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prediction of electronic absorption maxima from
SMILES with ChromoPredict

Connor Forster and Carolin Müller *

Accurate prediction of electronic absorption spectra is essential for the rational design of photofunctional

molecules. While ab initio quantum chemical methods provide reliable results, their high computational

cost often precludes their application in high-throughput or resource-constrained screening workflows.

Data-driven alternatives can offer improved efficiency but typically require large, high-quality datasets

and may lack interpretability. In this work, we present a low-cost, interpretable approach for predicting

absorption maxima (lmax) based on digitized and extended empirical rules originally proposed by R. B.

Woodward, M. Fieser, L. Fieser and H. Kuhn. These rule sets estimate pp* transition energies through

additive contributions from base chromophores and position dependent contributions of certain

structural features and substituents. Our implementation enables direct prediction of lmax from SMILES

input for three representative compound classes: (i) a, b-unsaturated carbonyl compounds, for which we

introduce a refined rule set, (ii) dienes and polyenes, and (iii) 3,4,6-substituted coumarin derivatives. For

the latter, we define an entirely new set of empirical rules based on literature data. The resulting

workflow offers a computationally efficient and chemically interpretable alternative for early-stage

molecular screening and design, bridging historical empirical knowledge with modern cheminformatics.
1 Introduction

The correlation between molecular structure and electronic
ultraviolet-visible (UV-vis) absorption spectra is central to the
design and interpretation of photofunctional molecules, like
dyes, photosensors, photosensitizers, and photocatalysts. For
these applications, it is oen crucial to excite specic types of
electronic states, such as pp* or charge-transfer states, since
their nature largely determines the resulting photophysical and
photochemical behavior. The energies of these transitions,
experimentally reected in the positions of their corresponding
absorption bands, dene the optical window in which a mole-
cule can be effectively photoexcited. Consequently, accurate
prediction and interpretation of UV-vis absorption maxima
(lmax) is a key requirement in the rational design and tuning of
photoactive compounds.

One common approach for predicting absorption properties
involves ab initio quantum chemical simulations, which give
rise to vertical excitation energies, oscillator strengths, and the
character of electronic transitions and thus enable a direct
assignment of experimental absorption bands.1,2 Among these,
time-dependent density functional theory (TD-DFT) has
emerged as the workhorse, particularly in the context of data-
driven photochemistry, due to its favorable balance between
try Center, Nägelsbachstraße 25, 91052,

e

7

accuracy and computational cost.3–5 This is reected in the
widespread use of TD-DFT for generating datasets of UV-vis
absorption properties.6–14

Despite their success in generating high-quality datasets, ab
initio methods remain computationally demanding, particu-
larly for large-scale screening or rapid exploration of chemical
space during early-stage molecular design. This limitation has
motivated the development of fast alternatives, such as
machine learning models, which leverage structural represen-
tations, such as SMILES, molecular ngerprints or graph-based
matrix descriptors, to predict lmax from structure-property
relationships.10–19 While these models can achieve high accu-
racy at low computational cost, their black-box nature limits
interpretability, reducing their utility for rational design where
understanding the inuence of specic substituents or elec-
tronic effects is crucial.19 Recent studies have employed Shapley
additive explanations (SHAP) to identify molecular descriptors
governing absorption and emission properties.20–22 These anal-
yses revealed that features such as the number of aliphatic
heterocycles, the fraction of sp3-hybridized carbons, the pres-
ence of primary amine groups, and ngerprints of specic
structural fragments contribute signicantly to the optical
properties and improve model transparency. Nevertheless,
these descriptor-level insights do not explicitly relate the iden-
tied features to their spatial or electronic context within the
molecule, which limits their relevance for rational molecular
design.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Summary of the Woodward–Fieser rules for predicting lmax for enones and dienes. The columns distinguish base values, increment
values for conjugated features beyond the base chromophore and the position-dependent increments to account for substituent effects

Enones ([#6]=[#6]–[#6]=[#8])

Compound
category Base value

Conjugated
features Increment Substituent a b g >g

a, b-Unsaturated
aldehyde

210 (218) Conjugated
double bond

+30 –Alkyl +10 (+11) +12 (+19) +18 +18

a, b-Unsaturated
ketone

215 (212) Exocyclic
double bond

+5 –Cl +15 (+28) +12 (+22) +12 +12

a, b-Unsaturated
acid

195 (196) Homoannular
cyclodiene

+39 –Br +25 (+38) +30 (+33) +0 +0

a, b-Unsaturated
ester

195 –OH +35 (+38) +30 (+14) +50 +0

Cyclohexenone 215 (206) –O-alkyl +35 (+29) +30 (+22) +17 +31
Cyclopentenone 202 (191) –O-acyl +12 +12 +12 +12

Dienes ([#6]=[#6]–[#6]=[#6])

Compound category Base value Conjugated features Increment Substituent Increment

Acyclic diene 217 Additional double bond +30 –Alkyl +5
Homoannular cyclic diene 253 Exocyclic double bond +5 –Cl/–Br +10
Heteroannular cyclic diene 214 –O-alkyl +6

–N(alkyl)2 +60
–O-phen +18
–S-alkyl +30
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Empirical rules offer a solution that retains the advantages of
low computational costs and fast predictions while providing
distinct chemical insights. Among the earliest and most inu-
ential of these are the additive rules developed by R. B.
Woodward, M. Fieser, L. Fieser, and H. Kuhn in the mid-20th

century.23–29 These rules relate specic structural features,
such as the number of conjugated double bonds and the nature
of substituents, to shis in lmax (cf. Section 2). Formulated for
dienes, a, b-unsaturated carbonyls, and linear polyenes with
more than four conjugated double bonds, the Woodward–
Fieser (WF)23–26 and Fieser–Kuhn (FK)27,28 rules have historically
offered chemists a simple and interpretable heuristic frame-
work for estimating lmax of low-energy pp* absorption bands of
conjugated organic chromophores.

These additive rules represent an early example of empirical
modeling, grounded in well-curated experimental data and
systematic analysis – a principle that underlies many modern
cheminformatics and machine learning approaches. Despite
their interpretability and demonstrated predictive utility, the
WF and FK rules remain largely absent from contemporary
computational workows, being primarily applied in educa-
tional contexts where predictions are performedmanually using
tabulated values from textbooks.28,30,31Notably, to the best of our
knowledge, they have not been integrated as features, priors, or
constraints in data-driven models, although conversely, a few
studies have suggested that their data-driven approaches would
have the potential to inform the development of rules for
calculating lmax based on substructures.18,19 Of particular note
© 2026 The Author(s). Published by the Royal Society of Chemistry
in this context is the approach taken by Joung et al.,19 who draw
inspiration from the WF framework to develop an interpretable
deep learning model that can predict a range of optical prop-
erties, including lmax, emission maxima, quantum yields and
excited state lifetimes. Their model quantitatively reproduced
classical substituent increments, for example, predicting
contributions of ethyl (+5 nm), methoxy (+4 nm), and ethyl-
amine (+70 nm) in cyclohexane, closely matching the original
WF values of +5, +6, and +60 nm for diene systems (see Table 1
in Section 2).19,26 While the model captures the electronic effects
of substituents, it accounts for the position of substituents
indirectly. For example, to quantify the effect of the cyano group
in 3-hydroxy-7-cyano-coumarin, a reference molecule (3-
hydroxy-coumarin) is required to isolate the substituent
contribution. In contrast, the WF framework incorporates these
effects systematically through position and type dependent
increments. Thus, although this approach illustrates the
enduring value of chemically interpretable additive models, it
does not explicitly extend, rene or digitize the WF rules
themselves.

We attribute this limitation to the lack of programmatic,
high-throughput implementations of the WF and FK rules:
manual lookup and structural interpretation impede their use
in automated workows and large-scale screening. To address
this, we introduce ChromoPredict, a Python package that
encodes the WF and FK rules for direct estimation of lmax from
SMILES inputs (see Section 3.1). By formalizing these empirical
rules digitally, ChromoPredict preserves their inherent
Digital Discovery, 2026, 5, 98–107 | 99
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interpretability, providing transparent insights into how
specic substituents and structural motifs modulate absorption
maxima.

Herein, we systematically evaluate and rene the empirical
rules using a curated computational dataset of 720 a, b-unsat-
urated carbonyl compounds, including aldehydes, ketones,
carboxylic acids, cyclopentenones, and cyclohexenones, and
experimental datasets of additional 28 enones and 36 couma-
rins, with the individual molecules in both datasets bearing
methyl, methoxy, hydroxy, chloro, or bromo substituents (see
Section 3.2). WF predictions for a, b-unsaturated carbonyl
compounds generated with ChromoPredict are benchmarked
against TD-DFT reference calculations (see Section 3.2.1), and
the rened rules are further compared to random forest models
trained on molecular ngerprints (see Section 3.2.2). This
analysis delineates the predictive strengths and limitations of
additive rules and highlights opportunities for hybrid
approaches that integrate mechanistic insight with data-driven
modeling. Finally, we extend the WF rules to 3-, 4-, or 6-
substituted coumarin derivatives, illustrating the exibility and
scalability of ChromoPredict (see Section 3.2.3).
2 The Woodward–Fieser and Fieser–
Kuhn rules

Empirical attempts to predict pp* UV-vis absorption maxima
(lmax) of organic molecules can be traced back to the work of
Woodward23 and Fieser et al.,26 which were focused on terpe-
noid systems such as cholestenone, corticosterone, pregna- and
cholestadienes, and related steroid derivatives.23,26 Their work
culminated in the so-called Woodward–Fieser (WF) rules, which
relate lmax to chromophore type, substitution pattern, and
solvent effects.23,25,26 These additive scheme achieves remark-
able predictive accuracy (±5–10 nm) and laid the foundation for
systematic spectral analysis of simple carbonyl-containing
chromophores and dienes.

The earliest systematic work was carried out by Robert B.
Woodward in the 1940s, who focused on a, b-unsaturated
carbonyl compounds, including acyclic enals, ketones, acids,
esters, as well as cyclic enones such as cyclopentenone and
cyclohexenone.23,25,29 Based on the analysis of numerous UV-vis
spectra, Woodward identied clusters of lmax corresponding to
the degree and position of substitution: a- or b-mono-substituted
(225 ± 5 nm), a, b- or b, b0-di-substituted (239 ± 5 nm), and a, b,
b0-tri-substituted (254 ± 5 nm) systems.23 Subsequent rene-
ments classied di- and tri-substituted molecules according to
the presence of exocyclic bonds.25 In parallel, Woodward
extended his analysis to normal conjugated dienes, dening base
values for symmetric dienes (e.g., butadiene: 217 nm) and intro-
ducing additive increments of +5 nm for each substituent or
exocyclic double bond. The lmax of asymmetric dienes was then
estimated as the average of the corresponding symmetric
systems.24

Building on Woodward's foundation, Louis and Mary Fieser
introduced a systematic increment scheme to predict lmax for a,
b-unsaturated carbonyls and conjugated dienes.26 Their
100 | Digital Discovery, 2026, 5, 98–107
approach assigned base values to core chromophores (see le
column in Table 1) and increment values for substituents, di-
stinguishing contributions according to type (e.g., alkyl, chloro,
bromo, hydroxy, alkoxy, acyloxy) of substituent and for a, b-
unsaturated carbonyl compounds also on the position of
substituents (a, b, g, or higher).26 Additional increments
accounted for extended conjugation: linear double bonds (+30
nm), homoannular cyclodienes (+39 nm), and exocyclic double
bonds (+5 nm).25,26 An overview of base values and increments of
the WF rules is summarized in Table 1, with representative
structures and calculation examples illustrated in Fig. 1, S2 and
S3.

As the study of molecular systems expanded, particularly in
the context of natural pigments like b-carotin, the limitations of
the original WF rules became evident. These rules, while
effective for small chromophores, were not suited for extended
polyene systems containing ve or more conjugated double
bonds. To address this gap, Louis Fieser and Harold Kuhn,
developed the Fieser–Kuhn (FK) rules specically for linear
polyenes with extended conjugation.27,28

Unlike the earlier chromophore-specic formulations, the
Fieser–Kuhn rules adopt a parametric approach, allowing lmax

to be estimated based on structural features that scale with
conjugation length. The empirical model predicts lmax as

lmax = 114 + 5m + 48n(1 − 1.7n) − 16.5$Rendo − 10$Rexo,

where m is the number of alkyl substituents, n is the number of
conjugated double bonds, Rendo denotes the count of endocyclic
double bonds, and Rexo accounts for the number of exocyclic
double bonds. Example simulations are shown in Fig. S4.

3 ChromoPredict

The Woodward–Fieser and Fieser–Kuhn rules provide a simple
yet powerful empirical framework to estimate pp* UV-vis
absorption maxima (lmax) in conjugated organic
molecules.23–26,29 They dene a base chromophore with an
associated value and assign additive increments for structural
features, capturing the inuence of substituent type and posi-
tion on electronic transitions. ChromoPredict provides a digital
implementation of these rules, enabling automated prediction
of lmax directly from molecular structure. We rst outline the
implementation and usage of the package (Section 3.1), then
describe applications that revisit, rene, and extend the
Woodward–Fieser framework using modern computational
data (Section 3.2).

3.1 Implementation and usage

The Woodward–Fieser (WF) and Fieser–Kuhn (FK) rules follow
a common additive framework correlating molecular structure
with absorption maxima. In ChromoPredict (cp), predictions
proceed sequentially via cp.predict (see GitHub tutorial32). The
workow, summarized in Fig. S1, mirrors the original stepwise
logic of the empirical rules:

3.1.1 Rule set selection. The input structure, provided as
a SMILES string, is matched against predened SMARTS
© 2026 The Author(s). Published by the Royal Society of Chemistry
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patterns stored in the chrombase library. This procedure iden-
ties the appropriate chromophore class: Woodward–Fieser
systems (a, b-unsaturated carbonyl compounds: [#6]=[#6]–[#6]
=[#8]), Fieser systems (dienes: [#6]=[#6]–[#6]=[#6]) and Fieser–
Kuhn systems (polyenes with at least four conjugated C]C
double bonds: [#6]=[#6]–[#6]=[#6]–[#6]=[#6]–[#6]=[#6]). The
base chromophore is automatically detected for the inputed
SMILES. Alternative formulations (e.g., the original WF rules,
the extended rules by Kang and co-workers,17,33,34 or the rened
rules introduced herein) can be explicitly requested through the
chromlib parameter. For example, cp.predict(smiles = ”C]
CC(=O)C00, chromlib = ”woodward_extended”) predicts the
lmax of but-3-en-2-one (E01, Table S2) with the Kang extension.34

3.1.2 Base value assignment. Each chromophore class
carries a characteristic base absorption, representing the
minimal conjugated core. Examples include 215 nm for a, b-
unsaturated ketones, 253 nm for homoannular dienes, and
114 nm for tetraenes in the FK model. In cp, these assignments
are handled by the woodwardeser, eser, and eserkuhn
modules, where substructure matches are linked to tabulated
base values (Table 1). During this step, the subgraph corre-
sponding to the base chromophore is tagged for further
processing.

3.1.3 Structural features. Incremental corrections are
applied for conjugation-related features directly extending from
the tagged chromophore. These include additional double
bonds (+30 nm), exocyclic double bonds (+5 nm), and homo-
annular ring closures (+39 nm). Identication is streamlined by
searching the neighborhood of the chromophore subgraph,
a task performed by the strucfeatures module, which like in step
2, further tags the identied structural features in the molecular
graphs.

3.1.4 Substituent increments. To account for the different
electronic nature of substituents, all rule sets apply type-
dependent increments that reect mesomeric and inductive
Fig. 1 Rule-based prediction of p–p* absorption maxima (lmax) for
enones (left) and dienes (right) using the Woodward–Fieser (WF) rules.
Structural contributions are color-coded: base chromophore (purple),
additional conjugated double bonds (blue), substituents (gray), and
exocyclic double bonds (yellow). For dienes, all substituent increments
are summed, whereas for enones (and more generally a, b-unsatu-
rated carbonyls) only the largest contribution per position is applied
(cf. gray highlighted substituents).

© 2026 The Author(s). Published by the Royal Society of Chemistry
effects. In the WF scheme rules, these increments are further
position-specic, distinguishing a-, b-, g-, and more remote
substituents relative to the chromophore. By contrast, for
dienes and polyenes only substituent contributions solely
dependent on the type enter the calculation. In cp, the corre-
sponding increments are retrieved from the tabulated values
(Table 1) and assigned to the tagged chromophore and its
structural extensions.

3.1.5 Solvent corrections (optional). Finally, empirical
offsets may be introduced to account for solvatochromic shis.
Polar solvents oen stabilize the ground state relative to the
excited state, resulting in hypsochromic shis. The respective
approximate empirical corrections as implemented in cp are
listed in Table S1.23,28

Stepwise example calculations illustrating base value
assignment (Step 2), structural features (Step 3), and substit-
uent increments (Step 4) are shown for representative a, b-
unsaturated ketones and conjugated dienes in Fig. 1 and S2–S4.
3.2 Woodward–Fieser rules today: reviewing, reinterpreting,
and rening

The Woodward–Fieser (WF) rules were originally developed
from limited experimental data and have not been systemati-
cally validated on diverse, large datasets. Using our digitized
implementation (ChromoPredict, cp) and curated datasets, we
present herein the renement, validation, and extension of
these rules. The following sections cover rule renement
(Section 3.2.1), comparison to machine learning (Section 3.2.2),
and extension to coumarins (Section 3.2.3).

3.2.1 Rening the Woodward–Fieser rules. The WF rules
were originally derived from experimental data on a, b-unsat-
urated carbonyl compounds and dienes, primarily within the
terpenoid chemical space.23–26 As a result, they suffer from two
key limitations: a rather narrow substance scope and systematic
stereochemical constraints imposed by double bonds
embedded in ring systems. Within this restricted domain, the
rules achieve an accuracy of about ±10 nm, but, to the best of
our knowledge, they have not been validated against a large and
systematically varied dataset.

Only a few studies have partially addressed this gap.33–36

Kang and co-workers33–35 proposed extended WF rules for
enones, expressing lmax as a function of the number of
substituents and exocyclic double bonds. Their study, however,
was limited to 17 enones bearing only alkyl and O-acyl
substituents, which contribute similar increments in the orig-
inal formulation – explaining the observed linear relationship.
As a result, the derived expression is applicable only within an
even narrower chemical space. In another effort by Wathelet
et al.,36 TD-DFT calculations were performed for 213 systemat-
ically generated a, b-unsaturated aldehydes, ketones, and acids
with bromo, chloro, hydroxy, alkoxy, or methyl substituents.
Although substitution patterns included mono- (a or b), di- (a,
b or b, b0), and tri- (a, b, b0), only uniform substitution was
considered. This precluded analysis of mixed substitution
effects, such as the interplay of resonance and inductive
contributions from methoxy and chloro groups.
Digital Discovery, 2026, 5, 98–107 | 101
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Here, we extend these efforts by combining 213 mono-
substituted molecules reported by Wathelet et al.36 with 435
compounds bearing mixed substitution patterns and 72 cyclic
enones. From these, we assembled a comprehensive dataset of
SMILES strings and corresponding pp* absorption maxima
obtained at the TD-DFT level of theory (Section 4.1), explicitly
considering cis/trans isomers where applicable. This dataset
was used to evaluate and rene the original WF rules for pre-
dicting lmax.

For each molecule, the base chromophore type, a- and b-
substituents, and stereochemistry were extracted. Two
approaches were analyzed: one in which stereochemical infor-
mation was explicitly encoded in the base chromophore de-
nition (e.g., cis-aldehyde), and another in which stereochemistry
was not considered in dening the base structure. The corre-
sponding rened increment values for the base chromophores
and a/b-substituents are reported in Table 1 (parentheses) and
summarized in Fig. S9 for the stereochemistry-explicit
approach. Across all 720 reference compounds, the rened
rules reduced the mean absolute error (MAE) to 8 nm,
compared to 13 nm for the original WF formulation (see
Fig. S6).

Fig. 2 shows violin plots of the prediction accuracy for the
two rened schemes: following the original WF framework
(purple) and with explicit stereochemical encoding (green),
separated by compound class (a, b-unsaturated aldehydes,
acids, ketones, as well as cyclopentenones and cyclohexenones).
As evident, explicit inclusion of double-bond stereochemistry –
omitted in the original WF rules – does not substantially
improve accuracy, with both approaches yielding comparable
MAEs (Fig. S6–S8). For example, the MAE across all trans-
congured compounds is 7 nm following both approaches
(Fig. S7).
Fig. 2 Violin plots comparing the prediction accuracy of two refined
Woodward–Fieser (WF) models for predicting the absorption maxima
of a, b-unsaturated aldehydes, acids, linear ketones, cyclopentenones,
and cyclohexenones (see structures on the abscissa). The purple
model (WFR) refines base chromophores and a/b substituent incre-
ments against TD-DFT data for 720 compounds. The green model
(WFR-stereo) further accounts for a, b-double bond stereochemistry
by distinguishing base values into cis, trans, and undefined classes (no
stereochemistry). Across the 720 structures, WFR and WFR-stereo
achieve mean absolute errors (MAEs) of 8 nm, each, compared to
13 nm for the original WF rules.

102 | Digital Discovery, 2026, 5, 98–107
This nding can be rationalized by the original rules'
implicit treatment of stereochemistry. In Woodward's formu-
lation, the b-substituent is dened as the group with the larger
increment on the same side as the carbonyl group.23,25,26

Consequently, depending on the nature of the a-substituent,
the resulting base values already represent a statistical mixture
of cis and trans isomers. Any mismatch between the assumed
and actual stereochemistry is therefore random rather than
systematic. As such, explicitly encoding stereochemistry does
not improve predictive performance, as this variability is
already embedded in the empirical design of the original rules.
Our global optimization including stereochemistry further
shows that the base values of the isomers are nearly identical
(e.g., 214 nm for trans-enones, 211 nm for cis-enones, and
215 nm otherwise), yielding an average of 213 nm that aligns
closely with the stereochemistry-independent rened enone
base value of 212 nm (cf. values in Table 1a and Fig. S9).

In summary, the digital implementation of the WF rules in
cp enabled a systematic and efficient renement, yielding
improved predictive accuracy across the explored chemical
space (cf. Fig. 3a). All subsequent analyses are therefore based
on these rened WF increments (Section 3.2.2). The rened
rules have been integrated into cp and can be accessed via the
chromlib= ’woodward_rene’ option in the cp.predict function
(cf. Section 3.1).

3.2.2 Predicting lmax: empirical rules vs.machine learning.
The absorption maxima of conjugated chromophores are oen
governed by localized substructures rather than the overall
molecular framework. In their original studies, Woodward and
Fieser analyzed terpenoid and steroid derivatives, where the
chromophore constitutes only a small fraction of the molecule
while bulky substituents or annulated rings remain spectro-
scopically irrelevant. Consequently, the WF rules explicitly
capture such chromophoric contributions in a, b-unsaturated
carbonyls and dienes.23,26 By contrast, data-driven chemo-
informatics approaches typically rely on molecular ngerprints
or other global encodings, which represent the entire molecular
graph and whose predictive accuracy depends critically on
descriptor choice.

To benchmark whether machine learning (ML) models
trained on molecular ngerprints can reproduce the classic
scenario described by Woodward and Fieser – where a chro-
mophore embedded in a larger molecular framework retains
local control over the absorption – we compared the rened WF
rules with random forest (RF) regressionmodels. RF was chosen
based on previous studies demonstrating its effectiveness for
predicting lmax from structural descriptors.17,20 For training and
testing, we used 288 enones from TD-B3LYP calculations (see
Fig. 3a), comprising mono-, di-, and tri-substituted acyclic
enones, cyclopentenones, and cyclohexenones (Sections 3.2.1
and 4.1). The RF models were trained on 80% of this dataset
using four distinct encodings: topological torsion ngerprints
(TTFP, 2048 bits), feature Morgan ngerprints (FMFP, radius 2,
1024 bits), MACCS keys, and rooted ngerprints (RFP). The
latter restricts TTFP generation to a, b-unsaturated carbonyls
and their substituents, thereby paralleling the scope of the WF
rules. To probe generalizability, we curated an inference set of
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Predicted absorption maxima (lmax) from the original Woodward–Fieser rules (WF, filled symbols) and the refined rules (WFR, open
symbols), compared with TD-B3LYP/def2-TZVP/D4 reference values (a). The 288 enones are colored in purple, while the data points of the a, b-
unsaturated aldehydes and acids (#432) are shown in gray. Distribution of predicted lmax values, with TD-B3LYP in gray and WFR in purple (b).
Comparison of WFR (purple triangles) and random forest (RF, green filled symbols) predictions with experimental lmax values for the 27 test
molecules E01–E27 (c). The RF model was trained on 230 enones using Morgan fingerprints (FMFP, radius 2, 1024 bits). RF predictions based
solely on FMFP descriptors (green circles) versus an augmented model incorporating FMFP and WF-derived features (green triangles, (d);
features: increments of exocyclic double bonds, a- and b-substituents, and total substituent count). Molecular structures of E18, E20, and E26
(e–g). In the top row, the WF base chromophore (light purple) and substituents (dark purple) are highlighted. In the bottom row, the a-carbon
environment (radius 2) contributing to Morgan fingerprint bits is shown. Below each structure, experimental (left) and predicted lmax values are
reported (top: RF with WF + FMFP, (d); bottom: RF with FMFP, (c).
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26 enones (E01–E26, see Fig. S10) from experimental data (see
values in Table S2).35–38 These compounds feature fused rings
and bulky substituents but no additional conjugated double
bonds relative to the enone core and thus display lmax in the
same range as the training and test data (see Fig. 3b).

On the enone test set, all RF models achieved mean absolute
errors (MAEs) between 9 and 12 nm, comparable to the rened
WF rules (MAE: 8 nm, see Fig. S11a–d). On the inference set,
however, performance diverged: the RF models yielded MAEs of
16 nm (RFP and MACCS), 10 nm (TTFP), and 8 nm (FMFP),
whereas the WF rules maintained a substantially lower MAE of
5 nm (see Fig. S11e–h). Thus, among purely ngerprint-based
models, FMFP proved most robust (see Fig. 3c).

To assess whether explicit rule-based descriptors enhance
ngerprint models, we augmented FMFP with WF-derived
features (increments for exocyclic double bonds, a- and b-
substituents, and the total number of substituents). This hybrid
model reduced the MAE to 8 nm on the test set, but showed
slightly decreased accuracy on the inference set (11 nm, see
Fig. 3d and S12). Closer inspection revealed that for molecules
E04, E06, E20, and E26, the hybrid model outperformed the
models trained on FMFP alone. These systems bear bulky
substituents (e.g., isopropyl or spiropyran groups) that do not
contribute to the chromophore absorption, suggesting that
ngerprint encodings of these groups introduced spurious
correlations leading to underestimation of lmax. Noteworthy, RF
models trained exclusively on WF-derived features achieved
superior accuracy for half of the inference molecules compared
to the hybrid models (see Fig. 3d and S12), including compa-
rably accurate predictions (within ±5 nm) for bulky systems
(E04, E06, E26) and a, b, b0-substituted cases (E18, E21 and E22).
The latter underscores the importance of substituent-counting
features, consistent with the extended WF rule formulations
by Kang and co-workers.33–35

To contextualize the efficiency and accuracy of the WF
predictions, we compared them against ab initio results.
© 2026 The Author(s). Published by the Royal Society of Chemistry
Structures of compounds E01–E26 were optimized at either the
B3LYP39,40 or xTB41 level, followed by linear-response TD-B3LYP
simulations to determine the lmax of the p–p* transition. These
calculations required in total approximately 700–3000 CPU
hours, highlighting the substantial computational cost
compared to the near-instantaneous predictions of Chromo-
Predict (z0 CPU hours). Despite their simplicity, the rened
WF rules yielded mean absolute errors (MAEs) within the
historical uncertainty reported by Woodward and Fieser (±5
nm).23,26 Random forest models trained on 230 data points
achieved comparable accuracy, while incorporating WF-derived
features further improved performance for systems with bulky
or non-conjugated substituents. In contrast, TD-DFT-predicted
lmax values exhibited broader error distributions, with MAEs
of roughly 15 nm (see Fig. S14). These results underscore that
explicit chromophore-based descriptors remain both compu-
tationally efficient and chemically interpretable, maintaining
robustness in off-domain regimes and providing a valuable
complement to data-driven and ab initio approaches.

3.2.3 Extending rule-based predictions: case study on
substituted coumarins. To assess the transferability of the
Woodward–Fieser (WF) rules to a new chemical domain, we
examined coumarin chromophores, which contain an a, b-
unsaturated ester moiety embedded in a fused benzene ring,
i.e., an enone substructure, yet are not explicitly covered by the
original WF rule sets.

The unsubstituted coumarin core (C01) displays the char-
acteristic enone pp* absorption maximum (lmax,1) at approxi-
mately 311 nm (generally between 300 and 330 nm) and
a stronger benzoid pp* absorption band between 250 and
300 nm (lmax,2).42,43 This suggests that the WF-based predictions
can be used to estimate lmax,1, but deviations due to ring
conjugation and substitution patterns required a detailed
analysis of the experimental trends:42,43 Substituents in the
benzene ring (5-, 7-, or 8-position) with positive mesomeric
effects (+M) generally induce bathochromic shis of lmax,1, with
Digital Discovery, 2026, 5, 98–107 | 103
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the effect being most pronounced at the 7-position due to
extended conjugation in the para-position relative to the enone.
Substituents at the 6-position shi lmax,1 bathochromically
regardless of electronic character, without substantially
affecting lmax,2. Substituents at the a- and b-positions (3- and 4-
positions) affect lmax,1 depending on their electronic properties:
substituents that withdraw electron density from the carbonyl
carbon by mesomeric or inductive mechanism (−M or –I effect)
induce bathochromic shis, whereas electron-donating groups
with +M or + I effect lead to hypsochromic shis due to desta-
bilization of the p*-acceptor orbital. Steric interactions at
positions 4 and 5 further modulate both bands, oen resulting
in hypsochromic shis.

Guided by these trends, we focused on coumarins
substituted exclusively at the 3-, 4-, and 6-positions, corre-
sponding to the a-, b-, and higher substituent sites inuencing
the enone chromophore, while excluding substitutions at
positions 5, 7, and 8, which introduce steric or extended
conjugation effects not captured by standard WF increments.
Applying these criteria, we constructed a dataset of 36 mono-,
di-, and tri-substituted coumarins, combining experimentally
reported lmax,1 values from the literature43–55 with correspond-
ing TD-B3LYP predictions of their absorption maxima (see
Tables S4, S5, Fig, S13, S14 and Section 4.2).

Using the experimental lmax,1 values of coumarins C01–C26
(Table S3 and Fig. S10), we rened the WF increments with the
unsubstituted coumarin (C01) as the reference chromophore,
dening the base structure (SMARTS: [#6]1=[#6][#6]=[#6]2
[#6](=[#6]1)[#6]=[#6][#6]([#8]2)=[#8]) and base value (312 nm).
To capture both hypsochromic and bathochromic shis relative
to C01, positive and negative contributions were allowed during
global optimization, which was performed for substituents at
the a (3-), b (4-), and higher (6-) positions, considering chloro,
bromo, hydroxy, methoxy, and methyl groups (15 parameters in
total). The rened increments are summarized in Table S5.
Fig. 4 Correlation between Woodward–Fieser-type rule-predicted
and experimental lmax values for coumarins C01–C35. Filled circles (26
points, C01–C26, see Table S3 and Fig. S15) indicate the dataset used
to optimize substituent parameters, while open triangles (10 points,
C27–C36, see Table S4 and Fig. S16) show predictions for unseen test
structures. Representative examples of overestimation (C16 and C35)
and underestimation (C06 and C31) are shown on the left (training set)
and right (test set), respectively. For these four molecules, experi-
mental, rule-predicted, and B3LYP-calculated absorption maxima are
displayed below the structural formulas, with substituents contributing
to the absorption beyond the coumarin core highlighted.

104 | Digital Discovery, 2026, 5, 98–107
Fig. 4 displays the correlation between WF-predicted and
experimental lmax,1 values, with an analogous pairplot and
violin plots including the TD-B3LYP predicted values provided
in Fig. S17. For the tted compounds C01–C26, the mean
absolute error (MAE) is 4 nm (purple lled circles in Fig. 4),
while application to the ten unseen coumarins C27–C36 yields
a MAE of 5 nm (purple triangles). This analysis demonstrates
that the rened increments capture the dominant electronic
effects of substituents on the coumarin chromophore. The
largest deviations arise for hydroxy- and alkoxy-substituted
coumarins at the 6-position (see structures C16, C31, C35 in
Fig. 4), which are underrepresented in the training set (three
hydroxy- and ve alkoxy-substituted analogues). Notably, TD-
DFT predictions also overestimate the bathochromic shis
induced by hydroxy or alkoxy groups at the 6-position (Tables S3
and S4).

In direct comparison with TD-DFT (cf. Fig. S17), the rened
WF rules reect important substituent effects with greater
accuracy. For example, the rules assign increments of−1 and +3
for a hydroxy group in the a (3-) and b (4-) positions, respec-
tively. This is consistent with the stronger destabilization of the
carbonyl p* orbital in 3-hydroxycoumarin (C13, lexp: 310 nm)
compared to 4-hydroxycoumarin (C12, lexp: 317 nm).43 In
contrast, TD-B3LYP predicts maxima at 304 nm (C13) and
287 nm (C12), thereby inverting the experimental trend. A
similar inversion occurs for methoxy substitution: TD-B3LYP
predicts lmax values of 303 nm (C18) and 284 nm (C17) for the
3- and 4-methoxy derivatives, respectively. Thus, TD-B3LYP
overestimates the +M effect of the methoxy and hydroxy
groups on the enon moeiety at the a-position and underesti-
mates it at the b-position. By contrast, both WF and TD-DFT
reproduce the experimental lmax trends for the structurally
more complex coumarins C27–C36 (Table S4).

Overall, the error distribution of the TD-B3LYP predictions
for C01–C36 is larger than for the WF estimations, as reected
in the violin plots in Fig. S17 and an MAE of 9 nm, which is
comparable to the WF estimates (5 nm) that were tted to C01–
C26 and thus are expected to have a smaller MAE. This
demonstrates that the rened WF scheme reliably predicts
lmax,1 for simple 3-, 4-, and 6-substituted coumarins. Moreover,
it reproduces all experimental trends covered by C01–C36,
including 3-/4-methoxy and hydroxy derivatives, for which TD-
DFT gives incorrect estimates of the absorption energies.
4 Materials and methods
4.1 Dataset of a, b-unsaturated carbonyl compounds

To construct a chemically diverse and systematically varied
dataset of simple a, b-unsaturated carbonyl compounds, we
generated molecular structures for ketones (linear a, b-unsat-
urated methyl ketones as well as cyclopentenone- and
cyclohexenone-derivatives), aldehydes, and carboxylic acids
using combinatorial substitution based on a core enone motif
dened by the SMARTS pattern [#6](=[#8])–[#6]=[#6], allowing
substitution at the a- and the (two) b-position(s). Substituents
were selected from six chemically relevant groups considered in
© 2026 The Author(s). Published by the Royal Society of Chemistry
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the Woodward rules: methyl (C), methoxy (OC), chloro (Cl),
bromo (Br), hydroxy (O), and hydrogen (H).

A total of 720 molecules were generated: 216 per acyclic
compound class (ketone, aldehyde, and carboxylic acid), and 36
per cyclic enone (see Fig. S5). For the acyclic compounds, all
possible permutations of mono- (a or b), di- (a, b), and tri-
substitution (a, b, b0) were systematically constructed. Where
applicable, both cis/trans stereoisomers were explicitly
included, specically for b-, a, b-, and b, b0-substituted deriva-
tives. For the cyclic enones, due to the presence of only one
accessible b-position, mono- and di-substitution patterns were
generated, covering a-, b-, and a, b-substitution. All possible
combinations of the selected substituents across the available
positions were enumerated and represented as isomeric
SMILES, ensuring that E/Z-isomerism was captured.

For the resulting SMILES, 3D molecular geometries were
generated using the Experimental-Torsion basic Knowledge
Distance Geometry (ETKDG) method56 as implemented in
RDKit, followed by geometry optimization using density func-
tional theory (DFT) at the B3LYP39,40/def2-TZVP57/D4 (ref. 58 and
59) level of theory. Subsequently, time-dependent DFT (TD-DFT)
calculations were performed to simulate the 10 lowest singlet
excited states. The S1 and S2 states were assigned as np* and
pp* states, respectively. In accordance with the scope of the
Woodward rules, only the vertical excitation energies of the S0
/ S2 (pp*) transitions were considered for further analysis.
Nonetheless, the information on the rst ve excitations and
their oscillator strengths are available in the dataset provided
with the ChromoPredict code on Github.32 All (TD-)DFT simu-
lations were performed using the VeloxChem soware.60
4.2 Dataset of coumarins

To extend the WF rules to coumarins, we assembled a dataset of
36 mono-, di-, and tri-substituted derivatives bearing hydroxy,
chloro, benzo, alkyl, or alkoxy groups at the 3-, 4-, and 6-
positions.43–55 Reported absorption maxima, SMILES represen-
tations, and references are summarized in Tables S3 and S4,
with molecular structures shown in Fig. S10 and S11.

SMILES strings were converted to 3D structures using the
ETKDG algorithm.56 Geometry optimizations were carried out at
B3LYP/def2-TZVP/D4 (ref. 40 and 57–59) level of theory. Vertical
excitation energies and oscillator strengths of the lowest 10
singlet states were obtained from TD-DFT calculations at the
same level of theory. In all calculations solvent effects (ethanol,
3 = 24.852) were modeled using the conductor-like polarizable
continuum model (CPCM).61 Analyses focused on the lowest-
energy absorption maximum with predominant pp* character
(S0 / S2 transitions).
4.3 Parameterization of the Woodward–Fieser rules

To improve the classical Woodward–Fieser rules for a, b-
unsaturated carbonyl compounds and develop a tailored
parameter set for coumarins, we employed a numerical opti-
mization strategy based on the dual annealing algorithm. This
procedure was applied to the previously described
© 2026 The Author(s). Published by the Royal Society of Chemistry
computational Woodward–Fieser (see Section 4.1) and experi-
mental coumarin dataset (see Section 4.2).

Each enone molecule was encoded using three categorical
descriptors: the base chromophore, the a-substituent, and the
b-substituent. For coumarins, an additional descriptor was
included to account for substitution at the 6-position, denoted
by the categorical variable higher. To incorporate stereochem-
ical inuences, which are absent from the original formulation,
we extended the base chromophore category to distinguish
between aldehydes, ketones, and carboxylic acids, each further
subdivided into cis, trans, or non-stereospecic congurations.
Initial estimates for these base chromophore values were
adopted from classical Woodward–Fieser increments (e.g.,
210 nm for aldehydes), assigning equivalent starting values to
all stereoisomeric variants.

All categorical features were one-hot encoded to preserve the
independence of the base and substituent values and construct
a design matrix X, with corresponding target values ŷ repre-
senting vertical excitation energies derived either from TD-DFT
calculations (for enones) or from experimental absorption
maxima (for coumarins). The model assumes a linear additive
form, ŷ = X$x, where x is the vector of unknown coefficients
representing the contributions of each feature (X). Parameter
estimation was formulated as a minimization problem over the
sum of squared residuals:

LðxÞ ¼
Xn

i¼1

ðyi � ŷiÞ2 ¼
Xn

i¼1

ðyi � Xi$xÞ2;

where n is the number of molecules and ŷi the rule determined
absorption wavelength of the ith molecule.

To retain the interpretability of rule-based additive values,
the coefficient vector x was constrained to integer values
through rounding within the loss function. Optimization was
carried out using the global optimization using the dual
annealing algorithm as implemented in SciPy, which is well-
suited for navigating non-convex parameter landscapes.

Parameter bounds were informed by chemical consider-
ations. In enones, all substituents are known to induce bath-
ochromic shis, whereas in coumarins, both bathochromic and
hypsochromic shis can occur, depending on substituent type
and position. Accordingly, for enones, base chromophore
values were restricted to the range between 150 and 300 nm,
hydrogen substituents were xed to zero, and remaining
substituent increments were allowed to vary between 1 and
70 nm. For the coumarins, the base chromophore value was
xed to 312 nm, hydrogen substituents were xed to zero, and
remaining substituent increments were allowed to vary between
−70 and 70 nm.
5 Conclusions

We present ChromoPredict, a Python package for the auto-
mated application of the Woodward–Fieser and Fieser–Kuhn
rules to predict the low-energy pp* absorption maxima (lmax) of
a, b-unsaturated carbonyl compounds, dienes, and linear
polyenes. By the digitization of these rules, we have enabled
Digital Discovery, 2026, 5, 98–107 | 105
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systematic renement using a curated TD-DFT dataset, which
shows that stereochemistry within a, b-unsaturated carbonyl
compounds plays a negligible role, as it is largely intrinsically
encompassed by the original rule formulation. The renement
improves prediction accuracy compared to classical increments
and TD-DFT results. Furthermore, the rule-based predictions
exhibit higher transferability and accuracy in out-of-domain
regimes than random forest models trained on the same data-
set. In particular, the inclusion of rule-derived descriptors as
features in machine learning models can further improve their
predictive performance, underscoring the value of chemically
interpretable, chromophore-based features for data-driven
approaches. Building on this framework, we have derived new
empirical rules for 3-, 4- and 6-substituted coumarins that
accurately reproduce experimental substitution trends and, in
some cases, outperform TD-B3LYP, especially when DFT
misestimates substituent effects. Overall, this work creates
a practical, interpretable, and robust framework that combines
classical empirical rules with modern computer-aided and
machine learning approaches and supports rapid structural
analysis.
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J.-M. André and D. Jacquemin, Int. J. Quantum Chem.,
2006, 106, 1853–1859.

37 R. C. Cambie, P. A. Craw, R. J. Hughes, P. S. Rutledge and
P. D. Woodgate, Aust. J. Chem., 1982, 35, 2111–2130.

38 J. A. Marshall and D. J. Schaeffer, J. Org. Chem., 1965, 30,
3642–3646.

39 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter
Mater. Phys., 1988, 37, 785–789.

40 A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
41 C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen,

P. Pracht, J. Seibert, S. Spicher and S. Grimme, WIREs
Comput. Mol. Sci., 2021, 11, e1493.

42 K. V. Masrani, H. S. Rama and S. L. Bafna, J. Appl. Chem.
Biotechnol., 1974, 24, 331–341.

43 A. Mangini and R. Passerini, Gazz. Chim. Ital., 1957, 87, 243–
266.

44 T. S. Reddy, H. Moon and M.-S. Choi, New J. Chem., 2020, 44,
4992–5000.

45 W. W. Mantulin and P.-S. Song, J. Am. Chem. Soc., 1973, 95,
5122–5129.
© 2026 The Author(s). Published by the Royal Society of Chemistry
46 J. Kolodziejczyk-Czepas, S. Kozachok, Ł. Pecio,
S. Marchyshyn and W. Oleszek, Phytochemistry, 2021, 190,
112861.
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