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Bayesian optimization (BO) has emerged as an effective strategy to accelerate the discovery of new
materials by efficiently exploring complex and high-dimensional design spaces. However, the success of
BO methods greatly depends on how well the optimization campaign is initialized—the selection of
initial data points from which the optimization starts. In this study, we focus on improving these initial
datasets by incorporating materials science expertise into the selection process. We identify common
challenges and sources of uncertainty when choosing these starting points and propose practical
guidelines for using expert-defined criteria to create more informative initial datasets. By evaluating
these methods through simulations and real-world alloy design problems, we demonstrate that using
domain-informed criteria leads to initial datasets that are more diverse and representative. This

enhanced starting point significantly improves the efficiency and effectiveness of subsequent
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datasets, providing a straightforward way to compare different initialization strategies. Our approach
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1 Introduction

New demands for novel and transformative materials—driven
by rapidly evolving applications in energy, sustainability, elec-
tronics, aerospace, and other emerging technologies—have
significantly accelerated the need for more efficient materials
discovery and development processes, prompting a greater
adoption of machine learning (ML) and adaptive design
methods.”™ These methods are commonly evaluated using
metrics such as hypervolume improvement (a measure that
quantifies the expansion of the solution space covered by
optimal points in multiobjective optimization), cumulative
regret (the accumulated difference between the results of
selected solutions and the theoretical optimal results across
iterations) or training loss (a measure of predictive accuracy
over iterative evaluations).”” However, such evaluations often
remain limited to simulated or narrowly scoped scenarios,
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rarely extending to practical considerations such as the initial-
ization of the campaign—the initial set of queries of the design
space—and its significant impact on the performance of the
optimization scheme. Few studies systematically address the
methodological and logistical challenges inherent in designing
and deploying closed-loop materials discovery campaigns in
real world.®™°

Among adaptive discovery methods, Bayesian optimization
(BO)" is especially suited to material discovery, where experi-
mental and computational evaluations are expensive and time
consuming.”™* BO utilizes a probabilistic model, typically
a Gaussian process (GP)," to iteratively select promising points
by balancing exploration (sampling uncertain regions) and
exploitation (sampling regions predicted to have high perfor-
mance). Although Bayesian inference has a long-established
history,'® its systematic integration into practical experimental
workflows, particularly concerning initialization strategies,
remains relatively underexplored.””*®* BO has demonstrated
broad success in applications ranging from single-objective
optimization (where a single metric or property is optimized)
to complex multi-objective design (optimizing multiple prop-
erties simultaneously) due to its ability to treat the relationship
between input variables and outcomes as a black-box.
Furthermore, batch implementations of BO allow parallel
evaluations, aligning closely with practical constraints and
timelines in real-world discovery campaigns.'”*
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Despite the growing adoption of BO in materials discovery,
published efforts frequently overlook critical issues associated
with selecting the initial queries (i.e. the initial dataset) used to
jump start the campaign. In the context of genetic algorithm
(GA)-based optimization, Maaranen et al* examined how
different strategies for generating initial populations influence
optimization performance, particularly in early stopping
scenarios. While their work focused on evolutionary methods,
the underlying observation—that initialization can have
a dominant effect when only a limited number of iterations are
possible—is highly relevant to experimental materials
discovery, where datasets are generally sparse and queries are
expensive. These conditions are not unique to GA-based
methods; they apply equally to BO and other adaptive/iterative
optimization strategies commonly used in materials research.
Despite this, many experimental studies begin with randomly or
heuristically selected initial datasets, often without explicit
discussion of their rationale or potential impact on optimiza-
tion outcomes.® A related effort has explored the initialization
role alongside human interventions in an autonomous work-
flow for piezoresponsive materials;** this work relied on latent
space representations while the present work focuses on
domain knowledge and physically interpretable material pro
perties. It is worth noting a multi-decade gap here, and that the
premiere summary background works on setting up BO prob-
lems, such as,™ do not have sections dedicated to initialization.

Moreover, researchers typically assemble optimization
workflows from modular algorithmic components—such as
machine learning regressors (e.g., Gaussian processes), kernel
functions (e.g., squared exponential), and acquisition functions
(e.g., expected hypervolume improvement)—available in widely
used machine learning libraries (e.g., PyTorch, scikit-learn).>>>*
However, the availability of these modular tools does not
guarantee effective integration into experimental workflows,
particularly with respect to initial dataset selection. Without
assessments explicitly designed to evaluate the quality of initial
datasets—metrics independent of inaccessible ground truths—
researchers lack essential guidance for selecting initial points
that optimize subsequent performance.

In this paper, we directly address these critical challenges by
systematically examining the impact of initial dataset selection on
optimization outcomes. We propose a structured, domain-
informed methodology for selecting initial design points, incor-
porating materials science principles such as subsystem
complexity (complexity defined by the number of constituent
elements or phases) and configurational entropy (a measure of
disorder or diversity in atomic arrangements). Using these
domain-informed criteria, we demonstrate an improved repre-
sentativeness and diversity of the initial data sets, significantly
improving subsequent optimization efficiency. We use practical
metrics to evaluate the quality of initial datasets without requiring
knowledge of optimal solutions. We validate this approach using
representative design spaces involving both computational and
experimental alloy datasets. This work provides robust and
practical methodological guidance for materials researchers,
significantly improving the reproducibility and effectiveness
materials discovery efforts that rely on these techniques.
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2 Methods

2.1 Optimization

The Bayesian optimization (BO) approach used in this work is
based on the BIRDSHOT framework,"”* a recent algorithm
developed for efficient, multi-objective discovery in high-
dimensional design spaces. While BIRDSHOT has been previ-
ously applied in experimental materials campaigns, here we
employ it as a general-purpose BO engine to study the influence
of initialization on the efficiency of batch BO campaigns.

BO is well-suited for optimizing expensive, black-box objec-
tive functions, which are common in scientific and engineering
applications where each evaluation is costly. The method
constructs a surrogate model of the objective function—here,
a Gaussian Process Regressor (GPR)—that provides both
a mean prediction and an uncertainty estimate. This uncer-
tainty quantification enables BO to balance exploitation
(sampling candidates expected to perform well) with explora-
tion (sampling candidates where the model is uncertain), typi-
cally via an acquisition function. The GP surrogate provides an
uncertainty-aware model over the current design space as
a guide for exploration. In the multi-objective setting, we
employ Expected Hypervolume Improvement (EHVI), which
assigns a scalar utility to each candidate based on its contri-
bution to the expansion of the current Pareto front.

To support parallel experimentation and accelerate conver-
gence, BIRDSHOT implements batch Bayesian optimization. In
each iteration, an ensemble of GPR models is constructed with
randomized hyperparameters, allowing for diverse candidate
proposals. From these proposals, a representative batch is
selected using k-medoids clustering, ensuring both coverage
and diversity in the queried designs. This ensemble-based
selection strategy reduces sensitivity to hyperparameter tuning
and guards against premature convergence to local optima—
factors that are particularly important when the BO campaign
begins with limited data. As a result, all batch data retrains the
ensemble of GPs (no static partitioning with validation or test
sets are used).

In this study, we leverage BIRDSHOT's batch optimization
capabilities to investigate how different initialization strategies
affect the quality and efficiency of BO performance. We analyze
the impact of initialization on model accuracy, exploration
coverage, and Pareto front convergence, providing guidance for
the deployment of BO in resource-constrained discovery work-
flows. Complete details of the formation of GP surrogate
models, acquisition strategy, and batch selection procedure are
provided in Section 5: SI.

2.2 Initial sampling and features

The datasets used in this study were generated on high-
performance computing infrastructure via CALPHAD-based
simulations performed using Thermo-Calc. Two major compo-
sitional design spaces were explored.

The first dataset corresponds to a face-centered cubic (FCC)
high-entropy alloy system in the composition space
Al, V, Cr, Fe, Co, Ni,, where x; ranges from 0 to 0.95 in

© 2026 The Author(s). Published by the Royal Society of Chemistry
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increments of 0.05. This results in approximately 50 000 unique
compositions prior to any down-selection. Property outputs in
this data set include CALPHAD-predicted room-temperature
density and room-temperature heat capacity. The second data-
set corresponds to a body-centered cubic (BCC) high-entropy
alloy system in the space Tiy V, Nb, Mo, Hf, Ta, W, , where x;
ranges from 0 to 0.975 in increments of 0.025 prior to filtering.
Property outputs include ROM-calculated Shannon configura-
tional entropy and CALPHAD-calculated room temperature
thermal conductivity. In addition, the BCC dataset contains
experimental measurements of specific hardness and specific
modulus for 48 selected compositions.

The material datasets used in this work consist of data
derived from thermodynamic and kinetic property predictions
obtained via CALPHAD-based software. The Al-V-Cr-Fe-Co-Ni
system is primarily composed of elements that form face-
centered cubic (FCC) alloys, and equilibrium properties
including solidification range (K), room-temperature density (g
em ), heat capacity (J mol " K~ '), and thermal conductivity (W
m~" K~ ') were calculated from Thermo-Calc. The Ti-V-Nb-Mo-
Hf-Ta-W system contains body-centered cubic (BCC) forming
alloys, with further methodology described in ref. 25.

Both of these datasets correspond to experimental BO works
in the field of alloy design, where single phase solid solutions
enable a simple correspondence between simulation and
laboratory validation. CALPHAD-derived material property
output spaces is physically interpretable and provides a consis-
tency for benchmarking black box problems. Unlike simulated
environments that get to draw conclusions from repeat trials,
batch physical experimentation typically only has time and
funding for one attempt. The net effects of an initialization
strategy become veritably relevant.

These datasets were down-selected to create initial datasets
for this work. The initial data sets were created using two
distinct sampling strategies: uniform random sampling and k-
medoids clustering. Each strategy was repeated 1000 times to
ensure statistical robustness. For computational datasets,
batches of 20 samples were used in each initialization, while
experimental batches were limited to 8 samples due to avail-
ability constraints. These initialization methods and their cor-
responding performance are further discussed in Section 3:
Results and discussion.

To evaluate the diversity and representativeness of initial
batches, three geometric features were computed for each
selected subset: the bounding box area, the centroid deviation,
and the average convex hull size. The bounding box area is
defined as the smallest axis-aligned rectangular region enclos-
ing the selected points in the multi-objective output space. The
centroid deviation is computed as the average Euclidean
distance between each point and the centroid of the selected set
in the objective space, serving as a compactness metric. Convex
hulls were computed by identifying the local neighborhood of
each candidate (as if it were a medoid) and measuring the size
of the convex region that encloses those neighbors. The average
hull size over all points in the batch serves as a proxy for
disparity and structural dispersion. These metrics were
computed using standard numerical libraries: bounding box

© 2026 The Author(s). Published by the Royal Society of Chemistry
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and centroid distances were calculated using NumPy, while
convex hulls were computed using the scipy.spatial module.
Medoid clustering was implemented using the k medoids
function from the scikit-learn-extra package.

2.3 Visualization

To visualize high-dimensional compositional spaces in two
dimensions, this work employs affine projections based on
barycentric coordinate systems. Each data point in the compo-
sition space—represented as a normalized vector p = [xq, Xy, ...,
X,] such that x; = 1—is projected into two-dimensional Carte-
sian space via a linear transformation. The resulting 2D layout
forms a regular polygon, where the number of vertices equals
the number of elements (or bins) in the system. These projec-
tions provide an interpretable and structure-preserving means
of visualizing high-entropy alloy compositions and are based on
the methodology described in ref. 26.

To construct the full projection space at a given resolution,
we first generate a set of all possible barycentric coordinates by
discretizing the composition simplex. Each barycentric vector is
then projected into R* using a matrix of vertex coordinates that
defines a regular polygon in two dimensions. Experimental,
random, or off-grid points are projected in the same manner,
allowing consistent visualization of arbitrary subsets relative to
the entire compositional domain.

Visual annotations, including figure labels and overlays,
were created using Inkscape, an open-source vector graphics
editor.?” All visuals in this study were rendered at high resolu-
tion to maintain geometric precision and readability in both
digital and print formats.

3 Results and discussion
3.1 Variance within optimizations

We first define a multi-objective optimization problem over the
FCC Al-V-Cr-Fe-Co-Ni alloy composition space, sampled at 5
at% intervals. This space serves as a testbed for materials-
related black-box optimization, with property outputs
modeled via CALPHAD and including solidification range (K),
room-temperature density (g cm ), heat capacity (J mol " K1),
and thermal conductivity (W m~" K™') (see Section 2: Methods).
To reduce computational overhead and emulate realistic
experimental limitations, the original space of approximately
50 000 compositions was down-selected to 2000 representative
points using the k-medoids clustering algorithm.?®

This sub-sampling procedure preserves the diversity of the
original design space while enabling tractable evaluation
during Bayesian optimization. Unlike centroid-based methods
such as k-means, k-medoids selects actual data points as cluster
centers, making it well suited for generating representative and
physically valid subsets in high-dimensional, multi-objective
alloy design spaces. A visualization of the resulting optimiza-
tion domain is provided in Fig. 1.

An optimization policy can be simulated over the reduced
design space by initializing with a small subset of data and iter-
atively selecting new points for evaluation, treating the CALPHAD-

Digital Discovery, 2026, 5, 277-289 | 279


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00361j

Open Access Article. Published on 20 November 2025. Downloaded on 2/12/2026 12:55:37 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

Output Space
< 38

Barycentric Projection

3 4 5 6 7 8 9
RT Density (g/cm?

Fig. 1 A high dimensional space is reduced using a clustering algo-
rithm in order to provide a representative dataset that retains the
topological qualities of the original. (al) The input dimensions (atomic
fractions of 6 elements) projected onto a 2D plane with barycentric
coordinates, sorted by configurational entropy for approximately 50
000 data points. (a2) Two example output dimensions of the same
dataset. (m) An example schematic of a medoid function applied to
arbitrary 2D data. (b1) The input dimensions after clustering to 2000
data points. (b2) The output dimensions after clustering. Even though
only 4% of the dataset is being shown, it retains a similar topology to
the original.

modeled properties as if they were experimentally measured. To
implement this, we employ the BIRDSHOT method,” as
described in Section 2. From this ensemble, candidate points are
proposed based on expected hypervolume improvement (EHVI).
Due to overlap in GP predictions, the resulting candidate pool is
typically redundant and is reduced to a set of unique suggestions.
These are then clustered using the &-medoids algorithm to select
a final batch of diverse, high-utility points without imposing an
explicit ranking (see Section 2: Methods and ref. 25). This simu-
lation framework enables efficient, uncertainty-aware optimiza-
tion under realistic data constraints.

As a demonstration, we examine the impact of two distinct
initialization strategies on optimization performance. The first
strategy employs a uniform random selection of initial points,
while the second uses a subset deliberately chosen to span the
output space through diversity-aware sampling. In both cases,
the same BIRDSHOT policy is subsequently applied for 10
iterations, using a realistic batch size of 20 candidates per
iteration. The optimization aims at joint maximization of two
objectives, with all other conditions kept constant. The result-
ing optimization trajectories for both initialization schemes are
presented in Fig. 2.
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3.2 Initialization effects on optimization behavior

Based on the results shown in Fig. 2, several key observations
can be made regarding the influence of initialization on opti-
mization dynamics:

3.2.1 Initial conditions strongly influence perceived
success. The composition of the starting dataset can signifi-
cantly affect the observed optimization trajectory and, by
extension, the interpretation of success. When high-performing
points are present in the initial dataset, subsequent gains may
appear minimal, potentially misleading performance-based
metrics to suggest that optimization is ineffective. In contrast,
when seed points under-sample high-performing regions, even
modest improvements may seem disproportionately large. In
both cases, common progress metrics are confounded by
initialization effects, which complicates fair cross-comparisons
of optimization performance.

3.2.2 Random initialization limits interpretability. Initial-
izing the campaign with randomly selected points leaves the
experimenter with little contextual knowledge of their location
in the design space, making it difficult to understand or trust
subsequent improvements.

(a) This problem is especially pronounced in sequential
(non-batch) optimization, where early decisions are made with
sparse and potentially unrepresentative data.

(b) Alternative strategies such as grid-based sampling, input-
space clustering, or point-inhibition methods (e.g., nearest-
neighbor maximization) attempt to improve upon random
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Fig. 2 Batch Bayesian optimization (BBO) simulation in the FCC alloy
design space, targeting the maximization of two CALPHAD-predicted
properties. (a) Optimization trajectory initialized with a dataset based
directly on the output data as an example of broad coverage of the
output space. (b) Trajectory initialized with a randomly selected
dataset. (c) Hypervolume progression as a function of batch iteration
for both strategies. Although the same optimization policy was applied
in both cases, the quality of the initial dataset resulted in a performance
difference equivalent to approximately 100 additional evaluations.
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Fig. 3 Comparison of two initial datasets in the objective space. Panel (al) shows an ideal initialization obtained via k-medoids clustering on the
output dimensions, yielding broad and representative coverage. Panel (b1) shows a worst-case initialization generated via uniform random
sampling, which tends to oversample high-density regions and overlook sparsely populated, high-information areas. Three quantitative metrics
are used to characterize dataset quality: bounding box volume (a2 and b2), which reflects the overall spread of the dataset; mean distance to
centroid (a3 and b3), which quantifies dispersion; and convex hull area (a4 and b4), which measures the extent of coverage in the output space.

initialization by enforcing geometric separation in the input
space. However, these approaches do not necessarily ensure
adequate coverage of the objective space, particularly when the
input-output mapping is non-linear or many-to-one. As a result,
they may still produce initial datasets that poorly represent the
diversity of achievable outcomes.

3.2.3 Exploration-exploitation trade-offs are topology-
dependent. An optimization algorithm's ability to balance
exploration and exploitation critically depends on the extent to
which the initial dataset captures the underlying structure of
the objective landscape. When the initial points cover only
a small portion of the design space, the optimization behavior
may become indistinguishable from a random search, as nearly
every new point offers an apparent improvement. In such cases,
evaluating the strategic behavior of the optimizer becomes
difficult or even meaningless.

These findings collectively point out the importance of
principled initialization in black-box optimization. Without
a systematic and transparent methodology for selecting initial
data, claims about optimization efficiency, convergence
behavior, or exploration capability risk being irreproducible or
misleading. Initialization should therefore be treated as a crit-
ical component of optimization design, not a procedural
afterthought.

3.3 Encoding additional dimensions

A clear operational definition of best- and worst-case initiali-
zation scenarios provides a meaningful basis for comparing the
quality of different starting datasets. Worst-case initializations
are readily characterized as randomly selected subsets that offer

© 2026 The Author(s). Published by the Royal Society of Chemistry

minimal coverage or variability in the objective space. Such data
sets often fail to expose key regions of the phase space, forcing
any downstream optimization policy to first engage in ineffi-
cient exploratory sampling before converging on informative
solutions.

In contrast, a best-case initialization would consist of
a subset that reflects the global structure of the objective space
as faithfully as possible, given the available budget. This can be
approximated by performing k-medoids clustering directly in
the output (objective) space, thereby identifying a representative
set of initial points that span the range of achievable responses.
By capturing key topological features of the output distribution
from the outset, such an initialization reduces the burden on
the optimizer to discover underrepresented regions through
search alone.

Fig. 3 illustrates the difference between high-quality and low-
quality initializations by comparing two candidate datasets in
the objective space. Panel (al1) displays a set of 20 medoids
selected directly from the output dimensions using k-medoids
clustering, along with the associated data clusters. By
construction, this initialization provides broad and represen-
tative coverage of the output space, capturing both dense and
sparse regions.

Panel (b1), on the other hand, shows a random sample of 20
data points, with each remaining point assigned to its nearest
selected point to form a “pseudo-medoids” clustering for visual
comparison. Because random sampling is biased toward high-
density regions, the selected points in this case do not
adequately cover low-density, high-information regions of the
space. This issue is especially apparent in the present example,

Digital Discovery, 2026, 5, 277-289 | 281


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00361j

Open Access Article. Published on 20 November 2025. Downloaded on 2/12/2026 12:55:37 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

where the majority of the data is concentrated at low heat
capacity values, leading the random sample to overlook critical
areas in the distribution.

To quantify these differences, panels (a2)-(a4) and (b2)-(b4)
present three metrics used to evaluate the geometric quality of
the initialization set in the output space: (1) bounding box
volume, which measures the overall spread of selected points;
(2) mean distance to centroid, which captures dispersion and
sensitivity to outliers; and (3) convex hull area (or volume in
higher-dimensional spaces), which reflects the extent of topo-
logical coverage across the dataset. Initialization sets that are
well suited for optimization should provide a rich information
sample of both input and output spaces. Desirable initializa-
tions are those that can incorporate topological outliers and
avoid excessive clustering within locally dense regions.

Each of the proposed metrics is designed to reward broader
coverage and penalize redundant, tightly grouped selections
that fail to span the full range of objective values. The bounding
box volume reflects the overall axis-aligned extent of the selected
points and serves as a quick diagnostic for whether the initial-
ization spans the full dynamic range of each objective. Although
it may overestimate true coverage in non-convex Or sparse
regions, it remains effective for identifying collapsed or overly
concentrated subsets. The mean distance to the centroid
measures internal dispersion and is sensitive to structural
variability; it increases not only with spread but also with the
presence of outliers, offering insight into how uniformly the
dataset samples around its central tendency. The convex hull
volume provides a more topology-aware measure of coverage by
enclosing the minimal convex region that contains all selected
points. This makes it especially valuable for distinguishing
between broad but disconnected spreads and genuinely repre-
sentative samples that trace the boundary of the achievable
objective space.

It is important to emphasize that the clustering shown in
Fig. 1(m) illustrates just one of many valid ways to partition the
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Fig. 4 Distributions in a six-dimensional compositional input space
and their relationship to Pareto-optimal outputs. (a) Projection of the
output space showing heat capacity versus density, with points cor-
responding to the most populous elemental sub-system (all six
elements present) highlighted. (b) Histogram of subsystem pop-
ulations, with the number of Pareto-optimal points from each
subsystem overlaid in red. The discrepancy between input-space
population and contribution to the Pareto front illustrates that highly
populated compositional regions do not necessarily yield the most
optimal candidates. This decoupling underscores the risk of using
input-space density as a proxy for importance in optimization
strategies.
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output space into representative regions. There is no unique
solution to this decomposition, even when accounting for local
density or distributional features. For example, the placement
of medoids can be rotated or perturbed around the center of the
space without meaningfully affecting their representativeness.
In more complex datasets, small variations in the boundaries of
the clusters - particularly those driven by nearest-neighbor
assignments - can lead to multiple equally plausible clus-
tering configurations, each reflecting a different but defensible
interpretation of the structure of the space. Despite this
inherent variability in how the output space may be partitioned,
the metrics introduced here exhibit consistent and interpret-
able behavior across thousands of subsets constructed both
randomly and deliberately. As shown later in Fig. 5, these
diagnostics remain robust under non-unique sampling condi-
tions, reliably capturing meaningful differences in dataset
structure regardless of the specific clustering configuration.

A common strategy for selecting an initial dataset—once
purely random sampling has been ruled out—is to construct
a grid that spans the input space as uniformly as possible. For
example, in the context of a binary phase diagram, one might
sample 11 evenly spaced compositions between 0% and 100%
of each element in 10% increments. Although this approach is
straightforward and effective in low-dimensional symmetric
systems, it becomes increasingly impractical in higher dimen-
sions, particularly when physical constraints restrict the set of
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Fig. 5 Histograms and empirical cumulative distribution functions
(CDFs) comparing two geometric diversity metrics—bounding box
area and mean distance to centroid—across 1000 initialization data-
sets generated using four distinct sampling strategies: RAND (random
sampling in input space), COMP (composition-only k-medoids),
COMP+X (composition medoids augmented with the subsystem
complexity dimension), and IDEAL (medoids clustered directly in the
output space using known property values). The IDEAL case serves as
a theoretical benchmark, requiring prior knowledge of target prop-
erties and thus representing the upper bound for initialization quality.
(al and bl) Histograms of bounding box areas and centroid distances
for each strategy. (a2 and b2) Empirical CDFs of the same metrics.
Incorporating the subsystem complexity feature in the COMP+X
strategy substantially improves output-space coverage, shifting both
distributions closer to the IDEAL baseline. These results demonstrate
that chemically informed descriptors enhance the representativeness
of initial datasets, providing broader property diversity and stronger
foundations for subsequent optimization and discovery.
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feasible compositions. In such cases, algorithms such as k-
medoids offer a tractable and interpretable alternative by
identifying representative subsets that are well distributed
across the valid input space.

For example, in the six-element Al-V-Cr-Fe-Co-Ni design
space, selecting 20 representative compositions from a candi-
date pool of 2000 enables efficient initialization of a high-
dimensional optimization campaign. Although one of the six
compositional variables is linearly dependent due to the
constraint that atomic fractions must sum to one, all dimen-
sions are treated equally when computing pairwise distances.
Assigning a consistent length scale to each dimension ensures
a well-defined geometry in the input space, even when some
features are mathematically redundant. As will be shown later,
such derived or constrained features can still contribute
a meaningful structure to optimization algorithms, particularly
when used in kernel-based models or distance-aware sampling
strategies.

This strategy is grounded in a widely held assumption in
materials science: small changes in input variables generally
lead to small, continuous changes in material properties. As
a result, sampling the input space at roughly uniform intervals
is often viewed as a reasonable way to ensure early-stage infor-
mation gain. However, this assumption breaks down in many
realistic scenarios and uniform input-space sampling becomes
problematic for two main reasons:

(1) It assumes that equal spacing in the input space corre-
sponds to comparably informative samples in output space.
This is rarely valid in high-dimensional or nonlinear systems,
where local gradients in material properties can vary dramati-
cally and unpredictably. In such settings, equidistant sampling
may result in the oversampling of trivial regions and the
undersampling of highly informative ones.

(2) Empirically, uniform input-space sampling often
produces output distributions that are statistically similar to
those resulting from random sampling, particularly when the
input-output mapping is non-linear or the output space is
unevenly populated. This diminishes any practical advantage of
regular grids in many real-world design tasks.

To illustrate point (1), consider a binary phase diagram such
as the Al-Cu system.” These diagrams often contain structur-
ally simple regions alongside composition intervals with
complex multiphase behavior. Suppose one were tasked with
reconstructing the Al-Cu phase diagram from 21 cooling curves.
A naive strategy might place samples every 5% across the full
composition range, but this would result in wasted effort in
simple regions and inadequate resolution where the behavior is
most intricate, such as between 50-85% Cu. A more effective
strategy would concentrate the samples in the region of highest
complexity, as visualized in Section 5: SI. Although such
complexity is not known a priori in new systems, domain
knowledge, prior experience, and physically grounded heuris-
tics can guide the design of more informative initializations.

Point (2) is demonstrated graphically and may be interpreted
as a population-based bias. Input-space distance metrics—such
as those used in Euclidean kernels or nearest-neighbor algo-
rithms—implicitly treat all displacements of equal magnitude
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as equally informative. For example, a 5% increase in one
element paired with a 5% decrease in another yields the same
distance, regardless of where this perturbation occurs in
composition space. However, this symmetry assumption breaks
down in constrained or irregular spaces. As shown in Fig. 1,
even after down-selection, the 2000 alloy candidates span
compositional regions with vastly different densities. Algo-
rithms that rely on geometric distance in input space will tend
to oversample high-density regions, implicitly assuming that
Pareto-optimal solutions are similarly distributed.

This assumption parallels what is known in the philosophy
of science as the Presumptuous Philosopher problem:****
reasoning from population priors without direct measurement
or justification. Although uniform assumptions may be harm-
less for provably irrelevant variables, such as the parity of
candidate indices—they are epistemically unjustified when
applied to output-relevant features. Supposing that optimal
solutions mirror the population distribution of candidates
introduces a subtle but significant selection bias, which can
mislead both experimental design and algorithmic search
strategies.

This hypothesis can be empirically tested using the previ-
ously described dataset of 2000 alloy compositions, shown in
Fig. 4. Fig. 4 (left) illustrates that the most populous elemental
subsystem—comprising all six elements—closely mirrors the
overall topology of the complete dataset. As a result, restricting
sampling to this subsystem does not improve initial diversity
relative to random sampling from the full composition space.
Fig. 4 (right) presents population distributions for each
elemental subsystem. Notably, the Pareto front—defined by
optimizing two representative CALPHAD-modeled properties
and highlighted in red—shows a marked mismatch between
input population density and the location of optimal alloys.
Several Pareto-optimal candidates originate from sparsely
populated subsystems; in this example, 7 out of 23 Pareto-
optimal points fall within low-population groups. This decou-
pling between subsystem frequency and Pareto quality persists
regardless of the specific property pair selected for
optimization.

As demonstrated earlier in our toy dataset example, input-
space population is a poor predictor of where optimal proper-
ties reside. Topologically, such divergence is inevitable: a six-
dimensional compositional manifold, even if uniformly
sampled, becomes distorted when projected into two- or three-
dimensional property space via nonlinear chemistry-property
mappings. Consequently, regions densely populated in the
input space need not correspond to peaks in property perfor-
mance. However, when optimization algorithms consistently
surface candidates from densely sampled regions, it becomes
easy to conflate frequency with merit. This tendency risks
introducing a form of selection bias, where genuinely superior
candidates from underrepresented subsystems are systemati-
cally overlooked.

To mitigate this issue, we propose augmenting the input
feature space with chemically informed descriptors, specifically
a ’subsystem complexity’ feature that encodes the unique
combination of constituent elements for each alloy. Including
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this dimension in the initialization process, via k-medoids
clustering, ensures that medoids are selected not only based on
geometric proximity but also on chemical diversity, indepen-
dent of population density. This approach effectively breaks the
symmetry imposed by conventional distance-based methods,
which treat equal compositional shifts as equally meaningful.
In reality, small changes in minor constituents can have
outsized impacts: for example, increasing an element from 30%
to 35% may have marginal effects, while reducing another from
5% to 0% can fundamentally alter the behavior of the mate-
rial—such as fully eliminating Al in stainless steel, which
precludes the formation of protective passivation layers of
alumina.® Since the number of possible elemental combina-
tions far exceeds the number of initialization points, this
strategy inherently favors subsystem diversity and helps coun-
teract the population-driven sampling bias. A visual example of
this approach, using k-medoids clustering over an augmented
feature space and visualized via affine projections (as in Fig. 1),
is provided in Section 5: SI.

We demonstrate this strategy using the previously described
CCA toy dataset. A discrete ‘complexity’ feature was added to the
input space, ranging from 1 to 57 and corresponding to all
unique elemental combinations of 2 to 6 elements (excluding
single-element systems) from a six-element pool, as shown in
Fig. 4 (right). Clustering was initialized using the k~-medoids++
method over the compositional dimensions, with or without the
complexity feature, depending on the strategy. A total of 1000
initialization datasets were generated under four distinct
sampling approaches: RAND (random sampling in the input
space), COMP (only composition medoids), COMP+X (compo-
sition medoids with added complexity dimension) and IDEAL
(medoids clustered directly in the output space, serving as
a theoretical benchmark for optimal property coverage).

For each initialization set, we computed the boundary box
area and the mean distance to the centroid in the objective
space, visualizing the distributions of these metrics using
histograms and empirical cumulative distribution functions
(CDFs), as shown in Fig. 5. These results clearly indicate that
COMP and RAND yield nearly indistinguishable distributions,
both of which deviate substantially from the IDEAL benchmark.
In contrast, the COMP+X strategy shifts both metric distribu-
tions toward the IDEAL regime, demonstrating significantly
improved output-space diversity.

Further inspection of Fig. 5 reveals that datasets generated
by RAND or COMP generally exhibit smaller bounding boxes
and shorter centroid distances, indicating limited exploration
of property space. As shown earlier in Fig. 3, these strategies
also tend to exclude alloys with higher heat capacities, which
are relatively rare in the dataset. By incorporating the
complexity feature, COMP+X systematically improves the
diversity of selected initial points in the output space, providing
a stronger foundation for subsequent optimization. In this
specific system—although the pattern is likely generalizable—
our results suggest that greater chemical complexity correlates
with greater property diversity, supporting the use of chemically
informed descriptors in initialization design.
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3.4 Application to a refractory alloy dataset

We applied this approach to the BCC refractory alloy system Ti-
V-Nb-Mo-Hf-Ta-W, selecting a subset of this seven-
dimensional composition space based on CALPHAD-modeled
properties. Two target outputs were considered: the Shannon
configurational entropy (kg), which explicitly quantifies the alloy
complexity, and the room-temperature thermal conductivity,
krr (W m ™ K1), a key property for high-temperature structural
applications.* Fig. 6(a) visualizes the input space, including the
full design space (gray), a production-constrained region (red),
a CALPHAD-feasible region based on stable phase equilibria
(orange), and the final optimization subset, colored by config-
urational entropy.

This dataset and methodology are based on the framework
established by Paramore et al., who demonstrated the utility of
Bayesian optimization for alloy design in high-dimensional
refractory systems.”® Despite the fact that the input space
forms a compact and fully connected manifold, the output
space—as shown in Fig. 6(b)—exhibits significant structural
discontinuities. In particular, alloys with high thermal
conductivity (kgr > 30 W m~' K™ ') are sparsely represented,

forming isolated regions in objective space. This
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Fig. 6 (a) Barycentric projection of the optimized Ti-V-Nb-Mo—-Hf-
Ta-W alloy dataset, constrained to CALPHAD-feasible compositions
and colored by Shannon configurational entropy. (b) Output space
visualization showing thermal conductivity versus configurational
entropy, with example medoids selected using the COMP+X strategy
(composition plus subsystem complexity) highlighted, along with their
axis-aligned bounding box. (c) Histogram comparing bounding box
areas across 1000 initialization subsets generated using four strategies:
RAND (random input sampling), COMP (composition-only medoids),
COMP+X (composition medoids augmented with subsystem
complexity), and IDEAL (output-space medoids as a theoretical upper
bound). Results show that including subsystem complexity (COMP+X)
systematically increases output-space spread, yielding consistently
larger bounding boxes and improved diversity in the property space.
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undersampling of extreme property alloys can hinder down-
stream tasks such as optimization and discovery, as further
illustrated in Fig. 2.

After applying thermodynamic and production feasibility
constraints, 24 unique elemental subsystems remained in the
BCC refractory alloy design space. One subsystem in partic-
ular—the Hf-free system—contained a disproportionately large
number of candidates satisfying all constraints, while several
others had fewer than ten viable compositions. As in the
previous case, composition-based sampling alone would likely
overlook these sparsely populated regions, assigning undue
weight to the more populous subsystem. Augmenting the
design space with a subsystem ‘complexity’ dimension once
again offers a principled solution to this sampling bias.

To evaluate this approach, we generated 1000 initial datasets
using the established sampling strategies: RAND (random input
sampling), COMP (composition-only medoids), COMP+X
(composition medoids augmented with subsystem complexity),
and IDEAL (output-space medoids serving as a theoretical upper
bound). As shown in Fig. 6(c), the COMP+X strategy yields
initializations with output-space diversity approaching that of
the IDEAL case. In contrast, RAND and COMP consistently fail
to produce initialization sets with sufficient coverage of the
property space. An extended version of this figure similar to
Fig. 5 is provided in Section 5: SI.

Although earlier analyses demonstrated the utility of
encoding subsystem complexity in computational datasets
derived from CALPHAD modeling or ideal-mixing assumptions,
it is essential to validate this approach using experimental data.
Unlike modeled properties, experimental measurements often
exhibit additional complexity and variability, which poses
challenges to standard sampling strategies. To investigate this,
we analyzed a dataset from Paramore et al, comprising 48
experimentally synthesized alloys in the Ti-V-Nb-Mo-Hf-Ta-W
system, each tested for specific hardness and specific modulus
as part of a batch optimization study. Given the limited size of
the dataset, we generated 1000 subsets of eight alloys each to
evaluate the robustness of different sampling methods.

Fig. 7 (left) shows the distribution of specific hardness and
specific modulus in the output space, along with one repre-
sentative subset. The subset is visualized via its medoid and
connections to the other selected alloys. Because the two
mechanical properties are strongly correlated, the bounding
box area provides limited discriminative power for quantifying
diversity. Instead, we focus on mean distance to centroid as
a more robust indicator of output-space coverage. Fig. 7 (right)
shows a histogram of this metric across 1000 subsets generated
via three sampling strategies: RAND (random selection), COMP
(medoids selected from compositional inputs), and COMP+X
(medoids selected from inputs augmented with subsystem
complexity). As this is an experimental dataset, no IDEAL
sampling strategy is available for benchmarking.

Despite the modest dataset size, RAND frequently yielded
subsets with low centroid distances and limited property
diversity. COMP provided only marginal improvement over
random sampling, whereas COMP+X consistently produced
more diverse subsets, better spanning the full extent of the
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Fig. 7 (a) A set of 48 experimentally tested refractory alloys evaluated
for specific hardness and specific modulus. One example subset of 8
alloys is shown, along with their distances to the centroid in output
space. (b) Histogram of centroid distances for 1000 subsets generated
using three sampling strategies: RAND (random selection), COMP
(medoids selected from input compositions), and COMP+X (medoids
selected from inputs augmented with elemental combination infor-
mation). Even when using experimental property values, incorporating
elemental diversity in the sampling strategy (COMP+X) results in initial
datasets that are more diverse in output space.

measured property space. These results reinforce the finding
that augmenting the input space with domain knowledge—
such as subsystem complexity—can lead to more representative
and effective initializations, even in data-limited experimental
regimes.

3.5 Generalizing feature augmentation strategies

The preceding discussion focused on the use of alloy
complexity—quantified by the number of constituent
elements—as an augmenting dimension for improving diversity
in initialization. Although subsystem complexity served as
a natural and chemically interpretable feature in this context,
the underlying approach is more general. In principle, any
domain-knowledge-informed attribute of the materials space
can be incorporated as an additional dimension to guide
sampling. Although we specifically employed a binary encoding
of elemental presence, this feature could be replaced or com-
plemented by other expert-curated properties, such as elec-
tronic structure descriptors, processing constraints, or
thermodynamic heuristics. The central idea is to enrich the
input representation with a physically or chemically meaningful
structure, enabling more effective and extensible initialization
strategies across a wide range of optimization and discovery
workflows.

To illustrate this concept, we examined a subset of the Al-V-
Cr-Fe-Co-Ni alloy composition space, explicitly excluding
vanadium to focus on alloys containing the remaining five
elements. In this example, we incorporate Shannon's configu-

rational entropy, defined as Sconr = —kp>_%; In(x;)—as an
i=1

additional dimension in the clustering process. Since configu-
rational entropy is a convex and nonlinear function of compo-
sition, uniform sampling across the input space yields a non-
uniform, typically skewed distribution in entropy space. In the
context of alloy discovery, one may wish to investigate systems
of differing structural or thermo-dynamic complexity as quan-
tified by configurational entropy.
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Fig. 8 Example analysis of a subset of the Al-V-Cr—Fe—-Co-Ni
composition space excluding vanadium, restricted to compositions
containing nonzero amounts of the remaining five elements. (a)
Output space visualization showing solidification range versus room-
temperature density, with an example subset selected using an
augmented feature space that includes a configurational entropy class.
(b) Histogram and (c) empirical CDF of bounding box areas for 1000
such subsets. Even when using a coarse classification such as “high
entropy” versus “low entropy,” incorporating this additional dimension
leads to more consistent initialization sets with broader coverage of
material properties, improving the diversity of starting conditions for
optimization.

To ensure representative sampling across this dimension, we
introduced a binary entropy class (low vs. high entropy) as an
auxiliary input feature.

The FCC alloy space, shown in Fig. 1, was filtered to its
vanadium-free subset, yielding 3842 CALPHAD-feasible
compositions. The predicted values for the solidification
range and the room temperature density are used as represen-
tative outputs in Fig. 8 (left). We selected the Shannon entropy
of an equiatomic quaternary alloy (~1.386 kg) as the threshold
to classify alloys as low or high entropy. This binary classifica-
tion was appended to the input space and used in k-medoids
clustering. As shown in Fig. 8 (right), augmenting the input
representation with entropy class consistently improved
property-space coverage across 1000 initialization datasets,
compared to clustering on composition alone. This result
highlights how even a coarse and physically meaningful clas-
sification—when used as an additional feature—can enhance
the diversity of initializing populations and improve the quality
of early-stage exploration.

3.6 Impact of initialization on optimization outcomes

Given appropriate domain knowledge to augment the feature
space, such information can be readily integrated into the
Bayesian optimization (BO) framework. Following the method-
ology outlined in Section 2: Methods, we simulated two initial-
ization strategies: one based on clustering over compositional
input features (COMP), and another using clustering
augmented with a descriptor that encodes the identity of non-
zero elemental constituents (COMP+X). The COMP strategy
reflects conventional BO practice, where diversity is assumed to
arise from compositional variation alone.

286 | Digital Discovery, 2026, 5, 277-289

View Article Online

Paper

To evaluate performance, 50 independent optimization
campaigns were conducted for each strategy using the FCC
dataset introduced in Fig. 1 and discussed in Section 3.1: Vari-
ance within optimizations. Each campaign aimed to simulta-
neously maximize room-temperature density and heat capacity
in the AlI-V-Cr-Fe-Co-Ni system. Campaigns proceeded over 10
iterations with a batch size of 20, including the initial seed.
Each iteration used an ensemble of 1000 Gaussian process
regressors (GPRs), each with randomized length scale hyper-
parameters and acquisition based on expected hypervolume
improvement (EHVI), with the final batch selected via k-
medoids clustering.®

Prior to simulation, we anticipated that COMP+X would
produce higher initial hypervolumes on average, consistent
with earlier observations. While hypervolume (HV) was not
a direct clustering target, the larger average bounding box area
observed in COMP+X initializations inherently implies broader
coverage of the property space. The simulations thus evaluate
whether this initialization advantage consistently improves the
optimization performance across surrogate model realizations.

The results are shown in Fig. 9. For each strategy, the mean
hypervolume achieved per iteration in all 50 optimization runs
is plotted: COMP+X in cyan and COMP in green. Shaded bands
denote the 10™ to 90™ percentile range. The influence of
initialization is evident from the first iteration: 96% of COMP+X
seed hypervolumes exceed the mean seed HV of the COMP runs
and 60% surpass the COMP 90" percentile. These results
indicate that augmenting the input space with subsystem
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Fig. 9 Comparison of two Bayesian optimization campaigns targeting
FCC alloy properties, differing only in their initialization strategy. The
COMP strategy specifies diversity based solely on the compositional
input dimensions, while the COMP+X strategy incorporates an addi-
tional input dimension representing the specific combination of
elements present. Both optimization strategies were repeated 50
times using identical surrogate models and acquisition settings.
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complexity yields significantly more diverse and higher-
performing initial datasets. This early advantage persists
throughout the optimization process. The COMP+X strategy
maintains a consistent lead in hypervolume across iterations,
reflecting a durable performance advantage from improved
initialization. Although both strategies may con-verge to similar
Pareto fronts in the asymptotic limit, the superior starting
conditions provided by COMP+X facilitate more effective early
stage exploration, a central objective of batch BO frameworks
operating under resource constraints. The graph in Fig. 9 follows
a standard format commonly used in comparative optimization
studies, such as those evaluating different acquisition functions
or kernel choices. Error bars are intentionally omitted, as they
misrepresent statistical uncertainty in this context. In optimiza-
tion problems, each iteration is inherently dependent on the
previous one, and metrics such as hypervolume are strictly non-
decreasing by definition. Moreover, hypervolume is bounded
above by the value corresponding to full discovery of the Pareto
front. Consequently, standard deviations or standard errors—
which assume independent and identically distributed (i.i.d.)
samples—are not meaningful when overlaid on such trajectories.
To complement the analysis of average hypervolume trajectories,
we further examine the results of individual optimization runs.
This provides insight into the variability and robustness of each
strategy and goes beyond conventional summaries by high-
lighting differences in the consistency and efficacy of the policies
across repeated simulations.

The optimization scheme described in Section 2: Methods
contains multiple sources of variation. Length-scale hyper-
parameters, selected via Latin hypercube sampling, are inten-
tionally randomized in the BBO framework to generate diverse
candidate sets across surrogate models without imposing
a particular prior. Likewise, as discussed extensively in this
work, the initial dataset is selected via a policy that incorporates
random seeding. By allowing both the initial dataset and the
Gaussian process hyperparameters to vary, we account for the
inherent stochasticity of BO campaigns. For a sufficiently large
number of runs, this variability ensures statistical robustness
when comparing competing initialization strategies.

To systematically compare two policies, we proceed as
follows:

(1) For each optimization under policy #1, record the value of
the performance metric—hypervolume (HV)—at every iteration.

(2) For each optimization under policy #2, record the same
metric at the same iteration indices.

(3) Compare the HV of the individual policy #1 optimization
to each of the policy #2 runs at each iteration, and compute the
fraction of cases where it dominates.

(4) Repeat this procedure for all policy #1 optimizations,
aggregating results into a mean dominance percentage with
percentile bands.

(5) Reverse the comparison: evaluate each policy #2 optimi-
zation against all policy #1 runs using the same procedure.

If policy #1 consistently yields better performance than
policy #2, then steps (1)-(4) should produce high dominance
percentages, while step (5) should produce noticeably lower
ones.
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Previous analyses already established this dominance at the
first iteration. As shown in Fig. 5, the COMP+X initialization
strategy reliably yields higher HV in the seed dataset compared
to COMP. Although previous results focused on the bounding
box area and the mean distance to the centroid, these geometric
metrics strongly correlate with initial hypervolume. What
remains to be determined is the persistence of this advantage
across iterations and its cumulative effect on overall optimiza-
tion performance. These results are summarized in Fig. 10.

Each set of policies' means are shown as scatter points on
top of middle %ile bands from 25% to 75%. As expected, the
first iteration of Fig. 10 matches the prior histograms. In fact,
the COMP+X policy is so consistent in this regard that its mean
HV value lies outside the inner 50%ile for the first iteration; out
of the 50 datasets from the COMP+X policy that dominate the
COMP policy, the vast majority of values are at or near 100%.
Continuing onward, only occasionally does variance of an
individual simulation cause a COMP+X policy to perform worse
than standard initialization practices. Conversely, the COMP
policies are often near 0% domination of the COMP+X policies;
their non-zero values arise largely from occasional particular
iterations that have a large jump in HV (or where they have
gotten “lucky”). Fig. 10 puts into context the likelihood of
success (given a set of algorithmic changes), which is difficult to
parse with “HV vs. iteration” visuals alone (i.e. Fig. 9).

The findings presented here reinforce and extend the
conclusions of Maaranen et al,* underscoring the critical
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Fig. 10 Comparison of two BBO policies (COMP+X and COMP) tar-
geting FCC alloy properties, differing only in their initialization strategy.
Each optimization’s hypervolume (HV) from one policy is compared to
the HVs of all optimizations from the opposing policy, across all iter-
ations and simulation runs. Mean values are indicated by scatter points,
and the central 25-75% percentile bands are shown in the back-
ground. This comparison accounts for both sources of randomness:
variation in the initial dataset and stochasticity in GP length scale
hyperparameters.
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impact of initial dataset selection on optimization performance.
Our results show that incorporating expert-defined descriptors
into the sampling process yields markedly improved initializa-
tion strategies. These informed approaches mitigate the biases
inherent in uniform or geometry-based input sampling, leading
to more representative coverage of the design space and more
efficient exploration of complex materials landscapes. The
principal conclusions are summarized as follows:

e Random sampling is inadequate for initializing optimiza-
tion campaigns and frequently degrades downstream perfor-
mance, regardless of the method applied.

e Sampling strategies that define diversity solely in terms of
geometric input space (e.g., compositional distance) offer little
to no improvement over random sampling in terms of output-
space coverage.

e Input spaces can and should be augmented with derived or
domain-informed features. This work shows that incorporating
classification-like descriptors (e.g., subsystem identity or
configurational entropy class) leads to more representative and
effective initial datasets.

Importantly, these insights are broadly applicable and
largely independent of specific algorithmic choices, including
surrogate model type, kernel function, acquisition strategy, or
batch selection policy. More generally, embedding domain
knowledge into input representations provides a flexible and
effective means of improving materials optimization workflows,
particularly in systems characterized by complex or sparsely
sampled design spaces. Future work may further integrate such
descriptors into the optimization loop itself—for example, by
informing GP kernel length scales or shaping acquisition
behavior during batch selection.

4 Conclusions

This study demonstrates that the breadth of material properties
first observed is coupled with the strategy for initial dataset
selection. Such initializations play an underappreciated role in
determining the efficiency of materials discovery efforts, such as
those driven by Bayesian optimization (BO). Although BO is
widely regarded as a powerful tool for exploring expensive high-
dimensional design spaces, its performance is strongly condi-
tioned on the quality and representativeness of the initial data
set. We show that conventional initialization strategies—such
as random sampling or geometry-based clustering in compo-
sitional space—often fail to produce a diverse or informative
initial survey, limiting the optimizer's ability to explore the
design space effectively.

While this work leverages a BO framework, the novelty
primarily lies in the initialization strategy and integration of
chemically meaningful descriptors (such as subsystem
complexity and configurational entropy). Across a variety of
simulated and experimental alloy systems, we find that aug-
menting the input space with these expert-derived dimensions
leads to significantly more diverse initial datasets and improved
optimization trajectories. Importantly, these gains are observed
without changing the underlying BO engine, acquisition
strategy, or surrogate model. Future enhancements of these
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strategies may utilize the properties of select alloys, such as
predicted microstructural elements for processing conditions.
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