
machine learning model.

In WISP, users can choose whether they want to evaluate the
explainability performance of an existing model on a given
dataset (Fig. 1, top row) or whether they wish to provide only
a dataset and have WISP train a model within the workow
(Fig. 1, bottom row). This exibility also makes WISP accessible
to users who may not be familiar with machine learning. Aer
preprocessing, the attributions for the input dataset are
computed (Sec. 2.4) and, if no machine learning model is
supplied, one will be trained and evaluated (Fig. 1, right).
Because the atom attributor is model- and descriptor-agnostic,
it is always applied within the WISP framework. If the trained
model uses RDKit ngerprints or Morgan ngerprints, the
RDKit attributions are also generated. SHAP attributions are
calculated only if the input features are Morgan ngerprints
and the model is compatible with the SHAP explainer. This
aspect is not discussed in detail here but can be found in part II
of this paper series. Subsequently, MMPs are generated from
the input data, and the atom indices of variable and constant
parts of the molecules are determined to enable quantitative
evaluation of the attributors, including parity plots and accu-
racy scores (eqn (4)).

If the model is trained within the workow, WISP also
computes the explanations on the training and test sets sepa-
rately. This provides insights into how well the explanations
generalize to unseen data.
2.2 Datasets and preprocessing

We evaluated WISP and the atom attributor by applying them to
two different datasets covering three endpoints (i.e., properties
of interest). These endpoints represent a broad range of
prediction tasks and varying levels of difficulty. Additional
endpoints such as yield prediction, pKi values for the inhibition
of coagulation Factor Xa, and AMES mutagenicity can be found
in part II of this series.

We tested the validity of the workow using the Crippen log P
as a property of interest.32 Crippen log P is dened as a purely
additive property, which is why we considered it the simplest
evaluation task. Since the Crippen log P model assigns contri-
butions to hydrogen atoms within molecules, these must be
taken into account in the present investigation.33 However, the
inclusion and evaluation of hydrogen atoms is not part of the
standard WISP workow in order to reduce the computing
times and was therefore only used to evaluate the calculated
Crippen log P values. The next prediction task is the experi-
mental log P, which is inherently noisier due to systematic and
random measurement effects and thus more challenging to
learn and explain than the Crippen log P.32 The solubility
dataset (solubility in water) should also be well-suited for
explanation by the interpretability methods, since the under-
lying interactions are comparatively simple.32 This stands in
contrast to more challenging tasks such as binding to a biolog-
ical receptor, where complex protein–ligand interactions must
be considered rather than only solvent–solute interactions.
Digital Discovery
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The preprocessing of the datasets was performed using
a module based on RDKit's (version 2024.09.6)

.34 The settings were congured to process
molecules with up to 1000 atoms, consider a maximum of 10
tautomers during tautomer canonicalization, retain only the
largest fragment when one SMILES contained multiple frag-
ments, and apply normalization and sanitization. This step
ensures that molecules represented differently are treated
equally throughout the workow. Duplicate SMILES with
different property-of-interest entries due to one of the previous
steps were removed, and in cases of duplicates with identical
property-of-interest entries, only one entry was retained.
2.3 Model training

To enable robust evaluation of the explainability methods,
WISP includes a model training routine when no pre-trained
model is provided by the user. By default, an 80/20 train/test
split is applied to the data. For model training, we integrated
both algorithms and the framework to
ensure that the best-performing model can be selected for each
prediction task based on the training MAE. offers
access to deep learning models, which are widely recognized as
state-of-the-art for molecular property prediction.35,36 For
instance, the portfolio of includes an implementation
of directed message-passing neural networks (D-MPNNs),
making cutting-edge deep learning approaches accessible to
users of any level of expertise.36 D-MPNNs have been shown to
outperform baseline models like random forests trained on
Morgan ngerprints in 9 out of 15 benchmark datasets.36,37

However, since they do not consistently outperform simpler
models in every case and bear the risk of overtting, we ensured
that WISP supports a diverse range of model types to cover
various use cases and data characteristics.

2.3.1 Scikit-learn models. The default features for this step
include RDKit ngerprints with a maximum path length of 7
and 2048 bits, Morgan ngerprints with a radius of 2 and 2048
bits, and MACCS ngerprints. These ngerprints were gener-
ated using RDKit version 2024.09.6.34 The subsequent hyper-
parameter optimization is performed on the training set via
a grid search over multiple model types, including Linear Least
Squares Regression ( ); LASSO Regression
( ); Bayesian Ridge Regression ( );
Random Forest Regression ( );
Gradient Boosting Regression
( ); Support Vector Regression
( ); Gaussian Process Regression
( ) with the kernel and
Multi-layer Perceptron Regression ( ), all
implemented in (version 1.6.1).38 For each model
and feature combination, a hyper-
parameter search was conducted using ve-fold cross-validation
on the training data. The parameter grid comprised a total of 82
hyperparameter combinations, while random seeds were kept
constant. The results of the grid search can be found in Table SI-
2. The mean absolute error (MAE, eqn (5)) was calculated for
each fold, and the average MAE across all folds was used to
Digital Discovery
compare model–feature combinations. The combination with
the lowest average MAE was selected as the best model. The
optimized model was then retrained on the entire training set
and subsequently evaluated on the test set. Evaluation metrics
included the squared Pearson correlation coefficient (r2, eqn
(3)), the mean absolute error (MAE, eqn (5)), the root mean
squared error (RMSE, eqn (6)), and the maximum absolute error
(AEmax, eqn (7)). Here, x refers to the target property, and y refers
to its predicted value. The summation is carried out over all K
datapoints, with j indexing each datapoint individually. The
term �y stands for the average of the predictions.

MAE ¼ K�1XK
i¼1

��yj � xj

�� (5)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�1

XK
j¼1

�
yj � xj

�2vuut (6)

AEmax = max{jyj − xjj}j=1
K (7)

2.3.2 Chemprop. We integrated the functionalities of the
package (version 2.2.0) into the WISP workow to

enable the training and evaluation of deep learning models.36

For model training, we implemented a workow where the
predened training set is split internally, using an 80/20 split to
create a validation set during tting. We employed the

with
and . For the feed-

forward component, we used the module.
Aer training for 50 epochs (default), the MAE on the entire
training set was determined and compared to the

models to select the best-performing model type.
2.4 Explainability methods

To enable comparison of all attribution methods across
different datasets, we normalize the attributions by dividing
each atom's attribution by the standard deviation of all attri-
butions within the respective dataset. WISP supports the
inclusion of any attribution method applicable to molecules. By
default, it integrates the atom attributor, the RDKit attributor,
and a SHAP-based attributor. Since the atom attributor is the
only model— and descriptor—agnostic method among these, it
is the primary focus in this work. The RDKit and SHAP attrib-
utors are described in detail in part II of this series.

2.4.1 Atom attributor. This attribution method is based on
the atom attribution approach by Zhao et al.39 To assign attri-
butions to each atom (eqn (8)), it is systematically replaced with
other elements such as hydrogen, boron, carbon, nitrogen,
oxygen, uorine, silicon, phosphorus, sulfur, chlorine,
bromine, or iodine. This generates multiple mutated SMILES
per atom, each of which undergoes a validity check. The atom
attributor considers up to 12 mutations per atom. With a mean
molecular size of 27 atoms in theMoleculeNet log P dataset, this
amounts to approximately 324 mutant predictions in order to
© 2026 The Author(s). Published by the Royal Society of Chemistry
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attribute each molecule. The number of valid mutations per
atom is denoted by G. Valid mutated SMILES are then featurized
and passed to the model to predict the property of interest
(predmutated,h). The attribution for each atom is calculated as the
average difference between the model's prediction on all
mutated SMILES and the original SMILES prediction,

Atom attribution ¼
PG
h¼1

predoriginal � predmutated;h

G
(8)

Building on Zhao et al.‘s work, we adapted our atom attrib-
utor to be descriptor-independent, enabling its use beyond
models trained on CDDD embeddings as in the original
implementation.39 Additionally, we introduced a validity check
for mutated SMILES, which was not present in the original code,
and focused on attributing atoms rather than every character of
a SMILES string.
2.5 MMP generation

The matched molecular pairs (MMPs) were generated using the
tool version 3.1.1.40 The process involved fragmenting

and subsequently indexing themolecules to create a database of
MMPs. The fragmentation followed these rules: a maximum of
100 heavy atoms permolecule ( ), up to 10 rotatable
bonds ( ), and exactly one cut in the
variable fragment part ( ). Chirality was preserved
during fragmentation ( ), the RDKit standard salt
remover was applied ( ), and the maximum
number of “up” enumerations was set to 1000
( ), which controls stereochemistry
enumeration. For indexing, default settings were used with
some parameters explicitly set: a maximum of 10 heavy atoms in
the variable fragment ( ), an environ-
ment radius between 0 and 5 ( and ),
a maximum ratio of 0.2 for the variable part heavy atoms (non-
hydrogen atoms) relative to the whole molecule heavy atoms
( ), and all transformations were retained
( set to ). In this work,
we primarily used the default settings of the tool, except
for setting the number of cuts to 1 and limiting the maximum
ratio of the variable part to 0.2.40 These modications were
introduced to align with the denition of a matched molecular
pair (small, well-dened structural change). To illustrate the
impact of these settings, we performed an additional WISP run
with the maximum variable ratio constraint disabled. The cor-
responding results are provided in the SI (Table SI-1). Aer
creating the MMP database, the property of interest was loaded
Table 1 Datasets and resulting MMPs used for the evaluation

Dataset Type

MoleculeNet crippen Calculated crippen log P
MoleculeNet log P Exp. log P at pH 7.4
MoleculeNet ESOL Water solubility (log mol L−1)

© 2026 The Author(s). Published by the Royal Society of Chemistry
into the database using the function. Finally,
duplicate MMP entries were removed, retaining only the pair
with the largest number of atoms in the constant part. This
results in 920 to 2544 MMPs for the databases considered in
this study (Table 1).

2.6 Creation of heatmaps

Heatmaps were created to visualize the atom attributions
directly on the molecular structures. This was done using the

function in RDKit. To ensure
comparability between different heatmaps in one dataset, they
were scaled so that the maximum color intensity reects the
70th percentile of the absolute atom attributions in the entire
dataset. This approach, inspired by Harren et al., ensures that
the atom coloring maintains a sufficiently high visual intensity
for meaningful interpretation.5

3 Results and discussion
3.1 Model performances

The chemprop model trained on the Crippen log P is the best-
performing model in this study (Table 2) and is therefore
most suited to quantify the error introduced by the machine
learning model compared to the exact, rule-based reference. To
further investigate the impact of model performance on expla-
nation quality, we trained two models on the experimental log P
dataset. First, by disabling the GNN functionality, we derived
the best possible model architecture available within the

library (Section 2.3.1), which in this case was
a linear, an SVR and a GBR model (Table 2). In parallel, we
trained the best-performing model for this task, i.e., a
graph neural network. The performance difference between
these two models is substantial: The SVR model achieves an r2

of 0.49, while the model reaches an r2 of 0.74 (Table
2). A t test evaluating the signicance of the model perfor-
mances is provided in Table SI-3. Overall, across all regression
tasks in this work, where the training was done byWISP, models
based on the architecture consistently outperform the
models trained with .

3.2 Proof of concept: Crippen log P

In this work, we specically compare the exact, rule-based
Crippen log P—which is perfectly explainable—to a machine-
learned log P prediction. This comparison allows us to esti-
mate the error introduced by the machine learning model in the
explanations.

3.2.1 Calculated Crippen log P. As demonstrated by Ras-
mussen et al., the Crippen log P serves as an effective
# # Aer prep # MMPs Source

4200 4102 2544 32
4200 4028 2400 32
1128 1109 920 32

Digital Discovery
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Table 2 Performance on the test set of the models used for the evaluation

Property of interest Model type r2 R2 MAE RMSE AEmax Model source

Crippen log P MolGraph; chemprop 0.93 0.93 0.24 0.38 2.84 WISP
Exp log P MolGraph; chemprop 0.74 0.74 0.47 0.63 3.12 WISP
Solubility MolGraph; chemprop 0.89 0.89 0.52 0.72 3.78 WISP
Crippen log P Morgan ngerprint; Bayesian Ridge 0.72 0.72 0.52 0.73 5.06 WISP (no GNN)
Exp log P MACCS ngerprint; SVR 0.49 0.49 0.66 0.88 4.19 WISP (no GNN)
Solubility MACCS ngerprint; Gradient Boosting 0.77 0.77 0.73 1.06 5.39 WISP (no GNN)
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benchmark for heatmap-based interpretability approaches.19

The Crippen log P is an estimated log P value calculated by
summing xed contributions from different atom types,
yielding the calculated value Pcalc (eqn (9)).33

Pcalc ¼
X
i

niai (9)

Here, the number of atoms of one specic type i is denoted
by n, while a represents the contribution of the atom type.33 This
makes the Crippen log P an excellent proof of concept for the
WISP workow, as the D values from eqn (1) ideally correspond
exactly to the D in the calculated Crippen log P.

As expected, the D in contributions from the entire molecule
is in perfect agreement (r2 = 1.00) with the D in the Crippen log
P (Fig. 2a). However, when considering only the variable part of
the molecule, the squared Pearson correlation coefficient
between its contribution D and the Crippen log P D decreases to
0.93 (Fig. 2b). This reduction is attributable to the fact that
Crippen atom contributions are dependent on the local chem-
ical environment. For example, a carbonyl group adjacent to an
aromatic system contributes +0.11, whereas the same group in
Fig. 2 Shown are the contributions to the Crippen log P of the entire
molecule (a), the variable part (b), and the variable part including one
closest neighbor (CN) atom (c). Additionally, a histogram of the vari-
ance in contributions from the constant part of the molecules is
presented (d). In all cases, the predictions refer specifically to the
Crippen log P.

Digital Discovery
an aliphatic environment contributes −0.15 to the Crippen log
P.33 This neighborhood dependency also explains the outliers
observed in the difference of the constant part (Fig. 2d), where
ideally the contribution difference should be zero, as the
constant part should remain unchanged between matched
molecular pairs (MMPs). To further investigate this issue, we
included in the analysis a neighboring atom of the variable part
that originally belonged to the constant part (Fig. 2c), resulting
in a signicantly improved correlation. This nding conrms
that the reduced correlation in the variable part arises from the
dependency of atom contributions on their immediate chem-
ical surroundings. Still remaining deviations from the ideal
correlation can be resolved by including a second neighboring
atom, further supporting this conclusion.

3.2.2 Machine learning on Crippen log P. To quantify the
inuence of the machine learning model and the attribution
method on explainability performance, a machine learning
model was trained to predict the Crippen log P (Table 2). The
resulting model explainability demonstrates a signicantly
higher squared Pearson correlation coefficient (r2 = 0.77)
(Fig. 4b), than the second-best SVRmodel (r2= 0.45) (Fig. 7b) on
the test set. Since the model operates on molecular graphs, only
Fig. 3 Shown are the attributions for the entire molecule (a) and for
the variable part (b) with respect to the predicted Crippen log P training
set. Additionally, the correlation between the attributed contributions
and the true Crippen log P is presented (c), along with a histogram of
the variance in the contributions of the constant part of the molecules
(d). All values are derived from the model's training set.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Shown are the attributions for the entire molecule (a) and for
the variable part (b) with respect to the predicted Crippen log P test set.
Additionally, the correlation between the attributed contributions and
the true Crippen log P is presented (c), along with a histogram of the
variance in the contributions of the constant part of the molecules (d).
All values are derived from the model's test set.
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the atom attributor from the attributors used in this work is
applicable for generating explanations in this case.

The explainability performance on the test set closely
mirrors that of the training set (Fig. 3). This consistency is
Fig. 5 Comparison of heatmaps for the matched molecular pair consi
generated using WISP.

© 2026 The Author(s). Published by the Royal Society of Chemistry
expected, given the model's high predictive performance (Table
2), which suggests it is equally capable of providing meaningful
explanations for both training and test data. This nding
underscores that accurate predictions are a prerequisite for
generating meaningful explanations on unseen data.

When comparing the explainability performance of the
machine learning-based approach (Fig. 3) with the direct Crip-
pen log P calculation (Fig. 2), the former scores signicantly
worse in terms of the r2 value across all cases. This demon-
strates how essential the inuence of the machine
learning model as well as the attribution method is on the nal
explanations, and suggests that an r2 of 0.79 on the MMPs may
represent the practical upper limit for this setup (Fig. 3b).

Examining individual example structures from the training
and test sets (Fig. 5, le) shows that the machine-learned
Crippen model correctly captures the overall trend and
correctly attributes the amino group and uorine, which is the
variable part of the matched molecular pair. However, when
comparing the ground-truth Crippen heatmap (Fig. 5, top le)
to the heatmap produced by the machine-learned model (Fig. 5,
bottom le), it becomes clear that the latter attributes the
aromatic atoms with higher values than the ground truth but
still with near constant attributions of the constant part.

To qualitatively assess how well the explanations reect the
model predictions, we calculated the accuracy of the DAt-
tributions MMP (eqn (1)) in relation to the differences in pre-
dicted values, i.e., if the directions of the machine predictions
and the attributions for the pairs are consistent (Table 3).
Interestingly, the accuracy appears to improve when only the
sting of CHEMBL247366 (test set) and CHEMBL594707 (training set),
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Fig. 6 Shown are the attributions for the entire molecule (a) and for
the variable part (b) with respect to the predicted log P with the SVR
model. Additionally, the correlation between the attributed contribu-
tions and the experimental log P is presented (c), along with a histo-
gram of the variance in contributions from the constant part of the
molecules (d). All values are derived from the model's training set.
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variable part of the molecule is considered. However, this
observation is not consistent with the quantitative analysis
presented in Fig. 3. One possible explanation lies in the pres-
ence of small variations around zero, which can increase the
likelihood of false positives or negatives. In this example, the
overall heatmap coloring—i.e., the reliability of the attribu-
tions—can be trusted with an accuracy of 80% on the training
set and 84% on the test set.
3.3 Experimental log P

3.3.1 SVR model. This model is the worst performing
model of the ones created in this study (Table 2).The atom
attributionmethod reects the experimental values surprisingly
well for the log P model training set (Fig. 6c), despite the
model's relatively low performance (Table 2). The squared
Pearson correlation coefficient for the explainability of the
entire molecule is 0.96 on both the training and test sets (Fig. 6a
and 7a). However, the explainability performance for the vari-
able part of the MMP is considerably lower, with squared
Pearson correlation coefficients of 0.50 for the training set and
0.47 for the test sets (Fig. 6b and 7b). The variation in the
constant part is substantial, with standard deviations of 20.99
and 16.03 for the training and test set, respectively, indicating
that the constant part introduces signicant variability to the
attributions. The largest discrepancy between the explainability
of the training and test sets lies in the model's ability to explain
the experimental values. For the training set, the model
demonstrates reasonable explanatory power, with an r2 of 0.87
for the whole molecule. In contrast, on the test set, the r2 drops
sharply to 0.17. These results suggest that the model fails to
learn the underlying chemistry and, consequently, heatmaps
generated from the test data should not be used to guide
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Presented are the attributions for the entire molecule (a) and for
the variable part (b) with respect to the predicted log P with the SVR
model. Additionally, the correlation between the attributed contribu-
tions and the experimental log P is shown (c), alongwith a histogram of
the variance in contributions from the constant part of the molecules
(d). All values are derived from the model's test set.
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experimental decisions. Therefore, a drop in explainability
performance on the test set can be regarded as a quality
measure for the underlying model, which can be used system-
atically to improve the model or the training data, ultimately
enabling the development of models that truly capture chemical
relationships.

3.3.2 GNN model. For the better-performing GNN log P
model, explainability on the training set does not improve for
Fig. 8 Shown are the atom attributions for the entire molecule (a) and
the variable part (b) with respect to the predicted log P of the GNN
model. Additionally, the correlation between the attributed contribu-
tions and the experimental log P is presented (c), along with a histo-
gram of the variance in contributions from the constant part of the
molecules (d). All values are derived from the model's training set.

© 2026 The Author(s). Published by the Royal Society of Chemistry
either the whole molecule or the variable part (Fig. 8) compared
to the SVR model. However, the variability in the constant part
is signicantly reduced (Fig. 8d), with the standard deviation
decreasing from 20.99 in the SVR model (Fig. 6d) to 4.95 in the
GNN model (Fig. 8d). Additionally, the explainability perfor-
mance for both the variable part and the property of interest on
the test set increases substantially. Consequently, this
model (Fig. 9) is considerably better suited to explain future
data compared to the SVR model.

Examining the accuracy of the variable part reveals a similar
trend (Table 3). The explainability of the GNN model appears
superior in capturing the trends of the variable part, whereas
the SVR model demonstrates strong explainability for the whole
molecule, consistent with the observations described above.

This difference between the SVR and GNN models also
becomes evident when examining an example MMP (Fig. 5,
right). For the SVR model (Fig. 5, top right), both molecules are
almost uniformly colored, indicating that the model does not
capture any meaningful structure–property relationships. In
contrast, the heatmap derived from the GNN model is more
detailed and shows that the nitrogen atoms in the right mole-
cule are generally assigned a slightly negative contribution
(Fig. 5, bottom right), reecting the expected effect of hetero-
atoms decreasing lipophilicity. This more nuanced attribution
is absent in the le molecule. A likely reason for this difference
is that the le molecule is part of the test set, whereas the right
molecule was included in the training set.

Different MMPs from this dataset are also discussed in the
work of Humer et al.6 Here, Class Attribution Maps (CAMs) were
used for atom-level attribution.6,41 In comparison, our heatmaps
resemble their “base model” explanations, which are similarly
more uniform than those from their more complex “XAI
Fig. 9 Shown are the atom attributions for the entire molecule (a) and
the variable part (b) with respect to the predicted log P of the GNN
model. Additionally, the correlation between the attributed contribu-
tions and the experimental log P is presented (c), along with a histo-
gram of the variance in contributions from the constant part of the
molecules (d). All values are derived from the model's test set.
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Fig. 10 Shown are the atom attributions for the entire molecule (a)
and the variable part (b) with respect to the predicted solubility.
Additionally, the correlation between the attributed contributions and
the experimental solubility is presented (c), along with a histogram of
the variance in contributions from the constant part of the molecules
(d). All values are derived from the model's training set.
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model”.6 Notably, their heatmaps show considerable variability
in the constant parts of the molecules, whereas the results of
this work uctuate less—a marker of reliability (Fig. 5, right).
3.4 Solubility

The solubility model is the second-best performing model aer
the Crippen log P model (Table 2). This is also reected in the
performance of its explanations: The correlation for the variable
Fig. 11 Shown are the attributions for the entire molecule (a) and the
variable part (b) with respect to the predicted solubility. Additionally,
the correlation between the attributed contributions and the experi-
mental solubility is presented (c), along with a histogram of the vari-
ance in contributions from the constant part of the molecules (d). All
values are derived from the model's test set.

Digital Discovery
part partly forms a near–perfect correlation line (Fig. 10 and 11b
panels). The MMPs contributing to this near–perfect correlation
mostly involve relatively small variable regions, oen consisting
of the exchange of a single substituent on an aromatic ring.
Moreover, it appears feasible to explain not only the predictions
but also the solubility itself, as indicated by the high squared
Pearson correlation coefficient of up to 0.77 on the test set
(Fig. 11c). This represents the best test-set performance among
all experiments conducted in this study and highlights the high
quality of this model. Importantly, no signicant drop in
explainability performance between the training and test sets
was observed, further supporting this conclusion, as discussed
in Section 3.3.1. The slight improvements observed in the
performance on the test set may be due to its small size: while
the training set contains 574MMPs, the test set includes only 44
MMPs. In the histogram of the constant part of the molecule
(Fig. 10 and 11, panel d), ‘shoulders’ appear around a D of −10
and 10. These features arise from MMPs where, for example,
a methyl group or halogen is exchanged for another small
group, or a hydroxy group is replaced by a hydrogen atom.

Qualitatively, the accuracy for the variable part is the highest
across all experiments performed in this work. Accordingly, the
user can rely on the attribution coloring of the variable part for
94% of the MMPs in the training set and 95% in the test set
(Table 3).

4 Conclusion

In this work, we present WISP, a framework designed to quali-
tatively and quantitatively assess molecular model explain-
ability, along with a novel, model- and descriptor-agnostic atom
attributor. The matched molecular pair (MMP) analysis proved
invaluable in assessing whether local structural changes are
correctly reected in the heatmaps, providing an objective
sanity check alongside global correlation metrics. Our results
show that the performance of explainability methods depends
strongly on the underlying model quality.

Our ndings demonstrate that when a machine learning
model achieves high predictive performance, it is usually
capable of providing meaningful and reliable explanations for
previously unseen data. The Crippen log P served as a bench-
mark to dene the upper bound for explainability when the true
atom contributions to the property of interest are known,
highlighting how model imperfections inevitably introduce
systematic attribution errors (Table 3). Our results for the
experimental log P dataset highlight how strongly model
performance inuences explainability performance. Here, the
impact of model quality on the r2 of the variable part, the
standard deviation of the constant part, and the r2 for the
explanations on the test set becomes clear. On the test set, the r2

for the variable part is improved by 0.18 units with the better-
performing model, while the standard deviation of the
constant part decreases by 12.32 units. Since the explanation of
unseen data is a key goal, having a well-performing model is
essential to achieve this. While not an implication—see, e.g., the
SVR log Pmodel with high variability in the constant parts of the
MMPs—we nd evidence for a strong potential of high
© 2026 The Author(s). Published by the Royal Society of Chemistry
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explainability on well-performing models. Consequently, there
is a clear need to continue developing and validating robust,
high-performing models to enable explanations that truly
reect underlying chemical relationships. A drop in explain-
ability performance on the test set can serve as a valuable
quality measure for the model's lacking ability to generalize and
capture real chemical effects, guiding targeted improvements to
both the model architecture and the training data.

In summary, WISP provides an accessible, systematic way to
scrutinize and compare model explanations, helping to identify
where models succeed, where they fail, and how they can be
improved. Our atom attributor extends explainability beyond
specic embeddings or descriptors, offering a exible approach
for diverse molecular modeling tasks. Together, these contri-
butions move us closer to the goal of truly interpretable and
reliable AI-driven predictions in chemistry and drug discovery.
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26 J. Jiménez-Luna, M. Skalic and N. Weskamp, J. Chem. Inf.

Model., 2022, 62, 274–283.
27 J. Woodward and C. Hitchcock, Nos, 2003, 37, 1–24.
28 A. Reutlinger, Philos. Sci, 2016, 83, 733–745.
29 D. Kahneman and D. T. Miller, Psychol. Rev, 1986, 93, 136–153.
30 S. R. Vangala, S. R. Krishnan, N. Bung, R. Srinivasan and

A. Roy, J. Chem. Inf. Model., 2023, 63, 5066–5076.
Digital Discovery

https://github.com/kerjans/ml-XAI
https://github.com/kerjans/ml-XAI
https://doi.org/10.5281/zenodo.17055142
https://doi.org/10.1039/d5dd00398a
https://doi.org/10.1039/d5dd00398a
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00398a


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Fe

br
ua

ry
 2

02
6.

 D
ow

nl
oa

de
d 

on
 2

/1
4/

20
26

 9
:4

7:
20

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
31 S. Li, X. Wang and A. Barnard, Mach. Learn.: Sci. Technol,
2025, 6, 013002.

32 Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse,
A. S. Pappu, K. Leswing and V. Pande, Chem. Sci., 2018, 9,
513–530.

33 S. A. Wildman and G. M. Crippen, J. Chem. Inf. Comput. Sci.,
1999, 39, 868–873.

34 G. Landrum, P. Tosco, B. Kelley, R. Rodriguez, D. Cosgrove,
R. Vianello, P. sriniker, P. Gedeck, G. Jones, N. Schneider,
E. Kawashima, D. Nealschneider, A. Dalke, M. Swain,
B. Cole, S. Turk, A. Savelev, C. Tadhurst, A. Vaucher,
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