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e-level attention graph neural
network for precise reaction classification
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Chemical reactions typically follow mechanistic templates and hence fall into a manageable number of

clearly distinguishable classes that are usually labeled by names of chemists who discovered or explored

them. These “named reactions” form the core of reaction ontologies and are associated with specific

synthetic procedures. Classification of chemical reactions, therefore, is an essential step for the

construction and maintenance of reaction-template databases, in particular for the purpose of synthetic

route planning. Large-scale reaction databases, however, typically do not annotate named reactions

systematically. Although many methods have been proposed, most are sensitive to reagent variations

and do not guarantee permutation invariance. Here, we propose SynCat, a graph-based framework that

leverages molecule-level cross-attention to perform precise reagent detection and role assignment,

eliminating unwanted species. SynCat ensures permutation invariance by employing a pairwise

summation of participant embeddings. This method balances mechanistic specificity derived from

individual-molecule embeddings with the order-independent nature of the pairwise representation.

Across multiple benchmark datasets, SynCat outperformed established reaction fingerprints, DRFP and

RXNFP, achieving a mean classification accuracy of 0.988, together with enhanced scalability.
1 Introduction

Efficient computational design of synthesis routes promises
accelerated development of novel chemical entities in compar-
ison to conventional trial-and-error approaches that are oen
time-consuming and costly.1 Computer-Aided Synthesis Plan-
ning (CASP) addresses these challenges by automating retro-
synthetic analysis, forward reaction prediction, and condition
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recommendations.2,3 In parallel, reaction modeling elucidates
the underlying mechanisms through simulations of thermody-
namic and kinetic properties of reaction pathways. All of these
tasks require accurate and robust patterns that describe the
different types of reactions. Chemical reactions are distin-
guished by reaction patterns,4,5 which comprise specic bond
changes at the reaction core, the nature of the substrates as
dened by their functional groups, and the ambient reaction
conditions (e.g., solvent, pH, temperature). These explicit bond-
making and bond-breaking events can be abstracted into the so-
called Imaginary Transition State (ITS) graphs,6,7 a formalism
that provides the cornerstone for Hendrickson's comprehensive
reaction classication.8 Named reactions, thus, are largely
determined in graph-theoretical terms.

The key information in the ITS graphs is the correspondence
between the atoms of the reactant and product molecules.
Consequently, a close connection exists between reaction clas-
sication and the problem of inferring atom-to-atom maps
(AAMs).9 For a given named reaction, the known structure of its
reaction center greatly simplies the inference of the corre-
sponding AAM. Conversely, a known AAM denes the reaction
center and, therefore, imposes strong constraints on the
possible reaction classes. The inherent coupling between AAM
and reaction pattern (classication) creates a signicant
bottleneck for computational chemistry, since most large-scale
datasets are not annotated with either reliable AAMs or
Digital Discovery
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a systematic mechanistic taxonomy. This bottleneck derives
from two interconnected issues. First, the algorithmic assign-
ment of AAMs faces an NP-hard combinatorial explosion,
particularly for reactions with incomplete stoichiometries,
which can lead to erroneous bond transformation.10,11 In addi-
tion, the chemically correct AAM is not always the solution of
well-dened combinatorial optimization problem such as the
minimization of chemical distance.12 Second, the underlying
data upon which these algorithms operate is itself unreliable;
expert curation is frequently incomplete or noisy,10 and the
limited coverage of gold-standard mappings makes the manual
annotation of large-scale chemical datasets practically infea-
sible.9,13 From a learning perspective, the classication problem
appears more tractable since the reaction mapping problem
asks for a detailed, atom-wise prediction with partially correct
solutions being deceptive for downstream tasks. Classication,
moreover, allows for a relatively straightforward post hoc iden-
tication of likely erroneous predictions based on reaction
centers and substance classes. Reaction classication is,
therefore, key for the collection of high quality datasets from
which reaction patterns for specic named reactions can then
be extracted in a second step. Moreover, automatic reaction
classication also can be employed to “sanity-check” new
entries in reaction databases.

Commercial repositories such as Reaxys®14 provide exten-
sive, large-scale compilations of reaction data. However, they do
not offer an equally robust classication framework; in contrast,
public reaction datasets typically rely on custom annotation
schemes. Schwaller et al.15 utilized the RXNMapper tool to
generate AAMs, thereby extracting reaction templates and
delineating one thousand distinct reaction classes across
approximately 445 000 reactions. Conversely, Schneider et al.16

randomly sampled a subset of 50 000 reactions from the USPTO
database and employed the Royal Society of Chemistry's Reac-
tion Name Ontology (RXNO)† to classify them into y distinct
categories. Although open corpora such as USPTO and
Schneider-50k have enabled reaction-class benchmarks, they
remain hampered by noisy or inconsistent labels. Recent audits
report that 10–25% of USPTO-derived entries are chemically
unbalanced or misclassied owing to multi-step patent exam-
ples, omitted reagents, and inconsistent stoichiometry.17–19

Furthermore, rule-based schemes (e.g. NameRXN or RXNO)
hinge on an unambiguous reactant–reagent split, which is ill-
dened for a signicant share of patent reactions, leading to
systematic class ambiguity and conation of distinct mecha-
nisms.15 These shortcomings highlight the need for scalable,
data-driven tools that can assign reliable reaction labels without
manual curation.

Automated reaction classication addresses this challenge
directly by assigning a mechanistic archetype to a given chem-
ical transformation.20–22 Methodologically, this eld has
diverged into two principal strategies. The rst involves struc-
tured chemical taxonomies, such as the hierarchical Royal
Society of Chemistry (RSC) Reaction Ontology, which organizes
† https://github.com/rsc-ontologies
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reactions top-down from broad parent classes (e.g., substitu-
tion) to specic subclasses describing nuanced stereoelectronic
features.23 The second, contrasting strategy is graph-based,
focusing on elucidating the explicit bond rearrangements at
the reaction core. This approach, pioneered in foundational
work by Hendrickson and in frameworks such as minimum
reaction concept,7,8,24 is critically dependent on an accurate
AAM. Modern incarnations such as SynTemp25 build on this
foundation, using hierarchical clustering to organize extracted
reaction templates for downstream applications, such as
generating Double Pushout rewriting rules for the MØD
framework.26,27 Despite their precision, the reliance of these
graph-based methods on AAMs creates a substantial computa-
tional bottleneck, constraining both prediction throughput and
large-scale applicability.

Machine learning-based strategies have signicantly accel-
erated reaction classication by projecting chemical trans-
formations into rich, high-dimensional feature vectors
representing the reaction centers. Contemporary embeddings
are typically derived from engineered reaction ngerprints16,28

or from attention weights grounded in atom-to-atom
mappings.15,29 Schneider et al.,16 for example, showed that
simple reactant-to-product difference vectors could already
recover 48 of 50 reaction classes. Despite these successes, two
principal obstacles remain for accurate and efficient reaction
classication. First, differentiating reagents from reactants is
vital to prevent feature redundancy. Schwaller et al. addressed
this by introducing the transformer-based reaction ngerprint
RXNFP, derived from RXNMapper,15 which utilizes self-
attention to weigh compound contributions and demonstrates
high accuracy on the Pistachio database.15,30 Alternatively,
Probst et al.28 developed the Differential Reaction Fingerprint
(DRFP), which identies molecular substructures changed from
reaction SMILES to inherently distinguish reagents and elimi-
nate the need for atom-mapping. Second, dening a canonical
representation for reaction components presents a critical
trade-off: while necessary for a consistent input vector, it
sacrices the exibility to model transformations with variable
stoichiometries or intricate reagent patterns.28

To overcome both limitations, we introduce SynCat, a graph-
based architecture that combines a Graph Isomorphism
Network with edge features31 with a molecule-level cross-
attention module and a permutation-invariant pairwise-sum
pooling scheme. By assigning attention weights to entire
molecular graphs, rather than to individual atoms, SynCat
preserves global chemical context while reducing training
complexity in comparison to atom-centric models such as
RXNMapper. Crucially, its hybrid embedding strategy dynami-
cally accommodates any number and arrangement of reaction
participants. This inherent exibility allows for the seamless
classication of transformations with arbitrary stoichiometries.

2 Methods
2.1 Preliminaries

Data-driven reaction classication is commonly organized in
two stages: (i) an encoding step, in which each raw reaction
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://github.com/rsc-ontologies
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00367a


Table 1 Summary of reaction datasets

No. reactions No. classes Annotator type

Schneider16 a 50 000 50 RSC-ontology
USPTO_50k32 50 016 10 Hand-craed
USPTO_TPL15 445 115 1000 SMARTS-match
R0 43 441 143 SynTemp25

R1 43 441 356 SynTemp
R2 43 441 680 SynTemp
ECREACT_1st 185 734 7 IUBMB35

ECREACT_2nd 185 734 63 IUBMB
ECREACT_3rd 185 734 175 IUBMB
Mech_31k_1st 31 673 9 Hand-craed
Mech_31k_2nd 31 673 63 MechFinder36

a Only Schneider has a balanced class distribution (Fig. S1).
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record is transformed into a xed length vector (the reaction
embedding); and (ii) a learning step, in which a discriminative
model maps the embedding to a discrete reaction class. Let
R ¼ fr1; r2;.; rng be a collection of n curated reactions and
Y ¼ f1; 2;.;Kg the nite set of K reaction classes. Each reac-
tion ri is annotated with its ground-truth label yi˛Y , where i ˛
{1, 2, ., n}.

Because raw reactions (e.g., based on SMILES strings or
atom-mapped graphs) are not directly amenable to standard
learning algorithms, we introduce an encoder

f : R/ℝd ; xi ¼ f rið Þ;
that embeds ri into a d-dimensional feature space. A parametric
classier

fq : ℝ
d/DK�1;

with DK�1 ¼ fp˛ℝK
$ 0

���� PK
k¼1

pk ¼ 1g denoting the (K − 1)-simplex,

assigns to every embedding xi a probability vector pq($rxi) =

fq(xi). Given the training set D ¼ f ri; yið Þgni¼1; the parameters q

are learned by minimizing the empirical cross-entropy.

L qð Þ ¼ �1

n

Xn
i¼1

logpq yijxið Þ (1)

The optimizer yields q*, and the composite map

r/
f
x!fq* ŷ˛Y

constitutes the nal reaction-type predictor.
2.2 Computational resources and data

All training and evaluation procedures were conducted using
Python 3.11 on a system equipped with an Intel®Core™ i7-
14700K CPU operating at 3.40 GHz with 24 cores, 128 GB of
RAM, and two NVIDIA RTX 4090 GPUs, each with 24 GB of
VRAM. The system ran on Ubuntu 22.04 LTS.

We performed reaction classication on three primary
datasets using their established class denitions: USPTO_TPL
1000 classes,15 annotated using RXNMapper29 to produce atom-
mapped reactions and extract SMARTS templates for exact
matching, Schneider (50 classes,16 annotated using the RSC
RXN Ontology), and USPTO_50K (10 classes,32 annotated by
manual curation). In addition, a separate set of labels was
generated for the USPTO_50K dataset via the SynTemp25

procedure. This procedure involves an isomorphism check on
the reaction center, followed by an expansion of the reaction
core up to a radius of two bonds. In addition to the nine data-
sets described above, we incorporate ve supplementary
corpora to assess cross-domain robustness of SynCat. Three of
these derive from the ECREACT dataset,33 an enzymatic reaction
collection that Zeng et al.34 augmented to train the CLAIRE
model. These data are structured into a three-level hierarchy
based on the IUBMB Enzyme Nomenclature,35 with each
successive level representing a ner degree of mechanistic
specicity.34 The remaining two are subsets of USPTO_50K32

annotated with mechanistic subdivisions inferred by
© 2025 The Author(s). Published by the Royal Society of Chemistry
MechFinder.36 For these datasets the rst level preserves the
original USPTO_50K classes and the second provides ner
mechanistic categories. Table 1 summarizes each corpus and its
annotation procedure. All datasets were partitioned via strati-
ed random sampling to preserve class priors. Detailed split-
ting congurations are provided in Table S1, and label
distributions are shown in Fig. S1.
2.3 SynCat architecture

2.3.1 Graph isomorphism network. Graph Neural
Networks (GNNs)37 were employed as our primary classication
framework, owing to their ability to preserve molecular topology
while integrating rich chemical information. Although the
primary objective is to classify reactions, the GNN operates
directly on individual molecules. Each molecule is represented
as an undirected graph G = (V, E), where V is the set of vertices
(atoms) and E the set of edges (bonds). Following the molecular
graph featurization of Han et al.,38 each atom vi˛ V is associated
with a raw node-feature vector.

vi˛ℝ155; vi ¼ ½s; q; d; hyb; nH; val;DA; c; rs; aro�u;

where s is the atom type, q the formal charge, d the degree, hyb
the hybridization, nH the implicit hydrogen count, val the
valence, DA the donor/acceptor ag, c the chirality, rs the ring
size, and aro the aromaticity (see Table S2). Accordingly, the
integer-valued entries of vi— formal charge q, degree d, implicit
hydrogen count nH, and valence val—are one-hot encoded into
compact bins, with the zero (reference) level omitted to avoid
redundancy. Infrequent/extreme values are merged into upper/
lower bins: q ˛ {#−2, −1, +1, $ +2} (4 bins), d ˛ {1, 2, 3, 4, 5,$
6} (6 bins), nH ˛ {1, 2, 3,$ 4} (4 bins), val ˛ {1, 2, 3, 4, 5, $ 6} (6
bins). This binning reduces sparsity and parameter count while
preserving chemically meaningful distinctions for
classication.

Each bond evivj˛E is associated with a bond-feature vector38

eij˛ℝ9; eij ¼ ½bt; st; icr�u;

where bt is the bond type, st is the stereochemistry, icr indicates
ring membership and conjugation status (see Table S3).

We then aggregated the individual molecular embeddings
into a single reaction level vector, explicitly weighting features
Digital Discovery
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at the reaction center to ensure the model focuses on the bonds
and atoms undergoing transformation. Formally, one may
construct an Imaginary Transition State (ITS), denoted as Y,
which provides a graph-theoretical model of the reaction
transformation.6,7 The reaction center is then dened as the
minimal vertex-induced subgraph G4 Y that contains all bond-
formation and bond-cleavage events. Although extracting the
reaction center G and encoding it directly can yield an optimal
representation, this approach critically depends on an accurate
AAM, which may not always be available. As a more generally
applicable alternative, we computed a reaction center embed-
ding via the vector difference of aggregated molecular embed-
dings. Let a chemical reaction be denoted by r : R/P, where R
and P are the reactant and product molecular graphs, respec-
tively. We dene their graph-level embeddings:
R ¼ f Rð Þ; P ¼ f Pð Þ, and hence the reaction-center embed-
ding, fG rð Þ, is given by the difference between the reactant and
Fig. 1 Overview of the SynCat architecture. Each molecule is process
contribution of each embedding. The embeddings from each side are th
embeddings forms the reaction center embedding.

Digital Discovery
product embeddings. This embedding strategy achieves
permutation invariance by using an “order-agnostic” aggre-
gator, summing node and edge features, and remains efficient,
requiring only O(jVj + jEj) time to compute each graph embed-
ding and O(d) to compare them. However, it suffers from
spectral degeneracy: co-spectral reactant-product graph pairs
share identical adjacency matrix spectra, causing their reaction
center embeddings to collapse to the zero vector and thereby
degrading classication performance.39 To address this limita-
tion, we adopt GINE,31 an edge-aware variant of GIN40 with
expressive power equivalent to the Weisfeiler–Lehman test,40,41

thereby yielding highly discriminative reaction-center embed-
dings (see Fig. 1).

Let vi˛V and evivj˛E. We denote their raw feature vectors by vi

and eij, respectively, and initialize the corresponding embed-
dings as

hi; 0ð Þ
v ¼ fn vi

� �
; hi;je ¼ fe ei;j

� �
; (2)
ed by a GINE layer, followed by a cross-attention layer to assess the
en aggregated, and the difference between the product and reactant

© 2025 The Author(s). Published by the Royal Society of Chemistry
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where fn and fe are trainable multilayer perceptrons. With
these initial embeddings in hand, the l-th GINE layer updates
each vertex i by aggregating messages over its incident edges:

hi; lð Þv ¼ f lð Þ hi; l�1ð Þ
v þ

X
j˛N ið Þ

ReLU hj; l�1ð Þ
v þ h i;jð Þ; l�1ð Þ

e

� � !
; (3)

Finally, aer L layers the global graph embedding is

hg ¼
XN
i¼1

hi; Lð Þ
v : (4)

2.3.2 Cross-attention. The embedding of the reactant side,

R ¼Pnr
i¼1

ri (and analogously for products), yields the reaction-

center embedding by taking the difference between the reac-
tant and product embeddings, but treats all species equally, so
spectator reagents degrade the signal-to-noise ratio and impair
GNN performance.17 While AAM can lter out unmapped
reagents,42 it depends on mapping accuracy. To address this, we
introduce non-negative importance weights faignri¼1 with

~R ¼
Xnr
i¼1

airi;

ai $ 0; i ¼ 1;.; nr;Xnr
i¼1

ai ¼ 1:

(5)

so that each compound's contribution to the reaction center is
modulated, reducing inert species noise prior to cross-
attention. In Section 2.3.3, we relax the normalization

P
iai =

1 to increase the exibility of the modeling.
Upon applying GINE, we obtain two embedding matrices,

R˛ℝnr�d and P˛ℝnp�d, for the reactants and products,
respectively, where nr and np are their counts and d is the
embedding dimension. By default, we use these individual
embeddings, R ind and P ind. When nr > 1 or np > 1, a standard
attention mechanism can overweight large molecules and
under-represent small ones, distorting the reaction center
embedding. To mitigate this, we introduce a second-order
transformation: ~R ¼ F R indð Þ and ~P ¼ F P indð Þ, where F

enriches pairwise interactions (see Section 2.3.3).
The updated embeddings ~R˛ℝnr�d and ~P˛ℝnp�d are pro-

cessed through learned linear projections to produce query and
key matrices:

QR ¼ ~RWq; KR ¼ ~RWk;

QP ¼ ~PW
0
q; KP ¼ ~PW

0
k:

(6)

Here Wq;Wk;W
0
q;W

0
k˛ℝ

d�d
0

are the learnable projection
matrices, so QR ;KR˛ℝnr�d

0
and QP ;KP˛ℝnp�d

0
. In the above nr,

np are the numbers of reactant/product, d is the input embed-
ding dimensionality, and d0 is the projection dimensionality.

Given the query and key matrices for both reactants and
products, the cross-attention weights are computed as follows:43
© 2025 The Author(s). Published by the Royal Society of Chemistry
AR ¼ Softmax
QPK

u
Rffiffiffiffi

d
0p

� �
;

AP ¼ Softmax
QRK

u
Pffiffiffiffi

d
0p

� �
:

(7)

Subsequently, AR˛ℝnp�nr and AP˛ℝnr�np are averaged to
obtain

AR ;j ¼ 1

np

Xnp
i¼1

ARð Þij; j ¼ 1;.; nr;

AP ;j ¼ 1

nr

Xnr
i¼1

APð Þij; j ¼ 1;.; np;

(8)

where AR˛ℝnr and AP˛ℝnp denote the averaged attention
weights for reactants and products, respectively.

2.3.3 Embedding normalization. In this attention module,
we represent the reaction center by a single vector fG. It's
computed as the weighted average of all reactant embeddings ri
minus the weighted average of all product embeddings pj.
Formally,

fG rð Þ ¼
Xnr
i¼1

airi �
Xnp
j¼1

bjpj ; (9)

where each weight ai and bj is nonnegative and the a-weights
(resp. the b-weights) sum to one. In the variant introduced
below, those normalization constraints are lied so that the
total reactant and product weights can vary freely.

Attention can get skewed toward embeddings with large
norms, drowning out smaller yet chemically important species.
To x this, we explicitly build all pairwise combinations of
embeddings so that interactions between every two reactants or
products are represented. Concretely, if ri are your reactant
vectors (for i = 0, ., nr − 1) and pj your product vectors (for j =
0, ., np − 1), we dene

S
i;j
R ¼ ri þ rj ; 1# i\j# nr;

S
i;j
P ¼ pi þ pj ; 1# i\j# np:

(10)

Stacking these vectors yields the matrices SR˛ℝ
nr
2

� �
�d

and

SP˛ℝ
np
2

� �
�d

, where
nr
2

� �
and

np
2

� �
are the numbers of

unique reactant and product pairs, respectively. This
construction ensures that all pairwise interactions are made
available to the attention module.

While this pairwise construction effectively models second-
order effects, relying solely on these sums (e.g., Si;jR ¼ ri þ rj)
discards the original rst-order features and can induce a new
magnitude bias. If one embedding dominates in norm, say ‖r3‖
[ ‖r1‖, ‖r2‖ in a reaction with reactants r1, r2 and reagent r3,
then kS1;3R kz kS2;3R k[kS1;2R k. Attention will thus overemphasize
spectator pairs (1, 3), (2, 3) and underemphasize the true reac-
tant interaction (1,2), polluting the inferred reaction-center G.
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To preserve both rst- and second-order information, we
concatenate the original embeddings with their pairwise sums.

Denoting vertical concatenation by A4B ¼
"
A
B

#
, we form

R comb ¼ R ind4SR ;
P comb ¼ P ind4SP ;

(11)

so that R comb˛ℝ
nrþ

nr
2

� �� �
�d

and similarly

P comb˛ℝ
npþ

np
2

� �� �
�d

. In this way, our “combined” variant
preserves each individual embedding alongside every pairwise
interaction, mitigating norm-driven biases while retaining full
expressive power.

Finally, for each variant m ˛ {ind, pair, comb}, applying F

gives transformed embeddings

~R m ¼ F R mð Þ˛ℝN
mð Þ
r �d ;

~P m ¼ F P mð Þ˛ℝN
mð Þ
p �d ;

(12)

where

N indð Þ
r ;N pairð Þð Þ

r ;N combð Þ
r

� � ¼ nr;
nr
2

� �
; nr þ nr

2

� �� �
;

and Np
(m) is dened the same way for products.

2.3.4 Reaction centers and classiers. The average atten-
tion weights are ARm˛ℝN mð Þ

r and AP m˛ℝN mð Þ
p . Aggregate reactant

and product embeddings:

R m ¼
XN mð Þ

r

i¼1

~R m½i; :�ARm
½i�;

P m ¼
XN mð Þ

p

j¼1

~P m½j; :�AP m
½j�:

(13)

Reaction-center embedding (eqn (9)) is input to the classier

pq k
���f mð Þ

G rð Þ
� 	

¼ softmax W 1ð Þf mð Þ
G rð Þ

� 	
k

(14)

where W 1ð Þ˛ℝK�d (with biases), K is the number of reaction
classes. Parameters q = {W(1)} are t by minimizing the cross-
entropy loss in eqn (1).
Fig. 2 Experiments on permutative invariance. (A and B) Reaction
representations Ra and Rb, which differ solely by the ordering of two
reactant species, used to assess the model's invariance to reactant
permutation.
2.4 Computational experiments

We conducted a comprehensive comparison of our classica-
tion model, SynCat, with its detailed conguration provided in
Table S4, against two established baselines: the DRFP28 and the
transformer-based RXNFP.15 DRFP builds a xed, non-learned
reaction descriptor by contrasting hashed circular substruc-
tures of products and reactants (symmetric difference) and
hashing the result into a binary vector; we use radius r = 3 and
length 2048. It is order-invariant, requires no training, and is
paired with standard classiers in our experiments (reaction
SMILES are canonicalized and atom maps removed before fea-
turization). RXNFP produces a learned, dense embedding of
reaction SMILES via a BERT-style transformer pretrained with
Digital Discovery
masked-language objectives.44 Reactions are encoded as toke-
nized sequences with reactants and products separated by “>>”;
the pooled sequence representation serves as the ngerprint.
We use the released pretrained weights and tokenizer, freeze
the encoder, as xed features.

Experiments were performed on the three datasets described
in Section 2.2 under two reaction-constitution regimes: (i)
unbalanced reactions and (ii) balanced reactions. Balanced
variants were produced using the SynRBL rebalancing proce-
dure.45 Here, B denotes balanced (stoichiometrically complete)
reactions and UB denotes unbalanced (stoichiometrically
incomplete) reactions; these labels refer to equation complete-
ness and not to a balanced class distribution (equal numbers of
examples per class). For each ngerprint method and each of
the nine dataset splits, we trained both a k-nearest-neighbour
classier (kNN) and a multilayer perceptron (MLP). Perfor-
mance was quantied by two standard metrics: Accuracy (Acc)
(see eqn (S1)) and the Matthews correlation coefficient (MCC)46

(see eqn (S2)).
3 Results and discussions
3.1 Permutation-invariant assessment

Chemical transformations are fundamentally described as an
unordered collection of reactants yielding an unordered
collection of products. Consequently, any learned representa-
tion (embedding) of a reaction must be invariant to permuta-
tions in the canonical ordering of these species. We took
advantage of GINE, which theoretically ensures this invariance
through a sum aggregator (see Section 2.3.1). We then evaluated
the practical implications of this property by comparing
embedding similarities across three types of controlled chem-
ical perturbations (Fig. 2). To quantify the pairwise similarity
between two reactions, ri and rj, we dened the function
s ri; rj
� �

. For ngerprints represented as continuous vectors,
such as SynCat and RXNFP, the cosine similarity metric was
employed. In contrast, for the binary DRFP ngerprint, the
Tanimoto coefficient was utilized.

The permutation invariance of these ngerprints is illustrated
in Fig. 2A and B. Interchanging the order of the reactant in
a transformation from ra to rb revealed that both SynCat and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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DRFP were perfectly invariant, yielding a similarity score
s ra; rbð Þ ¼ 1:000. In contrast, the RXNFP representation demon-
strated a quantiable dependence on reactant sequence, with the
similarity decreasing to s ra; rbð Þ ¼ 0:977. This sequence depen-
dence was further highlighted in Fig. S2, where a simple inversion
of the reactant order precipitated a substantial drop in the RXNFP
similarity to 0.6310. It is crucial to note that while SMILES can-
onicalization enforces a consistent ordering at the string repre-
sentation level, it fails to address the fundamental permutation
sensitivity inherent to the learned RXNFP embedding itself.

3.2 Reagent-aware evaluation

To correctly identify which input species contribute atoms to
the isolated products, a model must accurately differentiate
core reactants and products from reagents and solvents. SynCat
accomplished this through a molecule-level cross-attention
mechanism, which learned the contextual role of each species
by jointly embedding all reaction participants (Section 2.3.2).
This approach assigned substantially higher attention weights
to reactants and products over other species (e.g. solvents,
spectator ions), providing a data-driven basis for role assign-
ment. As illustrated in Fig. 3, the learned attention weights
highlight the most prominent embeddings of the reactant and
the product, allowing straightforward inference of the species
driving the reaction.

In contrast, RXNMapper and related AAM-centric pipelines
infer roles heuristically: any compound lacking a complete
atom map was labeled a reagent or solvent. Although compu-
tationally expedient, this rule systematically overlooks hydro-
gens since most public reaction corpora, USPTO in particular,
omitted explicit hydrogen atoms during template extraction.
The resulting misclassications are particularly damaging for
Fig. 3 Attention weight distributions across various substances within
representative reactions. Reactants and products receive notably
higher attention weights, enabling clear differentiation from reagents,
solvents, and other ancillary species.

© 2025 The Author(s). Published by the Royal Society of Chemistry
hydrogenation, reduction, and proton transfer steps, where
hydrogen is an essential reactant.

Fig. 4 shows this limitation using a hydrogenation as an
example. While atom-mapping tools such as RXNMapper erro-
neously classied molecular hydrogen (H2) as a reagent, SynCat
correctly identied its pivotal role. The cross-attention archi-
tecture provided a quantitative basis for this distinction,
attributing a high attention weight to H2 that reected its role as
an atom-contributing (stoichiometric) species (Fig. 4A). Fig. S3
echoes this result as SynCat assigns comparable attention to
both enantiomers in a racemic mixture, highlighting its
potential to capture stereochemical outcomes as richer stereo-
chemical encodings are introduced. By jointly learning role-
specic weights and the overall reaction representation, Syn-
Cat generated interpretable, role-aware embeddings that lead to
superior performance in downstream tasks such as classica-
tion, retrieval and retrosynthesis.

Together, these results emphasize that SynCat successfully
captures two essential properties of chemical transformations.
First, it respects permutation invariance by treating reactants
and products as unordered molecular sets. Second, it is sensi-
tive to which participants supply atoms to the products,
including small, traditionally overlooked species like H2. This
principled approach overcomes the limitations of conventional
strategies that rely on brittle atom-mapping heuristics, which
oen fail when confronted with the full spectrum of chemical
reactivity.
3.3 Reaction classication

Our classication model, SynCat, was developed utilizing the
GINE architecture, subsequently augmented with cross-
attention. The performance of SynCat, as detailed in Table 2,
was benchmarked against RXNFP and DRFP across nine
distinct datasets. SynCat yielded an overall accuracy of 0.988 ±

0.008, demonstrating superior performance relative to both
DRFP and RXNFP across a suite of nine benchmark datasets, as
Fig. 4 Visualization of attention weights in a representative hydro-
genation reaction. (A) SynCat assigns a significantly higher weight to
hydrogen, reflecting its role as an atom-contributing (stoichiometric)
species. (B) By contrast, RXNMapper classifies all unmapped species as
reagents, thereby overlooking key reactive participants.
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Table 2 Reaction classification performance of SynCat, RXNFP, and DRFP models on balanced (B) and unbalanced (UB) reactions; final column
shows mean ± standard deviation across the nine evaluation columns. Highest values per column are typeset in bold

Model

Schneider USPTO_TPL USPTO_50k SynTemp clusters

Avg � SDUB B UB B UB B R0 R1 R2

Accuracy
SynCat 0.981 0.973 0.991 0.988 0.995 0.996 0.996 0.992 0.982 0.988 � 0.008
RXNFP + 5-NN 0.985 0.947 0.989 0.974 0.997 0.996 0.991 0.929 0.732 0.949 � 0.085
RXNFP + MLP 0.985 0.957 0.988 0.971 0.994 0.991 0.995 0.955 0.802 0.960 � 0.061
DRFP + 5-NN 0.819 0.662 0.917 0.912 0.866 0.859 0.875 0.826 0.834 0.841 � 0.076
DRFP + MLP 0.957 0.926 0.977 0.963 0.918 0.928 0.973 0.959 0.965 0.952 � 0.022

MCC
SynCat 0.980 0.973 0.991 0.988 0.995 0.995 0.996 0.992 0.978 0.988 � 0.008
RXNFP + 5-NN 0.985 0.946 0.989 0.974 0.995 0.995 0.990 0.928 0.672 0.942 � 0.104
RXNFP + MLP 0.985 0.956 0.988 0.971 0.993 0.989 0.994 0.954 0.758 0.954 � 0.075
DRFP + 5-NN 0.817 0.683 0.917 0.912 0.838 0.828 0.868 0.826 0.810 0.833 � 0.069
DRFP + MLP 0.956 0.925 0.977 0.962 0.898 0.910 0.971 0.958 0.957 0.946 � 0.028

Fig. 5 Reaction classification before and after rebalancing using
SynRBL.
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illustrated in Fig. S4. A statistical assessment conducted via the
Wilcoxon signed-rank test indicated that SynCat signicantly
outperformed nearly all competing methods (p < 0.05), with the
sole exception of RXNFP (5-NN), where the resulting p-value was
0.058. In contrast, the Mann–Whitney U test revealed no
statistically signicant differences among these models (see
Fig. S5), suggesting that further investigation is warranted to
fully understand the contexts in which performance advantages
become apparent.

A more extensive comparison (see Fig. S6) further substan-
tiated the robustness of SynCat, which outperformed DRFP
across all evaluated datasets. In comparison to RXNFP (5-NN or
MLP), SynCat exhibited only a slight performance decit on the
Unbalanced Schneider dataset (accuracy of 0.981 vs. 0.985) and
achieved near-identical results on the Unbalanced USPTO_50k
dataset (0.995 vs. 0.997). In particular, the advantage of SynCat
became more pronounced in cluster-based datasets, as the
classication accuracy gap between SynCat and RXNFP
expanded in tandem with the complexity of the reaction center,
increasing from 0.01 for R0 to 0.18 for R2. This trend was most
striking in the R2 dataset, where RXNFP attained accuracies of
0.732 (kNN) and 0.802 (MLP), versus 0.982 for SynCat. These
differences highlight the susceptibility of models that fail to
explicitly account for the context surrounding reaction centers.
Such neighboring atoms are indispensable, as their local steric
and electronic effects strongly inuence the reaction course and
the resulting product distribution. This principle underscores
the necessity of rened graph-based strategies like SynCat,
which explicitly encode this localized chemical environment to
achieve robust predictive accuracy and broad generalizability.

As illustrated in Fig. S7, SynCat achieved superior perfor-
mance to RXNFP on seven out of nine datasets, trailing only
slightly in the two remaining benchmarks. Notably, in the
Balanced Schneider dataset, SynCat reached an accuracy of
0.973, compared to 0.947 for RXNFP. Fig. 5 compares the
behavior of the RXNFP encoder on the same transformation
before and aer reaction rebalancing. Prior to rebalancing,
RXNFP correctly assigns the sequence as a ethyl ester
Digital Discovery
deprotection. Aer rebalancing, however, it is misclassied as
a Sonogashira coupling reaction.47 Syncat does not exhibit this
kind of instability: its predictions remain invariant to the
rebalancing procedure. In particular, neither metadata nor
commentary indicates any coupling step: the sole structural
feature triggering the misclassication is the presence of the
substructure R–C^C–R0 in the product.

This reversal in relative performance, observed before and
aer rebalancing, can be attributed to artifacts introduced by
the rebalancing procedure: reagent molecules may appear on
both sides of the reaction arrow, producing reagent-like tokens
in reactant and product positions. This mirrored reagent
context disperses attention away from the true transformation
center, degrading localization and reducing accuracy (see
Fig. 6A and B). The effect is consistently small for SynCat (0.008
on Schneider, 0.004 on USPTO_TPL) but larger for RXNFP
(0.038 on Schneider, 0.015 on USPTO_TPL). Moreover, reba-
lancing reduced the dataset contamination (term coined by
Jiang et al.48) in Schneider from 72.58% to 6.23% (Table S5),
with RXNFP accuracy falling from 0.985 to 0.947. A similar
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Impact of redundancy and rebalancing on reaction classifica-
tion. (A) In the original unbalanced reaction, SynCat correctly identifies
the N–Bn substitution. (B) After rebalancing with SynRBL, SynCat
misclassifies the reaction as methylation due to redundancy-induced
noise.
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pattern holds for USPTO_TPL, where contamination decreased
from 99.97% to 14.70% and RXNFP accuracy fell from 0.989 to
0.974. By contrast, USPTO_50k exhibits contamination below
15% in both conditions and negligible performance change.
These ndings echo To et al.49 and illustrate that test set leakage
into pretraining corpora can inate measured accuracy without
improving generalization. SynCat is inherently immune to
contamination, because it does not employ any pre-training.

Moreover, Fig. 7A depicts a reaction mislabeled as Mitsu-
nobu aryl ether synthesis, which does not correspond to its
actual transformation. Although SynCat misclassied it as Ester
Schotten–Baumann, it nonetheless recognized the underlying
esterication and suggested a more relevant reaction label.
Fig. 7B shows a reaction that could validly be categorized as
either carboxylic acid + amine reaction or N-acetylation,
Fig. 7 Examples of classification under noisy labels. (A) A reaction
annotated as Mitsunobu aryl ether synthesis, which is chemically
incorrect; SynCat mispredicts it as Ester Schotten–Baumann but still
captures the esterification transformation. (B) A reaction ambiguously
labeled as either carboxylic acid + amine reaction or N-acetylation,
illustrating label inconsistency that leads to classification errors.

© 2025 The Author(s). Published by the Royal Society of Chemistry
highlighting the label noise and inconsistency present in the
dataset.
3.4 Enzymatic reaction classication

We further assessed SynCat's robustness on the biochemical
ECREACT corpus,33 which offers a three-level enzymatic
ontology. At the rst level the labels are the broad EC classes
(oxidoreductases, transferases, hydrolases, lyases, isomerases,
ligases, translocases).35 SynCat attained MCC = 0.916 on this
level, compared with 0.937 for CLAIRE. This gap is consistent
with the coarse and chemically heterogeneous nature of level-1
classes, which weakens signals that SynCat extracts from
structurally specic features around reaction centers. In
contrast, SynCat performs near optimally when labels directly
encode reaction center information, as evidenced by its R0 task
(SynTemp cluster) where labels denote reaction-center classes
and the model reaches and MCC of 0.996 despite 143 classes
and pronounced imbalance (see Table 2).

At the second and third EC levels the taxonomy renes by the
group or bond acted upon (for example, EC 2.3 denotes acyl-
transferases within transferases), and SynCat surpasses CLAIRE
on both tiers (see Table 3). Together, these results indicate
robust cross-domain generalization when labels align with
reaction-center structure, and a relative weakness for broad,
heterogeneous biochemical classes.
3.5 Attention and class granularity

We extended our analysis to probe how attention behaves across
hierarchical label levels using the Schneider dataset (three label
depths), inspecting a Wohl–Ziegler bromination (see Fig. 8A),
a selective allylic/benzylic reaction where N-bromosuccinimide
(NBS) is the key radical brominating agent. At the coarse level 1
(9 classes, MCC = 0.978) the model predicts the broad category
(Functional-group addition) but assigns weak attention to N-
bromosuccinimide (NBS; 0.27), leaving reagent attribution
ambiguous. At level 2 (28 classes, MCC = 0.984) the prediction
renes to a halogenation class and attention on NBS rises (0.62).
At the nest depth (level 3, 50 classes, MCC = 0.980) attention
concentrates further (0.81) and NBS is unambiguously identi-
ed as the brominating reagent. The slight MCC drop at level 3
reects increased inter-class similarity and label ambiguity,
exemplied by closely related acylation subclasses (e.g., “N-
acetylation” vs. “carboxylic acid + amine reaction”, see Fig. 7)
and near-duplicate entries (“Bromo Suzuki coupling” vs.
“Bromo Suzuki-type coupling”), which together increase class
confusion despite more focused attention. A pragmatic remedy
Table 3 Performance comparison between CLAIRE and SynCat

Level

CLAIRE SynCat

Accuracy MCC Accuracy MCC

1st 0.958 0.937 0.944 0.916
2nd 0.900 0.890 0.903 0.892
3rd 0.859 0.851 0.864 0.855
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Fig. 8 Attention maps. (A) Wohl–Ziegler bromination (Schneider):
focus on NBS increases with depth (0.27 / 0.62 / 0.81). (B) Oxida-
tion (Mech_31k): coarse labels produce diffuse maps, whereas fine-
grained labels concentrate attention on likely reagents such as DMSO
(0.42), TEA (0.33), and oxalyl chloride (0.14).
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is to merge very similar subclasses, or to use multi-task super-
vision so that the benets of ne-grained localization do not
come at the expense of global separability.

Second, we used MechFinder to derive Mech_31k from
USPTO_50k (9 superclasses, 63 subclasses) and examined
a Swern oxidation example (see Fig. 8B), where dimethyl sulf-
oxide (DMSO) is the oxidant, activated by oxalyl chloride, and
triethylamine (TEA) is the base. At the coarse, superclass level,
attention is diffuse: DMSO and TEA receive attention scores of
0.33 and 0.27, respectively, while oxalyl chloride registers zero.
At level 2, however, the model localizes reaction center and
reagent signals to correctly predict the Swern oxidation, where
attention scores for DMSO, TEA, and oxalyl chloride increase to
0.42, 0.33, and 0.14, indicating improved reagent attribution.
Table 4 Ablation study of SynCat. Final column shows mean ± standa
column are typeset in bold

Model

Schneider USPTO_TPL

UB B UB B

Accuracy
SynCat fcomb 0.981 0.973 0.991 0.988
SynCat find 0.968 0.968 0.979 0.976
SynCat fpair 0.976 0.978 0.976 0.975
SynCat fcomb (S) 0.852 0.900 0.941 0.957
SynCat fcomb (Cat) 0.973 0.971 0.980 0.981
SynCat w/o cross-attention 0.967 0.954 0.989 0.984
GIN w/o atom type 0.932 0.925 0.951 0.952
GIN w/o bond feature 0.973 0.972 0.976 0.975

MCC
SynCat fcomb 0.980 0.973 0.991 0.988
SynCat find 0.967 0.967 0.979 0.975
SynCat fpair 0.976 0.978 0.976 0.975
SynCat fcomb (S) 0.849 0.898 0.941 0.957
SynCat fcomb (Cat) 0.972 0.971 0.980 0.981
SynCat w/o cross-attention 0.966 0.953 0.989 0.984
GIN w/o atom type 0.930 0.923 0.951 0.952
GIN w/o bond feature 0.972 0.971 0.976 0.975

Digital Discovery
This shows that ner-grained supervision enhances both
interpretability and alignment with chemical reactivity.

To complement these attention diagnostics and quantify
robustness to chemically insignicant changes, we generated
two held-out augmentation sets, including Suzuki (Bpin–Me /
Bpin–Et, N1 = 165) and base-exchange (TEA / TNPA, N2 = 4),
totaling 169 reactions and excluding any substitution present in
the training set. SynCat preserved the original predicted class
for all augmented examples (169/169), supporting the model's
consistency under minor structural and reagent substitutions
(see Fig. S8).
3.6 Ablation study

We performed an extensive ablation analysis to systematically
evaluated the impact of three key characteristic modalities,
elemental identities (atom type), covalent connectivity (bond
type), and intermolecular context (cross-attention). We further
investigated three distinct attention-embedding schemes:
individual embedding (find), pairwise embedding (fpair), and
a hybrid combination (fcomb). The comprehensive results,
aggregated over nine benchmark datasets, are detailed in Table
4.

The fully parameterized model, which integrates the three
feature modalities, achieved the highest mean accuracy of 0.988
± 0.008 and MCC of 0.988 ± 0.008, conrming their synergistic
contribution. Ablating elemental identity features induced the
most signicant performance degradation, with absolute
decreases of 4.1% in accuracy and 4.4% in MCC, underscoring
the primacy of atomic information for discriminating distinct
transformations. Excluding bond-type information resulted in
a moderate but consistent drop of approximately 0.5% in both
metrics, suggesting that covalent connectivity renes rather
rd deviation across the nine evaluation columns. Highest values per

USPTO_50k SynTemp clusters

Avg � SDUB B R0 R1 R2

0.995 0.996 0.996 0.992 0.982 0.988 � 0.008
0.990 0.991 0.995 0.992 0.976 0.982 � 0.011
0.995 0.995 0.997 0.994 0.987 0.986 � 0.009
0.824 0.972 0.967 0.945 0.917 0.919 � 0.049
0.994 0.995 0.994 0.985 0.942 0.979 � 0.016
0.996 0.997 0.998 0.996 0.990 0.986 � 0.015
0.994 0.994 0.920 0.921 0.936 0.947 � 0.029
0.995 0.994 0.993 0.990 0.978 0.983 � 0.010

0.995 0.995 0.996 0.992 0.978 0.988 � 0.008
0.987 0.989 0.995 0.992 0.977 0.980 � 0.011
0.994 0.994 0.997 0.994 0.984 0.985 � 0.009
0.779 0.965 0.965 0.944 0.899 0.911 � 0.059
0.993 0.994 0.994 0.985 0.928 0.978 � 0.019
0.997 0.995 0.998 0.996 0.987 0.985 � 0.016
0.992 0.993 0.914 0.919 0.922 0.944 � 0.031
0.994 0.993 0.993 0.990 0.973 0.982 � 0.010

© 2025 The Author(s). Published by the Royal Society of Chemistry
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than denes the molecular graph representation. The cross-
attention mechanism yielded only a modest absolute improve-
ment of 0.2% overall. It becomes critical, however, for datasets
with complex reaction media—such as Schneider and USP-
TO_TPL, where it effectively ltered contributions from spec-
tator species and preserved class separability. Conversely, on
corpora with well-dened reactants and products such as USP-
TO_50k, the benets of cross-attention mechanism are very
moderate at best, since the additional parameterization offering
little advantage in the absence of signicant spectator noise.

The choice of attention-embedding scheme reveals subtle
chemical distinctions: embedding-induced cross-attention
analysis (Table 4) showed that the hybrid scheme fcomb

consistently outperformed both the individual (find) and pair-
wise (fpair) variants. Fig. 9 presents a side-by-side comparison of
the molecule-level attention weight distributions obtained by
each strategy (see Section 2.3.3), highlighting how the
combined embeddings focus attention more precisely on reac-
tion centers and relevant molecular substructures.

In Fig. 9A, under conditions where a single true reactant
coexists with four inert reagents, the individual-embedding
scheme find correctly concentrated attention on the reactant
(aind z 1), whereas the pairwise-embedding scheme fpair

erroneously assigned substantial weight to non-reactive species
(with apair reaching approximately 0.5) owing to their dispro-
portionately larger embedding norms. This empirical bias is
fully explained by the analysis in Section 2.3.3, which shows that
pairwise sums of the two embeddings inherited the dominant
magnitude of their larger-norm constituent, thus leading the
attention mechanism to over-emphasize embeddings contain-
ing high-norm vectors.

Fig. 9B, moreover, depicts a reaction containing two true
reactants and two inert species. Here, the individual-
embedding scheme find disproportionately focused attention
on the reactant with the largest embedding norm, effectively
ignoring the second, equally vital reactant. This observation is
consistent with the theoretical analysis in Section 2.3.3, which
predicts that find can underweight relevant species. In contrast,
Fig. 9 Attention weight distributions for three embedding schemes
(find, fpair, fcomb) on exemplar reactions. Panels A and B contrast
single-reactant vs. multi-reactant scenarios.

© 2025 The Author(s). Published by the Royal Society of Chemistry
the pairwise-embedding scheme fpair correctly distributed
attention across both reactive centers. The hybrid embedding
fcomb optimally merged these behaviors, achieving the sharp
reactant discrimination seen in Fig. 9A while maintaining
sensitivity to multiple reactive species as shown in Fig. 9B.

These empirical and theoretical observations have direct
practical consequences for model selection. For real-world
reaction classication on reagent-heavy, stoichiometrically
noisy corpora (e.g., Schneider, USPTO_TPL), the hybrid fcomb is
preferred because it combines the single-driver localization of
find with the multi-instance sensitivity of fpair. This mitigating
the norm-bias and over-focus failure modes. By contrast, on
well-curated, stoichiometrically balanced benchmarks (e.g.,
SynTemp, USPTO_50k) cross-attention adds modeling
complexity without clear gain: the no-cross-attention variant
with GINE typically matches or outperforms cross-attention
while using substantially less compute. Consequently, we
adopt fcomb as the default for noisy, heterogeneous corpora and
use no-cross-attention/GINE for curated, balanced splits where
simplicity and efficiency prevail.

We expanded the ablation study to compare three reactant-
product fusion operators applied to attention-pooled embed-
dings of reactants and products. Our default fusion is the
directed difference (D) (see eqn (9)), compared to concatenation
(Cat) and elementwise sum (S). For the MCC, D attains 0.988 ±

0.008, ahead of Cat (0.978± 0.019) and S (0.911± 0.059). Versus
Cat, D raises mean MCC by 0.010 (1.0 percentage point) and
lowers the standard deviation from 0.019 to 0.008, a relative
drop of 57.9%. Versus S, D improves MCC by 0.077 (7.7 points)
and shows 7.4× lower variability. D encodes an explicit anti-
symmetric change signal aligned with reaction direction. Cat
leaves this structure for the classier to infer and doubles
dimensionality. S discards direction and can cancel opposing
signals. To probe data dependence, we subsampled the
Schneider training set (fractions: 1%–100%, stratied
sampling) while keeping validation and test xed. Across these
fractions D generally outperforms S and is superior to Cat for
most intermediate sizes (see Table S6 and Fig. S12). Cat is only
sometimes competitive, and only at the extreme low-data (1%)
and full-data (100%) settings. We therefore retain D as the
default fusion operator.

In summary, the encoding of atom types proves most critical;
bond-type descriptors confer secondary benets. The directed
difference D is the default fusion operator. The incorporation of
cross-attention via the hybrid embedding scheme, which
combines individual embeddings aind and pairwise embed-
dings apair, is essential in contexts featuring redundant
reagents. Cross-attention yields substantially larger gains on
stoichiometrically incomplete (unbalanced) reactions, the
common real-world case, whereas a GINE encoder suffices for
curated, stoichiometrically complete datasets (e.g., SynTemp R0
for reaction center labels).

4 Conclusions

With SynCat, we have introduced a graph-based classier that
couples a Graph Isomorphism Network backbone incorporating
Digital Discovery
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edge features with molecule-level cross-attention and a permuta-
tion-invariant pairwise sum readout. Cross-attention confers
reagent awareness upon the model by learning molecule-specic
importance weights. To counteract the tendency of this mecha-
nism to overemphasize large molecules, we combined individual
embeddings with a pairwise pooling strategy, which effectively
normalizes the attention distribution. Evaluated on nine public
benchmarks, SynCat surpassed both the handcraed DRFP
ngerprint and the large language-model-derived RXNFP, deliv-
ering a mean accuracy of 0.988 ± 0.008 and an MCC matching.
SynCat also shows promising performance on biochemical data-
sets such as ECREACT, outperforming the state-of-the-art model
CLAIRE at ner EC depths. We observed that increasing label
granularity sharpens attention-based attribution of contributing
species, but excessive subdivision of labels can reduce overall
accuracy when classes become highly similar or contain near-
duplicate transformations. This trade-off between label resolu-
tion and classier robustness should be consideredwhen selecting
the optimal annotation depth.

Ablation analysis conrmed that (i) atom-type labels are
indispensable for ne-grained discrimination, (ii) bond features
provide a secondary but robust benet, and (iii) cross-attention is
crucial on reagent-rich, multiclass corpora as well as for stoi-
chiometrically incomplete reactions. Analysis of embedding-
induced attention distributions claried the respective strengths
and weaknesses of our design choices. Individual embedding finv
is highly selective, but can collapse in multi-reactant scenarios,
the pairwise variant fpair balances attention yet inates spurious
reagents when additives dominate, and their convex combination
fcomb calibrates these extremes by maintaining focus in single-
reactant transformations while equitably distributing weight
when multiple substrates are present. This underscores that
attention calibration, rather than graph topology alone, governs
the delity of the role. Moreover, the ablation analysis shows that
the fusion operator matters: the directed difference D is the most
stable and discriminative (our default), concatenation Cat
provides greater capacity at higher parameter cost, and the sum S

is a conservative baseline. Future work should adapt SynCat for
reaction-yield prediction and systematically evaluateD, Cat, andS

to quantify their effects on accuracy, calibration, and uncertainty.
While SynCat exhibits strong closed-set performance, its

scalability is constrained by the representativeness and cardi-
nality of the ground-truth taxonomy: as the number of classes
grows or new classes appear, the classier typically requires
adaptation or retraining. Future work will quantify label-
dependence and principal sources of uncertainty, develop
continual, few-shot, and open-set approaches to add classes with
minimal retraining, and incorporate stoichiometry-awaremodels
and hierarchical taxonomies to reduce combinatorial label
growth and improve robustness. We will also address unseen
classes via calibrated uncertainty estimation and lightweight
open-set detection (e.g., temperature scaling, deep ensembles,
and simple novelty detectors) as initial remediation strategies.
Finally, molecule-level attention provides a useful relevance
signal but is not mechanistic proof, we therefore plan to develop
atom-level attributions, validate them against quantum-chemical
calculations, and assemble curated mechanistic benchmarks.
Digital Discovery
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