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De novo 3Dmolecule generation is a pivotal task in drug discovery. However, many recent geometric generative

models struggle to produce high-quality geometries, even if they able to generate valid molecular graphs. To

tackle this issue and enhance the learning of effective molecular generation dynamics, we present Megalodon

– a family of scalable transformer models. These models are enhanced with basic equivariant layers and

trained using a joint continuous and discrete denoising co-design objective. We assess Megalodon's

performance on established molecule generation benchmarks and introduce new 3D structure benchmarks

that evaluate a model's capability to generate realistic molecular structures, particularly focusing on geometry

precision. We show that Megalodon achieves state-of-the-art results in 3D molecule generation, conditional

structure generation, and structure energy benchmarks using diffusion and flow matching. Furthermore, we

demonstrate that scaling Megalodon produces up to 49× more valid molecules at large sizes and 2–10×

lower energy compared to the prior best generative models. The code and the model are available at https://

github.com/NVIDIA-Digital-Bio/megalodon.
1 Introduction

Molecular Generative models have been heavily explored due to
the allure of enabling efficient virtual screening and targeted
drug design.1 Similar to the rise in their application to computer
vision (CV),2,3 Diffusion and Flow Matching models have been
applied for tasks including molecule design, molecular dock-
ing, and protein folding.4–6 Across CV and chemical design, the
scaling of model architectures and training data have seen
signicant accuracy improvements but questions surrounding
how to scale effectively still persist.7

Specically for 3D molecule generation (3DMG), where the
task is to unconditionally generate valid and diverse 3D mole-
cules, diffusion models have shown great promise in enabling
accurate generation starting from pure noise.8 The iterative
nature of diffusion models allows them to explore a diverse
range of molecular congurations, ideally providing valuable
insights into potential drug candidates and facilitating the
discovery of novel compounds. However, unlike in CV, which
has seen systematic evaluations of training data and scaling,
with tangible benchmark results,9 measuring success in de novo
molecule generation is quite difficult. As a result, there is
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a nonlinear path to determining what truly is making an impact
if, in each model, the data, architecture, training objective, and
benchmarks differ. Furthermore, the commonly shared 3DMG
benchmarks that do exist only evaluate molecular topologies,
ignoring geometry, conformational energy, and model gener-
alization to large molecule sizes – all quantities that are
imperative for real-world use. In this work, we explore the above
in the context of 3DMG and its interpretable benchmarks to
directly target larger molecules.

Our main contributions are as follows:
� We present Megalodon, a scalable transformer-based

architecture for multi-modal molecule diffusion and ow
matching. This is the rst 3DMG model to be tested with both
objectives, with both obtaining state-of-the-art results. We show
that our diffusion model excels at structure and energy bench-
marks, whereas our ow matching model yields better 2D
stability and the ability to use 25× fewer inference steps than its
diffusion counterpart.

� Megalodon is the rst model capable of unconditional
molecule generation and conditional structure generation
without retraining or netuning.
2 Background
2.1 3D molecule generation

In de novo 3D molecule generation (3DMG), a molecule's 3D
structure and 2D topology are simultaneously generated. We
dene a moleculeM = (X, H, E, C) with N atoms where X ˛ RN×3,
H ˛ {0, 1}N×A, E ˛ {0, 1}N×N×B, and C ˛ {0,1}N×D represents the
Digital Discovery
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atom coordinates, element types, bond types adjacency matrix,
and formal charges respectively. Here, A denotes the number of
atom types, B the number of bond types, and D the number of
formal charge states. X is modeled as a continuous variable,
whereas H, E, and C are discrete one-hot variables. X is modeled
as a continuous variable whereas H, E, and C are discrete one-hot
variables.

2.2 Important qualities of 3D molecules

The GEOM dataset10 is widely used for 3D molecular structure
(conformer) generation tasks, containing 3D conformations
from both the QM9 and drug-like molecule (DRUGS) databases,
with the latter presenting more complex and realistic mole-
cules. Conformers in the dataset were generated using CREST,11

which performs extensive conformational sampling based on
the semi-empirical extended tight-binding method (GFN2-
xTB).12 This ensures that each conformation represents a local
minimum in the GFN2-xTB potential energy surface (PES).

A key requirement for generative models is their ability to
implicitly learn PES of the training data and produce molecules
that are local minima of the PES. However, since GFN2-xTB is
itself a model rather than a universal energy function, comparing
energies across different potentials (e.g., using GFN2-xTB opti-
mized structures but computing energies with MMFF13) can
introduce systematic errors. Differences in potential models,
such as optimal bond lengths, may lead to unreliable results.
Overall, the goal of 3DMG is to generate valid molecules
mimicking the energy landscape of the GEOM dataset.

2.3 Related work

Hoogeboom et al.8 rst introduced continuous diffusionmodeling
for coordinates and atom types using a standard equivariant graph
neural network (EGNN) architecture.14 Following this, many
models have been produced that make slight changes to the
architecture and diffusion interpolant schedule to generate atom
coordinates and types.15 While initially effective, they rely on
OpenBabel16 soware to infer chemical bonds, which is a standal-
one hard problem and introduces additional sources of error into
the pipeline. So, methods began to generate the bond locations
and types in the generative process.17 Vignac et al.18 was the rst to
use continuous diffusion for coordinates and discrete diffusion for
the atom and bond types, removing the OpenBabel requirement.
Le et al.19 used the same training objective but introduced a more
effective equivariant architecture. Recently Irwin et al.20 uses
continuous and discrete ow matching with a latent equivariant
graph message passing architecture to show improved
performance.

Xu et al.21 introduces GeoLDM a geometric latent diffusion
model for 3DMG. GeoLDM applies its diffusion process over
a learned latent representation. So rather than updating the
atom position and types in euclidean space everything is done
inside the model. Similar to EDM, GeoLDM uses OpenBabel for
bond prediction. Pinheiro et al.22 takes a different approach
than majority of prior work in representing molecules as 3D
voxels rather than graphs. This is akin to 3D image processing
rather than point cloud processing. This however requires
Digital Discovery
a recovery process as the voxels are not a natural molecule
representation. Voxels however provide a better link to the
applications of vision models which majority of the diffusion
framework was created for. Lastly, Song et al.23 introduces
GeoBFN a Geometric Bayesian Flow Network, that unlike
diffusion models operate in the parameter space rather then
product space. While the integration of 3D voxels would not
work for Megalodon, latent diffusion and BFN extensions are
something relevant to future work.
2.4 Stochastic interpolants

2.4.1 Continuous Gaussian interpolation. Following,24,25 in
the generative modeling setting, we construct interpolated
states between an empirical data and a Gaussian noise distri-
bution N ðxt; bðtÞx1;aðtÞ2IÞ, this is,

xt = a(t)3 + b(t)x1, (1a)

x1 ¼ xt � aðtÞ3
bðtÞ (1b)

where 3 � N ð3; 0; IÞ and x1∼ pdata(x1). Common choices for the
interpolation include (assuming t ˛ [0, 1]), with t = 1 corre-
sponding to data and t = 0 to noise:

� Variance-preserving SDE-like from the diffusion model

literature:26 aðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gt

2
p

and bðtÞ ¼ ffiffiffiffiffiffiffi
gt

2
p

with some specic

“noise schedule” gt which is commonly written as
ffiffiffiffiffi
at

p
from Ho

et al.27

� Conditional linear vector eld:24 a(t) = 1 – (1 – smin)t and
b(t) = t with some smoothening of the data distribution smin.

2.4.2 Continuous diffusion. Continuous Denoising Diffu-
sion Probabilistic Models (DDPM) integrate a gradient-free
forward noising process based on a predened discrete-time
variance schedule (eqn (1a)) and a gradient-based reverse or
denoising process.27 The denoising model can be parameterized
by data or noise prediction as they can be equilibrated via eqn
(1b). Following Le et al.,19 we use the following training objective
and update rule:

LDDPMðqÞ ¼ Et;3�N ð3;0;IÞ;x1�pdataðx1Þkxqðt; xtÞ � x1k2 (2)

mqðt; xtÞ ¼ fðaðtÞ; bðtÞÞ � xqðt; xtÞ þ gðaðtÞ; bðtÞÞ � xt

xtþ1 ¼ mqðt; xtÞ þ sðaðtÞ; bðtÞÞ � 3
(3)

where functions f, g, and s are dened for any noise schedule
such as the cosine noise schedule used in Vignac et al.18

2.4.3 Continuous ow matching. Flow matching (FM)
models are trained using the conditional ow matching (CFM)
objective to learn a time-dependent vector eld vq(t, xt) derived
from a simple ordinary differential equation (ODE) that pushes
samples from an easy-to-obtain noise distribution to a complex
data distribution.

LCFMðqÞ ¼ Et;3�N ð3; 0;IÞ;x1�pdataðx1Þ

����
����vqðt; xtÞ � d

dt
xt

����
����2

¼ Et;3�N ð3; 0;IÞ;x1�pdataðx1Þ
������vqðt; xtÞ � a

� ðtÞ3� b
�

ðtÞx1

������2; (4)
© 2026 The Author(s). Published by the Royal Society of Chemistry
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The time-differentiable interpolation seen in eqn (1a) gives rise
to a probability path that can be easily sampled. For more
details on how to relate the Gaussian diffusion and CFM
objectives with the underlying score function of the data
distribution, please see Appendix A.

In practice, many methods use a “data prediction” objective
to simplify training, which gives rise to the following loss
function and inference Euler ODE update step following the
conditional linear vector eld.20,24

LCFMðqÞ ¼ Et;3�N ð3;0;IÞ;x1�pdataðx1Þkxqðt; xtÞ � x1k2 (5)

vqðt; xtÞ ¼ xqðt; xtÞ � xt

1� t
;

xtþ1 ¼ xt þ vqðt; xtÞdt (6)

2.4.4 Discrete diffusion. Following Austin et al.,28 Discrete
Denoising Diffusion Probabilistic Models (D3PMs) apply the
same concept as continuous diffusion but over a discrete state
space. Like the continuous counterpart that relies on a pre-
dened schedule to move mass from the data to prior distri-
bution, D3PM uses a predened transition matrix that controls
how the model transitions from one discrete state to another.

For scalar discrete random variables with K categories at, at−1

˛ 1, ., K the forward transition probabilities can be repre-
sented by matrices: [Qt]ij = q(at = jjat+1 = i). Starting from our
data a1 or aT (where T is the total number of discrete time
steps),§ we obtain the following T – t + 1 step marginal and
posterior at time t:

Qt ¼: QtQtþ1.QT

qðatjatþ1Þ ¼ Catðat; p ¼ atþ1QtÞ; qðatjaT Þ ¼ Cat
�
at; p ¼ aTQt

�
;

qðatþ1jat; aT Þ ¼ qðatjatþ1; aT Þqðatþ1jaT Þ
qðatjaT Þ

¼ Cat

 
atþ1; p ¼ atQ

T
t � aTQtþ1

aTQta
T
t

!

(7)

Here Q is dened as a function of the same cosine noise
schedule used in continuous DDPM such that the discrete
distribution converges to the desired terminal distribution (i.e.
uniform prior) in T discrete steps. Similar to the use of mean
squared error loss for DDPM, D3PM uses a discrete cross-
entropy objective.

2.4.5 discrete ow matching. Following Campbell et al.,29

we use the Discrete Flow Matching (DFM) framework to learn
conditional ows for the discrete components of molecule
generation (atom types, bond types, and atom charges). We use
the following DFM interpolation in continuous time, where S is
the size of the discrete state space:

puniftj1 ðatja1Þ ¼ qðatja1Þ ¼ Cat

�
tdfa1; atg þ ð1� tÞ 1

S

�
; (8)
§ We adjust the direction of time for diffusion to match the FM equations such
that T = 1 is data.

© 2026 The Author(s). Published by the Royal Society of Chemistry
Similar to discrete diffusion, we use the cross-entropy objective
for training. Please see Campbell et al.29 for sampling procedure
details.

2.4.6 Diffusion vs. ow matching. We see that for both
diffusion and CFM, the loss functions used in practice are
identical. Differences arise in how we build the interpolation,
how we sample from these models, and their theoretical
constraints. Diffusion models rely on complex interpolation
schedules that are tuned to heavily weight the data distribution
using a uniform time distribution. In contrast, FM commonly
uses a simple linear interpolation but can achieve that same
data distribution weighting by sampling from more complex
time distributions. The choices of time distributions and
interpolation schedules can be chosen appropriately to make
FM and diffusion equivalent in the Gaussian setting (see
Appendix A). We show in Fig. 2 the interpolation and time
distribution differences that mimic the same weighting of pdata
at T = 1 that are currently used in recent 3DMG models.19,20

Diffusion models inherently rely on simulating Gaussian
stochastic processes. In the forward process, data points are
progressively noised, converging towards a Gaussian distribution.
This process, derived from score-based generative models, aims to
learn the score function (the gradient of the data distribution's log
density) to reverse the diffusion process. The generative model
effectively solves a Stochastic Differential Equation (SDE) that
describes how data diffuses towards noise and how it can be
denoised in reverse. The reverse process requires SDE simulation
at every step, which involves sampling from a learned probabilistic
model that estimates how to remove noise. This involves simu-
lating random variables at each time step, making diffusion
models highly dependent on repeated stochastic simulation.

Flow Matching, on the other hand, learns a continuous
vector eld that deterministically “ows” one distribution to
another. The model learns this ow by matching the velocity
eld that pushes samples from a source distribution to a target
distribution. Once the vector eld is learned, generating
samples involves solving an ODE that denes a continuous and
deterministic trajectory from the source to the target distribu-
tion. Unlike diffusionmodels, which require simulating a series
of stochastic transitions (noising and denoising) over many
steps, ow matching learns a single, continuous ow. Sampling
involves solving an ODE (or, in some cases, a deterministic SDE
with noise) to move from the base distribution to the target in
a smooth, deterministic fashion.

For DDPM, the equations only hold for the Gaussian path with
access to a well-formed score function. This is why techniques
like mini-batch Optimal Transport (OT) can be applied to FM but
not diffusion to align pdata and pref.30 In FM, the vector eld is
learned, which, in the absence of OT, can be derived as a function
of the score function, but having access to the score function is
not a requirement to sample deterministically (simulation-free).

3 Methods
3.1 Megalodon Architecture

Since 3DMG allows for the simultaneous generation of
a discrete 2D molecular graph and its 3D structure, we
Digital Discovery
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Fig. 1 Megalodon architecture:molecules are separated into 3D structures anddiscrete atom types, bond types, and atomcharges features. All features
are embedded separately, passed through a feed-forward neural network layer, and aggregated to produce the input tokens for the fused invariant
transformer blocks. The embedded structural features and transformer outputs for the discrete features are passed to a single equivariant graph neural
network (EGNN) layer for structure updates. The output heads consist of standard MLPs and an EGNN layer for bond refinement.
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intentionally designed our architecture with a core transformer
trunk to better model discrete data.31,32 Fig. 1 illustrates the
model architecture, which is comprised of N blocks made up of
fused invariant transformer blocks and simple structure update
layers, followed by linear layers for discrete data projection.

In the fused invariant transformer block, the embedded
structure, atom types, and bond types are fused and aggregated
to create a single molecule feature. This is passed into a stan-
dard multi-head attention module with adaptive layernorm.
The scaled output is then passed into separate adaptive layer-
norm feedforward blocks for the atom types and bond types.
The transformer also produces an unchanged molecule struc-
ture via a residual connection to the input. The updated atom
and bond types are then passed into a simple structure layer.
The structure layer only updates the predicted structure via
a standard distance-based EGNN update with a cross-product
term.4,14 At a high level, the transformer block updates our
discrete invariant data, and our equivariant layer updates our
structure. For more details, please see Appendix B.
Fig. 2 Time and interpolation comparison betweenMegalodon andMega
linear vs. diffusion cosine interpolant.

Digital Discovery
We introduce a generative scaling benchmark, and as we
show, the performance of 3DMG models is correlated with the
size of the generated molecules. We note that our large model
is, in fact, not that large compared to recent biological
models33,34 and can be further scaled beyond 40 M params if
further benchmarks are developed.

3.2 Training objective

We explore Megalodon in the context of diffusion and ow
matching. For our diffusion avored model, following Vignac
et al.,18 Le et al.19 we use the same weighted cosine noise
schedules, DDPM, and discrete D3PM objective. When using
conditional owmatching, we apply the same training objective
and hyperparameters as Irwin et al.,20 including equivariant
optimal transport. In this way, for diffusion and ow matching,
we train and evaluate our model in an identical way including
hyperparameters to prior models of same types.

In our experiments with EQGAT-diff, we found that the
diffusion objective with data-like priors possesses an interesting
lodon-flow. (a) Time distributions used formolecule generation. (b) FM

© 2026 The Author(s). Published by the Royal Society of Chemistry
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{ Checkpoint from public code has 2 sets of 23.2 M params, one for the last
gradient step and EMA weights.
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but potentially harmful behavior. Although the noise sample
from the data-prior and the true data sample have bonds, the
model consistently generates no bonds for all time#0.5, which
corresponds to an interpolation with #70% of the data as seen
in Fig. 2(b). Therefore there is no useful information for the
edge features in half the training and inference samples. As
a result, only when the structure error is low, as the model starts
with 70% data in the interpolation, does the bond prediction
accuracy jump to near-perfect accuracy. Thus, only when the
structure is accurate was the 2D graph accurate, which is
counterintuitive to the independent and simultaneous objec-
tive. In other words, the 2D graph does not inform the 3D
structure as one would expect to happen, and we would want
equal importance on the 2D topology and 3D structure.

To address this inefficiency, as the structure, atom type, and
bond type prediction inform each other to improve molecule
generation, we introduce a subtle change to the training
procedure similar to Campbell et al.29 Keeping each data type
having its own independent noise schedule, we enable
a concrete connection between the discrete and continuous
data that it is modeling. Explicitly, rather than sampling a single
time variable, we introduce a second noise variable to create
tcontinuous and tdiscrete, both sampled from the same time
distribution. Now discrete and continuous data are interpolated
with their respective time variable and maintain the indepen-
dent weighted noise schedules. We note that the MiDi weighted
cosine schedules were already adding different levels of noise
for the same time value. Now, we take that one step further and
allow the model to ll in the structure given the 2D graph and
learn to handle more diverse data interpolations.

3.3 Self conditioning

Following Chen et al.,35 we train Megalodon with self-
conditioning similar to prior biological generative
models.20,36,37 We found that constructing self-conditioning as
an outer model wrapper with a residual connection led to faster
training convergence:

hsc ¼ modelðhtÞ
ht ¼ MLPð½hsc; ht�Þ þ ht

hpred ¼ modelðhtÞ
(9)

where ht represent one of the molecule component.
Specically for 3DMG, self-conditioning is applied inde-

pendently to each molecule component M = (X, H, E, C), where
the structure component uses linear layers without bias and all
discrete components operate over the raw logits rather than the
one-hot predictions.

4 Experiments
4.1 Data

GEOM drugs is a dataset of drug-like molecules with an average
size of around 44 atoms.10 Following standard practice in prior
work,18–20 we train on the ve lowest-energy conformers per
molecule, using the same splits as these baselines.We emphasize
that traditional metrics are calculated by rst sampling molecule
sizes from the dataset (Fig. 4) and then generating molecules
© 2026 The Author(s). Published by the Royal Society of Chemistry
with the sampled number of atoms, including explicit hydrogens.
We show in Section 4.1 that this does not illustrate the full
generative capacity, as inmany real-world instances, people want
to generate molecules with greater than 100 atoms.38
4.2 Unconditional de novo generation

4.2.1 Problem setup. Following Le et al.19 we generate 5000
molecules (randomly sampling the number of atoms from the
train distribution see Fig. 4), and report (1) atom stability: the
percentage of individual atoms that have the correct valency
according to its electronic conguration that was predened in
a lookup table, (2) molecule stability: percentage of molecules in
which all atoms are stable, (3) connected validity: fraction of
molecules with a single connected component which can be
sanitized with RDKit. We also introduce two structural distri-
butional metrics for the generated data: (4) bond angles and (5)
dihedral angles, calculated as the weighted sum of the Was-
serstein distance between the true and generated angle distri-
butions, with weights based on the central atom type for bond
angles and the central bond type for dihedral angles,
respectively.

4.2.2 Baselines. EQGAT-diff has 12.3 M parameters and
leverages continuous and discrete diffusion.19 SemlaFlow has
23.3 M params{ and is trained with conditional ow matching
with equivariant optimal transport.20 We report two Megalodon
sizes, small (19 M) and large (40.6 M). We train with identical
objectives and settings to both EQGAT-diff and SemlaFlow. We
also compare to older diffusion models, including MiDi and
EDM, as they introduce imperative techniques from which the
more recent models are built.

4.2.3 Analysis. Both the diffusion and ow matching
versions of Megalodon achieve state-of-the-art results. With the
FM version obtaining better topological accuracy and the diffu-
sion version seeing signicantly improved structure accuracy.
This experiment shows that the underlying augmented trans-
former is useful for the discrete and continuous data require-
ments of 3DMG, regardless of the interpolant and sampling
methodology. We also see that the transformer part is crucial for
Megalodon's success as just using the EGNN with cross-product
updates with standard edge and feature updates for the non-
equivariant quantities performs quite poorly. We also note that
all methods obtain 100%uniqueness, 88–90%diversity, and 99%
novelty following19 denitions with no meaningful performance
differences. For additional model comparisons and ablations
related to reducing the number of inference steps, please refer to
Appendix Table 6 and Appendix Section C.2. To illustrate the
generalizability of Megalodon, Appendix Table 5 and Appendix
Section C.1 report its performance on the QM9 dataset.

4.2.4 Impact of molecule size on performance. As Table 1
shows average results over 5000 molecules of relatively small
and similar sizes, it is hard to understand if the models are
learning how to generate molecules or just regurgitating
training-like data. We design an experiment to directly evaluate
Digital Discovery
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Table 1 Measuring unconditional molecule generation: 2D and 3D benchmarks

Model Steps

2D topological ([) 3D distributional (Y)

Atom stab. Mol stab. Validity Bond angle Dihedral

EDM + OpenBabela 1000 0.978 0.403 0.363 — —
MiDia 500 0.997 0.897 0.705 — —
EQGAT-diffx0

disc 500 0.998 0.935 0.830 0.858 2.860
EGNN + cross product 500 0.982 0.713 0.223 14.778 17.003
Megalodon-quick 500 0.998 0.961 0.900 0.689 2.383
Megalodon 500 0.999 0.977 0.927 0.461 1.231
SemlaFlow 100 0.998 0.979 0.920 1.274 1.934
Megalodon-ow 100 0.999 0.988 0.944 1.286 2.379

a Denotes taken from EQGAT-diff.

Fig. 3 Diffusion model performance as a function of molecule size. Note the ability for Megalodon to generate valid and stable molecules with
little training data support.
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this question and see how models perform as they are tasked to
generate molecules outside the support region of the train set.
We see in Fig. 3 that the topological model performance is
a function of length (for full-size distribution, see Fig. 4). Here
for each length [30, 125] we generate 100 molecules and report
the percentage of stable and valid molecules.

We emphasize that Table 1 illustrates only a slice of the
performance via the average of 5 K molecules sampled from the
train set size distribution. We note that although molecules with
greater than 72 atoms make up #1% of the train set, Megalodon
demonstrates roughly 2–49× better performance than EQGAT-diff
for the larger half of the generated molecule sizes. We hypothesize
that since molecule stability is a discrete 2D measurement, the
transformer blocks in Megalodon allow it to better generalize even
if seeing similar molecules in less than 0.1% of the training data.
In other words, the ability of transformers to excel at modeling
discrete sequential data improves our generative performance. We
Digital Discovery
want to point out that all tested models are trained with identical
datasets, hyperparameters, diffusion schedules, and training
objectives. The only difference is the architecture. We also see that
the ability to scale our simple architecture allows the model to
even better generate molecules outside the region of data support.
Lastly, we chose to focus on only the diffusionmodels here as they
exhibit the best structure benchmark performance.
4.3 Conditional structure generation

Similar to the 3D molecule generation task, we use the GEOM-
drugs dataset to evaluate the conditional structure generation
capabilities of our model. Given all unconditional 3DMG
models are trained with independent noising of coordinates,
atoms, and, in some cases, bonds, we want to evaluate how
accurate the structural component is. We note this is something
that is lacking from the existing prior benchmarks, as when
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Quality of ML generated conformer ensembles for GEOM-
drugs (d = 0.75 Å) test set in terms of coverage (%) and average RMSD
(Å)a

Method

Recall Precision

Coverage [ AMR Y Coverage [ AMR Y

Mean Med Mean Med Mean Med Mean Med

GeoDiff 42.1 37.8 0.835 0.809 24.9 14.5 1.136 1.090
Tor. diff. 75.3 82.3 0.569 0.532 56.5 57.9 0.778 0.731
EQGAT 0.8 0.0 2.790 2.847 0.1 0.0 3.754 3.771
Megalodon 71.4 75.0 0.573 0.557 61.2 63.1 0.719 0.696

a
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generating de novomolecules, there is no ground truth structure
to compare against. In the task of conditional structure gener-
ation, all models are given the molecule 2D graph (atom types,
bonds) and asked to generate the 3D structure in which ground
truth data exists. Given Vignac et al.18 and Jing et al.39 use
different train/test splits, we evaluate all methods on the overlap
of 200 held-out molecules, with all methods generating 43 634
structures in total. Due to the similarities with the baselines and
its superior unconditional structure accuracy, we compare
Megalodon trained with diffusion against recent methods with
public reproducible code.

4.3.1 Problem setup. We report the average minimum
RMSD (AMR) between ground truth and generated structures,
and Coverage for Recall and Precision. Coverage is dened as
the percentage of conformers with a minimum error under
a specied AMR threshold. Recall matches each ground truth
structure to its closest generated structure, and Precision
measures the overall spatial accuracy of each generated struc-
ture. Following Jing et al.,39 we generate two times the number
of ground truth structures for each molecule. More formally the
precision metrics are dened, for K = 2L, let fC*

l gl˛½1;L� and
{Ck}k˛[1,K] respectively be the sets of ground truth and generated
structures:

COV-Prec: :¼ 1

K

���k˛½1/K� : minl˛½1/L�RMSD
	
Ck;C

*
l



\d
���

AMR-Prec: :¼ 1

K

X
k˛½1/K �

minl˛½1/L�RMSD
	
Ck;C

*
l



(10)

where d is the coverage threshold. The recall metrics are ob-
tained by swapping ground truth and generated conformers.

4.3.2 Baselines. We compare Megalodon with EQGAT-diff,
GeoDiff,40 and TorsionalDiffusion.39 For the unconditional
3DMGmodels, including Megalodon, we prompt them with the
ground truth atom types and bond types to guide the generation
of the structure along the diffusion process. This is done by
replacing the input and output with the xed conditional data.
We do this to assess what the model is actually learning across
the multiple data domains. The central question being, is the
model learning how to generate molecules over the spatial and
discrete manifolds, or is it just learning how to copy snapshots
of training-like data?

4.3.3 Analysis. We see in Section 2 that EQGAT-diff is
unable to generate any remotely valid structures. Even though
all modalities are being denoised independently at different
rates, the model cannot generate the structure given ground
truth 2Dmolecule graphs. This is also seen during the sampling
process, where diffusion models trained with similar denoising
objectives as EQGAT-diff generate no bonds until the structure
has seemingly converged. Therefore during most of the
sampling process, the edge features which make up a large
portion of the computational cost hold no value.

In comparison, Megalodon generates structures with
competitive precision and recall by building a relationship
between the discrete and continuous data directly in the
training process described in Section 3. Half the time all data
© 2026 The Author(s). Published by the Royal Society of Chemistry
types are independently noised as normal with their respective
time variables and schedules, the other half we only add noise
to the structure. Therefore, our model learns to build a rela-
tionship between true 2D graphs and their 3D structure, as well
as any interpolation between the three data tracks that are
interpolated independently with different schedulers (Table 2).

Megalodon demonstrates that its unconditional discrete
diffusion objective is crucial for its conditional performance. In
other words, the discrete diffusion training objective improves
the conditional continuous generative performance. This is
evident in the comparison between GeoDiff and Megalodon.
GeoDiff is trained on the same conditional Euclidean structure
objective as Megalodon (with similar EGNN-based architecture)
with 10× more diffusion steps, with both models taking in
identical inputs. We see that since Megalodon is able to
generate molecules from pure noise, it better learns structure
and as a result can be prompted to generate accurate structures.

Interestingly, compared to Torsional diffusion, which
initializes the 3D structure with an RDKit approximation to
establish all bond lengths and angles and then only modies
the dihedral angles, we see quite competitive performance.
Before, it was understood that by restricting the degrees of
freedom with good RDKit structures, the performance jump
from GeoDiff to Torsional diffusion was observed. Now we see
that with the same euclidean diffusion process, similar accuracy
improvements can be gained by learning how to generate
accurate discrete molecule topology via discrete diffusion. We
want to note that there have been recent advances on top of
Torsional diffusion41 and other conformer-focused models that
are not public.42 We use this benchmark more to analyze the
underlying multi-modal diffusion objective and focus on the
underlying model comparisons. Megalodon is not a conformer
generation model but a molecule generation model capable of
de novo and conditional design. Overall, Megalodon shows how
independent time interpolation and discrete diffusion create
the ability for the model to be prompted or guided with
a desired 2D topology to generate accurate 3D structures.
4.4 Unconditional structure-based energy benchmarks

4.4.1 Problem setup. Each ground truth structure in GEOM
dataset represents a low-energy conformer within its ensemble,
highlighting two key aspects. First, these molecules are local
Bolded best, italicized second best
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Table 3 xTB relaxation error: length Å, angles degrees, energy kcal mol−1. These metrics are taken over the valid molecules from Table 1.
Methods are grouped by model type: diffusion (500 steps) and flow matching (100 steps)

Model Bond length Bond angles Dihedral Median DErelax Mean DErelax

GEOM-drugs 0.0000 0.00 7.2 × 10−3 0.00 1.0 × 10−3

EQGAT-diff 0.0076 0.95 7.98 6.36 11.06
Megalodon-quick 0.0085 0.88 7.28 5.78 9.74
Megalodon 0.0061 0.66 5.42 3.17 5.71
SemlaFlow 0.0309 2.03 6.01 32.96 93.13
Megalodon-owa 0.0112 0.930 5.63 5.90 8.61
Megalodon-owb 0.0101 0.79 4.07 4.60 6.10

a 100-step evaluation (SemlaFlow-compatible). b 500-step evaluation (diffusion-aligned).
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minima on the GFN2-xTB potential energy surface. Second,
their energies are lower compared to other conformations
sampled in the ensemble. Previously, these quantities have not
been thoroughly evaluated for generated molecules. To address
this gap, we directly measure how closely a generated molecule
approximates its nearest local minimum (i.e., its relaxed struc-
ture). We measure the energy difference between the initial
generated structure and its relaxed counterpart, as well as
structural changes in bond lengths, bond angles, and dihedral
(torsion) angles. This approach allows us to evaluate the ability
of generative models to produce molecules that are true local
minima, facilitating faster ranking of generated structures
without additional minimization steps. For a more rigorous
treatment of this benchmark framework, including additional
analyses and methodological considerations, we refer the
reader to our accompanying work on benchmarking generative
models on the GEOM-drugs dataset.43

4.4.2 Analysis. We see that for both diffusion and ow
matching, Megalodon is better than its prior counterparts
(Table 3). Overall, Megalodon trained with diffusion performs
best with roughly 2–10× lower median energy when compared
to prior generative models. Notably, our model's median
relaxation energy difference DErelax is around 3 kcal mol−1,
which approaches the thermally relevant interval of
2.5 kcal mol−1.10 Megalodon is the rst method to achieve such
proximity to this thermodynamic threshold, marking a signi-
cant milestone in 3D molecular generation.

We note that while the loss function between FM and diffusion
is identical in this instance, we see both ow models have an
considerably larger bond length error, which translates to a similar
energy performance gap. The xTB energy function is highly
sensitive to bond lengths; small deviations in bond lengths can
lead to signicant increases in energy due to the steepness of the
PES in these dimensions. A precise representation of bond lengths
is crucial because inaccuracies directly impact the calculated
energy, making bond length errors a primary contributor to higher
relaxation energies in ow models.

When increasing the number of integration steps to 500, the
gap between diffusion and owmatching narrows substantially,
although ow matching still yields slightly higher relaxation
energies. This behavior is fully aligned with prior analyses in SiT
paper,3 which attribute the remaining gap to the inherent
advantages of stochastic interpolants in capturing ne-grained
Digital Discovery
geometric structure. Importantly, because a ow-matching
model is trained only once and can be evaluated at arbitrary
numbers of integration steps, practitioners can directly trade off
computation for geometric precision, making FM particularly
exible for downstream applications that demand tunable
accuracy.

We also include a SOAP-based44 comparison in the Appendix
Section C.4, which shows that Megalodon's generated struc-
tures closely track the geometric manifold of GEOM. Appendix
Fig. 6 provides several examples of generated molecules, and we
additionally include two SDF les containing structures
produced by the Megalodon and Megalodon-ow models.
5 Conclusions

Megalodon enables the accurate generation of de novo 3D
molecules with both diffusion and ow matching. We show
with a scalable augmented transformer architecture that
signicant improvements are gained, especially when gener-
ating outside the region of support for the training distribution
as it pertains to molecule sizes. Megalodon demonstrates the
ability to achieve great accuracy in conditional structure
generation due to being trained to generate complete molecules
from scratch. We also introduce more interpretable quantum
mechanical energy benchmarks that are grounded in the orig-
inal creation of the GEOM drugs dataset.

While unconditional generation alone is rarely directly
actionable in drug discovery, the proposed framework provides
a strong foundation for a wide range of structure-based tasks.
The architectural components introduced in Megalodon,
together with its ability to generate full 3D geometries from
scratch, can be leveraged for structure-based drug design
(SBDD), conformer generation, fragment or pharmacophore–
guided molecule construction, and other spatially conditioned
design problems. In addition, the exibility of our imple-
mentation allows the codebase to be rapidly adapted to any of
these settings, enabling systematic comparisons of diffusion
and ow-matching approaches on task-specic objectives. In
this sense, Megalodon functions not only as an unconditional
generator but as a practical foundation model whose learned
spatial priors can be transferred across downstream molecular
design workows.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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While we show that Megalodon performs well across
a variety of 3D de novo molecules tasks there are still some
limitations that are worthy of discussion.

Megalodon like Le et al.19 and the prior edge prediction
generative models before it relies on maintaining N2 edge
features, which is quite expensive. Recently20 was able to avoid
this issue for a majority of the model architecture by fusing the
edge and atom features, but this creates a trade-off between
model speed and accuracy. Our ablations show that the larger
edge features are critical for strong energy performance, so it is
still an open question for how to best deal with discrete edge
types as each atom can have a maximum of 6 bonds at a time, so
is needing to model all N potential pairings at all times really
necessary? We leave future work to explore this in greater depth.

As discussed herein, the existing 3D molecule generation
benchmarks are quite limited. A common theme that has been
discussed in prior work.19,20 While wemake strides in expanding
the eld of view of de novo design and energy-based bench-
marks. More work needs to be done to measure important
qualities, as even for common conditional design benchmarks,
metrics such as QED are not meaningful in practice, and even
more complex properties like protein-ligand binding affinity
can be directly optimized for with non-3D structure-based
methods.45 For these reasons, we looked to explore condi-
tional structure generation, but across the board, small mole-
cule benchmarking is a current eld-wide limitation when
compared to the current drug discovery practices.

A general limitation of current 3D molecular generative
models, including Megalodon, is that they inherit both the
representational constraints of their architectures and the
chemical coverage of the training data. Because our model uses
a one-hot atom-type representation, it cannot generalize to
elements not present in the training set, and this interacts with
the limitations of GEOM-drugs, a gas-phase semiempirical
dataset with a relatively narrow medicinal-chemistry bias.
Unlike 2D or SMILES-based language models, which benet
from vast and chemically diverse datasets spanning a wide
range of elements, the amount of available high-quality opti-
mized 3D conformer data is far more limited. As a result, 3D
generators tend to remain close to the GEOM-drugs distribu-
tion. To improve downstream applicability, future work may
involve training on more chemically diverse 3D datasets with
broader element coverage and developing larger, more repre-
sentative 3D molecular datasets that extend beyond the chem-
ical space currently available.

Overall, we explore the similarities and differences between
ow matching and diffusion while improving 3D molecule
design.
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Data availability

The implementation of the Megalodon model, along with pre-
trained weights and data processing scripts, is available at the
© 2026 The Author(s). Published by the Royal Society of Chemistry
GitHub repository: https://github.com/NVIDIA-Digital-Bio/
megalodon. A persistent, citable snapshot of the codebase is
archived on Zenodo under the DOI: https://github.com/
NVIDIA-Digital-Bio/megalodon. The provided scripts enable
both reproducible model training from scratch and sampling
from existing models.

Appendix
A Equating continuous Gaussian diffusion and ow
matching

A part of our work was to explore when to use diffusion versus
ow matching and what the empirical differences are. We show
below that from a training perspective in the continuous
domain, they can be made equivalent.

It can be shown that this objective under the Gaussian
setting is a time-dependent scalar multiple of the standard
denoising objective explored in Ho et al.27 Let's insert eqn (1b)
into the ow matching objective

LCFMðqÞ ¼ Et;3�N ð3; 0;IÞ;x1�pdataðx1Þ�����
�����vqðt; xtÞ � a

� ðtÞ3� b
�

ðtÞ
bðtÞ ðxt � aðtÞ3Þ

�����
�����
2

: (11)

where the dot notation denotes the partial time derivative.
Now we see that we can construct an objective that is similar

to the “noise prediction” objective that is used in diffusion
models:

LCFMðqÞ ¼ Et;3�N ð3; 0;IÞ;x1�pdataðx1Þ�����
�����vqðt; xtÞ � a

� ðtÞ3� b
�

ðtÞ
bðtÞ ðxt � aðtÞ3Þ

�����
�����
2

¼ Et;3�N ð3; 0;IÞ;x1�pdataðx1Þ

������������

������������
vqðt; xtÞ� b

�

ðtÞ
bðtÞxt �

 
a
� ðtÞ � b

�

ðtÞ
bðtÞaðtÞ

!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:sðtÞ

3

������������

������������

2

¼ Et;3�N ð3; 0;IÞ;x1�pdataðx1Þs
2ðtÞ

������������

������������
1

sðtÞ

 
vqðt; xtÞ � b

�

ðtÞ
bðtÞxt

!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:3qðt;xtÞ

�3

������������

������������

2

¼ Et;3�N ð3; 0;IÞ;x1�pdataðx1Þs
2ðtÞk3qðt; xtÞ � 3k2: (12)

We see that the resulting mean squared error of noise
prediction is the original core loss derived in Ho et al.27 This
allows us to choose time-dependent scalars via the time distri-
bution itself or the noise or variance schedule to equate the
CFM and Diffusion objectives.

In the generative modeling case, we interpolate between
a data distribution and a Gaussian density, meaning all data-
conditional paths are Gaussian. In that special case, we can,
in fact, easily extract the score function from the regular ow
matching objective, and we get stochastic sampling for free. We
Digital Discovery
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Table 4 Comparison of Megalodon quick and Megalodon hyper-
parameter configurations

Parameter Megalodon quick Megalodon

Invariant edge feature dimension 64 256
Invariant node feature dimension 256 256
Number of vector features 64 128
Number of layers 10 10
Number of FiT attention heads 4 4
Distance feature size 16 128
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know that xt∼ p(xtjx1) follows Gaussian probability paths. Based
on eqn (1), we know that

xt � pðxtjx1Þ ¼ N
	
xt; bðtÞx1;a

2ðtÞI
: (13)

Let's calculate the score:

Vxt log pðxtjx1Þ ¼ �Vxt

ðxt � bðtÞx1Þ2
2a2ðtÞ

¼ �xt � bðtÞx1

a2ðtÞ
¼ � 3

aðtÞ;

(14)

where we used eqn (1) in the last step. We can solve this for 3
and insert into the reparametrized LCFM in eqn (12) and see that
we obtain denoising score matching,46 which implies that 3q(t,
xt), or analogously vq(t, xt) via their connection, learn a model of
the marginal score Vxt log p(xt).

Specically, we have alternatively

3q(t, xt) = −a(t)Vxt
log p(xt), (15)

vqðt; xtÞ ¼ �aðtÞbðtÞa
� ðtÞ � b

�

ðtÞaðtÞ
bðtÞ

VxtlogpðxtÞ þ b
�

ðtÞ
bðtÞxt: (16)

We note that these equations only hold for a Gaussian prior
without optimal transport.
B Megalodon architecture

B.1 Architecture. As described in Fig. 1, Megalodon
consists of N augmented transformer blocks that consist of
a Fused Invariant Transformer (FiT) block and a structure layer.
We refer to it as Megalodon and Megalodon Quick, as we
maintain the same number of layers but weaken the represen-
tation size to achieve 2× sampling speeds compared to the base
model (Table 4).

B.1.1 Input/output layers. Megalodon takes the input mole-
cules structures and projects them into a N× D tensor where D is
the number of vector features. Aer all augmented transformer
blocks, the predicted structure is projected back down to N × 3.

Similarly, the input discrete components are projected from
their one hot variable to a hidden dimension size. The bonds
leverage the edge feature size, and the atom types and charges
use the node feature size. Aer all augmented transformer
blocks, nal prediction heads are applied to project the values
back into their respective vocabulary size for discrete
prediction.

B.1.2 Fused invariant transformer block. Our Fused Invariant
Transformer (FiT) block has several key differences compared to
other diffusion transformers.2

� Rather than just operating over the discrete atom type
features H, we operate over a fused feature

m ¼ 1
N

X
i;j˛N

f ðhnorm;i;j; hnorm;i;j; enorm;i;j;distancei;jÞ where hnorm

and enorm are the outputs of the time conditioned adaptive layer
norm for the atom type and edge type features. The distance
Digital Discovery
features are the concatenation of scalar distances and dot
products. We note that this fusing step is important to ground
the simple equivariant structure update layer to the transformer
trunk.

� We employ query key normalization.34,47

� The multi-head attention is applied to m to produce
mha_out and then used directly in the standard feed-forward to
produce Hout. To create Eout we mimic the same steps but use
f(mha_outi + mha_outj) for all edges between nodes i and j. Our
feed-forward is the standard SWiGLU layer with a feature
projection of 4. We note that this feed-forward for edge features
is the most expensive component of the model, which is why
Megalodon-quick is designed the way it is.

B.1.3 Structure layer. Following Schneuing et al.,4 the
structure layer of Megalodon consists of a single EGNN layer
with a positional and cross-product update component. Before
this operation, all inputs are normalized to prevent value and
gradient explosion, a common problem faced when using
EGNNs.14 The invariant features use standard layer norm,
whereas the equivariant features use an E3Norm.18

xlþ1
i ¼ xl

i þ
X
jsi

xl
i � xl

j

dij þ 1
fd
x

�
hli ; h

l
j ; d

2
ij ; aij

�

þ
	
xl
i � xl


� �xl
j � xl

�
k	xl

i � xl

� 	xl

j � xl

k þ 1

f�
x

�
hli ; h

l
j ; d

2
ij ; aij

�
;

(17)

B.2 Compute and data requirements. Similar to Le et al.,19 we
use MiDi's adaptive dataloader for GEOM DRUGS with a batch
cost of 200. We note that the adaptive logic randomly selects
one molecule and lls in the batch with similar-sized mole-
cules, tossing any molecules selected that do not t the adaptive
criteria out of the current epoch's available molecules. As
a result, an epoch in this setting does not hold the standard
connotation as time for the model to see each training data
point. We use this dataloader as it was used by prior methods
and we felt it important to standardize the data to best create
a fair comparison. Megalodon-quick is trained on 4 NVIDIA
A100 GPUs for 250 epochs. Megalodon was trained on 8 A100
GPUs for 250 epochs, taking roughly 2 days.

Megalodon-owwas trained using the data splits and adaptive
data loader from Irwin et al.,20 which does not discard molecules
though was preltered to only includemolecules with#72 atoms.
It was trained for 200 epochs on 8 A100 NVIDIA GPUs.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Distribution of molecule sizes.
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C Extended unconditional generation

C.1 Performance on QM9. There are three popular datasets
of 3D molecular structures commonly used to benchmark
generative models: QM9, PubChem3D, and GEOMDrugs. In this
work, we primarily focus on GEOM Drugs because PubChem3D
provides relatively low-quality 3D structures that do not neces-
sarily reect low-energy conformations. Nevertheless, QM9
remains a well-established and frequently used small-scale
benchmark, despite the fact that its median molecular size
is unrealistically small (approximately 20 atoms). For
completeness, we therefore report results on QM9 as shown in
Table 5.

We trained SemlaFlow and EQGAT-diff from scratch while
using MiDi results from the original paper. In their original
codebases, both MiDi and EQGAT-Diff were trained on molec-
ular representations with three bond types: single, double, and
triple, whereas Semla included aromatic bonds. We found that
the inclusion of aromatic bonds negatively impacted molecular
stability metrics, even though any molecule can be represented
without them in a molecular graph using the Kekulized form.
To ensure comparability, we trained all models using only
single, double, and triple bonds.

In Table 5 we observe that Megalodon-quick achieves the
best overall performance on QM9 in terms of both 2D (topo-
logical) and 3D (distributional) metrics. This outcome makes
intuitive sense because Megalodon-quick is a more lightweight
variant, and smaller models oen suit datasets of reduced scale,
such as QM9, more effectively. In contrast, Megalodon-ow
appears to be too large for this dataset, leading to slightly
© 2026 The Author(s). Published by the Royal Society of Chemistry
weaker performance; however, we include it here for
completeness and consistency with results on GEOM drugs.

While ow matching benets from fewer integration steps
(here 100 steps), the diffusion-based objective with more
denoising steps (in our case, 500) ultimately achieves stronger
3D quality metrics. Thus, the trade-off between computational
efficiency (fewer steps) and generative delity (more steps) is
highlighted once again in this smaller-scale setting.

C.2 Unconditional ablations. We include each primary
model in its base form as well as with 5× fewer inference steps.
The owmodels do not have to be retrained as they were trained
to learn a continuous vector eld, whereas the diffusion models
must be retrained due to the change in variance discretization
in the forward diffusion process.

We also include EGNN + cross product which is similar to
Megalodon except the transformer layers were replaced by the
standard invariant and edge feature updates in Satorras et al.14

Prior methods exist that improve upon EDM + Open Babel and
maintain that bonds are generated external to the model via
Open Babel.15 We do not include such methods in our
comparison as, for the most part, public code with weights is
not available, and Open Babel introduces signicant bias and
errors, which make evaluating the model difficult.15,17

Open Babel, while a powerful tool for molecular manipula-
tion and conversion, can introduce several potential errors,
particularly in the context of bond assignment and 3D structure
generation. Some common errors include:

� Incorrect bond orders: Open Babel oen assigns bond
orders based on geometric heuristics or atom types, which can
Digital Discovery
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Table 5 Measuring unconditional molecule generation: 2D and 3D benchmarks on QM9 dataset

Model

2D topological ([) 3D distributional (Y)

Steps Atom stab. Mol stab. Validity Bond angle Dihedral

MiDia 500 0.998 0.975 0.979 0.670 —
EQGAT-diffx0

disc 500 0.998 0.977 0.979 0.365 0.815
Megalodon-quick 500 0.999 0.986 0.988 0.241 0.662
Megalodon 500 0.999 0.986 0.987 0.422 0.637
SemlaFlow 100 0.999 0.986 0.986 0.775 1.194
Megalodon-ow 100 0.998 0.973 0.976 0.804 0.970

a Denotes taken from MiDi.

Table 6 Measuring unconditional molecule generation: 2D topological and 3D distributional benchmarks

Model

2D topological ([) 3D distributional (Y)

Steps Atom stab. Mol stab. Connected validity Bond angle Dihedral

EDM + OpenBabelb 1000 0.978 0.403 0.363 — —
MolDiff taken from Peng et al.48 1000 — — 0.739 — —
GeoBFN taken from Song et al.23 2000 0.862 0.917 — — —
MiDib 500 0.997 0.897 0.705 — —
EQGAT-diffx0

disc 100 0.996 0.891 0.768 1.772 3.514
EQGAT-diffx0

disc 500 0.998 0.935 0.830 0.858 2.860
EGNN + cross product 500 0.982 0.713 0.223 14.778 17.003
Megalodon-quick 500 0.998 0.961 0.900 0.689 2.383
Megalodon 100 0.998 0.939 0.817 0.871 3.367
Megalodon 500 0.999 0.977 0.927 0.461 1.231
SemlaFlow 20 0.997 0.962 0.875 2.188 3.173
SemlaFlow 100 0.998 0.979 0.920 1.274 1.934
Megalodon-ow 20 0.998 0.937 0.852 2.695 3.892
Megalodon-ow 100 0.999 0.98 0.944 1.286 2.379
Megalodon-owa 100 0.997 0.990 0.948 0.976 2.085
Megalodon-ow 500 0.999 0.991 0.965 0.438 1.646

a Uses the original Semla-Flow preprocessing (variance-1 scaling; >72-atom molecules removed). b Denotes taken from EQGAT-diff.
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lead to inaccuracies, especially in complex or exotic molecules
where bond orders are not trivial.

� Geometric distortions: when converting between different
formats or generating 3D coordinates, Open Babel may generate
suboptimal or distorted geometries, especially if the input
structure is incomplete or poorly dened.

� Protonation state assumptions: Open Babel may incor-
rectly infer or standardize protonation states, which can lead to
chemical inaccuracies, especially in sensitive systems such as
drug-like molecules or biologically active compounds.

� Ambiguous aromaticity: Open Babel can sometimes
misinterpret or incorrectly assign aromaticity, which can lead to
an incorrect representation of the molecular structure.

� Missing stereochemistry: while converting or generating
structures, stereochemistry can be incorrectly assigned or lost
altogether, affecting the overall molecular properties.

C.3 3D distributional metrics. To evaluate the geometric
delity of the generated molecules, we compute the
Wasserstein-1 distance between the generated and target
Digital Discovery
distributions of bond angles, following the methodology of ref.
19 The overall bond angle metric is dened as:

Wangles ¼
X

y˛atom types

pðyÞ$W1

�
D̂angleðyÞ;DangleðyÞ

�
;

where p(y) is the probability of atom type y, W1 denotes the
Wasserstein-1 distance, D̂angle(y) is the bond angle distribution
for atom type y in the generated data, and Dangle(y) is the cor-
responding distribution in of test set.

Similarly, for torsion angles, the metric is calculated as:

Wtorsions ¼
X

y˛bond types

pðyÞ$W1

�
D̂torsionðyÞ;DtorsionðyÞ

�
;

where p(y) is the probability of bond type y, D̂torsion(y) is the
torsion angle distribution for bond type y in the generated data,
and Dtorsion(y) is the corresponding distribution in the test set.
Since we utilized RDKit to identify torsions, the torsional
distribution difference was computed only for valid molecules.

C.4 SOAP-based structural similarity between generated
and GEOM conformers. We also examined how closely
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Comparison of SOAP feature distributions between GEOM conformers and Megalodon-generated molecules. (Left) PCA projection of
SOAP embeddings shows substantial overlap between the two structural distributions. (Right) Histogram of mean SOAP feature values with the
corresponding Wasserstein distance.
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Megalodon-generated structures resemble the broader GEOM
conformer space by comparing SOAP descriptors for a 5k-
molecule subset of GEOM and 5k molecules generated by our
model. SOAP encodes local atomic environments in a geometry-
aware manner, independent of bonding assignments. As shown
in Appendix Fig. 5, a PCA projection of the SOAP embeddings
reveals substantial overlap between the two distributions. The
Wasserstein distance between their mean SOAP feature
Fig. 6 Examples of generated molecules using Megalodon: (1) diffusion
its corresponding optimized structure (shown in transparent grey). The
exhibiting pi-stacking interactions (1a and 2a), non-aromatic molecules

© 2026 The Author(s). Published by the Royal Society of Chemistry
distributions is small, indicating that Megalodon captures the
global geometric statistics of the dataset. This analysis conrms
that our generated molecules occupy a similar region of 3D
conformational space as the GEOM reference set.
D Megalodon molecule visualization
and (2) flow matching. Each generated molecule is displayed alongside
examples include small aromatic molecules (1b and 2d), molecules

(1c and 2b), and a molecule with a macrocycle (1a).

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00380f


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 1

1:
40

:1
2 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Acknowledgements

O. I. acknowledges support by the NSF grant CHE-2154447. This
work used Expanse at SDSC and Delta at NCSA through allo-
cation CHE200122 from the Advanced Cyberinfrastructure
Coordination Ecosystem: Services & Support (ACCESS) program,
which is supported by NSF grants #2138259, #2138286,
#2138307, #2137603, and #2138296.

References
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