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and Majid Beidaghi (®*

The discovery of next-generation battery electrolytes increasingly involves complex, multicomponent
formulations that demand high-throughput, systematic exploration. We present the Bayesian Robotic
Investigator of Novel Electrolytes (BRINE), a cost-effective, self-driving laboratory (SDL) that
autonomously prepares and tests mixed electrolyte solutions. BRINE combines an open-source liquid-
handling robot with a potentiostat and custom-made electrodes to mix reagents and perform
electrochemical measurements without human intervention. A Bayesian optimization routine navigates
multidimensional composition spaces, allowing the platform to rapidly identify promising formulations.
As a proof of concept, BRINE mapped ionic conductivity in two aqueous electrolyte spaces (i) aqueous
mixtures of NaCl, KCl, MgCl,, and CaCl,, and (ii) battery-oriented mixtures containing ZnCl,, KCl, NH4Cl,
NaCl, and EMIMC], testing =230 unique compositions in under 20 hours and finding conductivities up to
3213 S m~L These results demonstrate how closed-loop autonomous experimentation and optimization
accelerate the identification of electrolytes with the highest conductivity across a large multicomponent
composition space, while minimizing experimental variability. This work lays the foundation for broader
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Introduction

Rapid advances in materials science and electrochemical tech-
nologies are driving demand for innovative experimental
methodologies that can explore increasingly complex systems.*
In electrochemical systems such as energy storage, electro-
chemical sensing, and electrocatalysis, the compositions of
electrodes, electrolytes, and interfaces are increasingly multi-
component.>* For example, high-entropy electrode materials,
formed by combining five or more elements to maximize
configurational entropy and stabilize host lattices, deliver
higher capacity retention and longer cycle life in batteries,
demonstrating the advantages of multi-component chemistries.
Similarly, high-entropy electrolytes, which may contain
multiple salts, solvents, and additives, can be tailored to engi-
neer ion transport and interfacial properties, resulting in
compositional spaces that far exceed what manual experimen-
tation can feasibly sample.>*

Although a variety of electrochemical methods are available
to study the properties of electrolytes,”" conventional
approaches typically rely on sequential, manual protocols that
are both time-consuming and prone to human error.***¢ These
limitations exacerbated when

are investigating mixed
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electrochemical studies using the BRINE platform.

electrolyte or high-entropy formulations, where manual work-
flows struggle to cover combinatorial spaces and are prone to
cross-contamination or measurement biases.””* To overcome
these bottlenecks, new automated platforms are needed to
systematically prepare, measure, and analyze large numbers of
electrolytes with minimal human intervention.

Recent developments in artificial intelligence, robotics, and
electrochemical measurement methods have led to the devel-
opment of electrochemical self-driving laboratories (SDLs) that
overcome these traditional limitations.?*** Several advanced
SDL platforms have been proposed in the literature, capable of
synthesizing materials, performing electrochemistry, and
leveraging machine learning algorithms to guide successive
experiments.’**** However, many existing platforms depend on
custom hardware, complex integration, and, in some cases,
significant financial investment.**** To address these limita-
tions, we designed BRINE (Bayesian Robotic Investigator of
Novel Electrolytes), a streamlined, cost-effective SDL tailored to
high-throughput exploration of electrolytes. BRINE achieves
high levels of autonomy using commercially available compo-
nents,* providing accurate and rapid experimental results
while lowering the barrier to entry.

Central to BRINE is the Opentrons OT-2 pipetting robot,
chosen for its precision, affordability, and programmability. We
modified the OT-2 to prepare electrolyte mixtures with sub-
microliter accuracy, perform electrochemical measurements,
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and coordinate washing and drying cycles for the electrodes.
BRINE uses a 3D-printed electrode assembly that houses plat-
inum electrodes and interfaces with a potentiostat for electro-
chemical measurements. To showcase BRINE's capabilities in
autonomously optimizing properties of complex electrolytes, we
used it to maximize ionic conductivity in mixed electrolyte
systems. While the performance of electrolytes depends on
multiple parameters, ionic conductivity is among the most
critical metrics considered in electrolyte design. However,
current models for predicting the ionic conductivity of electro-
lytes cannot capture the combined effects of ion association,
solvation structure, dielectric changes, and non-ideal mixing at
moderate to high concentrations.”**** The classical Debye-
Hiickel-Onsager theory applies only to infinitely dilute binary
salts, and later extensions tailored for specific binary or ternary
systems depend on system-specific parameters, thereby missing
the nonlinear, non-additive behavior observed in multi-
component electrolytes.***” Thus, we selected the problem of
maximizing ion conductivity of a mixed multi-component
electrolyte to demonstrate the functionality and advantages of
BRINE.

The entire BRINE workflow, from sample preparation and
measurement to data analysis and experimental redesign, is
orchestrated by a Bayesian optimization (BO) engine.*®*® This
engine balances exploration and exploitation, sequentially
proposing new electrolyte compositions predicted to maximize
ionic conductivity, while simultaneously improving the under-
lying Bayesian surrogate model by updating its understanding
of how composition affects conductivity.

BRINE leverages minimal hardware and open-source soft-
ware to deliver high-throughput electrochemical measurements
while showing a Level 4 autonomy.* Once an experimental
campaign is initiated, BRINE autonomously selects, conducts,
and analyzes experiments, ultimately updating its optimization
strategy without human oversight. This closed-loop architecture
minimizes human error, improves reproducibility, and accel-
erates convergence toward optimal formulations. Related
efforts have demonstrated the use of robotic platforms for
electrolyte screening. For example, Yik et al. introduced ODA-
Cell and its successor ODACell 2, which integrate automated
coin-cell assembly, robotic handling, machine-vision guidance,
and Bayesian optimization in a closed-loop framework to
accelerate electrolyte discovery. These studies highlight the
growing role of automation in electrolyte research while
underscoring the need for accessible and modular plat-
forms.***' In parallel, a recent study by Lin et al.** described
a similar platform for optimizing the coulombic efficiency of
electrolytes for zinc-ion batteries. However, their platform relied
on predefined experimental grids, whereas BRINE's Bayesian
engine actively determines sampling locations, highlighting the
distinction between high-throughput screening and true self-
driving experimentation.

BRINE addresses longstanding challenges in electro-
chemical studies, including variability in manual preparation
and slow throughput. By automating the preparation and
electrochemical measurements of properties, it generates high-
quality data that can feed machine learning models for
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electrolyte discovery. While demonstrated here for optimization
of ionic conductivity, the platform’s modularity and closed-loop
architecture pave the way for incorporating additional electro-
chemical measurements in future iterations, positioning BRINE
as a versatile and accessible tool for the electrochemical
research community.

Chemicals and materials

All chemicals used were of analytical grade. Sodium chloride
(NaCl, = 99.0%), potassium chloride (KCl, = 99.0%), magne-
sium chloride hexahydrate (MgCl,-6H,0, = 98.0%), calcium
chloride dihydrate (CaCl,-2H,0, = 97.0%), zinc chloride
(ZnCl,, = 98.0%), ammonium chloride (NH,Cl, = 99.5%), and
1-ethyl-3-methylimidazolium chloride (EMIMCI, = 98.0%) were
obtained from Thermo Scientific chemicals and used as
received without further purification. Deionized water (resis-
tivity = 18.2 MQ cm) was used as the solvent for all electrolyte
solutions to ensure minimal contamination and consistent
ionic behavior.

Hardware and electrode fabrication

Our experimental setup combines electrochemical instrumen-
tation, robotic automation, and custom-designed electrodes for
fully autonomous testing. The Opentrons OT-2 robot, widely
adopted for precise and reproducible liquid handling tasks, is
incorporated at the core of the system. Liquid manipulation
tasks, including aspiration, dispensation, mixing, electrode
immersion, and washing, are executed through custom Python
protocols.

We used an OT-2 Single-Channel P300 Gen2 pipette equip-
ped with compatible 300 pL pipette tips for accurate liquid
handling. A Single-Channel P1000 Gen2 pipette was modified to
handle our custom 3D-printed electrode, comprising two
parallel platinum strips (Pt || Pt) with a defined liquid exposure
area and an integrated cable holder (Fig. S1). The electrode
assembly was mechanically attached to the P1000 pipette,
ensuring synchronized movements and stable electrical
connection via secured potentiostat cables.

Ionic conductivity of the electrolytes was measured using
Electrochemical Impedance Spectroscopy (EIS) performed by
a Gamry 1010E potentiostat in a two-electrode configuration,
operated from 1.2 MHz to 5 kHz to precisely measure electrolyte
resistance at high frequencies (above 100 kHz).**** NEST 12-
well, 15 mL reservoirs were used to store electrolyte stocks and
electrode washing liquids (water and ethanol) on the BRINE
platform. The ethanol reservoir was continuously topped off
using an Aladdin AL-300 syringe pump. Electrolyte mixing and
measurements were performed in NEST 96-well, 200 pL plates.
A 5V DC fan facilitated rapid electrode drying post-washing.

Protocols and specifications
Electrolyte selection

BRINE's capability to find electrolyte compositions with
maximum ionic conductivity was tested in two aqueous

© 2025 The Author(s). Published by the Royal Society of Chemistry
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electrolyte systems. Because this manuscript represents the first
report of BRINE, the two campaigns were selected to demon-
strate the platform's performance under complementary
conditions. Campaign 1 employed a simple four-cation chloride
system (NaCl, KCl, MgCl,, CaCl,) that is chemically tractable
and allowed benchmarking of the optimizer's ability to balance
monovalent and divalent species without additional complex-
ities. Campaign 2, in contrast, was designed to highlight
BRINE's practical relevance for energy storage by focusing on
a Zinc-ion battery electrolyte space. Here we included ZnCl,,
NH,Cl, NaCl, KCl, and EMIMCI, reflecting formulations actively
investigated in zinc-ion and zinc-air battery systems. NH,CI was
incorporated due to its demonstrated ability to improve Zn
electrolyte performance through buffering capacity, hydrogen-
bonding-mediated transport, and stabilization effects.*™*
EMIMCI (1-ethyl-3-methylimidazolium chloride) was added to
represent functional additives commonly used in formulation
of Zn-ion battery electrolytes rather than a conductivity
enhancer.*** Ionic liquids of this type are widely reported to
suppress dendrite formation and promote uniform Zn deposi-
tion.**** The electrolytes with specific composition were
prepared by mixing aliquots from reservoirs that contained
concentrated solutions of salts. The concentrations of salts in
the reservoirs are summarized in Table S5.

Labware preparation

Two 15 mL reservoirs were placed on the OT-2 deck. The first
reservoir contained stock electrolyte solutions for automated
aspiration; the second housed four wells filled with DI water
and one well filled with ethanol to facilitate electrode washing
and drying (Fig. S2). Tip racks and additional well plates were
arranged as necessary.

Ionic conductivity measurement and optimization

Ionic conductivity (¢, S m™ ") was calculated using the empirical
relationship (eqn (1)):***

[

7= TR (1)

where I (m) is the electrode gap, A (m?) is the effective electrode
area, and R (Q) is the measured solution resistance. To mitigate
inaccuracies, we determined the electrode's cell constant (Keey
= [/A) empirically rather than geometrically (Fig. S3). A Python-
based circuit-fitting approach was employed to automatically
extract electrolyte resistance from their Nyquist plots.>®

The optimization goal for electrolyte mixtures was defined
mathematically as follows (eqn (2a) and (2b)):

max o
2a
(v} (2a)
V;=20 uL,
N
s.t. Z V; <330 pL, (2b)

i=1
VieN
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Here, V; denotes pipetting volumes of each electrolyte 7, N is the
total electrolyte count, the first constraint reflects the minimum
OT-2 pipette volume, the second constraint ensures no well
plate overflow, and the integer constraint reflects pipetting
practicality. Ambient conditions of approximately 25 £ 1 °C and
10% RH were maintained consistently throughout all experi-
ments to ensure reproducibility.

The closed-loop process involved four core sub-operations:
(1) solution preparation, (2) electrochemical testing, (3) elec-
trode washing and drying, and (4) data analysis with Bayesian
optimization, as detailed in Fig. 1.

Software integration and optimization strategy

Software and hardware coordination was provided by NIMS-
0S,”” an open-source orchestration system developed specifi-
cally for self-driving laboratories, offering centralized control of
all hardware and software interfaces. Real-time communication
between NIMS-OS and OT-2 employed a Python-based Web-
Socket APIL*® superior to REST-based approaches due to real-
time bidirectional data flow necessary for immediate experi-
mental feedback loops.*>*

Considering the discrete, noisy, and constrained nature of
our ionic conductivity optimization experiments, particularly
those involving EIS, which is known for its indeterministic and
non-smooth response characteristics, we implemented SMAC3
with a Random Forest (RF) surrogate model as the Bayesian
optimizer.*»*® RF was selected due to its superior handling of
noise and discrete variables and its significantly lower compu-
tational complexity (O(nlog n)) compared to Gaussian
Processes (O(n%)), making it particularly suitable for our real-
time closed-loop experiments. While Gaussian Process (GP)
models excel in smooth, continuous domains and provide
strong uncertainty quantification, their reliance on smoothness
assumptions and poor scaling with sample size make them less
effective under BRINE's discrete pipetting constraints and
measurement variability. Prior studies also show that RF-based
surrogate models can outperform GP-based approaches in
applied noisy, multi-source datasets, further supporting this
choice.®*

To avoid prior bias, SMAC3 was initialized without prior
data, using a structured three-phase acquisition strategy for
balanced exploration and exploitation efficiency®* as follows:

e Phase BEE (Balanced Exploration-Exploitation, = 50%
experiments): Alternating Expected Improvement (EI, £ = 0) and
Lower Confidence Bound (LCB, § = 1.2), to identify promising
regions while ensuring global parameter-space coverage.

e Phase FE (Focused Exploitation, = 30% experiments):
Targeted local refinement within +10 pL of previously optimal
mixtures using EI (§ = 0.05) to sharpen local maxima.

e Phase GE (Global Exploration, = 20% experiments):
Predominantly global searches using LCB (8 = 2.0), occasionally
interleaving EI (£ = 0) to revisit and refine promising regions.

This multi-stage curriculum allows transparent, reproduc-
ible, and budget-aware exploration of complex multi-modal
search landscapes. Unlike adaptive black-box switching strate-
gies (e.g., GP-Hedge), the staged SMAC3 approach provides
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Fig. 1 Closed loop process breakdown. The SDL follows the 4 stages shown with an orchestration unit responsible for all the interactions

between these components.

explicit control over exploration-exploitation scheduling, which
is advantageous under strict experimental budgets.®

Classical Design of Experiments (DoE) methods such as Box-
Behnken and D-optimal designs are highly effective for gener-
ating polynomial response surfaces, but they are not well-suited
to the electrolyte design space studied here. The space is
a discrete, mixture-constrained lattice dictated by pipetting
increments (=20 pL) and total volume constraints (=330 pL),
and ionic conductivity in concentrated multicomponent elec-
trolytes is inherently nonlinear, non-additive, and multimodal
with multiple local optima. These characteristics violate the
assumptions underlying polynomial DoE models, necessitate
redesign of infeasible DoE points, and cannot be fully encoded
within classical DoE frameworks. For these reasons, a D-
optimal design was used only as a baseline reference strategy
to benchmark BRINE's Bayesian optimization performance.

Autonomous workflow for ionic conductivity optimization

With the necessary SDL components in place, we tasked BRINE
with autonomously performing ionic conductivity measure-
ments and optimizing the conductivity through the following
iterative procedure (these steps are visualized in Fig. S4 and the
SI Video-1):

Step 1 (system initialization): each iteration begins with
calibration of the OT-2 robot's pipette and the electrode setup
positions, ensuring accurate subsequent operations.

Step 2 (electrolyte preparation): based on conditions
proposed by BO, the robot aspirates the specified electrolyte

Digital Discovery

volumes from the stock reservoir and dispenses them into the
target well. For the initial experiment, where no prior data
exists, the BO employs a constrained random sampling
strategy.®® Pipette tips are replaced after each aspiration-
dispense cycle to prevent cross-contamination. Following elec-
trolyte addition, thorough mixing is achieved by repeatedly
aspirating and dispensing 150 pL of the solution four times,
ensuring solution uniformity. Prior to each campaign, prelim-
inary solubility assessments were performed to establish upper
concentration limits for each salt, and these values were used to
define the optimizer's search constraints. After each campaign,
the wells were carefully inspected and no precipitation or phase
separation was observed, confirming that all mixtures remained
homogeneous during conductivity measurements.

Step 3 (electrochemical measurement): the electrode
assembly is carefully immersed in the prepared solution, fully
submerging the designated active area of the electrode strips.
Ionic conductivity measurement (via EIS) is then automatically
initiated.

Step 4 (electrode cleaning and drying): after measurement
completion, the electrode undergoes automated washing in DI
water and ethanol (Fig. S2), followed by drying facilitated by
airflow from a 5 V fan.

Step 5 (data analysis and optimization): conductivity data is
relayed to the orchestration unit, stored systematically, and
subsequently analyzed by the Bayesian optimizer. Based on trends
from the updated dataset, the Bayesian optimizer proposes the
next experimental conditions, initiating the subsequent iteration.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Results and discussion
Campaign findings

The room temperature ionic conductivities of the four stock
electrolytes are plotted in Fig. 2. Across their respective solu-
bility limits, KCl displays the highest conductivity, rising
monotonically to = 33 S m™ " at 4 M. NaCl follows a similar
upward trend, reaching = 22 S m™ " near 5 M. In contrast, CaCl,
exhibits a conductivity maximum (=21 S m ') at = 3.5 M
before declining slightly, consistent with viscosity-induced
transport limitations at higher concentrations. MgCl, remains
the poorest conductor throughout the tested range, plateauing
below 17 S m ™' even at 4 M. These baseline measurements are
consistent with the reported ionic conductivities of these solu-
tions®"**® and establish a reference for interpreting the
Bayesian-optimized mixtures discussed in subsequent sections,
while explaining why KCl-rich formulations frequently domi-
nate the conductivity maxima identified by BRINE.

We tested BRINE's capability in maximizing the ionic
conductivity of mixed electrolytes in two experimental
campaigns. The first closed-loop campaign comprised 114
experiments executed in three sequential phases: Balanced
Exploration-Exploitation (BEE, 61 runs), Focused Exploitation
(FE, 30 runs), and Global Exploration (GE, 23 runs). For each
composition, a single mixture was prepared, and EIS measure-
ments were performed three times consecutively; the average of
the three results was reported. The entire campaign was
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completed in = 10 h, underscoring the high-throughput capa-
bility of the platform.

Fig. 3 shows both the evolving salt concentrations and the
ionic conductivity of the tested electrolytes. During the BEE
phase, the Bayesian optimizer sampled broadly, confirming
that NaCl and KCl dominate conductivity while MgCl,
contributes negligibly. Once this trend was captured by the
surrogate model, the algorithm entered the FE phase,
converging to a narrow region rich in NaCl and KCl. The
subsequent GE phase intentionally perturbed the search space
to check for missed global optima and improve model uncer-
tainty. The highest conductivity recorded was 32.12 S m™ ', an
electrolyte composed of 2.05 M NaCl/1.61 M KC1/0.09 M MgCl,/
0.22 M CaCl, (£0.10 M precision). The second-best conductivity
(31.48 S m™ ") was for an electrolyte which contained 0.42 M
Nacl, 1.77 M KCl, 0.09 M MgCl, and 1.04 M CaCl,. Both high-
performing compositions contained significant amounts of
KCl. However, the top-performing composition was primarily
dominated by NaCl, whereas the second one had CacCl, as the
secondary dominant electrolyte. MgCl, consistently had
minimal influence, as evidenced by the BO minimizing its
concentration.

While Campaign 1 demonstrated BRINE's ability to maxi-
mize conductivity in an unconstrained, four-salt system, prac-
tical battery electrolytes often require a minimum
concentration for specific ions. To test BRINE under such
application-driven constraints, we designed Campaign 2
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Fig. 3 Bayesian optimization of ionic conductivity in Campaign 1. Stacked bars (left axis) show total electrolyte concentration and salt fractions;
the black dashed line (right axis) indicates measured conductivity. Blue and orange triangles mark the first (59) and second (68) conductivity
maxima, respectively. The three BO phases (BEE, FE, GE) represent successive strategy regimes.

around a model Zn-ion battery formulation and enforced
a minimum of 0.5 M ZnCl, in every mixture. This additional
requirement both narrows the composition space and chal-
lenges the optimizer to balance the sluggish mobility of Zn*>
with highly conductive monovalent cations. The results below
show how BRINE navigated this constrained landscape to locate
new conductivity optima. As shown in Fig. 4, BRINE executed
120 Bayesian-guided experiments over roughly 12 hours, going
through BEE (70 runs), FE (30 runs) and GE (20 runs). Early
balanced iterations revealed that NH,CI and KCl substantially
enhanced conductivity, whereas higher ZnCl, fractions sup-
pressed it because of increased viscosity and ion pairing.
Guided by these trends, the optimizer concentrated on NH,Cl-
rich regions during the focused phase, then broadened the
search in the global phase. The highest conductivity obtained
was 28.09 S m~! for 0.62 M ZnCl,, 1.03 M KCl, 1.60 M NH,CI,
0.21 M NaCl and 0.04 M EMIMCI; notably, this formulation
emerged during the exploratory phase, underscoring the value
of re-expanding the search after intensive local optimization.
The second-best mixture, 27.24 S m™*, contained 0.86 M ZnCl,,
0.55 M KCl, 1.66 M NH,CI, 0.25 M NacCl and 0.03 M EMIMCL.
Therefore, NH,ClI consistently emerged as the dominant salt in
the highest-performing mixtures, aligning with prior reports of
its beneficial role in Zn-based electrolytes. Meanwhile, EMIMCI
was consistently selected only at trace concentrations (0.03-0.04
M), confirming that under a conductivity-only objective it does
not enhance bulk conductivity directly, while remaining rele-
vant for future multi-objective optimization targeting interfacial
stability and coulombic efficiency. Although both optima share
NH,CI as the dominant salt, their secondary contributors differ
(KClI in the global maximum and ZnCl, in the highest local
maximum), indicating multiple high-conductivity “islands”
within the constrained five-component space.

Digital Discovery

Interestingly, the global maximum identified in Campaign 1
was dominated by NaCl rather than KCl, despite NaCl's lower
intrinsic mobility and conductivity compared to KCl. In
Campaign 2, while NH,Cl was favored as expected, ZnCl,
generally considered a poor conductor due to sluggish ion
transport, emerged as the secondary dominant salt in one
optimum. These findings are not predictable from dilute-limit
conductivity values or simple chemical intuition,* high-
lighting the importance of experimental, probability-based
optimization in mapping concentrated, multicomponent elec-
trolytes. Furthermore, BRINE identified high-conductivity
regions very early in the campaigns. In Campaign 1, a formula-
tion sampled at iteration 13 already achieved 27.42 S m™,
representing ~85% of the maximum (32.13 S m™'). In
Campaign 2, iteration 17 reached 22.36 S m™", =80% of the
maximum (28.10 S m™"). In both cases, the differences in salt
concentrations between the early high-performing formulations
and the final maximum were within 0.02-0.69 M, showing that
once BRINE located the correct basin, later iterations primarily
refined compositions within a narrow sub-molar window. For
further clarification, Fig. S5 plots the standalone electrolyte
concentration against solution conductivity for all composi-
tions, and Fig. S6 quantitatively depicts the aforementioned
results in a scatter plot format. Moreover, Table S7 shows the
comprehensive dataset, including electrolyte concentrations
and ionic conductivities. We compared BRINE's optimization
performance against a traditional Design of Experiments (DoE)
strategy (D-optimal design). The results, presented in Note S1,
Fig. S7, and Table S1, demonstrate the superior performance of
BRINE when evaluated using a recently proposed bench-
marking framework.”

© 2025 The Author(s). Published by the Royal Society of Chemistry
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B8 = 2) revealed the true global maximum.

Validation and durability

To assess measurement stability and precision, BRINE was
tasked to measure the ionic conductivity of Campaign 2's most
conductive composition (¢ = 32.13 S m™ ") by performing 15
triplicate EIS measurements alongside a manual benchmark
measurement. The findings in Fig. 5 show a total SD of 0.17 S
m ™' (=0.6%) and a pooled within-experiment SD of 0.05 S m ™,
confirming high repeatability for a single electrolyte. Comple-
mentary to this, campaign-wide triplicate conductivity
measurements across all compositions yielded a standard
deviation within 1 S m™" (=2.5-2.8% relative error; Fig. S8),
providing broader validation of the workflow's reproducibility.
For additional context, Table S8 compares BRINE's EIS-derived
conductivities for the top-performing electrolytes from
Campaigns 1 and 2 with readings from a benchtop conductivity
meter (Fisherbrand Accumet AB200), showing close agreement
within the instrument's tolerance range.

Phase-wise analysis shows that 80% of the conductivity gain
occurred in the first forty balanced iterations. The supporting
phases (Focused Exploitation and Global Exploration) added up
to 5 S m ' by fine-tuning the electrolyte concentrations,
collectively demonstrating BRINE's ability to navigate con-
strained electrolyte landscapes, avoid premature convergence
and identify distinct local and global optima essential for
battery-grade electrolyte design (see Table S9).

To validate BRINE's optimization pipeline and quantify
surrogate-model reliability, we compared Random Forest (RF)
predictions with experimental conductivities and separately
trained a zero-noise Gaussian Process (GP) on the full data set.
Fig. 6 overlays RF-predicted conductivity surfaces and associ-
ated uncertainty maps for the most influential salt pairs from

© 2025 The Author(s). Published by the Royal Society of Chemistry

each campaign, KCI-CaCl, for Campaign 1 and NH,CI-ZnCl,
for Campaign 2, while all remaining salts are fixed at their
experimentally determined optima. In both cases, the RF model
places the global or local maximum within 0.25 M of the
measured peak, and prediction uncertainty (o) falls below 2 S
m ™' in these neighborhoods, indicating confident interpolation
near the optima. The GP mean surface (Fig. S9) reproduces the
RF maxima to within 0.4 S m~* and yields a root-mean-square
error < 4%, confirming that model choice does not affect the
location or magnitude of the conductivity peaks.

Together, these results demonstrate that (i) the RF surrogate
provides accurate, low-uncertainty guidance throughout the
Bayesian search, (ii) the GP cross-check corroborates RF
predictions, and (iii) BRINE's automated measurements are
repeatable and reproducible, confirming the platform's reli-
ability for data-driven electrolyte research. It is noteworthy that
when compared with dilute-limit predictions from Kohlrausch's
law, Campaign 1 optimum exhibited a =45% reduction in
conductivity relative to the additive estimate, confirming the
strong non-ideal transport effects present in these systems (see
SI for detailed calculations).

BRINE limitations and improvements

Despite its demonstrated capabilities, BRINE faces several
constraints. Experiments lasting longer than two days risk
solvent evaporation, which can alter stock concentrations and
require replenishment. Environmental fluctuations in
temperature and humidity may also introduce variability in
EIS measurements; therefore, extended campaigns would
benefit from operation inside a controlled environmental
chamber.
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Fig. 5 Reproducibility of conductivity measurements. Red points represent the results of replicate measurements, and blue diamonds indicate
replicate averages per iteration. BRINE achieved a grand average conductivity of 28.71 S m~* with a total standard deviation (SD, all data points) of
0.17 Sm™ and a pooled within-experiment SD of 0.05 S m™. A manually prepared sample, measured via EIS using the same Pt||Pt electrode
setup and potentiostat, yielded 28.55 S m™! (green star), in close agreement with the automated results. See Note S2 for detailed equations.
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Fig. 6 Random forest-based Bayesian optimization (BO) conductivity predictions for selected electrolyte pairs. Campaign 1 (A): KCl and CaCly;
Campaign 2 (B): NH4Cland ZnCl,. Color scales represent BO-predicted conductivity (g, left plot in each pair) and prediction uncertainty (a,, right
plot in each pair). Red contours indicate regions exceeding volume constraints (infeasible region). Star markers represent predicted (Bayesian)
and measured (experimental) conductivity maxima. Predictions align closely (<0.25 M deviation) with experimental measurements, demon-
strating accurate and confident surrogate modelling near optimal conditions.

In its current configuration, BRINE is only capable of per-
forming EIS measurements. While the electrode assembly is
compatible with a suite of other electrochemical techniques,
additional scripts and analysis workflows would need to be
developed. Planned upgrades include new electrode assem-
blies, cell designs, and protocols for cyclic voltammetry, linear
sweep voltammetry, chronopotentiometry, and chro-
noamperometry in both two- and three-electrode setups. These
improvements will be reported in our future publications.

BRINE also has several hardware constraints. The OT-2 deck
space limits the number of available cells, and extending
experimental sequences would require additional automation,
such as integration with a robotic arm. Pipetting resolution
further imposes a lower bound on the concentrations accessible
from stock solutions. This limitation did not prevent

Digital Discovery

identification of global optima when relatively few inputs (<7)
were explored, partly because electrolyte conductivity tends to
increase at medium to high concentrations. However, as the
number of salts increases, the fraction range of each compo-
nent becomes smaller, causing more concentration ranges to
fall into infeasible regions and increasing the risk of the
Bayesian optimizer being confined to local maxima. Strategies
to mitigate this include preparing multiple stock solutions at
varying concentrations, using custom-made well plates with
larger wells, or employing advanced programmable pipettes.

Conclusions

BRINE is an open-source electrochemical self-driving laboratory
capable of autonomously exploring multicomponent electrolyte

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00353a

Open Access Article. Published on 09 December 2025. Downloaded on 1/8/2026 1:22:07 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

spaces to identify high-performance mixed electrolytes with
both speed and reliability. Across two closed-loop Bayesian
campaigns, the platform screened more than 230 unique
formulations in under 20 hours, achieving conductivities of
32.12 S m ™' in an unconstrained four-salt system and 28.09 S
m~' when a 0.5 M ZnCl, constraint was imposed. Random
Forest and Gaussian Process surrogates located experimental
optima within +0.25 M, while repeated EIS measurements
demonstrated a total standard deviation of only 0.17 S m™*
(=0.6%), confirming high precision and measurement reli-
ability. Although the present study focused on ionic conduc-
tivity, BRINE's modular hardware and Python control
architecture can readily accommodate other electrochemical
techniques, such as cyclic voltammetry, galvanostatic cycling,
and linear sweep voltammetry, enabling comprehensive opti-
mization of electrolyte properties for specific battery chemis-
tries. Future work will leverage these expanded capabilities to
identify application-tailored electrolytes that balance conduc-
tivity, electrochemical stability, and interfacial compatibility,
positioning BRINE as a versatile foundation for future data-
driven electrolyte discovery.
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