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Chemical reactions typically follow mechanistic templates and hence fall into a manageable number of
clearly distinguishable classes that are usually labeled by names of chemists who discovered or explored
them. These "hamed reactions” form the core of reaction ontologies and are associated with specific
synthetic procedures. Classification of chemical reactions, therefore, is an essential step for the
construction and maintenance of reaction-template databases, in particular for the purpose of synthetic
route planning. Large-scale reaction databases, however, typically do not annotate named reactions
systematically. Although many methods have been proposed, most are sensitive to reagent variations
and do not guarantee permutation invariance. Here, we propose SynCat, a graph-based framework that
leverages molecule-level cross-attention to perform precise reagent detection and role assignment,

eliminating unwanted species. SynCat ensures permutation invariance by employing a pairwise
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Accepted 5th November 2025 summation of participant embeddings. is method balances mechanistic specificity derived from
individual-molecule embeddings with the order-independent nature of the pairwise representation.
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1 Introduction

Efficient computational design of synthesis routes promises
accelerated development of novel chemical entities in compar-
ison to conventional trial-and-error approaches that are often
time-consuming and costly." Computer-Aided Synthesis Plan-
ning (CASP) addresses these challenges by automating retro-
synthetic analysis, forward reaction prediction, and condition
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RXNFP, achieving a mean classification accuracy of 0.988, together with enhanced scalability.

recommendations.>® In parallel, reaction modeling elucidates
the underlying mechanisms through simulations of thermody-
namic and kinetic properties of reaction pathways. All of these
tasks require accurate and robust patterns that describe the
different types of reactions. Chemical reactions are distin-
guished by reaction patterns,*® which comprise specific bond
changes at the reaction core, the nature of the substrates as
defined by their functional groups, and the ambient reaction
conditions (e.g, solvent, pH, temperature). These explicit bond-
making and bond-breaking events can be abstracted into the so-
called Imaginary Transition State (ITS) graphs,*” a formalism
that provides the cornerstone for Hendrickson's comprehensive
reaction classification.® Named reactions, thus, are largely
determined in graph-theoretical terms.

The key information in the ITS graphs is the correspondence
between the atoms of the reactant and product molecules.
Consequently, a close connection exists between reaction clas-
sification and the problem of inferring atom-to-atom maps
(AAMs).® For a given named reaction, the known structure of its
reaction center greatly simplifies the inference of the corre-
sponding AAM. Conversely, a known AAM defines the reaction
center and, therefore, imposes strong constraints on the
possible reaction classes. The inherent coupling between AAM
and reaction pattern (classification) creates a significant
bottleneck for computational chemistry, since most large-scale
datasets are not annotated with either reliable AAMs or
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a systematic mechanistic taxonomy. This bottleneck derives
from two interconnected issues. First, the algorithmic assign-
ment of AAMs faces an NP-hard combinatorial explosion,
particularly for reactions with incomplete stoichiometries,
which can lead to erroneous bond transformation.'®'" In addi-
tion, the chemically correct AAM is not always the solution of
well-defined combinatorial optimization problem such as the
minimization of chemical distance.” Second, the underlying
data upon which these algorithms operate is itself unreliable;
expert curation is frequently incomplete or noisy, and the
limited coverage of gold-standard mappings makes the manual
annotation of large-scale chemical datasets practically infea-
sible.>* From a learning perspective, the classification problem
appears more tractable since the reaction mapping problem
asks for a detailed, atom-wise prediction with partially correct
solutions being deceptive for downstream tasks. Classification,
moreover, allows for a relatively straightforward post hoc iden-
tification of likely erroneous predictions based on reaction
centers and substance classes. Reaction classification is,
therefore, key for the collection of high quality datasets from
which reaction patterns for specific named reactions can then
be extracted in a second step. Moreover, automatic reaction
classification also can be employed to “sanity-check” new
entries in reaction databases.

Commercial repositories such as Reaxys®' provide exten-
sive, large-scale compilations of reaction data. However, they do
not offer an equally robust classification framework; in contrast,
public reaction datasets typically rely on custom annotation
schemes. Schwaller et al.*® utilized the RXNMapper tool to
generate AAMs, thereby extracting reaction templates and
delineating one thousand distinct reaction classes across
approximately 445 000 reactions. Conversely, Schneider et al.*®
randomly sampled a subset of 50 000 reactions from the USPTO
database and employed the Royal Society of Chemistry's Reac-
tion Name Ontology (RXNO)7 to classify them into fifty distinct
categories. Although open corpora such as USPTO and
Schneider-50k have enabled reaction-class benchmarks, they
remain hampered by noisy or inconsistent labels. Recent audits
report that 10-25% of USPTO-derived entries are chemically
unbalanced or misclassified owing to multi-step patent exam-
ples, omitted reagents, and inconsistent stoichiometry."”**
Furthermore, rule-based schemes (e.gz NameRXN or RXNO)
hinge on an unambiguous reactant-reagent split, which is ill-
defined for a significant share of patent reactions, leading to
systematic class ambiguity and conflation of distinct mecha-
nisms.” These shortcomings highlight the need for scalable,
data-driven tools that can assign reliable reaction labels without
manual curation.

Automated reaction classification addresses this challenge
directly by assigning a mechanistic archetype to a given chem-
ical transformation.”*** Methodologically, this field has
diverged into two principal strategies. The first involves struc-
tured chemical taxonomies, such as the hierarchical Royal
Society of Chemistry (RSC) Reaction Ontology, which organizes

1 https://github.com/rsc-ontologies
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reactions top-down from broad parent classes (e.g., substitu-
tion) to specific subclasses describing nuanced stereoelectronic
features.”® The second, contrasting strategy is graph-based,
focusing on elucidating the explicit bond rearrangements at
the reaction core. This approach, pioneered in foundational
work by Hendrickson and in frameworks such as minimum
reaction concept,”®** is critically dependent on an accurate
AAM. Modern incarnations such as SynTemp® build on this
foundation, using hierarchical clustering to organize extracted
reaction templates for downstream applications, such as
generating Double Pushout rewriting rules for the M@D
framework.>**” Despite their precision, the reliance of these
graph-based methods on AAMs creates a substantial computa-
tional bottleneck, constraining both prediction throughput and
large-scale applicability.

Machine learning-based strategies have significantly accel-
erated reaction classification by projecting chemical trans-
formations into rich, high-dimensional feature vectors
representing the reaction centers. Contemporary embeddings
are typically derived from engineered reaction fingerprints'®*®
or from attention weights grounded in atom-to-atom
mappings.”>*® Schneider et al,'® for example, showed that
simple reactant-to-product difference vectors could already
recover 48 of 50 reaction classes. Despite these successes, two
principal obstacles remain for accurate and efficient reaction
classification. First, differentiating reagents from reactants is
vital to prevent feature redundancy. Schwaller et al. addressed
this by introducing the transformer-based reaction fingerprint
RXNFP, derived from RXNMapper,"” which utilizes self-
attention to weigh compound contributions and demonstrates
high accuracy on the Pistachio database.'®*® Alternatively,
Probst et al.?® developed the Differential Reaction Fingerprint
(DRFP), which identifies molecular substructures changed from
reaction SMILES to inherently distinguish reagents and elimi-
nate the need for atom-mapping. Second, defining a canonical
representation for reaction components presents a critical
trade-off: while necessary for a consistent input vector, it
sacrifices the flexibility to model transformations with variable
stoichiometries or intricate reagent patterns.>

To overcome both limitations, we introduce SynCat, a graph-
based architecture that combines a Graph Isomorphism
Network with edge features®® with a molecule-level cross-
attention module and a permutation-invariant pairwise-sum
pooling scheme. By assigning attention weights to entire
molecular graphs, rather than to individual atoms, SynCat
preserves global chemical context while reducing training
complexity in comparison to atom-centric models such as
RXNMapper. Crucially, its hybrid embedding strategy dynami-
cally accommodates any number and arrangement of reaction
participants. This inherent flexibility allows for the seamless
classification of transformations with arbitrary stoichiometries.

2 Methods

2.1 Preliminaries

Data-driven reaction classification is commonly organized in
two stages: (i) an encoding step, in which each raw reaction

© 2025 The Author(s). Published by the Royal Society of Chemistry
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record is transformed into a fixed length vector (the reaction
embedding); and (ii) a learning step, in which a discriminative
model maps the embedding to a discrete reaction class. Let
RN = {r4,12,...,1,} be a collection of n curated reactions and
% = {1,2,...,K} the finite set of K reaction classes. Each reac-
tion 1; is annotated with its ground-truth label y;e %, where i €
{1, 2, ..., n}

Because raw reactions (e.g., based on SMILES strings or
atom-mapped graphs) are not directly amenable to standard
learning algorithms, we introduce an encoder

(z) : SR_>R(17X[ = qﬁ(t,-),

that embeds 1; into a d-dimensional feature space. A parametric
classifier

f;9 . Ral_)AK—l7

with AK1 = {peRK |

K
> pr = 1} denoting the (K — 1)-simplex,
k=1

assigns to every embedding x; a probability vector py(-|x;) =
fo(x)). Given the training set @ = {(x;,y;)}._,, the parameters 0
are learned by minimizing the empirical cross-entropy.

70) = 3 o () )

The optimizer yields 6*, and the composite map
T 4 X yey

constitutes the final reaction-type predictor.

2.2 Computational resources and data

All training and evaluation procedures were conducted using
Python 3.11 on a system equipped with an Intel®Core™ i7-
14700K CPU operating at 3.40 GHz with 24 cores, 128 GB of
RAM, and two NVIDIA RTX 4090 GPUs, each with 24 GB of
VRAM. The system ran on Ubuntu 22.04 LTS.

We performed reaction classification on three primary
datasets using their established class definitions: USPTO_TPL
1000 classes," annotated using RXNMapper* to produce atom-
mapped reactions and extract SMARTS templates for exact
matching, Schneider (50 classes,'® annotated using the RSC
RXN Ontology), and USPTO_50K (10 classes,* annotated by
manual curation). In addition, a separate set of labels was
generated for the USPTO_50K dataset via the SynTemp*
procedure. This procedure involves an isomorphism check on
the reaction center, followed by an expansion of the reaction
core up to a radius of two bonds. In addition to the nine data-
sets described above, we incorporate five supplementary
corpora to assess cross-domain robustness of SynCat. Three of
these derive from the ECREACT dataset,* an enzymatic reaction
collection that Zeng et al®* augmented to train the CLAIRE
model. These data are structured into a three-level hierarchy
based on the IUBMB Enzyme Nomenclature,® with each
successive level representing a finer degree of mechanistic
specificity.** The remaining two are subsets of USPTO_50K**
annotated with mechanistic subdivisions inferred by

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Summary of reaction datasets

No. reactions No. classes Annotator type
Schneider™® “ 50 000 50 RSC-ontology
USPTO_50k>> 50016 10 Hand-crafted
USPTO_TPL" 445115 1000 SMARTS-match
RO 43441 143 SynTemp*®
R1 43441 356 SynTemp
R2 43441 680 SynTemp
ECREACT _1st 185734 7 IUBMB*®
ECREACT_2nd 185734 63 IUBMB
ECREACT_3rd 185734 175 IUBMB
Mech_31k_1st 31673 9 Hand-crafted
Mech_31k_2nd 31673 63 MechFinder*®

% Only Schneider has a balanced class distribution (Fig. S1).

MechFinder.*® For these datasets the first level preserves the
original USPTO_50K classes and the second provides finer
mechanistic categories. Table 1 summarizes each corpus and its
annotation procedure. All datasets were partitioned via strati-
fied random sampling to preserve class priors. Detailed split-
ting configurations are provided in Table S1, and label
distributions are shown in Fig. S1.

2.3 SynCat architecture

2.3.1 Graph isomorphism network. Graph Neural
Networks (GNNs)*” were employed as our primary classification
framework, owing to their ability to preserve molecular topology
while integrating rich chemical information. Although the
primary objective is to classify reactions, the GNN operates
directly on individual molecules. Each molecule is represented
as an undirected graph G = (V, E), where V is the set of vertices
(atoms) and E the set of edges (bonds). Following the molecular
graph featurization of Han et al.,*® each atom v; € Vis associated
with a raw node-feature vector.

vie R1557 vi = [Ta q, d7 hyba Ny, Vala DA7 XsTs, arO}T )

where 7 is the atom type, g the formal charge, d the degree, hyb
the hybridization, ny the implicit hydrogen count, val the
valence, DA the donor/acceptor flag, x the chirality, r, the ring
size, and aro the aromaticity (see Table S2). Accordingly, the
integer-valued entries of v — formal charge g, degree d, implicit
hydrogen count ny, and valence val—are one-hot encoded into
compact bins, with the zero (reference) level omitted to avoid
redundancy. Infrequent/extreme values are merged into upper/
lower bins: g € {=—2, —1, +1, = +2} (4 bins), d € {1, 2, 3, 4,5, =
6} (6 bins), ny € {1, 2, 3, = 4} (4 bins), val € {1, 2, 3,4, 5, = 6} (6
bins). This binning reduces sparsity and parameter count while
preserving  chemically  meaningful  distinctions  for
classification.

Each bond e,,€E is associated with a bond-feature vector®®

e’e R’ e/ = [b,,st,ict] ",
where b, is the bond type, st is the stereochemistry, icr indicates
ring membership and conjugation status (see Table S3).

We then aggregated the individual molecular embeddings
into a single reaction level vector, explicitly weighting features
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at the reaction center to ensure the model focuses on the bonds
and atoms undergoing transformation. Formally, one may
construct an Imaginary Transition State (ITS), denoted as T,
which provides a graph-theoretical model of the reaction
transformation.*” The reaction center is then defined as the
minimal vertex-induced subgraph I' = Y that contains all bond-
formation and bond-cleavage events. Although extracting the
reaction center I" and encoding it directly can yield an optimal
representation, this approach critically depends on an accurate
AAM, which may not always be available. As a more generally
applicable alternative, we computed a reaction center embed-
ding via the vector difference of aggregated molecular embed-
dings. Let a chemical reaction be denoted by r : R— P, where R
and P are the reactant and product molecular graphs, respec-
tively. We  define their graph-level embeddings:
R=¢(R), P=¢(P), and hence the reaction-center embed-
ding, ¢(v), is given by the difference between the reactant and
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product embeddings. This embedding strategy achieves
permutation invariance by using an “order-agnostic” aggre-
gator, summing node and edge features, and remains efficient,
requiring only O(|V] + |E|) time to compute each graph embed-
ding and O(d) to compare them. However, it suffers from
spectral degeneracy: co-spectral reactant-product graph pairs
share identical adjacency matrix spectra, causing their reaction
center embeddings to collapse to the zero vector and thereby
degrading classification performance.* To address this limita-
tion, we adopt GINE,** an edge-aware variant of GIN** with
expressive power equivalent to the Weisfeiler-Lehman test,****
thereby yielding highly discriminative reaction-center embed-
dings (see Fig. 1).

Letv; € Vand ey, € E. We denote their raw feature vectors by v
and €Y, respectively, and initialize the corresponding embed-
dings as

hl\.;(O) =, (vi)vhf:‘i =&, (eij)v [2)

ACTION CLASSIFICATION )

Reaction Class

Chloro N-Arylation

OUTPUT

n )

Reaction Center

H

( Reactant Vectors| ) @roduct Vectora

Fig. 1 Overview of the SynCat architecture. Each molecule is processed by a GINE layer, followed by a cross-attention layer to assess the
contribution of each embedding. The embeddings from each side are then aggregated, and the difference between the product and reactant

embeddings forms the reaction center embedding.
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where ¢, and ¢. are trainable multilayer perceptrons. With
these initial embeddings in hand, the /-th GINE layer updates
each vertex 7 by aggregating messages over its incident edges:

0 = ¢ <hij(ll) + Z RCLU(hi;(/*I) + h()i-j)ﬁ(ll))>7 (3)

JeN(i)

Finally, after L layers the global graph embedding is

N
he = L. )

i=1

2.3.2 Cross-attention. The embedding of the reactant side,
ny
Z# =) r; (and analogously for products), yields the reaction-
i=1
center embedding by taking the difference between the reac-
tant and product embeddings, but treats all species equally, so
spectator reagents degrade the signal-to-noise ratio and impair
GNN performance.’”” While AAM can filter out unmapped
reagents,*” it depends on mapping accuracy. To address this, we
introduce non-negative importance weights {a;}?", with

e
R = g or;,
i=1

0(1'2071.:17...,}1,—7 (5)

so that each compound's contribution to the reaction center is
modulated, reducing inert species noise prior to cross-
attention. In Section 2.3.3, we relax the normalization } «; =
1 to increase the flexibility of the modeling.

Upon applying GINE, we obtain two embedding matrices,
#ReR™4 and 2eR™ ¢ for the reactants and products,
respectively, where n, and n, are their counts and d is the
embedding dimension. By default, we use these individual
embeddings, Rinq and Ping. When n, > 1 or n, > 1, a standard
attention mechanism can overweight large molecules and
under-represent small ones, distorting the reaction center
embedding. To mitigate this, we introduce a second-order
transformation: % = &(Ring) and 2 = &(Pyq), where @
enriches pairwise interactions (see Section 2.3.3).

The updated embeddings #eR™*? and #eR™*? are pro-
cessed through learned linear projections to produce query and
key matrices:

Q% = <025 Wq7 Ky = @Wk,

- o 6
0,=2W, K,=IW,. (©)

Here Wy, Wi, W(;, W{(e Rdx/d, are the 1earqable projection
matrices, S0 Q, K< R™*? and Q,,K,cR™*¢  In the above n,,
n, are the numbers of reactant/product, d is the input embed-
ding dimensionality, and d’ is the projection dimensionality.
Given the query and key matrices for both reactants and
products, the cross-attention weights are computed as follows:**

© 2025 The Author(s). Published by the Royal Society of Chemistry
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QPKE>
Agr = Softmax ,
. (&7

QRKJ)
Ap = Softmax .
, ( =

Subsequently, A,eR™ ™ and A,eR™*™ are averaged to
obtain

_ 1 & )
A:A’,j = }’l_ Z(Aﬁ)lﬁj = 17 ooy Ny

P =1

o 0
Z#’j = - Z (A/)lj>] = 17 "'7np7

1y i=1

where A,eR™ and A,eR™ denote the averaged attention
weights for reactants and products, respectively.

2.3.3 Embedding normalization. In this attention module,
we represent the reaction center by a single vector ¢r. It's
computed as the weighted average of all reactant embeddings r;
minus the weighted average of all product embeddings p;.
Formally,

br) = ar—> Bp, ©)
i=1 =1

where each weight «; and §; is nonnegative and the a-weights
(resp. the p-weights) sum to one. In the variant introduced
below, those normalization constraints are lifted so that the
total reactant and product weights can vary freely.

Attention can get skewed toward embeddings with large
norms, drowning out smaller yet chemically important species.
To fix this, we explicitly build all pairwise combinations of
embeddings so that interactions between every two reactants or
products are represented. Concretely, if r; are your reactant
vectors (for i =0, ..., n, — 1) and p; your product vectors (for j =
0, ..., np — 1), we define

Sy =r+r,1=i<j=n,

i L (10)
Sy =p+p,1=i<j=n,.

ny
xd
Stacking these vectors yields the matrices S, e R< ? ) and

p

xd
S,¢6R< 2> , where (’;r) and (nzp) are the numbers of

unique and product pairs, respectively. This
construction ensures that all pairwise interactions are made
available to the attention module.

While this pairwise construction effectively models second-
order effects, relying solely on these sums (e.g., S’ﬂ =141
discards the original first-order features and can induce a new
magnitude bias. If one embedding dominates in norm, say ||r;||
> |||, |Irz|| in a reaction with reactants ry, r, and reagent r;,
then ||SL|| = [|1S%||>> ||S%?||. Attention will thus overemphasize
spectator pairs (1, 3), (2, 3) and underemphasize the true reac-
tant interaction (1,2), polluting the inferred reaction-center I

reactant
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To preserve both first- and second-order information, we
concatenate the original embeddings with their pairwise sums.

. . . A

Denoting vertical concatenation by A®B = B] , we form

Rcomb = Rind D S:ﬂv
i 11
Peomb = '@indeaS/h ( )
e
(n,+( 2 )) xd
S0 that RcombE R and similarly

np
PeombE R . In this way, our “combined” variant

preserves each individual embedding alongside every pairwise
interaction, mitigating norm-driven biases while retaining full
expressive power.

Finally, for each variant m € {ind, pair, comb}, applying ®
gives transformed embeddings

~ (m)
Ry = O(Rp)eRN x4,
P = O(Pp)e RV,

(ind) A7((pair)) Ar(comb)) __ ny ny
(Nr >Nr 7Nr )*(nr7(2)anr+(2))>

and Np(m) is defined the same way for products.

2.3.4 Reaction centers and classifiers. The average atten-
: . — (m) — (m)
tion weights are A, _eR™ and A, eR™ . Aggregate reactant

and product embeddings:

(12)

where

anj
Ry = Rl | A, Ji],

i=1

e (13)
P =Y Puli, JAz,[j]-

J=1

Reaction-center embedding (eqn (9)) is input to the classifier
Do (k ™ (r)) = softmax( W™ (r)) )

where We R¥*4 (with biases), K is the number of reaction
classes. Parameters § = {WV} are fit by minimizing the cross-
entropy loss in eqn (1).

(14)

2.4 Computational experiments

We conducted a comprehensive comparison of our classifica-
tion model, SynCat, with its detailed configuration provided in
Table S4, against two established baselines: the DRFP?® and the
transformer-based RXNFP." DRFP builds a fixed, non-learned
reaction descriptor by contrasting hashed circular substruc-
tures of products and reactants (symmetric difference) and
hashing the result into a binary vector; we use radius r = 3 and
length 2048. It is order-invariant, requires no training, and is
paired with standard classifiers in our experiments (reaction
SMILES are canonicalized and atom maps removed before fea-
turization). RXNFP produces a learned, dense embedding of
reaction SMILES via a BERT-style transformer pretrained with
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masked-language objectives.** Reactions are encoded as toke-
nized sequences with reactants and products separated by “>>”;
the pooled sequence representation serves as the fingerprint.
We use the released pretrained weights and tokenizer, freeze
the encoder, as fixed features.

Experiments were performed on the three datasets described
in Section 2.2 under two reaction-constitution regimes: (i)
unbalanced reactions and (ii) balanced reactions. Balanced
variants were produced using the SynRBL rebalancing proce-
dure.* Here, B denotes balanced (stoichiometrically complete)
reactions and UB denotes unbalanced (stoichiometrically
incomplete) reactions; these labels refer to equation complete-
ness and not to a balanced class distribution (equal numbers of
examples per class). For each fingerprint method and each of
the nine dataset splits, we trained both a k-nearest-neighbour
classifier (kNN) and a multilayer perceptron (MLP). Perfor-
mance was quantified by two standard metrics: Accuracy (Acc)
(see eqn (S1)) and the Matthews correlation coefficient (MCC)*
(see eqn (S2)).

3 Results and discussions
3.1 Permutation-invariant assessment

Chemical transformations are fundamentally described as an
unordered collection of reactants yielding an unordered
collection of products. Consequently, any learned representa-
tion (embedding) of a reaction must be invariant to permuta-
tions in the canonical ordering of these species. We took
advantage of GINE, which theoretically ensures this invariance
through a sum aggregator (see Section 2.3.1). We then evaluated
the practical implications of this property by comparing
embedding similarities across three types of controlled chem-
ical perturbations (Fig. 2). To quantify the pairwise similarity
between two reactions, v; and 1;, we defined the function
o(v;,1;). For fingerprints represented as continuous vectors,
such as SynCat and RXNFP, the cosine similarity metric was
employed. In contrast, for the binary DRFP fingerprint, the
Tanimoto coefficient was utilized.

The permutation invariance of these fingerprints is illustrated
in Fig. 2A and B. Interchanging the order of the reactant in
a transformation from r, to 1}, revealed that both SynCat and

0 oL — O - e

Fig. 2 Experiments on permutative invariance. (A and B) Reaction
representations R, and Ry, which differ solely by the ordering of two
reactant species, used to assess the model's invariance to reactant
permutation.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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DRFP were perfectly invariant, yielding a similarity score
0(¥a,¥p) = 1.000. In contrast, the RXNFP representation demon-
strated a quantifiable dependence on reactant sequence, with the
similarity decreasing to o(r,,1,) = 0.977. This sequence depen-
dence was further highlighted in Fig. S2, where a simple inversion
of the reactant order precipitated a substantial drop in the RXNFP
similarity to 0.6310. It is crucial to note that while SMILES can-
onicalization enforces a consistent ordering at the string repre-
sentation level, it fails to address the fundamental permutation
sensitivity inherent to the learned RXNFP embedding itself.

3.2 Reagent-aware evaluation

To correctly identify which input species contribute atoms to
the isolated products, a model must accurately differentiate
core reactants and products from reagents and solvents. SynCat
accomplished this through a molecule-level cross-attention
mechanism, which learned the contextual role of each species
by jointly embedding all reaction participants (Section 2.3.2).
This approach assigned substantially higher attention weights
to reactants and products over other species (e.g. solvents,
spectator ions), providing a data-driven basis for role assign-
ment. As illustrated in Fig. 3, the learned attention weights
highlight the most prominent embeddings of the reactant and
the product, allowing straightforward inference of the species
driving the reaction.

In contrast, RXNMapper and related AAM-centric pipelines
infer roles heuristically: any compound lacking a complete
atom map was labeled a reagent or solvent. Although compu-
tationally expedient, this rule systematically overlooks hydro-
gens since most public reaction corpora, USPTO in particular,
omitted explicit hydrogen atoms during template extraction.
The resulting misclassifications are particularly damaging for
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Fig. 3 Attention weight distributions across various substances within
representative reactions. Reactants and products receive notably
higher attention weights, enabling clear differentiation from reagents,
solvents, and other ancillary species.
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hydrogenation, reduction, and proton transfer steps, where
hydrogen is an essential reactant.

Fig. 4 shows this limitation using a hydrogenation as an
example. While atom-mapping tools such as RXNMapper erro-
neously classified molecular hydrogen (H,) as a reagent, SynCat
correctly identified its pivotal role. The cross-attention archi-
tecture provided a quantitative basis for this distinction,
attributing a high attention weight to H, that reflected its role as
an atom-contributing (stoichiometric) species (Fig. 4A). Fig. S3
echoes this result as SynCat assigns comparable attention to
both enantiomers in a racemic mixture, highlighting its
potential to capture stereochemical outcomes as richer stereo-
chemical encodings are introduced. By jointly learning role-
specific weights and the overall reaction representation, Syn-
Cat generated interpretable, role-aware embeddings that lead to
superior performance in downstream tasks such as classifica-
tion, retrieval and retrosynthesis.

Together, these results emphasize that SynCat successfully
captures two essential properties of chemical transformations.
First, it respects permutation invariance by treating reactants
and products as unordered molecular sets. Second, it is sensi-
tive to which participants supply atoms to the products,
including small, traditionally overlooked species like H,. This
principled approach overcomes the limitations of conventional
strategies that rely on brittle atom-mapping heuristics, which
often fail when confronted with the full spectrum of chemical
reactivity.

3.3 Reaction classification

Our classification model, SynCat, was developed utilizing the
GINE architecture, subsequently augmented with cross-
attention. The performance of SynCat, as detailed in Table 2,
was benchmarked against RXNFP and DRFP across nine
distinct datasets. SynCat yielded an overall accuracy of 0.988 £+
0.008, demonstrating superior performance relative to both
DRFP and RXNFP across a suite of nine benchmark datasets, as

(REAGENT)

Fig. 4 Visualization of attention weights in a representative hydro-
genation reaction. (A) SynCat assigns a significantly higher weight to
hydrogen, reflecting its role as an atom-contributing (stoichiometric)
species. (B) By contrast, RXNMapper classifies all unmapped species as
reagents, thereby overlooking key reactive participants.
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Table 2 Reaction classification performance of SynCat, RXNFP, and DRFP models on balanced (B) and unbalanced (UB) reactions; final column
shows mean =+ standard deviation across the nine evaluation columns. Highest values per column are typeset in bold

Schneider USPTO_TPL USPTO_50k SynTemp clusters
Model UB B UB B UB B RO R1 R2 Avg + SD
Accuracy
SynCat 0.981 0.973 0.991 0.988 0.995 0.996 0.996 0.992 0.982 0.988 £ 0.008
RXNFP + 5-NN 0.985 0.947 0.989 0.974 0.997 0.996 0.991 0.929 0.732 0.949 + 0.085
RXNFP + MLP 0.985 0.957 0.988 0.971 0.994 0.991 0.995 0.955 0.802 0.960 £ 0.061
DRFP + 5-NN 0.819 0.662 0.917 0.912 0.866 0.859 0.875 0.826 0.834 0.841 £+ 0.076
DRFP + MLP 0.957 0.926 0.977 0.963 0.918 0.928 0.973 0.959 0.965 0.952 £ 0.022
MCC
SynCat 0.980 0.973 0.991 0.988 0.995 0.995 0.996 0.992 0.978 0.988 + 0.008
RXNFP + 5-NN 0.985 0.946 0.989 0.974 0.995 0.995 0.990 0.928 0.672 0.942 £ 0.104
RXNFP + MLP 0.985 0.956 0.988 0.971 0.993 0.989 0.994 0.954 0.758 0.954 £+ 0.075
DRFP + 5-NN 0.817 0.683 0.917 0.912 0.838 0.828 0.868 0.826 0.810 0.833 £ 0.069
DRFP + MLP 0.956 0.925 0.977 0.962 0.898 0.910 0.971 0.958 0.957 0.946 £ 0.028

illustrated in Fig. S4. A statistical assessment conducted via the
Wilcoxon signed-rank test indicated that SynCat significantly
outperformed nearly all competing methods (p < 0.05), with the
sole exception of RXNFP (5-NN), where the resulting p-value was
0.058. In contrast, the Mann-Whitney U test revealed no
statistically significant differences among these models (see
Fig. S5), suggesting that further investigation is warranted to
fully understand the contexts in which performance advantages
become apparent.

A more extensive comparison (see Fig. S6) further substan-
tiated the robustness of SynCat, which outperformed DRFP
across all evaluated datasets. In comparison to RXNFP (5-NN or
MLP), SynCat exhibited only a slight performance deficit on the
Unbalanced Schneider dataset (accuracy of 0.981 vs. 0.985) and
achieved near-identical results on the Unbalanced USPTO_50k
dataset (0.995 vs. 0.997). In particular, the advantage of SynCat
became more pronounced in cluster-based datasets, as the
classification accuracy gap between SynCat and RXNFP
expanded in tandem with the complexity of the reaction center,
increasing from 0.01 for R, to 0.18 for R,. This trend was most
striking in the R, dataset, where RXNFP attained accuracies of
0.732 (kNN) and 0.802 (MLP), versus 0.982 for SynCat. These
differences highlight the susceptibility of models that fail to
explicitly account for the context surrounding reaction centers.
Such neighboring atoms are indispensable, as their local steric
and electronic effects strongly influence the reaction course and
the resulting product distribution. This principle underscores
the necessity of refined graph-based strategies like SynCat,
which explicitly encode this localized chemical environment to
achieve robust predictive accuracy and broad generalizability.

As illustrated in Fig. S7, SynCat achieved superior perfor-
mance to RXNFP on seven out of nine datasets, trailing only
slightly in the two remaining benchmarks. Notably, in the
Balanced Schneider dataset, SynCat reached an accuracy of
0.973, compared to 0.947 for RXNFP. Fig. 5 compares the
behavior of the RXNFP encoder on the same transformation
before and after reaction rebalancing. Prior to rebalancing,
RXNFP correctly assigns the sequence as a ethyl ester

Digital Discovery

deprotection. After rebalancing, however, it is misclassified as
a Sonogashira coupling reaction.”” Syncat does not exhibit this
kind of instability: its predictions remain invariant to the
rebalancing procedure. In particular, neither metadata nor
commentary indicates any coupling step: the sole structural
feature triggering the misclassification is the presence of the
substructure R-C=C-R’ in the product.

This reversal in relative performance, observed before and
after rebalancing, can be attributed to artifacts introduced by
the rebalancing procedure: reagent molecules may appear on
both sides of the reaction arrow, producing reagent-like tokens
in reactant and product positions. This mirrored reagent
context disperses attention away from the true transformation
center, degrading localization and reducing accuracy (see
Fig. 6A and B). The effect is consistently small for SynCat (0.008
on Schneider, 0.004 on USPTO_TPL) but larger for RXNFP
(0.038 on Schneider, 0.015 on USPTO_TPL). Moreover, reba-
lancing reduced the dataset contamination (term coined by
Jiang et al.*®) in Schneider from 72.58% to 6.23% (Table S5),
with RXNFP accuracy falling from 0.985 to 0.947. A similar

A. ORIGINAL REACTION
o/
5 + oM + N& +HO Ethyl ester deprotection
O b
Ethyl ester deprotection
OH
_/_NH © Ethyl ester deprotection
B. REBALANCEDREACTIION

& O S + “OH + H,0 +NaOH Ethyl ester deprotection
-
Ethyl ester deprotection

< OH
+ OB + ~ “OH +NaOH (( pnfp prediction )
— + SO e Sonogashira coupling

Fig. 5 Reaction classification before and after rebalancing using
SynRBL.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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N-Bn deprotection

N-Bn deprotection

REACTION

N-Bn deprotection

Methylation

Fig. 6 Impact of redundancy and rebalancing on reaction classifica-
tion. (A) In the original unbalanced reaction, SynCat correctly identifies
the N-Bn substitution. (B) After rebalancing with SynRBL, SynCat
misclassifies the reaction as methylation due to redundancy-induced
noise.

pattern holds for USPTO_TPL, where contamination decreased
from 99.97% to 14.70% and RXNFP accuracy fell from 0.989 to
0.974. By contrast, USPTO_50k exhibits contamination below
15% in both conditions and negligible performance change.
These findings echo To et al.*® and illustrate that test set leakage
into pretraining corpora can inflate measured accuracy without
improving generalization. SynCat is inherently immune to
contamination, because it does not employ any pre-training.
Moreover, Fig. 7A depicts a reaction mislabeled as Mitsu-
nobu aryl ether synthesis, which does not correspond to its
actual transformation. Although SynCat misclassified it as Ester
Schotten-Baumann, it nonetheless recognized the underlying
esterification and suggested a more relevant reaction label.
Fig. 7B shows a reaction that could validly be categorized as
either carboxylic acid + amine reaction or N-acetylation,

» Mitsunobu aryl ether esis

i

SynCat prediction

» Ester Schotten Bauuman

nfp prediction

Mitsunobu aryl ether synthesis

Carboxylic acid + amine reaction

SynCat prediction
N-acetylation

nxnfp prediction

Carboxylic acid + amine reaction

Fig. 7 Examples of classification under noisy labels. (A) A reaction
annotated as Mitsunobu aryl ether synthesis, which is chemically
incorrect; SynCat mispredicts it as Ester Schotten—Baumann but still
captures the esterification transformation. (B) A reaction ambiguously
labeled as either carboxylic acid + amine reaction or N-acetylation,
illustrating label inconsistency that leads to classification errors.
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highlighting the label noise and inconsistency present in the
dataset.

3.4 Enzymatic reaction classification

We further assessed SynCat's robustness on the biochemical
ECREACT corpus,® which offers a three-level enzymatic
ontology. At the first level the labels are the broad EC classes
(oxidoreductases, transferases, hydrolases, lyases, isomerases,
ligases, translocases).”® SynCat attained MCC = 0.916 on this
level, compared with 0.937 for CLAIRE. This gap is consistent
with the coarse and chemically heterogeneous nature of level-1
classes, which weakens signals that SynCat extracts from
structurally specific features around reaction centers. In
contrast, SynCat performs near optimally when labels directly
encode reaction center information, as evidenced by its RO task
(SynTemp cluster) where labels denote reaction-center classes
and the model reaches and MCC of 0.996 despite 143 classes
and pronounced imbalance (see Table 2).

At the second and third EC levels the taxonomy refines by the
group or bond acted upon (for example, EC 2.3 denotes acyl-
transferases within transferases), and SynCat surpasses CLAIRE
on both tiers (see Table 3). Together, these results indicate
robust cross-domain generalization when labels align with
reaction-center structure, and a relative weakness for broad,
heterogeneous biochemical classes.

3.5 Attention and class granularity

We extended our analysis to probe how attention behaves across
hierarchical label levels using the Schneider dataset (three label
depths), inspecting a Wohl-Ziegler bromination (see Fig. 8A),
a selective allylic/benzylic reaction where N-bromosuccinimide
(NBS) is the key radical brominating agent. At the coarse level 1
(9 classes, MCC = 0.978) the model predicts the broad category
(Functional-group addition) but assigns weak attention to N-
bromosuccinimide (NBS; 0.27), leaving reagent attribution
ambiguous. At level 2 (28 classes, MCC = 0.984) the prediction
refines to a halogenation class and attention on NBS rises (0.62).
At the finest depth (level 3, 50 classes, MCC = 0.980) attention
concentrates further (0.81) and NBS is unambiguously identi-
fied as the brominating reagent. The slight MCC drop at level 3
reflects increased inter-class similarity and label ambiguity,
exemplified by closely related acylation subclasses (e.g., “N-
acetylation” vs. “carboxylic acid + amine reaction”, see Fig. 7)
and near-duplicate entries (“Bromo Suzuki coupling” vs.
“Bromo Suzuki-type coupling”), which together increase class
confusion despite more focused attention. A pragmatic remedy

Table 3 Performance comparison between CLAIRE and SynCat

CLAIRE SynCat
Level Accuracy MCC Accuracy MCC
1st 0.958 0.937 0.944 0.916
2nd 0.900 0.890 0.903 0.892
3rd 0.859 0.851 0.864 0.855
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Fig. 8 Attention maps. (A) Wohl-Ziegler bromination (Schneider):
focus on NBS increases with depth (0.27 — 0.62 — 0.81). (B) Oxida-
tion (Mech_31k): coarse labels produce diffuse maps, whereas fine-
grained labels concentrate attention on likely reagents such as DMSO
(0.42), TEA (0.33), and oxalyl chloride (0.14).

is to merge very similar subclasses, or to use multi-task super-
vision so that the benefits of fine-grained localization do not
come at the expense of global separability.

Second, we used MechFinder to derive Mech_31k from
USPTO_50k (9 superclasses, 63 subclasses) and examined
a Swern oxidation example (see Fig. 8B), where dimethyl sulf-
oxide (DMSO) is the oxidant, activated by oxalyl chloride, and
triethylamine (TEA) is the base. At the coarse, superclass level,
attention is diffuse: DMSO and TEA receive attention scores of
0.33 and 0.27, respectively, while oxalyl chloride registers zero.
At level 2, however, the model localizes reaction center and
reagent signals to correctly predict the Swern oxidation, where
attention scores for DMSO, TEA, and oxalyl chloride increase to
0.42, 0.33, and 0.14, indicating improved reagent attribution.
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This shows that finer-grained supervision enhances both
interpretability and alignment with chemical reactivity.

To complement these attention diagnostics and quantify
robustness to chemically insignificant changes, we generated
two held-out augmentation sets, including Suzuki (Bpin-Me —
Bpin-Et, N; = 165) and base-exchange (TEA — TNPA, N, = 4),
totaling 169 reactions and excluding any substitution present in
the training set. SynCat preserved the original predicted class
for all augmented examples (169/169), supporting the model's
consistency under minor structural and reagent substitutions
(see Fig. S8).

3.6 Ablation study

We performed an extensive ablation analysis to systematically
evaluated the impact of three key characteristic modalities,
elemental identities (atom type), covalent connectivity (bond
type), and intermolecular context (cross-attention). We further
investigated three distinct attention-embedding schemes:
individual embedding (¢™9), pairwise embedding (¢P*"), and
a hybrid combination (¢°°™"). The comprehensive results,
aggregated over nine benchmark datasets, are detailed in Table
4.

The fully parameterized model, which integrates the three
feature modalities, achieved the highest mean accuracy of 0.988
+ 0.008 and MCC of 0.988 + 0.008, confirming their synergistic
contribution. Ablating elemental identity features induced the
most significant performance degradation, with absolute
decreases of 4.1% in accuracy and 4.4% in MCC, underscoring
the primacy of atomic information for discriminating distinct
transformations. Excluding bond-type information resulted in
a moderate but consistent drop of approximately 0.5% in both
metrics, suggesting that covalent connectivity refines rather

Table 4 Ablation study of SynCat. Final column shows mean + standard deviation across the nine evaluation columns. Highest values per

column are typeset in bold

Schneider USPTO_TPL USPTO_50k SynTemp clusters
Model UB B UB B UB B RO R1 R2 Avg + SD
Accuracy
SynCat ¢*°™P 0.981 0.973 0.991 0.988 0.995 0.996 0.996 0.992 0.982 0.988 + 0.008
SynCat ¢™? 0.968 0.968 0.979 0.976 0.990 0.991 0.995 0.992 0.976 0.982 + 0.011
SynCat P 0.976 0.978 0.976 0.975 0.995 0.995 0.997 0.994 0.987 0.986 + 0.009
SynCat ¢°°™ () 0.852 0.900 0.941 0.957 0.824 0.972 0.967 0.945 0.917 0.919 + 0.049
SynCat ¢*°™ (Cat) 0.973 0.971 0.980 0.981 0.994 0.995 0.994 0.985 0.942 0.979 + 0.016
SynCat w/o cross-attention 0.967 0.954 0.989 0.984 0.996 0.997 0.998 0.996 0.990 0.986 + 0.015
GIN w/o atom type 0.932 0.925 0.951 0.952 0.994 0.994 0.920 0.921 0.936 0.947 + 0.029
GIN w/o bond feature 0.973 0.972 0.976 0.975 0.995 0.994 0.993 0.990 0.978 0.983 + 0.010
MCC
SynCat ¢*°™P 0.980 0.973 0.991 0.988 0.995 0.995 0.996 0.992 0.978 0.988 + 0.008
SynCat ¢™? 0.967 0.967 0.979 0.975 0.987 0.989 0.995 0.992 0.977 0.980 =+ 0.011
SynCat ¢P" 0.976 0.978 0.976 0.975 0.994 0.994 0.997 0.994 0.984 0.985 =+ 0.009
SynCat ¢°°™ () 0.849 0.898 0.941 0.957 0.779 0.965 0.965 0.944 0.899 0.911 + 0.059
SynCat ¢°°™ (Cat) 0.972 0.971 0.980 0.981 0.993 0.994 0.994 0.985 0.928 0.978 £ 0.019
SynCat w/o cross-attention 0.966 0.953 0.989 0.984 0.997 0.995 0.998 0.996 0.987 0.985 + 0.016
GIN w/o atom type 0.930 0.923 0.951 0.952 0.992 0.993 0.914 0.919 0.922 0.944 + 0.031
GIN w/o bond feature 0.972 0.971 0.976 0.975 0.994 0.993 0.993 0.990 0.973 0.982 + 0.010
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than defines the molecular graph representation. The cross-
attention mechanism yielded only a modest absolute improve-
ment of 0.2% overall. It becomes critical, however, for datasets
with complex reaction media—such as Schneider and USP-
TO_TPL, where it effectively filtered contributions from spec-
tator species and preserved class separability. Conversely, on
corpora with well-defined reactants and products such as USP-
TO_50k, the benefits of cross-attention mechanism are very
moderate at best, since the additional parameterization offering
little advantage in the absence of significant spectator noise.

The choice of attention-embedding scheme reveals subtle
chemical distinctions: embedding-induced cross-attention
analysis (Table 4) showed that the hybrid scheme ¢®°™P
consistently outperformed both the individual (¢'™) and pair-
wise (¢P*") variants. Fig. 9 presents a side-by-side comparison of
the molecule-level attention weight distributions obtained by
each strategy (see Section 2.3.3), highlighting how the
combined embeddings focus attention more precisely on reac-
tion centers and relevant molecular substructures.

In Fig. 9A, under conditions where a single true reactant
coexists with four inert reagents, the individual-embedding
scheme ¢;nq correctly concentrated attention on the reactant
(™! = 1), whereas the pairwise-embedding scheme ¢ pair
erroneously assigned substantial weight to non-reactive species
(with aP*™ reaching approximately 0.5) owing to their dispro-
portionately larger embedding norms. This empirical bias is
fully explained by the analysis in Section 2.3.3, which shows that
pairwise sums of the two embeddings inherited the dominant
magnitude of their larger-norm constituent, thus leading the
attention mechanism to over-emphasize embeddings contain-
ing high-norm vectors.

Fig. 9B, moreover, depicts a reaction containing two true
reactants and two inert species. Here, the individual-
embedding scheme ¢;,q disproportionately focused attention
on the reactant with the largest embedding norm, effectively
ignoring the second, equally vital reactant. This observation is
consistent with the theoretical analysis in Section 2.3.3, which
predicts that ¢;,q can underweight relevant species. In contrast,

AW
~ NS
HoN™
""" Kl G

. PAIRWISE EMBEDDING |
- T

ORIGIAL EMBEDDING )
PAIRWISE EMBEDDING.
'COMBINATION EMBEDDING' -

Fig. 9 Attention weight distributions for three embedding schemes
(Pind: Ppair. Pcomb) ON exemplar reactions. Panels A and B contrast
single-reactant vs. multi-reactant scenarios.
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the pairwise-embedding scheme ¢y, correctly distributed
attention across both reactive centers. The hybrid embedding
¢comp Optimally merged these behaviors, achieving the sharp
reactant discrimination seen in Fig. 9A while maintaining
sensitivity to multiple reactive species as shown in Fig. 9B.

These empirical and theoretical observations have direct
practical consequences for model selection. For real-world
reaction classification on reagent-heavy, stoichiometrically
noisy corpora (e.g., Schneider, USPTO_TPL), the hybrid ¢“™" is
preferred because it combines the single-driver localization of
¢ with the multi-instance sensitivity of ¢P*". This mitigating
the norm-bias and over-focus failure modes. By contrast, on
well-curated, stoichiometrically balanced benchmarks (e.g.,
SynTemp, USPTO_50k) cross-attention adds modeling
complexity without clear gain: the no-cross-attention variant
with GINE typically matches or outperforms cross-attention
while using substantially less compute. Consequently, we
adopt ¢°°™P as the default for noisy, heterogeneous corpora and
use no-cross-attention/GINE for curated, balanced splits where
simplicity and efficiency prevail.

We expanded the ablation study to compare three reactant-
product fusion operators applied to attention-pooled embed-
dings of reactants and products. Our default fusion is the
directed difference (4) (see eqn (9)), compared to concatenation
(Cat) and elementwise sum (X). For the MCC, 4 attains 0.988 +
0.008, ahead of Cat (0.978 £ 0.019) and X (0.911 =+ 0.059). Versus
Cat, 4 raises mean MCC by 0.010 (1.0 percentage point) and
lowers the standard deviation from 0.019 to 0.008, a relative
drop of 57.9%. Versus X, 4 improves MCC by 0.077 (7.7 points)
and shows 7.4x lower variability. 4 encodes an explicit anti-
symmetric change signal aligned with reaction direction. Cat
leaves this structure for the classifier to infer and doubles
dimensionality. ¥ discards direction and can cancel opposing
signals. To probe data dependence, we subsampled the
Schneider training set (fractions: 1%-100%, stratified
sampling) while keeping validation and test fixed. Across these
fractions 4 generally outperforms ¥ and is superior to Cat for
most intermediate sizes (see Table S6 and Fig. S12). Cat is only
sometimes competitive, and only at the extreme low-data (1%)
and full-data (100%) settings. We therefore retain 4 as the
default fusion operator.

In summary, the encoding of atom types proves most critical;
bond-type descriptors confer secondary benefits. The directed
difference 4 is the default fusion operator. The incorporation of
cross-attention via the hybrid embedding scheme, which
combines individual embeddings o™ and pairwise embed-
dings oaP?", is essential in contexts featuring redundant
reagents. Cross-attention yields substantially larger gains on
stoichiometrically incomplete (unbalanced) reactions, the
common real-world case, whereas a GINE encoder suffices for
curated, stoichiometrically complete datasets (e.g., SynTemp RO
for reaction center labels).

4 Conclusions

With SynCat, we have introduced a graph-based classifier that
couples a Graph Isomorphism Network backbone incorporating
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edge features with molecule-level cross-attention and a permuta-
tion-invariant pairwise sum readout. Cross-attention confers
reagent awareness upon the model by learning molecule-specific
importance weights. To counteract the tendency of this mecha-
nism to overemphasize large molecules, we combined individual
embeddings with a pairwise pooling strategy, which effectively
normalizes the attention distribution. Evaluated on nine public
benchmarks, SynCat surpassed both the handcrafted DRFP
fingerprint and the large language-model-derived RXNFP, deliv-
ering a mean accuracy of 0.988 + 0.008 and an MCC matching.
SynCat also shows promising performance on biochemical data-
sets such as ECREACT, outperforming the state-of-the-art model
CLAIRE at finer EC depths. We observed that increasing label
granularity sharpens attention-based attribution of contributing
species, but excessive subdivision of labels can reduce overall
accuracy when classes become highly similar or contain near-
duplicate transformations. This trade-off between label resolu-
tion and classifier robustness should be considered when selecting
the optimal annotation depth.

Ablation analysis confirmed that (i) atom-type labels are
indispensable for fine-grained discrimination, (ii) bond features
provide a secondary but robust benefit, and (iii) cross-attention is
crucial on reagentrich, multiclass corpora as well as for stoi-
chiometrically incomplete reactions. Analysis of embedding-
induced attention distributions clarified the respective strengths
and weaknesses of our design choices. Individual embedding ¢;y,,
is highly selective, but can collapse in multi-reactant scenarios,
the pairwise variant ¢,,; balances attention yet inflates spurious
reagents when additives dominate, and their convex combination
¢compb calibrates these extremes by maintaining focus in single-
reactant transformations while equitably distributing weight
when multiple substrates are present. This underscores that
attention calibration, rather than graph topology alone, governs
the fidelity of the role. Moreover, the ablation analysis shows that
the fusion operator matters: the directed difference 4 is the most
stable and discriminative (our default), concatenation Cat
provides greater capacity at higher parameter cost, and the sum X
is a conservative baseline. Future work should adapt SynCat for
reaction-yield prediction and systematically evaluate 4, Cat, and ¥
to quantify their effects on accuracy, calibration, and uncertainty.

While SynCat exhibits strong closed-set performance, its
scalability is constrained by the representativeness and cardi-
nality of the ground-truth taxonomy: as the number of classes
grows or new classes appear, the classifier typically requires
adaptation or retraining. Future work will quantify label-
dependence and principal sources of uncertainty, develop
continual, few-shot, and open-set approaches to add classes with
minimal retraining, and incorporate stoichiometry-aware models
and hierarchical taxonomies to reduce combinatorial label
growth and improve robustness. We will also address unseen
classes via calibrated uncertainty estimation and lightweight
open-set detection (e.g., temperature scaling, deep ensembles,
and simple novelty detectors) as initial remediation strategies.
Finally, molecule-level attention provides a useful relevance
signal but is not mechanistic proof, we therefore plan to develop
atom-level attributions, validate them against quantum-chemical
calculations, and assemble curated mechanistic benchmarks.
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