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reparation of multiconfigurational
states for quantum chemistry

Gabriel Greene-Diniz, * Georgia Prokopiou, David Zsolt Manrique
and David Muñoz Ramo

The ability to prepare states for quantum chemistry is a promising feature of quantum computers, and

efficient techniques for chemical state preparation is an active area of research. In this paper, we

implement and investigate two methods of quantum circuit preparation for multiconfigurational states

for quantum chemical applications. It has previously been shown that controlled Givens rotations are

universal for quantum chemistry. To prepare a selected linear combination of Slater determinants

(represented as occupation number configurations) using Givens rotations, the gates that rotate between

the reference and excited determinants need to be controlled on qubits outside the excitation (external

controls), in general. We implement a method to automatically find the external controls required for

utilizing Givens rotations to prepare multiconfigurational states on a quantum circuit. We compare this

approach to an alternative technique that exploits the sparsity of the chemical state vector and find that

the latter can outperform the method of externally controlled Givens rotations; highly reduced circuits

can be obtained by taking advantage of the sparse nature (where the number of basis states is

significantly less than 2nq for nq qubits) of chemical wavefunctions. We demonstrate the benefits of these

techniques in a range of applications, including the ground states of a strongly correlated molecule,

matrix elements of the Q-SCEOM algorithm for excited states, as well as correlated initial states for

a quantum subspace method based on quantum computed moments and quantum phase estimation.
1 Introduction

Quantum computation has the potential to make a large impact
on quantum chemistry and condensed matter physics. This has
motivated a recent rapid development of techniques for repre-
senting quantum chemical states on gate-based quantum
computers.1–12 From the point of view of general quantum state
preparation, many research works have focused on maximizing
the efficiency of loading classical data into a quantum processor
and preparing a quantum state to represent those data.13–18 It is
interesting to consider applications of the latter approach to
quantum chemistry, where the classical data represent previ-
ously obtained chemical information, and the quantum
computer can be used to further evolve the quantum chemical
state (for example, to increase the accuracy of the representa-
tion of the ground or excited states of a molecule).

The existence of gate sets that are universal for quantum
chemistry (in the sense of spanning the space of all states that
preserve fermionic symmetries) has recently been proved.3

These gates take the form of Givens rotations (GRs) to represent
particle-number-conserving excitations that correlate the occu-
pations of different fermionic modes. GRs have also been used
1NL Cambridge, UK. E-mail: gabriel.

y the Royal Society of Chemistry
to construct gate fabrics that can navigate fermionic Fock
spaces.1 Regarding the preparation of multicongurational
states (where each conguration represents electrons distrib-
uted throughout a molecular orbital basis, in a second quan-
tized framework), if the congurations are specied a priori
then a sequence of GRs can be applied to the circuit to prepare
the desired state vector.3 However, GRs will mix any basis states
with qubit subspaces that match those involved in the rotation.
To ensure that only the desired basis states are included in the
state vector, GRs can be controlled by qubits outside the rota-
tion space3 (which we refer to as “external” controls to distin-
guish these from internal CNOTs within the GR gate
decomposition). However, externally controlling each GR on all
qubits not directly involved in the rotation leads to very large
circuits when decomposed into typical hardware gate sets. The
question then remains as to how to apply external controls to
guarantee the desired state vector is produced, while avoiding,
when possible, externally controlling all GRs on all qubits
outside the excitation. A specic example of this was presented
in3 for a 6-qubit state consisting of 4 occupation number (ON)
congurations. In this paper, we provide a general algorithm for
nding external GR controls automatically for any particle-
number-preserving fermionic state.

We also consider the previously proposed method of Gleinig
and Hoeer to prepare sparse quantum states.19 Initially
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designed to overcome the problem of exponentially scaling
resources for arbitrary quantum state preparation,14,20,21 the
sparse state preparation (SSP) method takes advantage of the
fact that many interesting quantum states span a relatively
small section of the full Hilbert space, where the number of
non-zero basis coefficients is far less than O(2n). This is the case
for typical states of interest in quantum chemistry; the full
conguration interaction (FCI)22 wavefunction obeys funda-
mental fermionic symmetries (e.g. spin and particle number
conservation) which rule out many basis states of the entire
Hilbert space. Additionally, the success of methods such as
semistochastic heat-bath conguration interaction (SHCI)23 and
perturbatively selected conguration interaction (CIPSI)24

exemplify the fact that a relatively small number of congura-
tions can oen provide a good approximation to the full
wavefunction.

The importance of the sparsity of chemical wavefunctions is
emphasized when considering approximations to the ground
state, particularly in situations requiring “warm start” states, i.e.
those states with large overlap with the true ground state
(relative to single conguration Hartree–Fock (HF) states) yet
remain sparse enough to be efficiently prepared. Considering
the example of quantum phase estimation (QPE) in which the
success probability is proportional to the overlap between the
initial state and the true ground state, and the fact that in many
interesting cases (e.g. strongly correlated systems) the HF state
has signicantly low overlap, the ability to efficiently and
conveniently prepare multicongurational states can be highly
benecial. A recently published work25 noted the method of
Gleinig and Hoeer as a non-variational approach to quantum
chemical state preparation, and provided a comparison to other
sparse state preparation approaches in terms of asymptotic
scaling. Here, an implementation of Gleinig and Hoeer's
approach suitable for quantum chemistry, along with its inte-
gration with various ground and excited state methods, is re-
ported and applied to a strongly correlated chemical system.

In this paper we compare the techniques of externally
controlled GRs3 and Gleinig and Hoeer's scheme19 for
preparing quantum circuits corresponding to selected linear
combinations of computational basis states, where the latter
represent occupation number congurations (Slater determi-
nants). These techniques are implemented in the InQuanto26–28

soware package, and we demonstrate their utility for a wide
range of quantum algorithms useful for quantum chemistry.
2 Preparation of multiconfigurational
states in quantum circuits
2.1 Givens rotations with external controls

Consider an arbitrary single electronic conguration specied
by an ON conguration22 in a nite basis of spin orbitals j., fi,
., fj, .i with fermionic occupation numbers fi, fj ˛ {0, 1},
where fi s fj, and i, j label orbitals involved in the excitation. An
excitation can be viewed as a mixing between ON congurations
with different occupations. Adopting the Jordan–Wigner
(JW) transformation between fermionic and qubit algebras29,30
Digital Discovery
j., fi, ., fj, .i1j., qi, ., qj, .i where qi, qj ˛ {0, 1} are
individual qubit states, a fermionic excitation can be encoded
as a unitary operation applied to a register of qubits repre-
senting the ON conguration, rotating it to a convex
combination

C
��.; fi;.; fj ;.

�
1U

��.; qi;.; qj ;.
�

¼ c
��.; qi;.; qj ;.

�þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p ��.; qj ;.; qi;.
�
: (1)

Here, C is a fermionic excitation operator, and U is a unitary
operator (encoded as quantum gates) applied to the qubit
register. Note that C ðUÞ should preserve the total number of
electrons (the qubit register Hamming weight).

Eqn (1) corresponds to a 1-body excitation. Using a 2-qubit
state as a minimal example, the excitation can be expressed in
the computational basis as a GR,1–3 whose action on the 2nq=2

dimensional Hilbert space is to rotate in a 2 dimensional
subspace of the state vector0

BBBBB@
1 0 0 0

0 c1 c2 0

0 c3 c4 0

0 0 0 1

1
CCCCCA

0
BBBBB@

j00i;
j01i;
j10i;
j11i;

1
CCCCCA ¼

0
BBBBB@

j00i;
c1j01i þ c2j10i;
c3j01i þ c4j10i;

j11i;

1
CCCCCA: (2)

The coefficients of the orthonormal basis are omitted for the
sake of clarity (the state vector is normalized to unity). The real
scalars are restricted by jc12j + jc22j = jc32j + jc42j = 1 with c2 and
c3 having opposite signs, to ensure unitarity. This GR can be
written as

G2ðqÞ ¼

0
BBBBB@

1 0 0 0
0 cos q sin q 0

0 �sin q cos q 0

0 0 0 1

1
CCCCCA (3)

where q parameterizes the quantum gates implementing the
Givens rotation.1,3 Eqn (2) and (3) show, in a small example, that
individual GRs preserve the particle number within the
subspace to which they are applied. Generalizations up to nelec-
body excitations (with nelec the number of electrons) for nq $

2nelec qubits are obtained by extending the mixing elements to
other entries of the 2nq × 2nq matrix (explicit matrices for 2-body
rotations on 4 qubits are given in ref. 1).

The Hamming distance between two binary strings x and y,
dened as

hðx; yÞ ¼
Xnq
i

xðiÞ4yðiÞ; (4)

plays a central role in the use of GRs to prepare multi-
congurational states. h is related to the excitation order
l ¼ h=2 for l-body excitations between two ON congurations.
The qubits on which the excitation unitary acts can be specied
using h and its decomposition into an array of qubit-wise XOR
values (x(0)4 y(0), x(1)4 y(1),., x(nq)4 y(nq)). The indexes of
non-zero elements of this array correspond to the GR qubit
indexes, while the value of h species the excitation order.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Selected linear combinations of ON congurations with xed
coefficients can be prepared using sequences of GRs applied to
the circuit. Each GR mixes a pair of basis states (i.e. excitation)
and its rotation angle q can be obtained from state vector
coefficients via recursive normalization (see Arrazola et al.3).
Alternatively, optimized coefficients can be found by varying the
gate angles within each rotation in a variational algorithm. As
mentioned in the introduction (and elaborated in previous
work3), the gates that encode each GR may need to be externally
controlled to ensure that the sequence of GRs does not yield
unwanted basis states. Thus, all the steps necessary to prepare
a linear combination of ON congurations on a quantum circuit
are at hand, apart from a general method to specify the external
controls.

In the following subsection, we outline a procedure to
automatically accomplish this task given a selected set of ON
congurations, which species the excitation unitaries and the
external controls needed to accomplish each GR. This can be
used to build the circuit representing the multicongurational
state.

2.1.1 Algorithm to specify givens rotations and external
controls. In Algorithm 1, a procedure is presented to nd
a sequence of GRs and their external controls required to
prepare a selected linear combination of ON congurations.
The input is an ordered set of D bit strings representing the ON
congurations. Note that the reference for excitations is the rst
member of the input set, and the desired state vector is built up
as sequential excitations relative to this reference. The ordered
D – 1 Hamming distances hðx1; xd. 1Þ and their qubit compo-
nents are then stored. Gate angles of each GR, dependent on the
ON coefficients, can be found by using recursive normalization
of ON coefficients (a specic example is also discussed in
Section 3.1.1).

Let Ge represent a rotation that linearly mixes the reference
with a basis state indexed by e = 2,., D. The excitation indexes
are obtained from a decomposition of the Hamming distance
(non-zero contributions to the sum in eqn (4)), which species
each GR unitary in the (D – 1)-length sequence, i.e.
Ghðx1;xeÞ
e ¼ Gðihðx1;xeÞe Þ, where ihe is a tuple of indexes of length 2l

corresponding to nonzero contributions to hðx1; xeÞ. Note that
for the basis state index e = 2, external controls are not needed
by denition.

For a given ordered set of input congurations, the search
for external controls required for Ghðx1;xeÞ

e depends on whether
a “previous” (p < e) basis state is “rotatable” by Ghðx1;xeÞ

e , and if so
controls are applied to ensure that Ghðx1;xeÞ

e will not act on any
basis state with index p = 2, ., e – 1.

For basis states xe separated from the reference x1 by
hðx1; xeÞ ¼ 2 or hðx1; xeÞ ¼ 4, Givens rotations G2

e or G4
e , respec-

tively, can be used to mix xe with x1, and the external controls
found by Algorithm 1 ensure that the circuit maintains the
desired state vector. For G2

e and G4
e , we use the gate decompo-

sitions presented in previous works for 1-body and 2-body GRs1,3

(compilations of these circuits in the H-series gate set31 are
given in the Appendix Fig. 10). However, when hðx1; xeÞ. 4,
a unitary is required that encodes the (l > 2)-body excitation. To
this end, we adapt a gadget described by Arrazola et al.3
© 2025 The Author(s). Published by the Royal Society of Chemistry
consisting of (a) a sequence of multi-controlled SWAPs, (b)
a central G1

e , and (c) the reverse of (a). In the Appendix section
A.1, Algorithm 2 describes how the indexes of these unitaries
and their external controls are found. Compared to Arrazola
et al.,3 our scheme achieves a lower overhead of external
controls for SWAPs and the central G2

e to combine ON cong-
urations separated by l > 2. An example of this for a 3-body
excitation of the j111000i conguration is shown in Fig. 12.

Once the Ghðx1;xeÞ
e for all xe are found, along with their external

controls (if required), the desired state jji can be prepared as

jji ¼
 Y

e

Ghðx1 ;xeÞ
e

!
jx1i: (5)
2.2 Sparse state preparation for quantum chemistry

In this section, we briey describe Gleinig and Hoeer's sparse
state preparation (SSP) method. For more details, we refer the
reader to the original article.19 Here, we provide a brief
description for completeness and highlight those aspects most
relevant to multicongurational state preparation for quantum
chemistry. This method essentially solves the problem of
nding some n-qubit circuit U†

SSP such that U†
SSPjji ¼ j05ni,

where jji is the desired n-qubit state to be prepared. Knowing
U†

SSP, one can reverse this to obtain the state preparation unitary
USSP such that the desired state is
jji ¼ ðU†

SSPÞ
†j05ni ¼ USSPj05ni. The input to the SSP method is

an unordered set S ¼ fx1;.; xDg of bit strings representing ON
congurations, with normalized coefficients cd such that the

state to be prepared is jjðSÞi ¼ PD
d¼1

cdjxdi and
PD
d
jcdj2 ¼ 1.
Digital Discovery
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In the ith iteration of the algorithm,19 an arbitrary angle
(possibly controlled) 1-qubit rotation gate along with an
arrangement of NOT and CNOT gates (collectively labeled here
as U i) are found, which if applied to the state at the ith iteration
results in a new state hosting jSij ¼ Di < Di−1 non-zero basis
coefficients (where D0^D]jSj). This is accomplished by
“merging” two bit strings x1,i, x2,i contained in Si, where merging
amounts to applying U i such that U i

��jðf.; x1;i; x2;i;.; gÞi ¼���j0 ðf.; x2;i;.; gÞi (up to global phase). The arrangement of gates
in each U i are determined by the distribution of binary values
throughout the D bit strings.19 We note that for real-valued cd the
Ry(q) gate parameterized by angle q is sufficient to represent the 1-
qubit rotation in each U i.

The gate angles of the SSP method, which determine the
values of cd, are obtained on-the-y and enter in the 1-qubit
rotations, each of which mixes 2 basis states x1,i, x2,i at a given
iteration i of the SSP algorithm; the ith rotation angle is ob-

tained by normalizing the x2,i coefficient c2,i to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1;i2 þ c2;i2

p
and

taking the arcsin. For the next i + 1 iteration, the coefficient c2,i
is replaced by the previous normalizer

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1;i2 þ c2;i2

p
, and the

angle of the (i + 1)th single qubit rotation is obtained for x1,i+1,
x2,i+1 as in the previous iteration. For an example of this, see
Gleinig and Hoeer's paper.19

An important consequence of this algorithm is that the
sequence of U i applied to the initial circuit j05ni is independent
of the order of bit strings provided by the user at input. This is
a major difference with the GRmethod described in Section 2.1,
and highlights the lack of a “reference” ON conguration for
excitations in the SSP method (whereas in the GR method the
excitation reference is xed as the rst member of the ordered
set of input bit strings, and all GRs subsequently applied can be
considered as rotations relative to the reference). While this
does not affect the behavior of SSP-prepared circuits for xed
(non-variational) cd, variational applications of this method (in
which gate angles are variationally optimized, hence leading to
variationally optimized cd) can be affected, as discussed in
Section 3.1.1.
2.3 Methods which benet from multicongurational state
preparation

In the following subsections wemention a non-exhaustive list of
methods which we use to demonstrate the utility of circuit
preparation to represent selected linear combinations of ON
congurations. We also mention previous applications, namely
the preparation of N ± 1-particle states for Green's functions,32

and quantum circuit representations of CASSCF (complete
active space self-consistent eld) wavefunctions to study orbital
entanglement.33

2.3.1 Variational quantum eigensolver. The variational
quantum eigensolver (VQE)7 is a hybrid quantum-classical
algorithm. As initially proposed, VQE utilizes a quantum
computer to perform measurements of the expectation value of
a Hamiltonian taken with respect to a parameterized ansatz for
the wavefunction, which is optimized by a classical processor
based on a minimization of the energy according to the varia-
tional principle.
Digital Discovery
On present-day noisy intermediate scale quantum (NISQ)
hardware, the originally proposed form of VQE is signicantly
limited by various sources of noise (e.g. qubit decoherence, gate
error rates, state preparation and measurement errors). Hence,
in this work, VQE is utilized as a classical optimizer of gate
angles q

!
in multicongurational state circuits, which directly

translates into optimization of basis state (ON conguration)
coefficients of the circuit state vector. This demonstrates how
the methods for preparing multicongurational state circuits
(Section 2.1 and Section 2.2) can be used to prepare variational
ansatzes for VQE applied to quantum chemistry. In this context,
VQE is run in an ideal setting in which quantummeasurements
are classically simulated so that

���jð q!Þi consists of ideally
optimized basis coefficients.

���jð q!Þi can then be used as the
initial (warm start) state in subsequent methods (such as
quantum subspace methods, or quantum phase estimation).
One can also measure expectation values of the Hamiltonian in
a noisy setting using offline optimized

���jð q!Þi to quantum
compute estimates of the ground state energy corresponding to
ideal VQE parameters (see Section 3.1.1).

2.3.2 Quantum computed moments. A wide range of
quantum subspace methods currently exist,34 which generally
attempt to solve for accurate approximations to low-lying
eigenvalues of a given Hamiltonian Ĥ by projecting onto
a nite-dimensional subspace spanned by a set of basis states.
Krylov basis states correspond to a subspace spanned by
applying powers of the Hamiltonian to a trial state (reference),
and various forms of Krylov subspace methods have recently
been investigated (see a recent review34 and references therein).
The quantum computed moments (QCM) approach, recently
introduced by Vallury et al.35 and subsequently applied in
various contexts,32,36 also utilizes powers (or moments) of the
Hamiltonian Ĥ. While essentially constituting a subspace
method, the QCM approach does not explicitly construct the
Krylov basis states on a quantum circuit. Rather, QCMs provide
a correction to the energy that encodes electronic correlation
beyond that included in hĤi (where hi denotes the expectation
value with respect to an input state that approximates the exact
ground state). Based on the cumulant expansion of the Lanczos
diagonalization method, the elements of the tridiagonalized
representation of Ĥ can be expressed in terms of polynomials of
hĤmi, where the maximum value of m is related to the dimen-
sion l of the subspace expansion as 2l – 1.

By deriving a truncation of the Lanczos expansion atm = 4,37

a non-perturbative approximation to the ground state energy
referred to as QCM4 can be expressed using cumulants cm (also
referred to as connected moments)

cm ¼
D
Ĥ

m
E
�
Xm�2

p¼0

 
m� 1

p

!
cpþ1

D
Ĥ

m�p�1
E
; (6)

EQCM4 ¼ c1 � c2
c2

2

c23 � c2c4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3c23 � 2c2c4

p
� c3

�
: (7)

In this work, we also utilize the connected moments
expansion38–41 in which the “t-expansion” of Horn and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Weinstein42 can be expressed in terms of cn. This leads to
alternative expressions of the energy to various orders of
moments. Here we consider the CMX2 formula, in which “2”
refers to the dimension of the associated subspace l

ECMX2 ¼ c1 � c2
2

c3
(8)

hence this can be considered as an energy correction up to m =

2l – 1= 3. We compare CMX2 to QCM4 as a lower-cost (generally
less measurements due to lower-order moments), yet more
approximate form of the energy.

To obtain expectation values hĤmi, the fermionic Hamilto-

nian is JW encoded as Ĥ
m¼1 ¼P

r
hr;m¼1P̂r;m¼1 (where Pauli

strings P̂r,m are tensor products of Pauli gates spanning the
qubit register and hr,m are real coefficients), then Ĥm > 1 are
obtained by recursive multiplication of Ĥ. hĤmi can then be
computed from quantum hardware measurements in the
computational basis via Pauli string averaging. For ideal
simulations, expectation values are computed classically
(considered as the limit of innite sampling in the absence of
device noise).

We note that the use of multicongurational (or multi-
reference) initial states for connected moment expansions of
the energy has a long history in classical computational chem-
istry.38 In Section 3.1.2 we show a quantum computational
version of this approach, where the circuit corresponding to the
initial state is tailored to linear combinations of specic ON
congurations (Slater determinants).

2.3.3 Quantum phase estimation and Hamiltonian simu-
lation. Quantum Phase Estimation (QPE) extracts ground or
excited state energies when the prepared initial state has a large
overlap with the desired target eigenstate. A promising alter-
native to canonical QPE uses Hamiltonian simulation with
a Hadamard test to measure the complex overlap between the
initial state and the time-evolved states at several time steps.
The resulting time-series is then post-processed, e.g. by
quantum complex exponential least-squares (QCELS),43 to
extract the energies. Similarly to the canonical QPE, the
performance of the Hamiltonian simulation with QCELS
depends sensitively on the initial state, therefore it is of interest
to prepare the initial state in the most resource efficient way.
Formally, the QCELS method requires the measurement of

Z(t) = hjje−itĤjji, (9)

where if jji = jj0i is the exact ground state, (or an eigenstate),
then it coincides with e−ithj0jĤjj0i, from which the energy
E0 = hj0jĤjj0i can be easily extracted. Typically, however jji is
not an eigenstate. Following the QCELS procedure we sample
the time tn = ns with n = 0,., N – 1 and time step s and obtain
an estimate of Z(tn) via the Hadamard test. We prepare

jJðtnÞi ¼ 1ffiffiffi
2

p ðj0i5jji þ j1i5UðsÞnjjiÞ; (10)

where U(s) = e−isĤ, and the real and imaginary parts are esti-
mated via the expectation values
© 2025 The Author(s). Published by the Royal Society of Chemistry
Re Zn = hJ(tn)jX5I jJ(tn)i, (11)

and

Im Zn = hJ(tn)jY5I jJ(tn)i. (12)

The energy is then extracted from the time-series by maximizing
the QCELS objective

f ðEÞ ¼
�����
XN�1

n¼0

ZðtnÞeinsE
�����
2

: (13)

and the location of the maximum yields the energy estimation.

The time step is chosen such that s\
2p

Emax � Emin
, where Emax

and Emin are the largest and smallest eigenvalues of the simu-
lated Hamiltonian. This choice ensures sE ˛ (–p, p) for every
eigenvalue E, therefore avoiding phase aliasing and enabling
unambiguous extraction via eqn (13). In practice, the spectrum

can be centered by using H � TrðHÞ
2nq

, so that the ground state

energy corresponds to the smallest eigenphase.
In Section 3 we demonstrate how multicongurational state

preparation can increase the overlap with the ground state and
therefore impacts the performance of the QCELS method.

2.3.4 Quantum self-consistent equation of motion. The
calculation of excited states has attracted the interest of the
quantum computing community as a rst step towards the
calculation of response properties. Quantum self-consistent
equation of motion (Q-SCEOM) was suggested recently for the
calculation of excitation energies44 and response properties.45 Q-
SCEOM uses self-consistent excitation operators in order to
satisfy the vacuum annihilation condition even when an
approximate set of excitation operators is used.44,46,47 As a result
of this, Q-SCEOM yields accurate results in cases where plain
qEOM48 fails qualitatively (see recent works44,45,49,50 for compar-
isons between Q-SCEOM, qEOM, and quantum subspace
expansion51,52). As shown by Asthana et al.,44 the use of self-
consistent excitation operators simplies the nal EOM equa-
tions (cf. qEOM). The excitation energies are obtained by diag-
onalization of the M matrix whose elements are given by (see
Asthana et al.44 for a detailed derivation):

MIJ ¼
D
jHF

���Ĝ†

IU
†
�
q
!

opt

�
ĤU

�
q
!

opt

�
ĜJ

���jHF

E
� dijEgr (14)

where ĜI are excitation operators, Ĥ is the system's Hamilto-
nian, and jjHFi is the Hartree–Fock (HF) state. Uð q!optÞ is
a unitary ansatz with angles q

!
opt optimized for the ground

state. A simplied form of the off-diagonal elements can be
obtained44

Re½MI ;J � ¼ MIþJ;IþJ � MI ;I

2
� MJ;J

2
(15)

where

MIþJ;IþJ

¼ 1

2

D
jHF

����Ĝ†

I þ Ĝ
†

J

�
U†
�
q
!

opt

�
ĤU

�
q
!

opt

��
ĜI þ ĜJ

����jHF

E
(16)
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As shown in eqn (16), the calculation of the off-diagonal
elements of the M matrix requires the construction of a multi-
congurational state, jjI+Ji = j(Ĝi + Ĝj)jjHFi which is the most
demanding step for the quantum computation part.

Here we discuss the application of the multicongurational
state preparation methods presented in Section 2, comparing
both approaches, each being a building block of the Q-SCEOM
implementation in InQuanto.26,28
2.4 Computational details

To demonstrate the use of multicongurational state prepara-
tion as a useful approach to prepare initial states for strongly
correlated systems, we study the ground and excited states of
twisted C2H4 in the minimal basis set STO-3G. The ground state
corresponds to a singlet at torsion angles close to 0° or 180°,
while at 90° the ground state is quasi-degenerate with the triplet
having a slightly lower energy. In terms of classical pre-
processing, the PySCF code53 is used to build the fermionic
(second quantized) Hamiltonian and to run complete active
space conguration interaction (CASCI) and unrestricted HF
calculations. Active spaces are selected based on the ordering of
mutual information54 between orbital pairs (see Fig. 15 in the
Appendix for the plots of the molecular orbitals (MOs) that were
used in the active spaces). For all active spaces and all torsion
angles, the natural orbitals are dominated by the carbon 2p
shell, with small admixtures of H 1s that grow (but remain
minority) as the torsion angle tends to 90°. For larger (8-qubit
and 12-qubit) active spaces, higher orbitals that contribute to
correlation in the ground state also contain mixtures of 2s and
2p. Fermionic Hamiltonians are JW transformed to obtain Ĥ as
a sum of Pauli strings, for each active space. For VQE optimi-
zations, the L-BFGS-B method as implemented in the SciPy
package55 was used. The multicongurational state preparation
methods are implemented in the InQuanto soware
package,26–28 and all quantum calculations are carried out using
InQuanto. Quantum circuits are compiled using the architec-
ture agnostic soware compiler TKET.56
3 Results
3.1 Ground state of C2H4

Here we demonstrate the use of multicongurational state
circuits to calculate the ground state energy of twisted C2H4,
using variational and non-variational techniques. A common
bottleneck in these eigensolvers is the large overhead in
measurements needed to accurately represent the required
expectation values (typically by averaging over Pauli string
measurements). This issue is exacerbated in strongly correlated
systems in which a single reference (single ON conguration)
state does not have a large overlap with the true ground state. A
warm start initial state can be highly benecial in this regard,
particularly for quantum subspace methods, as the measure-
ment overhead can be reduced, for example by requiring
a smaller number of Hamiltonian moments or a smaller
dimensionality of the subspace.
Digital Discovery
Before discussing results for the ground state energies of
specic active spaces, we mention a popular quantum compu-
tational method to approximate the ground state which is
Unitary Coupled Cluster Singles and Doubles (UCCSD),12 with
excitation parameters qk optimized by VQE. This ansatz can be
expressed as a series of unitary operators applied to a reference
state (e.g. to the Hartree–Fock state jjHFi)

jjUCCi ¼ e

P
k

qkðT̂k�T̂
†

kÞjjHFi; (17)

where the fermionic excitation operators T̂k consist of single,
double, triple, ., excitations, which excite 1, 2, 3, ., fermions
between occupied and virtual orbitals. In UCCSD, the excita-
tions are truncated to singles and doubles, corresponding to
each T̂k operating over a maximum four spin oribtal indexes. (In
practise, a Trotterized form of UCCSD is used as the variational
ansatz, since individual excitations may not commute. Here we
omit the Trotterization from eqn (17) for brevity).

If one applies the second quantized fermionic operators Tk
directly to jjHFi, a series of ON congurations can be generated
which correspond to all possible single and double excitations
relative to the HF state. The latter in fact correspond to the basis
states of Conguration Interaction Singles and Doubles
(CISD),22 and the CISD wavefunction is obtained once the
coefficients of those basis states are found (typically by diago-
nalization of the Hamiltonian in the CISD basis). While UCCSD
can be more accurate than CISD (due to size extensivity, for
example), CISD contains a signicant portion of electronic
correlation and oen yields reasonable approximations to the
ground state. Due to the framework we developed for preparing
multicongurational states, a variational circuit corresponding
to the CI expansion can easily be generated once the ON
congurations of the expansion are given. In Fig. 1, we compare
CISD circuit sizes prepared using the SSP and GR methods to
UCCSD circuits (with all gate angles represented symbolically)
for a range of active spaces. For each active space, the ON
congurations are obtained by applying T̂k to the closed shell
singlet HF state. Therefore, the states prepared using these ON
congurations retain the same spin symmetry as the ground
states of C2H4 for torsion angles close to 0° or 180°.

We observe that the SSP method produces circuits signi-
cantly smaller than the GR method over the range of active
spaces chosen (4–16 qubits correspond to 2–8 active molecular
orbitals). This is primarily due to the scaling in the number of
external controls required for the GR method as the state
becomes more complex with size, in addition to the decompo-
sition of GR 1-body and 2-body rotations. The circuits produced
by SSP are also consistently smaller than those produced by
UCCSD for the same active space, implying the lower suscepti-
bility to gate delity errors and qubit decoherence of the SSP
CISD circuits, despite the generally lower accuracy of CISD
compared to that of UCCSD.

3.1.1 4-qubit active space: VQE. As a rst demonstration of
multicongurational state preparation methods, we consider
ansatzes for VQE applied to twisted C2H4 in an active of space
nMO = 2 molecular orbitals (MOs), corresponding to 4 qubits in
the JW representation, populated by 2 electrons. Representing
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Circuit resources obtained for UCCSD and CISD, where the
latter are prepared using the GR (Section 2.1) or the SSP19 (Section 2.2)
methods. Number of qubits nq ˛ {4, 6, 8, 10, 12, 14, 16}. For a given nq

(equal to number of spin orbitals), the number of electrons is
nq
2
if
nq
2
is

even or
nq � 1

2
if
nq
2

is odd, for which the HF reference is a closed shell

singlet configuration. For a given nq and number of electrons, the
number of configurations corresponds to the number of single and
double excitations plus the HF reference. Circuits are compiled to the
standard gate set using the Qiskit57 extension of TKET.56

Fig. 2 Circuit corresponding to state c1j1100i + c2j1001i + c3j0110i +
c4j0011i prepared using the GR method (see Section 2.1). Algorithm 1
found that externally controlling G2

3 on the second qubit is required.
Substituting the gate parameters for 90° torsion as an example and
compiling to the H-series gate set,31 this circuit can be represented
using 61 PhasedX gates, 4 Rz gates, and 44 2-qubit ZZMax gates.

Fig. 3 Circuit corresponding to state c1j1100i + c2j1001i + c3j0110i +
c4j0011i prepared using the SSP method19 (see Section 2.2).
Substituting the gate parameters for 90° torsion as an example and
compiling to the H-series gate set,31 this circuit can be represented
using 10 PhasedX gates, 4 Rz gates, and 5 2-qubit ZZMax gates.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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the ON congurations as jq1,q2,.,qnqi where nq = 2nMO, the HF
state can be written in a bit string representation as j1100i. The
ground state at equilibrium is a closed shell singlet, which
transitions to a triplet state 〈S2i = 2 at 90° torsion angle.
Hence, to capture the lowest energy manifold throughout the
180° rotation the following ON congurations are selected and

included in the variational ansatz
���jð q!Þ

E
¼P

d
cdjxdi for VQE

optimization

x1 ¼ j1100i;
x2 ¼ j1001i;
x3 ¼ j0110i;
x4 ¼ j0011i:

(18)

The relation between variational parameters ð q!Þ and coeffi-
cients cd are described as follows.

For the GR method, as described in Section 2.1 each GR
linearly combines the reference (x1) with another ON congu-
ration in the input set. 3 GRs are required to linearly combine
the conguration pairs ðx1; x2Þ; ðx1; x3Þ; ðx1; x4Þ/
G2

2ðq1Þ;G3
2ðq2Þ;G4

4ðq3Þ. In this case, externally controlling
G3

2ðq2Þ on the second qubit (q2) is required to maintain the
desired state vector (see Fig. 2): since x2 = j1001i is “rotatable”
by G3

2ðq2Þ, then the external control is placed so that G3
2ðq2Þ

only operates on basis states in which q2 = 1 (and hence has no
effect on j1001i). The corresponding pairs of coefficients
(elements of the Ge matrices related to rotation angle, see Eq.
(3)) are obtained through recursive normalization of the cd state
vector coefficients,3 which here become ða1 ¼ cos q1;

c
0
2 ¼ sin q1Þ; ða2 ¼ cos q2; c

0
3 ¼ sin q2Þ; ða3 ¼ cos q3; c

0
4 ¼ sin q3Þ

where ad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c0dþ1

q
and c

0
dþ1 ¼ cdþ1=

Qd�1
b¼0 ab with a0 = 1†.

For the SSP method, coefficients are related to gate angles as
described in sec. 2.2 and exemplied in Gleinig and Hoeer's
paper.19

Fig. 2 and 3 show the VQE ansatz circuits of 4 ON congu-
rations (Eq. (18)), built using the SSP and GR methods.
† This is consistent with jji ¼ ajx1i þ
PD
d¼2

cd jxdi where a ¼
YD�1

a¼1

aa. The sequence

of GRs applied to the circuit returns the desired state vector through this

recursive mapping of the normalized coefficients, as discussed in Arrazola et al.3
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Fig. 4 Energies obtained from VQE-optimized multiconfigurational states for the 4-qubit (2 electrons in 4 spin orbitals) active space of C2H4.
Simulated measurements correspond to 104 shots per circuit, and the Hamiltonian consists of 14 Pauli operators. Top graph: GR method (see
Section 2.1). Bottom graph: SSP method (see Section 2.2). C2H4 structure at torsion angles 0°, 90°, and 180° shown above graphs. H11E
corresponds to emulations of hardware experiments with a noise model calibrated to the H1 trapped ion device.31
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Depending on the optimized VQE parameters q
!¼ fq1; q2; q3g,

this ansatz spans both singlet and triplet eigenstates (with spin
number restricted to sz = 0). For example, at torsion angle = 0°,
optimization of q

!
results in (up to global phase) a doubly

excited closed shell singlet with negligible contributions from

singly excited congurations
���jð q!Þiz 0:96814j1100i�

0:25045j0011i (with jc2j, jc3j < 2 × 10−6). Whereas for torsion
angle = 90°, with sz = 0 the ground state is dominated by
a superposition of open shell congurations, with small but
non-negligible contributions from the closed shell congura-

tions.
���jð q!Þiz � 0:00009j1100i

þ0:70710j1001i þ 0:70712j0110i þ 0:00007j0011i (as all 4 ON
congurations have non-negligible weight, this state vector is
used as the example for circuit resources reported in the
captions of Fig. 2 and 3). We note that following the optimiza-
tion of all VQE parameters for torsion angles between 0° and

180°, ideal energies hjð q!Þ
���Ĥ���jð q!Þi match the lowest eigen-

values obtained from exact diagonalization of Ĥ in the 2-particle
Digital Discovery
sector (see Fig. 4) (and in the absence of device or measurement
noise, ideal energies obtained from the GR and SSPmethods are
identical). Hence, the multicongurational state ansatz repro-
duces the ground state manifold for all torsion angles aer VQE
optimization.

Emulations of quantum hardware experiments use a noise
model calibrated to the H1 trapped ion quantum computer,31

labeled as “H11E”. As shown in Fig. 4, quantum computations
of the expectation value are subject to greater amounts of noise
for the GR method due to the larger circuits (compare circuit
resources reported in Fig. 2 and 3), related to the decomposi-
tions of particle-conserving GRs1,3 in addition to the external
control (for G2

3) required for this case. Despite the negligible
coefficients of singly excited congurations for some torsion
angles s90°, we retain all 4 ON congurations in the circuit
state vector for all torsion angles for ease of comparison.
However, we note that shorter circuits (which represent only 2
ON congurations) for some torsion angles (at this active space)
will likely lead to similar ideal energies.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 State vectors and corresponding circuit resources for all torsion angles studied in the 8-qubit active space of C2H4. Note the symmetry
around the 90° torsion angle (hence the circuits for 0° and 180° are equivalent, etc.). Circuit resources represent the GR method (SSP method in
parenthesis). Circuits are compiled to the H-series gate set.31

Torsion angle (°) c1jx1i c2jx2i c3jx3i c4jx4i PhasedX Rz ZZMax

0/180 0.9690j11110000i −0.2345j11001100i 0.0546j10011001i 0.0547j01100110i 174 (22) 7 (6) 128 (17)
20/160 0.9683j11110000i −0.2380j11001100i 0.0533j10011001i 0.0534j01100110i 174 (22) 7 (6) 128 (17)
40/140 0.9617j11110000i −0.2648j11001100i 0.0503j10011001i 0.0503j01100110i 174 (22) 7 (6) 128 (17)
60/120 0.9354j11110000i −0.3481j11001100i 0.0441j10011001i 0.0441j01100110i 174 (22) 7 (6) 128 (17)
80/100 0.8281j11110000i −0.5522j11001100i −0.0681j10011100i 0.0681j01101100i 66 (18) 4 (3) 40 (13)
90 0.7044j11100100i 0.7044j11011000i 0.0615j10110100i 0.0615j01111000i 52 (16) 4 (3) 32 (11)
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Despite the smaller circuits produced by SSP for the same
state, and hence its lower susceptibility to device errors, the GR
method does exhibit a conceptual advantage over SSP, which
can be particularly useful when interpreting a variational state
in a chemical context: when all gate angles of a circuit produced
by the GRmethod are 0, the state vector falls back to the rst ON
conguration of the input set (x1 in (x1,., xD)). If x1 is chosen to
be the HF state, then the GR unitaries added to this circuit can
be readily interpreted as excitations on top of the HF reference.
This is not necessarily the case for the SSP method, whose
q
!¼ 0 state is non-trivial to predict as it depends on the
distribution of binary values throughout the set of input ON
conguration bit strings.19 Hence, the reference state for
chemical excitations is not necessarily accessible as the q

!¼ 0
state of SSP method. This issue can be exacerbated in varia-
tional optimizations of the gate angles, which can terminate in
local minima at small gate angles: for the SSP method this local
minimum state can be unpredictable, whereas for the GR
method it is likely close or equal to the HF state. For the small
VQE applications presented here, this issue can be bypassed by
random initialization of SSP parameters (avoiding q

!¼ 0
initialization). However, difficulties may arise in larger systems
with more complicated parameter landscapes.

3.1.2 8-qubit active space: Hamiltonian moments. For the
8-qubit active spaces, ON congurations are selected from the
largest weight determinants observed in CASCI calculations.
For torsional angles of 0° to 60° (and 120° to 180°), the ground
state is dominated by the HF determinant (j11110000i), con-
sisting of mostly 2p orbitals in all MOs, with small mixtures of H
1s in the rst (q1, q2) and forth (q7, q8) MOs. A paired double
excited ON conguration (j11001100i) is the next largest, fol-
lowed by spin-paired open shell congurations (j10011001i,
j01100110i). For torsion angle = 80°, the rst two largest
determinants are similar, while the open shell congurations
instead have one MO (the third) fully occupied (j10011100i,
j01101100i). At torsion angle= 90°, the ground state is a triplet,
which is represented in its sz = 0 component using 4 ON
congurations, each hosting open shell MOs (j11100100i,
j11011000i, j10110100i, j01111000i). 8-qubit variational ansat-
zes of 4 ON congurations are then prepared for all torsion
angles, which are optimized using ideal VQE. The resulting ON
congurations and their coefficients are shown in Table 1.

The multicongurational states from Table 1 are then used
as initial states for the QCM4 and CMX2methods, with energies
© 2025 The Author(s). Published by the Royal Society of Chemistry
obtained from expectation values of Hamiltonian moments.
Ideal results (noiseless and innite shot limit) are shown in
Fig. 5. We rst note that for torsion angles of 0° to 60° and 120°–
180° (representing relatively weak electronic correlation), the
ideal energy values are reasonably accurate for the D = 1 HF
input state, and highly accurate for the D = 4 multicongura-
tional states.

At torsion angles near the transition point (80°, 90°, 100°,
strongly correlated as the singlet and triplet eigenstates become
quasi-degenerate) we nd that the D = 1 closed shell HF input
state results in numerically very small cumulants cn, leading to
the term 3c32 � 2c2c4 approaching 0 or negative and an ill-
dened QCM4 formula when taking the square root (see eqn
(7)). Noting that the original derivation assumed the con-
dition,3c32 � 2c2c4 � 2c2c4 . 0,37 we omit the QCM4 energies
from these angles for D = 1 (also considering that the closed
shell HF state insufficiently represents the strongly correlated
ground state, leading to a poor description of the correlation
represented by the moment expectation values). However, for
the D = 4 multicongurational states, both the QCM4 and
CMX2 calculations recover the exact lowest energies for all
torsion angles. This shows the benet of multicongurational
input states for methods involving connected moments, as not
only does the QCM4 formula avoid the issue of negative
3c32 � 2c2c4 (we assume due to a higher quality input state), but
the lower order theory (CMX2) can obtain a similar accuracy,
hence necessitating a lower order of moments and ultimately
less Pauli strings to measure. The latter point is further
emphasized by considering that the VQE energies at torsion
angle near 90° are < 1mHa above the exact values; at these
geometries the expectation of Ĥ with respect to the multi-
congurational state already captures most of the electronic
correlation, obviating the need for higher order moments with
a small overhead in circuit depth (see circuit resources reported
in Table 1).

3.1.3 12-qubit active space: quantum phase estimation and
Hamiltonian simulation. To quantitatively examine how the
state preparation impacts the ground state estimation of
QCELS, we performed exact state vector time evolutions for the
12-qubit (6e, 6o) active space of C2H4 at a torsion angle of 80°. At
this geometry the Hartree-Fock conguration, which has the
largest weight in the exact ground state jj0i, has delity only
jhj0jHFij2 = 0.674, which is below the 0.71 threshold recom-
mended in ref. 43 for reliable QCELS phase extraction.
Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00350d


Fig. 5 Ideal QCM4 and CMX2 energies calculated using a single configuration HF (top, D = 1) and VQE-optimized multiconfigurational input
states (bottom, D = 4) for the 8-qubit (4 electrons in 8 spin orbitals) active space of C2H4. VQE energies correspond to expectation values of Ĥ
taken with respect to the optimized multiconfigurational state. For ideal simulations, externally controlled GRs (Section 2.1) and the SSP method
(Section 2.2) yield identical results.
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Moreover, it is expected that the required run time, therefore
the circuit depth of the time evolution operator, becomes
shorter as the initial state approaches the exact ground state.43

Therefore we performed simulations with initial states con-
taining increasing number of ON congurations. All together
four initial states were used in the simulations, denoted as jfON-

1i = jHFi, jfON-2i, jfON-4i, and jfON-8i, where the last three are
derived from CASCI and correspond to the 2, 4, and 8 largest
weight ON congurations, respectively. We also note the del-
ities of the multicongurational states: jhj0jfON-2ij2 = 0.986,
and jhj0jfON-4ij2 = 0.994, jhj0jfON-8ij2 = 0.999.

Fig. 6 summarizes the simulations. The top panel shows the
complex time series Z(tn) (real and imaginary parts) for each
initial state. All curves except the HF case lie almost on top of
each other. The middle panel plots the relative error with
respect to the exact value, e−itnhj0jHjj0i. We chose s = 0.1 Ha−1

and N = 31, giving a total evolution time Tmax = (N – 1)s, long
enough to capture at least one full period of the exact Z(t). The
right panel displays the QCELS objective, whose maximum was
located with the BFGS method. Finally, the bottom-le panel
shows the energy errors obtained by repeating the simulations
with smaller Tmax while keeping N = 31, effectively choosing
a smaller time step. The energies derived from the initial states
Digital Discovery
jfON-1i and jfON-2i do not reach the typical target precision 3 =

1mHa within the time window, even at the largest Tmax, whereas
those from jfON-4i and especially jfON-8i do, and importantly,
the latter hits the target precision at approximately half the
evolution time.

Because the depth of the circuit representation of e−itH scales
linearly with t, compact, high delity state representation can
save signicant amount of gate operations by reducing the
evolution time. Preparing jfON-4i via the SSP requires 13 two-
qubit gates, while jfON-8i needs 40. Although the state prepa-
ration thus costs 27 additional 2-qubit gates, the shorter
evolution time is expected to result a net saving well beyond the
27 gates.
3.2 Excited states of C2H4

Consequently, we look at the excited states of C2H4 using the Q-
SCEOM method. The UCCSD ansatz, optimized by VQE for the
ground state, was used for Uð q!optÞ in eqn (14). We also used
particle and spin conserving singles and doubles excitation
operators. We compare the efficiency of the GR and SSP
methods for the construction of the off-diagonal elements of the
Mmatrix (see Sec. 2.3.4 for details). In Fig. 7 we present the total
number of gates (upper panel) and the total number of 2-qubit
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Top left panel shows 〈j(0)jj(t)i real (solid) and imaginary parts (dotted) for different initial states, for Ĥ representing the 12 qubit (6
electrons in 12 spin orbitals) active space for torsion angle = 80°. Middle left panel shows j〈j(0)jj(t)i – Exactj for different initial states, exact
overlap is calculated with ground state as initial state. Bottom left panel shows the QCELS energies for different initial states relative to the exact
ground state energy. The x-axis is the time period for QCELS, demonstrating that the energy computed for that period requires Tmax simulation
time. As the period increases, the energy approaches target accuracy (dashed horizontal line) with different rates for different initial state. Legend
shows the fidelity between the initial state and the exact ground state. Right panel shows QCELS phase function for the largest Tmax period with
the exact ground state energy marked by a dashed vertical line.
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gates (lower panel) (the circuits were compiled with the H-series
emulator) for each element of the M matrix for the C2H4

molecule using the 8-qubit active space with torsion angle of
90°. More specically, the circuits correspond to
Uð q!optÞĜJ jjHFi for the diagonal elements and
Uð q!optÞðĜI þ ĜJÞjjHFi for the off-diagonal elements. There are
26 excitation particle and spin conserving operators. Therefore
the M matrix consists of 676 elements. Only the diagonal and
the upper-half part of the matrix were calculated since M is
a symmetric matrix. The GR method was used for the plots in
the le side while the SSPmethod was used for plots in the right
side. It is evident that the SSP method reduces signicantly the
number of gates. This is in accordance to results presented in
Section 3.1 for the calculation of ground state energies. We note
here that in the case of the GR method, the structure of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
matrices shown in Fig. 7 is directly analogous to the Hamming
distance of the associated states to be combined. In particular,
the improvement of the SSP method over the GR method
becomes greater for values of the Hamming distance larger than
4, for which the GR method requires the construction exem-
plied in Fig. 12. (see Section A.2 in the Appendix for more
details).

Additionally, the gate decompositions of the multi-
conguration states for Hamming distances#4 also contribute
to the reduced circuit sizes obtained from the SSP for the M
matrix elements. This is exemplied in Fig. 8, where the GR and
SSP circuits are shown for the construction of the jjI+Ji state for
the M20 element for the Q-SCEOM calculation of the 8-qubit
C2H4 at 90° torsion. We observe that 3 2-qubit entangling gates
Digital Discovery
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Fig. 7 (Top) total number of gates and (bottom) number of 2-qubit gates required for the construction states needed for the evaluation of theM
matrix (Uð q!optÞĜJ jjHFi for the diagonal elements and Uð q!optÞðĜI þ ĜJÞjjHFi for the off-diagonal elements) for C2H4 with 8-qubit active space
and 90° angle. The (left) GR, and (right) SSP methods were used for the off-diagonal terms. The circuits were compiled with the H-series
emulator.

Fig. 8 Circuits to construct the multiconfigurational state j(Ĝ2 + Ĝ0)jjHFi for the M20 element. Green vertical bars represent the ZZMax 2-qubit
entangling gate, while red horizontal bars represent PhasedX(a, b) = Rz(b)Rx(a)Rz(−b) 1-qubit rotations.31 The circuits represent (up to global

phase) the state
1ffiffiffi
2

p ðj10110100i � j01111000iÞ. All gate angles are in units of p. (a) GR method, for which the G4 rotation decomposes into 14

ZZMax gates (see bottom panel of Fig. 10 for the representation of G4 in the H-series gate set). (b) SSP method, containing only 3 ZZMax gates.

Digital Discovery © 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Noiseless calculations of ground and excited states for various torsion angles of 4-qubit and 8-qubit active spaces of C2H4 in the Upper
and Lower panel respectively. The absolute difference of the HF ground state energy with respect to the VQE ground state energy ( ) and with
respect to the exact energy ( ) are plotted in the Left part. The ground state energies (− * –) and the first ( ), second ( ), and third ( )
excited state energies obtained with VQE + Q-SCEOM and exact diagonalization of the Hamiltonian are shown in the Middle and Right part
respectively. The SSP method was used in the Q-SCEOM calculations.
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are needed for the SSP method, whereas the GR method
requires 14 (see also Fig. 10).

Next, we look at the ground state and excited energies of
C2H4 at various torsion angles. We present in Fig. 9 the results
for the 4-qubit and 8-qubit case in the upper and lower parts,
respectively. In the le panel we plot in red the correlation
energy of the ground state energy as the absolute difference of
the HF energy with respect to the exact result (rst eigenvalue
obtained with diagonalization of the Hamiltonian). As expected,
the degree of correlation increases as we approach the 90°
torsion. We also plot in black the absolute difference of the HF
energy with respect to the VQE result obtained through opti-
mization of the UCCSD ansatz. It is evident that at 90° torsion
angle, VQE yields a higher energy compared to the exact result.
We attribute this to the fact that the VQE optimization results in
an unstable singlet state whereas the stable solution is a triplet,
as discussed in Section 3.1. Note here, that for all the VQE
calculations reported in this section, prior to the calculation of
theM matrix, we limited our search to open-shell singlet states.
Consequently, we plot in the middle panel the VQE result for
the ground state energy and the energy of the rst three excited
states obtained with Q-SCEOM. We employed the SSP method
for the construction of the off-diagonal elements of the M
matrix for C2H4 at various torsion angles. We compare the Q-
SCEOM results to the eigenvalues obtained through diagonal-
ization of the Hamiltonian. For both active spaces, Q-SCEOM
reproduces qualitatively the exact result. Interestingly, at the
90° angle, Q-SCEOM recovers the correct total energy (which
matches the exact result) even though VQE (which affects the Q-
© 2025 The Author(s). Published by the Royal Society of Chemistry
SCEOM result through the optimized ansatz that is used for the
calculation of the M matrix) yields a higher energy.
4 Discussion

In this work, quantum circuit preparation of multicongura-
tional states for quantum chemistry has been demonstrated
and compared as the state preparation step for a range of
applications, including ground state energy calculations using
VQE, QCM, and QPE, as well as excited state energies calculated
using Q-SCEOM. The use-case to demonstrate these techniques
is twisted C2H4, whose energy surface passes through a strongly
correlated point as a function of torsion angle.

Multicongurational state preparation allows initial states
that are more accurate than the single conguration HF state,
which for QCM can facilitate a reduction in measurement
overhead at a relatively small cost of extra circuit depth for the
initial state, whereas for QPE the probability of accurately
measuring the phase can be increased by a multicongura-
tional initial state (relative to HF) since this probability is
proportional to the overlap between the initial state and true
ground state.58 For Q-SCEOM, the off-diagonal elements of the
M matrix can be generated using multicongurational state
preparation, hence the latter facilitates a framework for auto-
matically building and running the Q-SCEOM algorithm for
a given molecule.

Overall, we observe signicantly more efficient circuits using
the SSP method compared to the GRmethod. This is largely due
to the utilization of the sparsity of chemical states that can be
Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00350d


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 9
:2

0:
48

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
exploited by the SSP, in addition to the gate decomposition of
particle-conserving GRs and their required external controls
leading to larger gate and depth overheads for the GRmethod. A
conceptual advantage of the GR method can be seen when
considering the state preparation as transformations of a refer-
ence state; setting the rotation angle of all GRs to 0 is guaran-
teed to result in the state jx1i where x1 is the rst ON
conguration in the ordered input set. Since x1 can be chosen
from HF, each GR can be considered as an excitation of the HF
reference, preserving familiar notions from classical computa-
tional chemistry. In the context of variational searches of the
ground state energy, this property of the GR method prevents
unpredictable local minima at small values of variational
parameters (which the SSP method can be susceptible to), and
may be benecial for analyzing contributions of specic basis
states to the total electronic correlation.

In terms of future applications, our implementation easily
allows for the composition of different ansatz circuit structures.
For example, appending generalized59 UCC unitaries to a mul-
ticongurational state circuit prepared using the GR or SSP
methods provides a framework for multireference methods60 at
the quantum circuit level, such as multireference UCC. We also
note a recent work that extended the reference state error
mitigation scheme61 to multireference states62 using GRs. An
interesting future direction would be to apply the SSPmethod to
prepare the multireference states used for error mitigation, with
the potential of signicant reduction in circuit resources.

In addition, since multicongurational state preparation as
presented here can be seen as an approach of loading classical
(chemical) data to a quantum processor and preparing
a quantum state to represent this data, this could be compared
to preparation of multi-determinant states using quantum read-
only memory (QROM),63 or to sparse state preparation using
quantum random access memory.18 We note that while these
techniques achieve a similar asymptotic scaling to the SSP
method in the number of 2-qubit gates (O(Dnq), our imple-
mentation of multicongurational state preparation does not
require controlled operations between auxiliary qubits and state
qubits. We also note a recent work64 that utilizes QROM to
reduce the Toffoli count for matrix product state preparation.

In conclusion, this work provides a framework for preparing
quantum circuit representations of multicongurational states,
as implemented in InQuanto.26–28 Overall, the impact of this
work can be summarized by the following points.

(i) We provide a novel implementation for the use of exter-
nally controlled GRs for multicongurational state preparation,
which automatically nds the required external controls of GRs
for a given ordered set of ON congurations.

(ii) While the SSP algorithm was published in a previous
article,19 this work demonstrates novel applications of the SSP
method for a range of algorithms currently proposed for
studying the ground and excited states of molecules quantum
computationally, i.e. VQE, QCM4, QPE, and Q-SCEOM.

(iii) Specic to the application of the SSP method to VQE, our
implementation allows for the use of SSP to generate a varia-
tional ansatz, in which the lowest energy state vector can be
Digital Discovery
obtained by optimizing the angles of the 1-qubit unitaries
within the SSP circuit.

The utility of multicongurational initial states is shown for
various quantum computational approaches to quantum
chemistry. In particular, when the state to be prepared exhibits
sparsity in the sense of D � 2nq, very efficient circuit represen-
tations can be achieved, therefore boosting the accuracy of QPE,
for example, or reducing the measurement overhead of
quantum subspace methods, without a large overhead in circuit
depth. In addition, multicongurational state preparation is
useful for enabling certain methods (such as Q-SCEOM) which
require circuit constructions of selected excitations of a refer-
ence state, thus enhancing the tool set for quantum approaches
to ground and excited states of molecules.
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the discretion of the providing company. A trial version of
InQuanto is available at https://www.quantinuum.com/
products-solutions/inquanto-trial. InQuanto version 5.0
(https://inquanto.quantinuum.com/index.html) is used in this
work. Pseudocode for the GR method is presented in this
article (see Algorithms 1 and 2). See also pseudocode for the
SSP method reported in the original paper by Gleinig and
Hoeer (https://doi.org/10.1109/DAC18074.2021.9586240). A
repository is available that contains representative starting
datasets and notebooks to allow similar conclusions to be
drawn to those of the manuscript based on the workow in
the notebooks and self-written replacements for calls to
proprietary code (https://doi.org/10.5281/zenodo.17466867).

A Appendices
A.1 Circuit decompositions for GR method

In Fig. 10 we show the gate decompositions of the 1-body ðG2Þ
and 2-body ðG2Þ rotations. Compared to the corresponding
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Circuits for 1-body (2-qubit) G2 and 2-body (4-qubit) G4 rotations, where state vectors are obtained up to global phase. Green vertical
bars represent the ZZMax 2-qubit entangling gate, while red horizontal bars represent PhasedX(a, b) = Rz(b)Rx(a)Rz(−b) 1-qubit rotations.31 All
gate angles are in units of p. Subscripts on G2 and G4 are omitted.

Fig. 11 The 2-qubit entangling gate ZZMax31 in terms of CNOT and Rz gates. The equality is up to global phase. Gate angles are in units of p.

Fig. 12 Circuit to perform a (l = 3)-body excitation of the ON
configuration j111000i, yielding cos qj111000i+ sin qj000111i, where q

is in units of p. The subscript e in G2
e is omitted in the figure. See top

panel of Fig. 10 for the decomposition of the central G2 in the H-series
gate set.31
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circuits shown in previous work,3 we observe a similar number
of 2-qubit entangling gates (ZZMax31 here and CNOTs in Arra-
zola et al.3). The Hadamard gates of the decompositions shown
in3 are absorbed into the PhasedX(a, b) = Rz(b)Rx(a)Rz(−b)31 1-
qubit rotations, and additional Rz and PhasedX rotations are
required to achieve a 2-qubit operation equivalent to a CNOT,
© 2025 The Author(s). Published by the Royal Society of Chemistry
resulting in differences in the total number of 1-qubit gates. For
completeness, the action of the 2-qubit ZZMax is depicted in
Fig. 11 in terms of CNOTs and Rz.

This section also describes our scheme to build the excita-
tion gadget that connects basis states separated by hðx1; xdÞ. 4
Hamming distance (l > 2 – body excitation), when preparing the
multicongurational state using the GR method. Unlike Fig. 5
of in Arrazola et al.,3 here each SWAP is not controlled on all
other qubits in the circuit, but only on “minority” qubits, i.e.
those qubits with minority binary values (see qminor in Algo-
rithm 2). This results in lower overhead of external controls that
scale with the number of minority qubits nminor rather than nq
as in Arrazola et al.3 However, this leads to the possibility that (i)
the control states (conditions of the external control) of a SWAP
are matched by the qubits of one of the previous basis states, or
(ii) a swapped version of the rst basis state ðx0

1Þ becomes equal
to one of the previous basis states (note that qubits of x

0
1 at

a given iteration of the WHILE loop lines 5–13 of Algorithm 2
form the control states for the next iteration). If (i) or (ii) occurs,
it is not necessarily a problem once the central G1 is also
controlled on the minority qubits of (“fully swapped”) x

0
1. The

latter implies that the external controls of the central G1 also
scale with nminor, while a cheaper alternative would be to use the
usual G1 controls from Algorithm 1. However, in order for the
external controls found by Algorithm 1 to be usable for the
central G1 of the l > 2 excitation gadget, we nd that both (i) and
(ii) must not occur.
Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00350d


Fig. 13 Total number of gates using the (left) GRmethod, and the (middle) SSP method for the construction of the ’ket’ states of theMmatrix for
the 4-qubit active space for C2H4 at 90 °torsion. (Right) the hamming distance between the I, J states that are combined using the previous
methods to construct the jjI + jJi state. The ĜIjjHFi states for each element are shown as x tick labels.

Digital Discovery © 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 15 UHF spatial orbitals of C2H4 at 0° torsion angle that were used for
(a) were used for the 4-qubit case. The 8-qubit case was augmented w
shown in the figure. Occupied and virtual orbitals are shown in the up
PySCF53 was used for the HF calculation.

Fig. 14 Hamming distance between the I, J states that are combined
to construct the jjI + jJi states for C2H4 using the 8-qubit active
space.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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A.2 Circuit resources and hamming distances for the M
matrix in Q-SCEOM

In this section, we plot the Hamming distances between the
jjI+Ji and jjHFi states, used to build theMmatrix for Q-SCEOM.
The Hamming distances have a signicant impact on the circuit
resources used for each element of theMmatrix, particularly for
the GR method. Fig. 13 corresponds to the 4-qubit active space,
where the le andmiddle panels show the total number of gates
for the GR and SSP methods, respectively, while the right panel
shows the Hamming distances. Fig. 14 shows the Hamming
distances for the 8-qubit active space.
A.3 Plots of orbitals

In this section we plot the spatial orbitals used in the active
spaces of C2H4, shown in Fig. 15.
the construction of the active spaces. The HOMO and LUMO shown in
ith the orbitals shown in (b) and the 12-qubit case used all six orbitals
per and lower part respectively. The isosurface level was set to 0.02.

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00350d


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 9
:2

0:
48

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Acknowledgements

We thank Alec Owens and Carlo Gaggioli for helpful feedback
and comments. We also acknowledge Josh J. M. Kirsopp and
Iakov Polyak for useful discussions.
References

1 G.-L. R. Anselmetti, D. Wierichs, C. Gogolin and
R. M. Parrish, New J. Phys., 2021, 23, 113010.

2 C. H. Chee, D. Leykam, A. M. Mak and D. G. Angelakis,
Shallow quantum circuits for efficient preparation of Slater
determinants and correlated states on a quantum computer,
2023, arXiv:2301.07477, DOI: 10.48550/arXiv.2301.07477.

3 J. M. Arrazola, O. D. Matteo, N. Quesada, S. Jahangiri,
A. Delgado and N. Killoran, Quantum, 2022, 6, 742.

4 S. Fomichev, K. Hejazi, M. S. Zini, M. Kiser, J. F. Morales,
P. A. M. Casares, A. Delgado, J. Huh, A.-C. Voigt,
J. E. Mueller and J. M. Arrazola, Initial state preparation for
quantum chemistry on quantum computers, 2024,
arXiv:2310.18410, DOI: 10.48550/arXiv.2310.18410.

5 Y. S. Yordanov, D. R. M. Arvidsson-Shukur and
C. H. W. Barnes, Phys. Rev. A, 2020, 102, 062612.

6 Y. S. Yordanov, V. Armaos, C. H. W. Barnes and
D. R. M. Arvidsson-Shukur, Commun. Phys., 2021, 4, 228.

7 J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant,
L. Wossnig, I. Rungger, G. H. Booth and J. Tennyson, Phys.
Rep., 2022, 986, 1–128.

8 I. G. Ryabinkin, T.-C. Yen, S. N. Genin and A. F. Izmaylov, J.
Chem. Theory Comput., 2018, 14, 6317.

9 F. A. Evangelista, G. K.-L. Chan and G. E. Scuseria, J. Chem.
Phys., 2019, 151, 244112.

10 K. Sugisaki, S. Nakazawa, K. Toyota, K. Sato, D. Shiomi and
T. Takui, ACS Cent. Sci., 2019, 5, 167.

11 H. R. Grimsley, D. Claudino, S. E. Economou, E. Barnes and
N. J. Mayhall, J. Chem. Theory Comput., 2020, 16, 1–6.

12 A. Anand, P. Schleich, S. Alperin-Lea, P. W. K. Jensen, S. Sim,
M. D́ıaz-Tinoco, J. S. Kottmann, M. Degroote, A. F. Izmaylov
and A. Aspuru-Guzik, Chem. Soc. Rev., 2022, 51, 1659–1684.

13 L. Grover and T. Rudolph, Creating superpositions that
correspond to efficiently integrable probability distributions,
2002, arXiv:0208112, DOI: 10.48550/arXiv.0208112.

14 M. Möttönen, J. J. Vartiainen, V. Begholm and
M. M. Salomaa, Quantum Inf. Comput., 2005, 5, 467–473.

15 V. Shende, S. Bullock and I. Markov, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
2006, vol. 25, pp. 1000–1010.

16 I. F. Araujo, D. K. Park, F. Petruccione and A. J. da Silva, Sci.
Rep., 2021, 11, 6329.

17 X.-M. Zhang, T. Li and X. Yuan, Phys. Rev. Lett., 2022, 129,
230504.

18 T. M. L. de Veras, L. D. da Silva and A. J. da Silva, Quantum
Inf. Process., 2022, 21, 204.

19 N. Gleinig and T. Hoeer, 58th ACM/IEEE Design Automation
Conference (DAC), 2021, pp. 433–438.

20 M. Plesch and i. c. v. Brukner, Phys. Rev. A, 2011, 83, 032302.
Digital Discovery
21 P. Niemann, R. Datta and R. Wille, IEEE 46th International
Symposium on Multiple-Valued Logic (ISMVL), 2016, pp. 247–
252.

22 T. Helgaker, P. Jørgensen and J. Olsen, in Second
Quantization, John Wiley & Sons, Ltd, 2000, pp. 1–33.

23 J. Li, M. Otten, A. A. Holmes, S. Sharma and C. J. Umrigar, J.
Chem. Phys., 2018, 149, 214110.

24 M. Dash, S. Moroni, A. Scemama and C. Filippi, J. Chem.
Theory Comput., 2018, 14, 4176–4182.

25 C. Feniou, O. Adjoua, B. Claudon, J. Zylberman, E. Giner and
J.-P. Piquemal, J. Phys. Chem. Lett., 2024, 15, 3197–3205.

26 A. Tranter, C. Di Paola, D. Muñoz Ramo, D. Z. Manrique,
D. Gowland, E. Plekhanov, G. Greene-Diniz,
G. Christopoulou, G. Prokopiou, H. D. J. Keen, I. Polyak,
I. T. Khan, J. Pilipczuk, J. J. M. Kirsopp, K. Yamamoto,
M. Tudorovskaya, M. Krompiec, M. Sze, N. Fitzpatrick,
R. J. Anderson and V. Bhasker, InQuanto: Quantum
Computational Chemistry, 2022, https://
www.quantinuum.com/products-solutions/inquanto.

27 A. Tranter, C. Di Paola, D. Muñoz Ramo, D. Z. Manrique,
D. Gowland, E. Plekhanov, G. Greene-Diniz,
G. Christopoulou, G. Prokopiou, H. D. J. Keen, I. Polyak,
I. T. Khan, J. Pilipczuk, J. J. M. Kirsopp, K. Yamamoto,
K. Sorathia, M. Tudorovskaya, M. Krompiec, M. Sze,
N. Fitzpatrick, O. Backhouse, R. J. Anderson and
V. Bhasker, Introduction to the InQuanto Computational
Chemistry Platform For Quantum Computers, 2022.

28 A. Tranter, C. Di Paola, D. Muñoz Ramo, D. Z. Manrique,
D. Gowland, E. Plekhanov, G. Greene-Diniz,
G. Christopoulou, G. Prokopiou, H. D. J. Keen, I. Polyak,
I. T. Khan, J. Pilipczuk, J. J. M. Kirsopp, K. Yamamoto,
K. Sorathia, M. Tudorovskaya, M. Krompiec, M. Sze,
N. Fitzpatrick, O. Backhouse, R. J. Anderson and
V. Bhasker, InQuanto User Guide, 2024, https://
inquanto.quantinuum.com/index.html.

29 P. Jordan and E. Wigner, Z. Phys., 1928, 47, 631–651.
30 S. Szalay, Z. Zimborás, M. Máté, G. Barcza, C. Schilling and
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