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The ability to prepare states for quantum chemistry is a promising feature of quantum computers, and
efficient techniques for chemical state preparation is an active area of research. In this paper, we
implement and investigate two methods of quantum circuit preparation for multiconfigurational states
for quantum chemical applications. It has previously been shown that controlled Givens rotations are
universal for quantum chemistry. To prepare a selected linear combination of Slater determinants
(represented as occupation number configurations) using Givens rotations, the gates that rotate between
the reference and excited determinants need to be controlled on qubits outside the excitation (external
controls), in general. We implement a method to automatically find the external controls required for
utilizing Givens rotations to prepare multiconfigurational states on a quantum circuit. We compare this
approach to an alternative technique that exploits the sparsity of the chemical state vector and find that
the latter can outperform the method of externally controlled Givens rotations; highly reduced circuits
can be obtained by taking advantage of the sparse nature (where the number of basis states is
significantly less than 2" for nq qubits) of chemical wavefunctions. We demonstrate the benefits of these
techniques in a range of applications, including the ground states of a strongly correlated molecule,
matrix elements of the Q-SCEOM algorithm for excited states, as well as correlated initial states for
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1 Introduction

Quantum computation has the potential to make a large impact
on quantum chemistry and condensed matter physics. This has
motivated a recent rapid development of techniques for repre-
senting quantum chemical states on gate-based quantum
computers.”™ From the point of view of general quantum state
preparation, many research works have focused on maximizing
the efficiency of loading classical data into a quantum processor
and preparing a quantum state to represent those data.**® It is
interesting to consider applications of the latter approach to
quantum chemistry, where the classical data represent previ-
ously obtained chemical information, and the quantum
computer can be used to further evolve the quantum chemical
state (for example, to increase the accuracy of the representa-
tion of the ground or excited states of a molecule).

The existence of gate sets that are universal for quantum
chemistry (in the sense of spanning the space of all states that
preserve fermionic symmetries) has recently been proved.?
These gates take the form of Givens rotations (GRs) to represent
particle-number-conserving excitations that correlate the occu-
pations of different fermionic modes. GRs have also been used
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a quantum subspace method based on quantum computed moments and quantum phase estimation.

to construct gate fabrics that can navigate fermionic Fock
spaces." Regarding the preparation of multiconfigurational
states (where each configuration represents electrons distrib-
uted throughout a molecular orbital basis, in a second quan-
tized framework), if the configurations are specified a priori
then a sequence of GRs can be applied to the circuit to prepare
the desired state vector.> However, GRs will mix any basis states
with qubit subspaces that match those involved in the rotation.
To ensure that only the desired basis states are included in the
state vector, GRs can be controlled by qubits outside the rota-
tion space® (which we refer to as “external” controls to distin-
guish these from internal CNOTs within the GR gate
decomposition). However, externally controlling each GR on all
qubits not directly involved in the rotation leads to very large
circuits when decomposed into typical hardware gate sets. The
question then remains as to how to apply external controls to
guarantee the desired state vector is produced, while avoiding,
when possible, externally controlling all GRs on all qubits
outside the excitation. A specific example of this was presented
in® for a 6-qubit state consisting of 4 occupation number (ON)
configurations. In this paper, we provide a general algorithm for
finding external GR controls automatically for any particle-
number-preserving fermionic state.

We also consider the previously proposed method of Gleinig
and Hoefler to prepare sparse quantum states.” Initially

© 2026 The Author(s). Published by the Royal Society of Chemistry
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designed to overcome the problem of exponentially scaling
resources for arbitrary quantum state preparation,'***** the
sparse state preparation (SSP) method takes advantage of the
fact that many interesting quantum states span a relatively
small section of the full Hilbert space, where the number of
non-zero basis coefficients is far less than O(2"). This is the case
for typical states of interest in quantum chemistry; the full
configuration interaction (FCI)** wavefunction obeys funda-
mental fermionic symmetries (e.g. spin and particle number
conservation) which rule out many basis states of the entire
Hilbert space. Additionally, the success of methods such as
semistochastic heat-bath configuration interaction (SHCI)** and
perturbatively selected configuration interaction (CIPSI)*
exemplify the fact that a relatively small number of configura-
tions can often provide a good approximation to the full
wavefunction.

The importance of the sparsity of chemical wavefunctions is
emphasized when considering approximations to the ground
state, particularly in situations requiring “warm start” states, i.e.
those states with large overlap with the true ground state
(relative to single configuration Hartree-Fock (HF) states) yet
remain sparse enough to be efficiently prepared. Considering
the example of quantum phase estimation (QPE) in which the
success probability is proportional to the overlap between the
initial state and the true ground state, and the fact that in many
interesting cases (e.g. strongly correlated systems) the HF state
has significantly low overlap, the ability to efficiently and
conveniently prepare multiconfigurational states can be highly
beneficial. A recently published work® noted the method of
Gleinig and Hoefler as a non-variational approach to quantum
chemical state preparation, and provided a comparison to other
sparse state preparation approaches in terms of asymptotic
scaling. Here, an implementation of Gleinig and Hoefler's
approach suitable for quantum chemistry, along with its inte-
gration with various ground and excited state methods, is re-
ported and applied to a strongly correlated chemical system.

In this paper we compare the techniques of externally
controlled GRs® and Gleinig and Hoefler's scheme® for
preparing quantum circuits corresponding to selected linear
combinations of computational basis states, where the latter
represent occupation number configurations (Slater determi-
nants). These techniques are implemented in the InQuanto®2*
software package, and we demonstrate their utility for a wide
range of quantum algorithms useful for quantum chemistry.

2 Preparation of multiconfigurational
states in quantum circuits
2.1 Givens rotations with external controls

Consider an arbitrary single electronic configuration specified
by an ON configuration® in a finite basis of spin orbitals |..., f;
<oy f5r -..) with fermionic occupation numbers f;, f; € {0, 1},
where f; # f;, and i, j label orbitals involved in the excitation. An
excitation can be viewed as a mixing between ON configurations
with different occupations. Adopting the Jordan-Wigner
(JW) transformation between fermionic and qubit algebras>**°
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| fis - fis )|y G4y -y qjy -..) Where gq;, g € {0, 1} are
individual qubit states, a fermionic excitation can be encoded
as a unitary operation applied to a register of qubits repre-
senting the ON configuration, rotating it to a convex
combination

C},ﬁ, 7f/, >'—>L{‘7q,, e, >
= c}...,q;,...,q/7 L) VI= cz}...,qj, s ) (1)

Here, C is a fermionic excitation operator, and I/ is a unitary
operator (encoded as quantum gates) applied to the qubit
register. Note that C (i) should preserve the total number of
electrons (the qubit register Hamming weight).

Eqn (1) corresponds to a 1-body excitation. Using a 2-qubit
state as a minimal example, the excitation can be expressed in
the computational basis as a GR,* whose action on the 2"~
dimensional Hilbert space is to rotate in a 2 dimensional
subspace of the state vector

1 0 0 o]{ oo, 100),

0 (S 0 |01>7 o C1|01>+62‘10>, (2)
0 C3 (4 0 |10>7 o C3|01>+C4‘10>, '

00 0 1]/, 1),

The coefficients of the orthonormal basis are omitted for the
sake of clarity (the state vector is normalized to unity). The real
scalars are restricted by |c,| + |¢,*| = |¢5%| + |¢4?] = 1 with ¢, and
¢; having opposite signs, to ensure unitarity. This GR can be
written as

1 0 0 0

2 | 0O cos@ sinf O
g'(6) = 0 —sinf cosf O (3)

0 0 0 1

where 6 parameterizes the quantum gates implementing the
Givens rotation."® Eqn (2) and (3) show, in a small example, that
individual GRs preserve the particle number within the
subspace to which they are applied. Generalizations up to 7ejec-
body excitations (with 7. the number of electrons) for n, =
2Nnejec qubits are obtained by extending the mixing elements to
other entries of the 2" x 2" matrix (explicit matrices for 2-body
rotations on 4 qubits are given in ref. 1).

The Hamming distance between two binary strings x and y,
defined as

q

b(x,) =D x(i)®y(0), (4)
plays a central role in the use of GRs to prepare multi-
configurational states. [) is related to the excitation order
A =Db/2 for A-body excitations between two ON configurations.
The qubits on which the excitation unitary acts can be specified
using b and its decomposition into an array of qubit-wise XOR
values (x(0) ® y(0), x(1) ® y(1), ..., x(ng) ® y(ny)). The indexes of
non-zero elements of this array correspond to the GR qubit
indexes, while the value of I) specifies the excitation order.
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Selected linear combinations of ON configurations with fixed
coefficients can be prepared using sequences of GRs applied to
the circuit. Each GR mixes a pair of basis states (i.e. excitation)
and its rotation angle ¢ can be obtained from state vector
coefficients via recursive normalization (see Arrazola et al.?).
Alternatively, optimized coefficients can be found by varying the
gate angles within each rotation in a variational algorithm. As
mentioned in the introduction (and elaborated in previous
work?), the gates that encode each GR may need to be externally
controlled to ensure that the sequence of GRs does not yield
unwanted basis states. Thus, all the steps necessary to prepare
a linear combination of ON configurations on a quantum circuit
are at hand, apart from a general method to specify the external
controls.

In the following subsection, we outline a procedure to
automatically accomplish this task given a selected set of ON
configurations, which specifies the excitation unitaries and the
external controls needed to accomplish each GR. This can be
used to build the circuit representing the multiconfigurational
state.

2.1.1 Algorithm to specify givens rotations and external
controls. In Algorithm 1, a procedure is presented to find
a sequence of GRs and their external controls required to
prepare a selected linear combination of ON configurations.
The input is an ordered set of D bit strings representing the ON
configurations. Note that the reference for excitations is the first
member of the input set, and the desired state vector is built up
as sequential excitations relative to this reference. The ordered
D - 1 Hamming distances h(x;,x;>1) and their qubit compo-
nents are then stored. Gate angles of each GR, dependent on the
ON coefficients, can be found by using recursive normalization
of ON coefficients (a specific example is also discussed in
Section 3.1.1).

Let G, represent a rotation that linearly mixes the reference
with a basis state indexed by e = 2, ..., D. The excitation indexes
are obtained from a decomposition of the Hamming distance
(non-zero contributions to the sum in eqn (4)), which specifies
each GR wunitary in the (D - 1)length sequence, ie.
ghtrxe) — g(hx1%)) ‘where ! is a tuple of indexes of length 22
corresponding to nonzero contributions to h(xy, x.). Note that
for the basis state index e = 2, external controls are not needed
by definition.

For a given ordered set of input configurations, the search
for external controls required for gf;“‘hxe) depends on whether
a “previous” (p < e) basis state is “rotatable” by G"**) and if so
controls are applied to ensure that g};<X1=xf> will not act on any
basis state with indexp =2, ..., e - 1.

For basis states x, separated from the reference x; by
b(x1,%) = 2 or h(x1,x.) = 4, Givens rotations G- or G, respec-
tively, can be used to mix x, with x;, and the external controls
found by Algorithm 1 ensure that the circuit maintains the
desired state vector. For G2 and G2, we use the gate decompo-
sitions presented in previous works for 1-body and 2-body GRs*?
(compilations of these circuits in the H-series gate set* are
given in the Appendix Fig. 10). However, when b(x;,x.) >4,
a unitary is required that encodes the (1 > 2)-body excitation. To
this end, we adapt a gadget described by Arrazola et al?
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consisting of (a) a sequence of multi-controlled SWAPs, (b)
a central G, and (c) the reverse of (a). In the Appendix section
A.1, Algorithm 2 describes how the indexes of these unitaries
and their external controls are found. Compared to Arrazola
et al.,’ our scheme achieves a lower overhead of external
controls for SWAPs and the central G- to combine ON config-
urations separated by A > 2. An example of this for a 3-body
excitation of the |111000) configuration is shown in Fig. 12.
Once the G2*1*) for all x, are found, along with their external
controls (if required), the desired state |/) can be prepared as

v = <H9<>> ). Q

e

Algorithm 1: State Preparation with GRs
Input: Ordered set of bit strings (ON configurations)
(x1,...,xp) representing |y) = ZdD:1 cqlxq), each with
binary values x,(i) on the i qubit.
Output: Sequence of qubit indexes of D—1 GRs and their
external controls.
1 Collect D1 GR indexes {i?™*)} for e =2,...D.;
2 fore=3to D:
if hxp,xe) =2:
forp=2toe-1:
if xp (i €i2) #xp(j €i?):

Set external control index of G(i2) to lowest
ip such that x,(ip) # x¢(ip) and iy ¢ i2, with
control state x; (ip);

7 if h(xp,xe) =4:

o s w

8 forp=2toe-1:

9 h(x,xp;iﬁ) = Zieijx(i) ®xp(i);

10 if b(xy,xp300) =4 or b(xe,xpsi) =42

1 Set external control index of G(i¥) to lowest

ip such that x,(ip) # x(ip) and ip ¢ i, with

control state xj (ip);

12 if h(xp,xe) > 4:

13 | Use Algorithm 2 with current value of ¢;

14 Return ordered sequence of GR indexes and their external
controls;

2.2 Sparse state preparation for quantum chemistry

In this section, we briefly describe Gleinig and Hoefler's sparse
state preparation (SSP) method. For more details, we refer the
reader to the original article.’ Here, we provide a brief
description for completeness and highlight those aspects most
relevant to multiconfigurational state preparation for quantum
chemistry. This method essentially solves the problem of
finding some n-qubit circuit Ui, such that Ulg|y) = [0®7),
where |y) is the desired n-qubit state to be prepared. Knowing
Ll;sp, one can reverse this to obtain the state preparation unitary
Ussp such that the desired state is
) = (ugsp)T\o@’") = Ussp|0®"). The input to the SSP method is
an unordered set S = {xy, ..., Xp} of bit strings representing ON
configurations, with normalized coefficients c¢; such that the

D D
state to be prepared is [(S)) = 3 calxg) and 3 |cq|* = 1.
d

© 2026 The Author(s). Published by the Royal Society of Chemistry
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In the ith iteration of the algorithm,' an arbitrary angle
(possibly controlled) 1-qubit rotation gate along with an
arrangement of NOT and CNOT gates (collectively labeled here
as U;) are found, which if applied to the state at the ith iteration
results in a new state hosting |S;| = D; < D;_; non-zero basis
coefficients (where Dy=D=|S|). This is accomplished by
“merging” two bit strings x, ;, X,; contained in S;, where merging
amounts to applying U; such that U y({...,x1:, %24, ...,})) =
11// ({.--,x24,.--,})) (up to global phase). The arrangement of gates
In each U; are determined by the distribution of binary values
throughout the D bit strings.” We note that for real-valued c, the
R)(0) gate parameterized by angle ¢ is sufficient to represent the 1-
qubit rotation in each ;.

The gate angles of the SSP method, which determine the
values of c;, are obtained on-the-fly and enter in the 1-qubit
rotations, each of which mixes 2 basis states x; ;, X, ; at a given
iteration i of the SSP algorithm; the ith rotation angle is ob-
tained by normalizing the x, ; coefficient ¢, ; to \/m and
taking the arcsin. For the next i + 1 iteration, the coefficient ¢, ;
is replaced by the previous normalizer \/c;;® + ¢;;2, and the
angle of the (i + 1) single qubit rotation is obtained for x; ;.4,
X541 as in the previous iteration. For an example of this, see
Gleinig and Hoefler's paper.*

An important consequence of this algorithm is that the
sequence of U; applied to the initial circuit |0®") is independent
of the order of bit strings provided by the user at input. This is
a major difference with the GR method described in Section 2.1,
and highlights the lack of a “reference” ON configuration for
excitations in the SSP method (whereas in the GR method the
excitation reference is fixed as the first member of the ordered
set of input bit strings, and all GRs subsequently applied can be
considered as rotations relative to the reference). While this
does not affect the behavior of SSP-prepared circuits for fixed
(non-variational) ¢4, variational applications of this method (in
which gate angles are variationally optimized, hence leading to
variationally optimized c;) can be affected, as discussed in
Section 3.1.1.

2.3 Methods which benefit from multiconfigurational state
preparation

In the following subsections we mention a non-exhaustive list of
methods which we use to demonstrate the utility of circuit
preparation to represent selected linear combinations of ON
configurations. We also mention previous applications, namely
the preparation of N £ 1-particle states for Green's functions,*
and quantum circuit representations of CASSCF (complete
active space self-consistent field) wavefunctions to study orbital
entanglement.*

2.3.1 Variational quantum eigensolver. The variational
quantum eigensolver (VQE)” is a hybrid quantum-classical
algorithm. As initially proposed, VQE utilizes a quantum
computer to perform measurements of the expectation value of
a Hamiltonian taken with respect to a parameterized ansatz for
the wavefunction, which is optimized by a classical processor
based on a minimization of the energy according to the varia-
tional principle.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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On present-day noisy intermediate scale quantum (NISQ)
hardware, the originally proposed form of VQE is significantly
limited by various sources of noise (e.g. qubit decoherence, gate
error rates, state preparation and measurement errors). Hence,
in this work, VQE is utilized as a classical optimizer of gate
angles 7 in multiconfigurational state circuits, which directly
translates into optimization of basis state (ON configuration)
coefficients of the circuit state vector. This demonstrates how
the methods for preparing multiconfigurational state circuits
(Section 2.1 and Section 2.2) can be used to prepare variational
ansatzes for VQE applied to quantum chemistry. In this context,
VQE is run in an ideal setting in which quantum measurements
are classically simulated so thai ‘z//( 6)) consists of ideally
optimized basis coefficients. |¢( 6 )) can then be used as the
initial (warm start) state in subsequent methods (such as
quantum subspace methods, or quantum phase estimation).
One can also measure expectation values of thg Hamiltonian in
a noisy setting using offline optimized |y¢(6)) to quantum
compute estimates of the ground state energy corresponding to
ideal VQE parameters (see Section 3.1.1).

2.3.2 Quantum computed moments. A wide range of
quantum subspace methods currently exist,* which generally
attempt to solve for accurate approximations to low-lying
eigenvalues of a given Hamiltonian H by projecting onto
a finite-dimensional subspace spanned by a set of basis states.
Krylov basis states correspond to a subspace spanned by
applying powers of the Hamiltonian to a trial state (reference),
and various forms of Krylov subspace methods have recently
been investigated (see a recent review®* and references therein).
The quantum computed moments (QCM) approach, recently
introduced by Vallury et al** and subsequently applied in
various contexts,”>** also utilizes powers (or moments) of the
Hamiltonian A. While essentially constituting a subspace
method, the QCM approach does not explicitly construct the
Krylov basis states on a quantum circuit. Rather, QCMs provide
a correction to the energy that encodes electronic correlation
beyond that included in (H) (where () denotes the expectation
value with respect to an input state that approximates the exact
ground state). Based on the cumulant expansion of the Lanczos
diagonalization method, the elements of the tridiagonalized
representation of A can be expressed in terms of polynomials of
(H,,), where the maximum value of m is related to the dimen-
sion [ of the subspace expansion as 2/ - 1.

By deriving a truncation of the Lanczos expansion at m = 4,*
a non-perturbative approximation to the ground state energy
referred to as QCM4 can be expressed using cumulants c¢,, (also
referred to as connected moments)

m—=2

w () S (" ol )@

p=0

o2
Eqoms = ¢ — Cz% {m - q}. (7)

(7 — (g

In this work, we also utilize the connected moments

expansion®*** in which the “t-expansion” of Horn and
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Weinstein®® can be expressed in terms of ¢,. This leads to
alternative expressions of the energy to various orders of
moments. Here we consider the CMX2 formula, in which “2”
refers to the dimension of the associated subspace [
2
Ecvxa = ¢ — & (8)
G
hence this can be considered as an energy correction up to m =
2[/-1 = 3. We compare CMX2 to QCM4 as a lower-cost (generally
less measurements due to lower-order moments), yet more
approximate form of the energy.
To obtain expectation values (H,,), the fermionic Hamilto-

nian is JW encoded as H" ' =Y hpm-1Prm1 (where Pauli
r

strings P, are tensor products of Pauli gates spanning the
qubit register and A, are real coefficients), then H,, > 1 are
obtained by recursive multiplication of A. (H,,) can then be
computed from quantum hardware measurements in the
computational basis via Pauli string averaging. For ideal
simulations, expectation values are computed classically
(considered as the limit of infinite sampling in the absence of
device noise).

We note that the use of multiconfigurational (or multi-
reference) initial states for connected moment expansions of
the energy has a long history in classical computational chem-
istry.>® In Section 3.1.2 we show a quantum computational
version of this approach, where the circuit corresponding to the
initial state is tailored to linear combinations of specific ON
configurations (Slater determinants).

2.3.3 Quantum phase estimation and Hamiltonian simu-
lation. Quantum Phase Estimation (QPE) extracts ground or
excited state energies when the prepared initial state has a large
overlap with the desired target eigenstate. A promising alter-
native to canonical QPE uses Hamiltonian simulation with
a Hadamard test to measure the complex overlap between the
initial state and the time-evolved states at several time steps.
The resulting time-series is then post-processed, e.g. by
quantum complex exponential least-squares (QCELS),* to
extract the energies. Similarly to the canonical QPE, the
performance of the Hamiltonian simulation with QCELS
depends sensitively on the initial state, therefore it is of interest
to prepare the initial state in the most resource efficient way.
Formally, the QCELS method requires the measurement of

Z() = (Yle ™|y, )

where if |¢) = |¢,) is the exact ground state, (or an eigenstate),
then it coincides with e “Wol# W0 from which the energy
Eo = (Yo|H|¥o) can be easily extracted. Typically, however |y) is
not an eigenstate. Following the QCELS procedure we sample
the time ¢, = ntwithn =0, ..., N- 1 and time step t and obtain
an estimate of Z(¢,) via the Hadamard test. We prepare

_
V2

where U(t) = e ™ and the real and imaginary parts are esti-
mated via the expectation values

| (2,)) (10)®¥) + 1)@ U[)"|¥)), (10)
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Re Z, = (W(1,)| X®1|W(1,)), (11)

and
Im Z, = (W(1,)| Y®I|%(1,)). (12)

The energy is then extracted from the time-series by maximizing
the QCELS objective

(13)

and the location of the maximum yields the energy estimation.

, where E .,
min

The time step is chosen such that t <
max —

and E,;, are the largest and smallest eigenvalues of the simu-
lated Hamiltonian. This choice ensures tE € (-w, ) for every
eigenvalue E, therefore avoiding phase aliasing and enabling
unambiguous extraction via eqn (13). In practice, the spectrum

Tr(H)

2rg

can be centered by using H — so that the ground state

energy corresponds to the smallest eigenphase.

In Section 3 we demonstrate how multiconfigurational state
preparation can increase the overlap with the ground state and
therefore impacts the performance of the QCELS method.

2.3.4 Quantum self-consistent equation of motion. The
calculation of excited states has attracted the interest of the
quantum computing community as a first step towards the
calculation of response properties. Quantum self-consistent
equation of motion (Q-SCEOM) was suggested recently for the
calculation of excitation energies** and response properties.**> Q-
SCEOM uses self-consistent excitation operators in order to
satisfy the vacuum annihilation condition even when an
approximate set of excitation operators is used.*****” As a result
of this, Q-SCEOM yields accurate results in cases where plain
qEOM* fails qualitatively (see recent works***>***° for compar-
isons between Q-SCEOM, qEOM, and quantum subspace
expansion®*?). As shown by Asthana et al.,* the use of self-
consistent excitation operators simplifies the final EOM equa-
tions (¢f. qEOM). The excitation energies are obtained by diag-
onalization of the M matrix whose elements are given by (see
Asthana et al.** for a detailed derivation):

~F — N — ~

My = (Ve |G U (T op ) HU (T o) G e ) — 03B (1)
where G; are excitation operators, H is the system's Iiimilto-
nian, and |yyug) is the Hartre_e)—Fock (HF) state. U(0 opt) is
a unitary ansatz with angles 6, optimized for the ground
state. A simplified form of the off-diagonal elements can be
obtained**

Re[My] = Myypyis — 2ot — 222 (15)
where
My
o6+ 6) (7o) 0(7.0) (14 ) o)

(16)

© 2026 The Author(s). Published by the Royal Society of Chemistry
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As shown in eqn (16), the calculation of the off-diagonal
elements of the M matrix requires the construction of a multi-
configurational state, [.;) = |(G; + Gj)|¥ur) which is the most
demanding step for the quantum computation part.

Here we discuss the application of the multiconfigurational
state preparation methods presented in Section 2, comparing
both approaches, each being a building block of the Q-SCEOM
implementation in InQuanto.>***

2.4 Computational details

To demonstrate the use of multiconfigurational state prepara-
tion as a useful approach to prepare initial states for strongly
correlated systems, we study the ground and excited states of
twisted C,H, in the minimal basis set STO-3G. The ground state
corresponds to a singlet at torsion angles close to 0° or 180°,
while at 90° the ground state is quasi-degenerate with the triplet
having a slightly lower energy. In terms of classical pre-
processing, the PySCF code® is used to build the fermionic
(second quantized) Hamiltonian and to run complete active
space configuration interaction (CASCI) and unrestricted HF
calculations. Active spaces are selected based on the ordering of
mutual information® between orbital pairs (see Fig. 15 in the
Appendix for the plots of the molecular orbitals (MOs) that were
used in the active spaces). For all active spaces and all torsion
angles, the natural orbitals are dominated by the carbon 2p
shell, with small admixtures of H 1s that grow (but remain
minority) as the torsion angle tends to 90°. For larger (8-qubit
and 12-qubit) active spaces, higher orbitals that contribute to
correlation in the ground state also contain mixtures of 2s and
2p. Fermionic Hamiltonians are JW transformed to obtain H as
a sum of Pauli strings, for each active space. For VQE optimi-
zations, the L-BFGS-B method as implemented in the SciPy
package® was used. The multiconfigurational state preparation
methods are implemented in the InQuanto software
package,**** and all quantum calculations are carried out using
InQuanto. Quantum circuits are compiled using the architec-
ture agnostic software compiler TKET.*

3 Results
3.1 Ground state of C,H,

Here we demonstrate the use of multiconfigurational state
circuits to calculate the ground state energy of twisted C,Hy,,
using variational and non-variational techniques. A common
bottleneck in these eigensolvers is the large overhead in
measurements needed to accurately represent the required
expectation values (typically by averaging over Pauli string
measurements). This issue is exacerbated in strongly correlated
systems in which a single reference (single ON configuration)
state does not have a large overlap with the true ground state. A
warm start initial state can be highly beneficial in this regard,
particularly for quantum subspace methods, as the measure-
ment overhead can be reduced, for example by requiring
a smaller number of Hamiltonian moments or a smaller
dimensionality of the subspace.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Before discussing results for the ground state energies of
specific active spaces, we mention a popular quantum compu-
tational method to approximate the ground state which is
Unitary Coupled Cluster Singles and Doubles (UCCSD)," with
excitation parameters ¢; optimized by VQE. This ansatz can be
expressed as a series of unitary operators applied to a reference
state (e.g. to the Hartree-Fock state |y/yg))

surer)

[Yucc) = €F (17)

HF>7

where the fermionic excitation operators 7 consist of single,
double, triple, ..., excitations, which excite 1, 2, 3, ..., fermions
between occupied and virtual orbitals. In UCCSD, the excita-
tions are truncated to singles and doubles, corresponding to
each T operating over a maximum four spin oribtal indexes. (In
practise, a Trotterized form of UCCSD is used as the variational
ansatz, since individual excitations may not commute. Here we
omit the Trotterization from eqn (17) for brevity).

If one applies the second quantized fermionic operators Ty
directly to |ur), a series of ON configurations can be generated
which correspond to all possible single and double excitations
relative to the HF state. The latter in fact correspond to the basis
states of Configuration Interaction Singles and Doubles
(CISD),”> and the CISD wavefunction is obtained once the
coefficients of those basis states are found (typically by diago-
nalization of the Hamiltonian in the CISD basis). While UCCSD
can be more accurate than CISD (due to size extensivity, for
example), CISD contains a significant portion of electronic
correlation and often yields reasonable approximations to the
ground state. Due to the framework we developed for preparing
multiconfigurational states, a variational circuit corresponding
to the CI expansion can easily be generated once the ON
configurations of the expansion are given. In Fig. 1, we compare
CISD circuit sizes prepared using the SSP and GR methods to
UCCSD circuits (with all gate angles represented symbolically)
for a range of active spaces. For each active space, the ON
configurations are obtained by applying T to the closed shell
singlet HF state. Therefore, the states prepared using these ON
configurations retain the same spin symmetry as the ground
states of C,H, for torsion angles close to 0° or 180°.

We observe that the SSP method produces circuits signifi-
cantly smaller than the GR method over the range of active
spaces chosen (4-16 qubits correspond to 2-8 active molecular
orbitals). This is primarily due to the scaling in the number of
external controls required for the GR method as the state
becomes more complex with size, in addition to the decompo-
sition of GR 1-body and 2-body rotations. The circuits produced
by SSP are also consistently smaller than those produced by
UCCSD for the same active space, implying the lower suscepti-
bility to gate fidelity errors and qubit decoherence of the SSP
CISD circuits, despite the generally lower accuracy of CISD
compared to that of UCCSD.

3.1.1 4-qubit active space: VQE. As a first demonstration of
multiconfigurational state preparation methods, we consider
ansatzes for VQE applied to twisted C,H, in an active of space
nyvo = 2 molecular orbitals (MOs), corresponding to 4 qubits in
the JW representation, populated by 2 electrons. Representing
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Fig. 1 Circuit resources obtained for UCCSD and CISD, where the
latter are prepared using the GR (Section 2.1) or the SSP* (Section 2.2)
methods. Number of qubits ng € {4, 6, 8, 10, 12, 14, 16}. For a given n,

. ) _ng _ng.
(equal to number of spin orbitals), the number of electrons is ?‘1 |f7q is

14
even or

-1
if % is odd, for which the HF reference is a closed shell

singlet configuration. For a given n, and number of electrons, the
number of configurations corresponds to the number of single and
double excitations plus the HF reference. Circuits are compiled to the
standard gate set using the Qiskit®” extension of TKET.%¢

Fig.2 Circuit corresponding to state ¢;/1100) + c|1001) + c3|0110) +
c4/0011) prepared using the GR method (see Section 2.1). Algorithm 1
found that externally controlling G; on the second qubit is required.
Substituting the gate parameters for 90° torsion as an example and
compiling to the H-series gate set,® this circuit can be represented
using 61 PhasedX gates, 4 Rz gates, and 44 2-qubit ZZMax gates.
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Ry, (61)

Ry (93)

Fig. 3 Circuit corresponding to state ¢;/1100) + c,|1001) + c3/0110) +
€4/0011) prepared using the SSP method® (see Section 2.2).
Substituting the gate parameters for 90° torsion as an example and

compiling to the H-series gate set,® this circuit can be represented
using 10 PhasedX gates, 4 Rz gates, and 5 2-qubit ZZMax gates.

the ON configurations as |¢1,4s,-.-,¢»,) Where ng = 2nyio, the HF
state can be written in a bit string representation as [1100). The
ground state at equilibrium is a closed shell singlet, which
transitions to a triplet state ¢$*) = 2 at 90° torsion angle.
Hence, to capture the lowest energy manifold throughout the
180° rotation the following ON configurations are selected and

included in the variational ansatz ‘\//(7)> =Y cq|xq) for VQE
d

optimization
x; = [1100),
x; = [1001),
x5 =1[0110), (18)
x4 = [0011).
The relation between variational parameters (7) and coeffi-

cients ¢, are described as follows.

For the GR method, as described in Section 2.1 each GR
linearly combines the reference (x;) with another ON configu-
ration in the input set. 3 GRs are required to linearly combine
the configuration pairs (x1,%2), (%1, x3), (x1,%4) =
G,%(01),G3%(62),G4*(63). In this case, externally controlling
G5%(6,) on the second qubit (g,) is required to maintain the
desired state vector (see Fig. 2): since x, = |1001) is “rotatable”
by Gs;%(6,), then the external control is placed so that G;*(6,)
only operates on basis states in which g, = 1 (and hence has no
effect on [1001)). The corresponding pairs of coefficients
(elements of the G, matrices related to rotation angle, see Eq.
(3)) are obtained through recursive normalization of the c, state
coefficients,®> which here become

vector (o = cos 0y,

¢, = sin 6;), (ay = cos 05, ¢; = sin 6,), (a3 = cos 63, ¢, = sin )

where ag = \/1—¢j,, and ¢; | = ca:1/ 158 ap with ap = 1.

For the SSP method, coefficients are related to gate angles as
described in sec. 2.2 and exemplified in Gleinig and Hoefler's
paper.*

Fig. 2 and 3 show the VQE ansatz circuits of 4 ON configu-
rations (Eq. (18)), built using the SSP and GR methods.

+ This is consistent with |¢) = a|x;) + Z ca|xq) where o = H a,. The sequence

a=1
of GRs applied to the circuit returns the desired state vector through this

recursive mapping of the normalized coefficients, as discussed in Arrazola et al.*

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Energies obtained from VQE-optimized multiconfigurational states for the 4-qubit (2 electrons in 4 spin orbitals) active space of C,Hj,.
Simulated measurements correspond to 10 shots per circuit, and the Hamiltonian consists of 14 Pauli operators. Top graph: GR method (see
Section 2.1). Bottom graph: SSP method (see Section 2.2). C;H,4 structure at torsion angles 0°, 90°, and 180° shown above graphs. H11E

corresponds to emulations of hardware experiments with a noise mo

Depending on the optimized VQE parameters 0 = {64, 6,,05},
this ansatz spans both singlet and triplet eigenstates (with spin
number restricted to s, = 0). For example, at torsion angle = 0°,
optimization of 0 results in (up to global phase) a doubly
excited closed shell singlet with negligible contributions from

. g

singly ¥(60)) = 0.96814]1100)—
0.25045[0011) (with |c,], |cs| < 2 x 107°). Whereas for torsion
angle = 90°, with s, = 0 the ground state is dominated by

a superposition of open shell configurations, with small but
non-negligible contributions from the closed shell configura-

tions. [/(0)) = — 0.00009]1100)

+0.70710|1001) + 0.70712|0110) + 0.00007|0011) (as all 4 ON
configurations have non-negligible weight, this state vector is
used as the example for circuit resources reported in the
captions of Fig. 2 and 3). We note that following the optimiza-
tion of all VQE parameters for torsion angles between 0° and

excited  configurations

180°, ideal energies (w(?)’ﬁ‘\/x(y)) match the lowest eigen-

values obtained from exact diagonalization of A in the 2-particle

© 2026 The Author(s). Published by the Royal Society of Chemistry

del calibrated to the H1 trapped ion device.®*

sector (see Fig. 4) (and in the absence of device or measurement
noise, ideal energies obtained from the GR and SSP methods are
identical). Hence, the multiconfigurational state ansatz repro-
duces the ground state manifold for all torsion angles after VQE
optimization.

Emulations of quantum hardware experiments use a noise
model calibrated to the H1 trapped ion quantum computer,*
labeled as “H11E”. As shown in Fig. 4, quantum computations
of the expectation value are subject to greater amounts of noise
for the GR method due to the larger circuits (compare circuit
resources reported in Fig. 2 and 3), related to the decomposi-
tions of particle-conserving GRs"* in addition to the external
control (for G2) required for this case. Despite the negligible
coefficients of singly excited configurations for some torsion
angles #90°, we retain all 4 ON configurations in the circuit
state vector for all torsion angles for ease of comparison.
However, we note that shorter circuits (which represent only 2
ON configurations) for some torsion angles (at this active space)
will likely lead to similar ideal energies.

Digital Discovery, 2026, 5, 134-152 | 141
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Table 1 State vectors and corresponding circuit resources for all torsion angles studied in the 8-qubit active space of C,H,4. Note the symmetry
around the 90° torsion angle (hence the circuits for 0° and 180° are equivalent, etc.). Circuit resources represent the GR method (SSP method in

parenthesis). Circuits are compiled to the H-series gate set.*

Torsion angle (°) C1]x1) Co|%2) c3)x3) CalX4) PhasedX R, ZZMax
0/180 0.9690/11110000) ~ —0.2345[11001100)  0.0546[10011001) 0.0547|01100110) 174 (22) 7(6) 128 (17)
20/160 0.9683/11110000)  —0.2380/11001100)  0.0533|10011001) 0.0534|01100110) 174 (22) 7(6) 128 (17)
40/140 0.9617/11110000)  —0.2648/11001100)  0.0503|10011001) 0.0503|01100110) 174 (22) 7(6) 128 (17)
60/120 0.9354/11110000)  —0.3481/11001100)  0.0441|10011001) 0.0441/01100110) 174 (22) 7(6) 128 (17)
80/100 0.8281|11110000) —0.5522|11001100) —0.0681/10011100) 0.0681[01101100) 66 (18) 4(3)  40(13)
90 0.7044/11100100) 0.7044[11011000)  0.0615/10110100) 0.0615/01111000) 52 (16) 4(3) 32(11)

Despite the smaller circuits produced by SSP for the same
state, and hence its lower susceptibility to device errors, the GR
method does exhibit a conceptual advantage over SSP, which
can be particularly useful when interpreting a variational state
in a chemical context: when all gate angles of a circuit produced
by the GR method are 0, the state vector falls back to the first ON
configuration of the input set (x; in (x4, ..., xp)). If x; is chosen to
be the HF state, then the GR unitaries added to this circuit can
be readily interpreted as excitations on top of the HF reference.
This is not necessarily the case for the SSP method, whose
0 =0 state is non-trivial to predict as it depends on the
distribution of binary values throughout the set of input ON
configuration bit strings.’ Hence, the reference state for
chemical excitations is not necessarily accessible as the § =0
state of SSP method. This issue can be exacerbated in varia-
tional optimizations of the gate angles, which can terminate in
local minima at small gate angles: for the SSP method this local
minimum state can be unpredictable, whereas for the GR
method it is likely close or equal to the HF state. For the small
VQE applications presented here, this issue can be bypass_e)d by
random initialization of SSP parameters (avoiding 6 =0
initialization). However, difficulties may arise in larger systems
with more complicated parameter landscapes.

3.1.2 8-qubit active space: Hamiltonian moments. For the
8-qubit active spaces, ON configurations are selected from the
largest weight determinants observed in CASCI calculations.
For torsional angles of 0° to 60° (and 120° to 180°), the ground
state is dominated by the HF determinant (|11110000)), con-
sisting of mostly 2p orbitals in all MOs, with small mixtures of H
1s in the first (¢4, ¢») and forth (g;, gs) MOs. A paired double
excited ON configuration (|11001100)) is the next largest, fol-
lowed by spin-paired open shell configurations (|10011001),
|01100110)). For torsion angle = 80°, the first two largest
determinants are similar, while the open shell configurations
instead have one MO (the third) fully occupied (|10011100),
|01101100)). At torsion angle = 90°, the ground state is a triplet,
which is represented in its s, = 0 component using 4 ON
configurations, each hosting open shell MOs (|11100100),
[11011000), [10110100), |01111000)). 8-qubit variational ansat-
zes of 4 ON configurations are then prepared for all torsion
angles, which are optimized using ideal VQE. The resulting ON
configurations and their coefficients are shown in Table 1.

The multiconfigurational states from Table 1 are then used
as initial states for the QCM4 and CMX2 methods, with energies

142 | Digital Discovery, 2026, 5, 134-152

obtained from expectation values of Hamiltonian moments.
Ideal results (noiseless and infinite shot limit) are shown in
Fig. 5. We first note that for torsion angles of 0° to 60° and 120°-
180° (representing relatively weak electronic correlation), the
ideal energy values are reasonably accurate for the D = 1 HF
input state, and highly accurate for the D = 4 multiconfigura-
tional states.

At torsion angles near the transition point (80°, 90°, 100°,
strongly correlated as the singlet and triplet eigenstates become
quasi-degenerate) we find that the D = 1 closed shell HF input
state results in numerically very small cumulants c,, leading to
the term 3c3% — 2¢5¢4 approaching 0 or negative and an ill-
defined QCM4 formula when taking the square root (see eqn
(7)). Noting that the original derivation assumed the con-
dition,3¢;% — 2¢5¢4 — 2¢5¢4 > 0,7 we omit the QCM4 energies
from these angles for D = 1 (also considering that the closed
shell HF state insufficiently represents the strongly correlated
ground state, leading to a poor description of the correlation
represented by the moment expectation values). However, for
the D = 4 multiconfigurational states, both the QCM4 and
CMX2 calculations recover the exact lowest energies for all
torsion angles. This shows the benefit of multiconfigurational
input states for methods involving connected moments, as not
only does the QCM4 formula avoid the issue of negative
3¢3% — 2¢,¢4 (we assume due to a higher quality input state), but
the lower order theory (CMX2) can obtain a similar accuracy,
hence necessitating a lower order of moments and ultimately
less Pauli strings to measure. The latter point is further
emphasized by considering that the VQE energies at torsion
angle near 90° are < 1mHa above the exact values; at these
geometries the expectation of A with respect to the multi-
configurational state already captures most of the electronic
correlation, obviating the need for higher order moments with
a small overhead in circuit depth (see circuit resources reported
in Table 1).

3.1.3 12-qubit active space: quantum phase estimation and
Hamiltonian simulation. To quantitatively examine how the
state preparation impacts the ground state estimation of
QCELS, we performed exact state vector time evolutions for the
12-qubit (6e, 60) active space of C,H, at a torsion angle of 80°. At
this geometry the Hartree-Fock configuration, which has the
largest weight in the exact ground state |y,), has fidelity only
|(¥o|HF)|> = 0.674, which is below the 0.71 threshold recom-
mended in ref. 43 for reliable QCELS phase extraction.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 ldeal QCM4 and CMX2 energies calculated using a single configuration HF (top, D = 1) and VQE-optimized multiconfigurational input

states (bottom, D = 4) for the 8-qubit (4 electrons in 8 spin orbitals) active space of C,H4. VQE energies correspond to expectation values of H
taken with respect to the optimized multiconfigurational state. For ideal simulations, externally controlled GRs (Section 2.1) and the SSP method

(Section 2.2) yield identical results.

Moreover, it is expected that the required run time, therefore
the circuit depth of the time evolution operator, becomes
shorter as the initial state approaches the exact ground state.**
Therefore we performed simulations with initial states con-
taining increasing number of ON configurations. All together
four initial states were used in the simulations, denoted as |¢pon-
1) = [HF), |pon-2)s |pon-a), and |¢pon-g), where the last three are
derived from CASCI and correspond to the 2, 4, and 8 largest
weight ON configurations, respectively. We also note the fidel-
ities of the multiconfigurational states: |(yo|don-2)|> = 0.986,
and |(Yo|pon-)|* = 0.994, |(Yolpon-s)|* = 0.999.

Fig. 6 summarizes the simulations. The top panel shows the
complex time series Z(¢,) (real and imaginary parts) for each
initial state. All curves except the HF case lie almost on top of
each other. The middle panel plots the relative error with
respect to the exact value, e Volfl¥o) Wwe chose t = 0.1 Ha™*
and N = 31, giving a total evolution time Ty, = (N - 1)1, long
enough to capture at least one full period of the exact Z(t). The
right panel displays the QCELS objective, whose maximum was
located with the BFGS method. Finally, the bottom-left panel
shows the energy errors obtained by repeating the simulations
with smaller Tp,,x while keeping N = 31, effectively choosing
a smaller time step. The energies derived from the initial states

© 2026 The Author(s). Published by the Royal Society of Chemistry

|pon-1) and |pon-) do not reach the typical target precision ¢ =
1mHa within the time window, even at the largest T;,,,,, Whereas
those from |pon-4) and especially |pon-g) do, and importantly,
the latter hits the target precision at approximately half the
evolution time.

Because the depth of the circuit representation of e scales
linearly with ¢, compact, high fidelity state representation can
save significant amount of gate operations by reducing the
evolution time. Preparing |¢pon.4) via the SSP requires 13 two-
qubit gates, while |pon.s) needs 40. Although the state prepa-
ration thus costs 27 additional 2-qubit gates, the shorter
evolution time is expected to result a net saving well beyond the
27 gates.

—itH

3.2 Excited states of C,H,

Consequently, we look at the excited states of C,H, using the Q-
SCEOM method. The UCCSD ansatz, optimized by VQE for the
ground state, was used for U(Wopt) in eqn (14). We also used
particle and spin conserving singles and doubles excitation
operators. We compare the efficiency of the GR and SSP
methods for the construction of the off-diagonal elements of the
M matrix (see Sec. 2.3.4 for details). In Fig. 7 we present the total
number of gates (upper panel) and the total number of 2-qubit
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ground state energy. The x-axis is the time period for QCELS, demonstrating that the energy computed for that period requires Ty Simulation
time. As the period increases, the energy approaches target accuracy (dashed horizontal line) with different rates for different initial state. Legend
shows the fidelity between the initial state and the exact ground state. Right panel shows QCELS phase function for the largest T,,ox period with

the exact ground state energy marked by a dashed vertical line.

gates (lower panel) (the circuits were compiled with the H-series
emulator) for each element of the M matrix for the C,H,
molecule using the 8-qubit active space with torsion angle of
90°. More specifically, the circuits correspond to
U(?opt)G‘JWHF) for the diagonal elements and
U(?Opt)(GI + Gy)|[¥ur) for the off-diagonal elements. There are
26 excitation particle and spin conserving operators. Therefore
the M matrix consists of 676 elements. Only the diagonal and
the upper-half part of the matrix were calculated since M is
a symmetric matrix. The GR method was used for the plots in
the left side while the SSP method was used for plots in the right
side. It is evident that the SSP method reduces significantly the
number of gates. This is in accordance to results presented in
Section 3.1 for the calculation of ground state energies. We note
here that in the case of the GR method, the structure of the
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matrices shown in Fig. 7 is directly analogous to the Hamming
distance of the associated states to be combined. In particular,
the improvement of the SSP method over the GR method
becomes greater for values of the Hamming distance larger than
4, for which the GR method requires the construction exem-
plified in Fig. 12. (see Section A.2 in the Appendix for more
details).

Additionally, the gate decompositions of the multi-
configuration states for Hamming distances <4 also contribute
to the reduced circuit sizes obtained from the SSP for the M
matrix elements. This is exemplified in Fig. 8, where the GR and
SSP circuits are shown for the construction of the |y, state for
the M,, element for the Q-SCEOM calculation of the 8-qubit
C,H, at 90° torsion. We observe that 3 2-qubit entangling gates

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig.7 (TORZ total number of gates and (bottom) number o_f>2—qubit gates required for the construction states needed for the evaluation of the M
matrix (U( 0 opt)G; ) for the diagonal elements and U( 6 opt)(Gr + G;)|ye) for the off-diagonal elements) for CoH,4 with 8-qubit active space
and 90° angle. The (left) GR, and (right) SSP methods were used for the off-diagonal terms. The circuits were compiled with the H-series
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Fig. 8 Circuits to construct the multiconfigurational state |(GZ + GO)N/HF) for the M, element. Green vertical bars represent the ZZMax 2-qubit
entangling gate, while red horizontal bars represent PhasedX(«, 8) = R,(8)R(a)R,(—B) 1-qubit rotations.® The circuits represent (up to global

1
phase) the state —= (|10110100) — [01111000)). All gate angles are in units of 7. (@) GR method, for which the G* rotation decomposes into 14

V2

ZZMax gates (see bottom panel of Fig. 10 for the representation of G* in the H-series gate set). (b) SSP method, containing only 3 ZZMax gates.
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Fig. 9 Noiseless calculations of ground and excited states for various torsion angles of 4-qubit and 8-qubit active spaces of C,H, in the Upper
and Lower panel respectively. The absolute difference of the HF ground state energy with respect to the VQE ground state energy (-e-) and with
respect to the exact energy (-e-) are plotted in the Left part. The ground state energies (— ¥ —) and the first (-e-), second (-®-), and third (- a-)
excited state energies obtained with VQE + Q-SCEOM and exact diagonalization of the Hamiltonian are shown in the Middle and Right part

respectively. The SSP method was used in the Q-SCEOM calculations.

are needed for the SSP method, whereas the GR method
requires 14 (see also Fig. 10).

Next, we look at the ground state and excited energies of
C,H, at various torsion angles. We present in Fig. 9 the results
for the 4-qubit and 8-qubit case in the upper and lower parts,
respectively. In the left panel we plot in red the correlation
energy of the ground state energy as the absolute difference of
the HF energy with respect to the exact result (first eigenvalue
obtained with diagonalization of the Hamiltonian). As expected,
the degree of correlation increases as we approach the 90°
torsion. We also plot in black the absolute difference of the HF
energy with respect to the VQE result obtained through opti-
mization of the UCCSD ansatz. It is evident that at 90° torsion
angle, VQE yields a higher energy compared to the exact result.
We attribute this to the fact that the VQE optimization results in
an unstable singlet state whereas the stable solution is a triplet,
as discussed in Section 3.1. Note here, that for all the VQE
calculations reported in this section, prior to the calculation of
the M matrix, we limited our search to open-shell singlet states.
Consequently, we plot in the middle panel the VQE result for
the ground state energy and the energy of the first three excited
states obtained with Q-SCEOM. We employed the SSP method
for the construction of the off-diagonal elements of the M
matrix for C,H, at various torsion angles. We compare the Q-
SCEOM results to the eigenvalues obtained through diagonal-
ization of the Hamiltonian. For both active spaces, Q-SCEOM
reproduces qualitatively the exact result. Interestingly, at the
90° angle, Q-SCEOM recovers the correct total energy (which
matches the exact result) even though VQE (which affects the Q-
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SCEOM result through the optimized ansatz that is used for the
calculation of the M matrix) yields a higher energy.

4 Discussion

In this work, quantum circuit preparation of multiconfigura-
tional states for quantum chemistry has been demonstrated
and compared as the state preparation step for a range of
applications, including ground state energy calculations using
VQE, QCM, and QPE, as well as excited state energies calculated
using Q-SCEOM. The use-case to demonstrate these techniques
is twisted C,H,4, whose energy surface passes through a strongly
correlated point as a function of torsion angle.

Multiconfigurational state preparation allows initial states
that are more accurate than the single configuration HF state,
which for QCM can facilitate a reduction in measurement
overhead at a relatively small cost of extra circuit depth for the
initial state, whereas for QPE the probability of accurately
measuring the phase can be increased by a multiconfigura-
tional initial state (relative to HF) since this probability is
proportional to the overlap between the initial state and true
ground state.*® For Q-SCEOM, the off-diagonal elements of the
M matrix can be generated using multiconfigurational state
preparation, hence the latter facilitates a framework for auto-
matically building and running the Q-SCEOM algorithm for
a given molecule.

Overall, we observe significantly more efficient circuits using
the SSP method compared to the GR method. This is largely due
to the utilization of the sparsity of chemical states that can be

© 2026 The Author(s). Published by the Royal Society of Chemistry
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exploited by the SSP, in addition to the gate decomposition of
particle-conserving GRs and their required external controls
leading to larger gate and depth overheads for the GR method. A
conceptual advantage of the GR method can be seen when
considering the state preparation as transformations of a refer-
ence state; setting the rotation angle of all GRs to 0 is guaran-
teed to result in the state |x;) where x; is the first ON
configuration in the ordered input set. Since x; can be chosen
from HF, each GR can be considered as an excitation of the HF
reference, preserving familiar notions from classical computa-
tional chemistry. In the context of variational searches of the
ground state energy, this property of the GR method prevents
unpredictable local minima at small values of variational
parameters (which the SSP method can be susceptible to), and
may be beneficial for analyzing contributions of specific basis
states to the total electronic correlation.

In terms of future applications, our implementation easily
allows for the composition of different ansatz circuit structures.
For example, appending generalized® UCC unitaries to a mul-
ticonfigurational state circuit prepared using the GR or SSP
methods provides a framework for multireference methods® at
the quantum circuit level, such as multireference UCC. We also
note a recent work that extended the reference state error
mitigation scheme® to multireference states®* using GRs. An
interesting future direction would be to apply the SSP method to
prepare the multireference states used for error mitigation, with
the potential of significant reduction in circuit resources.

In addition, since multiconfigurational state preparation as
presented here can be seen as an approach of loading classical
(chemical) data to a quantum processor and preparing
a quantum state to represent this data, this could be compared
to preparation of multi-determinant states using quantum read-
only memory (QROM),** or to sparse state preparation using
quantum random access memory."”* We note that while these
techniques achieve a similar asymptotic scaling to the SSP
method in the number of 2-qubit gates (O(Dn,), our imple-
mentation of multiconfigurational state preparation does not
require controlled operations between auxiliary qubits and state
qubits. We also note a recent work® that utilizes QROM to
reduce the Toffoli count for matrix product state preparation.

In conclusion, this work provides a framework for preparing
quantum circuit representations of multiconfigurational states,
as implemented in InQuanto.”*?® Overall, the impact of this
work can be summarized by the following points.

(i) We provide a novel implementation for the use of exter-
nally controlled GRs for multiconfigurational state preparation,
which automatically finds the required external controls of GRs
for a given ordered set of ON configurations.

(if) While the SSP algorithm was published in a previous
article," this work demonstrates novel applications of the SSP
method for a range of algorithms currently proposed for
studying the ground and excited states of molecules quantum
computationally, i.e. VQE, QCM4, QPE, and Q-SCEOM.

(iii) Specific to the application of the SSP method to VQE, our
implementation allows for the use of SSP to generate a varia-
tional ansatz, in which the lowest energy state vector can be

© 2026 The Author(s). Published by the Royal Society of Chemistry
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obtained by optimizing the angles of the 1-qubit unitaries
within the SSP circuit.

The utility of multiconfigurational initial states is shown for
various quantum computational approaches to quantum
chemistry. In particular, when the state to be prepared exhibits
sparsity in the sense of D <« 2™, very efficient circuit represen-
tations can be achieved, therefore boosting the accuracy of QPE,
for example, or reducing the measurement overhead of
quantum subspace methods, without a large overhead in circuit
depth. In addition, multiconfigurational state preparation is
useful for enabling certain methods (such as Q-SCEOM) which
require circuit constructions of selected excitations of a refer-
ence state, thus enhancing the tool set for quantum approaches
to ground and excited states of molecules.
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InQuanto is available at https:/www.quantinuum.com/
products-solutions/inquanto-trial. ~ InQuanto 5.0
(https://inquanto.quantinuum.com/index.html) is used in this
work. Pseudocode for the GR method is presented in this
article (see Algorithms 1 and 2). See also pseudocode for the
SSP method reported in the original paper by Gleinig and
Hoefler (https://doi.org/10.1109/DAC18074.2021.9586240). A
repository is available that contains representative starting
datasets and notebooks to allow similar conclusions to be
drawn to those of the manuscript based on the workflow in
the notebooks and self-written replacements for calls to
proprietary code (https://doi.org/10.5281/zenodo.17466867).

version

A Appendices
A.1 Circuit decompositions for GR method

In Fig. 10 we show the gate decompositions of the 1-body (G*)
and 2-body (G?) rotations. Compared to the corresponding
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Fig. 10 Circuits for 1-body (2-qubit) G* and 2-body (4-qubit) G* rotations, where state vectors are obtained up to global phase. Green vertical

bars represent the ZZMax 2-qubit entangling gate, while red horizontal bars represent PhasedX(«, 8) = R;(8)

gate angles are in units of 7. Subscripts on G* and G* are omitted.

o

95 o
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Fig. 11 The 2-qubit entangling gate ZZMax** in terms of CNOT and R, gates. The equality is up to global phase. Gate angles are in units of .
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Fig. 12 Circuit to perform a (A = 3)-body excitation of the ON
configuration |111000), yielding cos #|111000) + sin |/000111), where 6
is in units of 7. The subscript e in gﬁ is omitted in the figure. See top
panel of Fig. 10 for the decomposition of the central G* in the H-series
gate set.®

circuits shown in previous work,®> we observe a similar number
of 2-qubit entangling gates (ZZMax*' here and CNOTS in Arra-
zola et al.*). The Hadamard gates of the decompositions shown
in® are absorbed into the PhasedX(«, §) = R,(8)R.(a)R,(—B)** 1-
qubit rotations, and additional R, and PhasedX rotations are
required to achieve a 2-qubit operation equivalent to a CNOT,

148 | Digital Discovery, 2026, 5, 134-152

resulting in differences in the total number of 1-qubit gates. For
completeness, the action of the 2-qubit ZZMax is depicted in
Fig. 11 in terms of CNOTs and R,.

This section also describes our scheme to build the excita-
tion gadget that connects basis states separated by h(x, xz) >4
Hamming distance (A > 2 - body excitation), when preparing the
multiconfigurational state using the GR method. Unlike Fig. 5
of in Arrazola et al.,® here each SWAP is not controlled on all
other qubits in the circuit, but only on “minority” qubits, i.e.
those qubits with minority binary values (see gminor in Algo-
rithm 2). This results in lower overhead of external controls that
scale with the number of minority qubits nnyiner rather than n,
as in Arrazola et al.> However, this leads to the possibility that (i)
the control states (conditions of the external control) of a SWAP
are matched by the qubits of one of the previous basis states, or
(ii) a swapped version of the first basis state (x,) becomes equal
to one of the previous basis states (note that qubits of x’1 at
a given iteration of the WHILE loop lines 5-13 of Algorithm 2
form the control states for the next iteration). If (i) or (ii) occurs,
it is not necessarily a problem once the central G' is also
controlled on the minority qubits of (“fully swapped”) x,. The
latter implies that the external controls of the central G' also
scale with 7in0r, While a cheaper alternative would be to use the
usual G' controls from Algorithm 1. However, in order for the
external controls found by Algorithm 1 to be usable for the
central G* of the A > 2 excitation gadget, we find that both (i) and
(ii) must not occur.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Algorithm 2: GR for h(xy,x.) >4

Input: Ordered set of bit strings (xp,...,Xe).
Output: Sequence of SWAP gates, central G2, and their external controls.
) 1 if nejec < [ng/2]
4minor < .
0 otherwise
Make a copy of x|, labeled x{;
Initialize ordered dict ctr1lSWAPs= {}, and k_matches_ref < FALSE
while b(x],x.) >2:
Find lowest i such that x{ (i) = 1 # x.(i), and lowest j such that x{(j) = 0 # x.(j). Store SWAP indexes (i, j);
Initialize empty ordered set i’ = {};
fori' ¢ {i,j} =1tong:
ifxll (i,) = qminor*
| Append external control index i’ to i’, with control state gminor-
Append (key, value) pair ((i, ), i') to ctr1SWAPs. Swap i, j of x|, reduce h(x],x.) by 2;
fork=2toe-1:
ifxq = X+
| Set k_matches_ref < TRUE;
Use the remaining 2 nonzero indexes of ((x](1) ®x(1),...,x](ng) ®xe(nq)) to define the central G2. Initialize
allow_G_ctrls « TRUE;
Use Algorithm 1 lines 4-6 to find (potential) external control indexes i, of G2
if k_matches_ref:
fori’ in ctrlSWAPs:
ifi, ci’ and x| (ip) = gminor Vip € ip:
| allow_G_ctrls < FALSE;
if allow_G_ctrls:
’ Set external control indexes of G2 to i,, with control states x| (i,);
else:
’ Use lines 7 - 9, in which the (i, j) are now the indexes of the central G2, to find external controls of GZ;

Return ctr1SWAPs, indexes of G2, and G2 external controls.

S DD S DD >
'\'\ \ . '»\ \ Y A
N [\} Q N \} [\}
O g & & g &
. . . 4
100 100
95 95 3
20 90
2
85 85
80 80 1
75 75 | : , 0

Fig. 13 Total number of gates using the (left) GR method, and the (middle) SSP method for the construction of the ‘ket’ states of the M matrix for

the 4-qubit active space for C,H4 at 90 °torsi9n. (Right) the hamming distance between the /, J states that are combined using the previous
methods to construct the |y, + ;) state. The G|ynf) states for each element are shown as x tick labels.
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8 A.2 Circuit resources and hamming distances for the M
matrix in Q-SCEOM

In this section, we plot the Hamming distances between the
6 [¥ry) and |yyr) states, used to build the M matrix for Q-SCEOM.
The Hamming distances have a significant impact on the circuit
resources used for each element of the M matrix, particularly for

4 the GR method. Fig. 13 corresponds to the 4-qubit active space,
where the left and middle panels show the total number of gates
for the GR and SSP methods, respectively, while the right panel

2 shows the Hamming distances. Fig. 14 shows the Hamming
distances for the 8-qubit active space.

0

Fig. 14 Hamming distance between the /, J states that are combined A.3 Plots of orbitals
to construct the |y, + y;) states for C,H4 using the 8-qubit active
space. In this section we plot the spatial orbitals used in the active

spaces of C,H,4, shown in Fig. 15.
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Fig. 15 UHF spatial orbitals of C,H4 at 0° torsion angle that were used for the construction of the active spaces. The HOMO and LUMO shown in
(a) were used for the 4-qubit case. The 8-qubit case was augmented with the orbitals shown in (b) and the 12-qubit case used all six orbitals

shown in the figure. Occupied and virtual orbitals are shown in the upper and lower part respectively. The isosurface level was set to 0.02.
PySCF** was used for the HF calculation.
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