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Real-time monitoring of laboratory experiments is essential for automating complex workflows and

enhancing experimental efficiency. Accurate detection and classification of chemicals in varying forms

and states support a range of techniques, including liquid–liquid extraction, distillation, and

crystallization. However, challenges exist in the detection of chemical forms: some classes appear

visually similar, and the classification of the forms is often context-dependent. In this study, we adapt the

YOLO model into a multi-modal architecture that integrates scene images and task context for object

detection. With the help of Large Language Models (LLM), the developed method facilitates reasoning

about the experimental process and uses the reasoning result as the context guidance for the detection

model. Experimental results show that by introducing context during training and inference, the

performance of the proposed model, YOLO-text, has improved among all classes, and the model is able

to make accurate predictions on visually similar areas. Compared to the baseline, our model increases

4.8% overall mAP without context given and 7% with context. The proposed framework can classify and

localize substances with and without contextual suggestions, thereby enhancing the adaptability and

flexibility of the detection process.
1 Introduction

AI and robotics technologies provide automation solutions in
self-driving labs (SDLs) to facilitate autonomous experiment
execution.1–5 Computer vision (CV), as one of the automation
tools, has been applied to provide vision-based monitoring of
the experiment process, sending feedback to plan future actions
and make decisions.6–8 The aim of introducing CV systems to
chemical reactions in SDLs is to assist human operators in
manual experiment tracking, which can be labour-intensive and
time-consuming, and to standardize experiment analysis based
on the macroscopic vision-captured data. In this work, we
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propose a real-time, context-aware chemical reaction moni-
toring framework.

CV has found diverse applications in chemistry and mate-
rials science, including real-time reactionmonitoring, detection
of physical states, materials characterization, anomaly identi-
cation, and microscopic imaging.9 These CV systems10,11 rely
on traditional image analysis techniques (e.g., edge detection,
color space transformation) or/and deep learning models,
particularly convolutional neural networks (CNNs).12 Deep
learning models use pixel-based inputs—typically images or
video frames—and are trained for classication, detection, or
segmentation tasks. However, these models operate exclusively
on pixel-based data and lack any form of contextual awareness.
They infer outputs by learning statistical correlations in low-
level visual features—such as color, texture, edges, and spatial
patterns—but do not incorporate information about the
experimental protocol or materials involved. In contrast,
chemists interpret visual information through contextual
reasoning. Chemists' understanding of the experimental setup,
the type of process underway, and the intended outcome plays
a critical role in how visual scenes are classied. This missing
context introduces a key limitation that CV models misclassify
or inconsistently localize visually similar images that arise from
fundamentally different chemical processes.

Dynamic physical processes (e.g., mixing, dissolution,
melting, separation, and evaporation) oen generate transient,
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Fig. 2 The detection of chemicals can often be ambiguous due to the
similar visual features shared by different forms. Moreover, classifica-
tion may rely on context, which is influenced by the type and objective
of the experiment. Vial (a) illustrates the process of solid particles
settling at the bottom of the vial, whereas vial (b) depicts the aggre-
gation of solids within a heterogeneous liquid. Vial (c) demonstrates
a heterogeneous liquid with a non-uniform distribution, and vial (d)
illustrates detection from a commonly used chemistry reactor set,
characterized by a non-transparent yet uniformly distributed homo-
geneous liquid. Although the liquids in vials (a) and (b) are visibly
heterogeneous, the detection of solids remains ambiguous. Similarly,
the liquid classes in vials (c) and (d) exhibit overlapping visual charac-
teristics, complicating their differentiation.
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evolving visual cues (e.g., turbidity, layering, or phase bound-
aries) that appear similar across different experimental setups.
For example, a cloudy suspension may arise from early-stage
mixing, undissolved solids, emulsied phases, or nucleating
crystals, depending on the chemical experiment. Prior work
with the HeinSight computer vision models6,7,13 demonstrated
real-time monitoring and control of such dynamic processes
using object detection models like R–CNN14 and YOLO,15

trained on custom datasets. HeinSight organizes physical
observations into a taxonomy of phase states (e.g., solid, liquid,
air) and tracks their interactions (e.g., solid–liquid, liquid–
liquid) over time to monitor process dynamics. This CV system
has enabled the automation of diverse workows such as crys-
tallization, distillation, liquid–liquid extraction, solid–liquid
mixing, solubility testing, and drug formulation across multiple
platforms; from small-scale robotic systems to high-throughput
experimentation and EasyMax batch reactors. However, each
deployment required retraining the model on a new dataset
specic to the experimental setup. These HeinSight models6,13,14

rely solely on pixel-based analysis, which limits their contextual
awareness and generalizability. As a result, they must be
retrained for new contexts, especially when identical images can
have different interpretations depending on the experiment.
For example, in Fig. 1, the same image is labeled as two liquid
layers by HeinSight 3.0 (ref. 7) (trained for liquid–liquid
extraction) but as a suspended solid in liquid by HeinSight 4.0
(ref. 13) (trained for solid–liquid mixing). Both classications
are correct within their respective experimental contexts.
Human annotators naturally rely on experiment type and intent
when labeling such data, but this contextual information is lost
during model training and inference. Additionally, Fig. 2 shows
some ambiguous examples where different mixtures appear. In
this work, we extend HeinSight by incorporating context into
the model architecture, enabling it to differentiate experiment
types and correctly classify visually similar cues based on
experimental intent and hoping to resolve a general-purpose CV
for chemistry.

Context-aware learning has been extensively studied as
a solution to address ambiguity in tasks,16,17 such as image
Fig. 1 An example of a single image can be labeled by different classes
under different chemistry contexts.

Digital Discovery
classication.18 This approach typically combines text, which
provides contextual information, with images that supply visual
scenes. The integration of these two inputs can occur either
before or aer feature extraction, referred to as early fusion and
late fusion, respectively.19 The text serves as SI, aiding in
reducing the ambiguity in image features. Studies such as20–22

have demonstrated that incorporating text inputs—providing
details like geographic location, object usage, or scene
descriptions—can signicantly enhance performance in chal-
lenging image classication tasks. In this work, we focus on
phase detection in chemical mixtures. We aim to achieve our
purpose by using experiment descriptions to set a context
restriction for the detection.

Vision-language models (VLMs) are a technique of multi-
modal systems that integrate image and text representations to
perform tasks such as zero-shot classication, captioning, and
open-vocabulary object detection. Models like CLIP,23 GLIP,24

Yolo-world25 and Grounding-DINO26,27 align visual and textual
embeddings to retrieve or detect objects based on language
prompts. However, these systems are typically trained on large-
scale datasets from natural scenes, and their effectiveness in
domain-specic applications—such as chemical experimenta-
tion—is limited by a domain gap in both language and visual
data. Moreover, most VLMs use text as a search query to localize
corresponding visual elements, which differs from the context-
guided classication required in chemistry. Our approach
builds on VLM principles but reframes the role of text. In YOLO-
text, textual input (e.g., experimental protocols) is used as
a context signal rather than a retrieval query. By attaching
a context-aware learning block to the YOLO detection head, our
model fuses textual and visual features during training and
inference. This enables the model to adjust its predictions
based on the experiment's intent, allowing more accurate clas-
sication of visually similar inputs across different workows.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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In this way, YOLO-text adapts the strengths of VLMs to chemical
CV tasks while addressing the limitations of open-vocabulary
approaches in scientic domains.

In this work, we present YOLO-text, a real-time, context-
aware vision-language model for detecting phase states in
dynamic chemical experiments. By integrating a pretrained
large language model (LLM), YOLO-text incorporates textual
input (e.g., experimental protocols) to guide visual interpreta-
tion, particularly in cases where identical visual cues lead to
different classication outcomes depending on the experi-
mental context. YOLO-text model includes ve relevant physical
phase classes commonly encountered in chemical workows:
gaseous headspace (“empty” or “residue”), liquid (“homoge-
neous” clear or “heterogeneous” cloudy) and “solid”. To enable
context-aware detection, we introduce a lightweight context-
aware learning block that connects to the YOLO backbone28

and optionally accepts text prompts as input. This block fuses
visual features extracted by the vision model with textual cues
before passing them to the detection head, forming a unied
image-text multimodal fusion model. This design supports real-
time inference while allowing exible use of context: the model
can be trained and deployed with or without textual input.
YOLO-text employs a two-stage training strategy: rst, it aligns
image and text representations into a shared embedding space;
then it learns to detect phase states under different context
conditions. We show that introducing context dramatically
improves detection accuracy, especially for underrepresented
classes. For instance, mean average precision (mAP) for the
solid class improves from 27.3 to 54.9. Overall, YOLO-text
outperforms the standard YOLO model across all classes, with
total mAP increasing from 75.9 to 82.9 with context, and 80.7
without it. We demonstrate YOLO-text on four case studies each
involving visually similar images that require different classi-
cations depending on the experiment type. YOLO-text lays the
foundation for context-aware classication in chemistry,
enabling the same image to be interpreted differently based on
experimental intent and marks a step toward building general-
purpose computer vision systems for chemical research.
2 Experimental

The following sections describe the design of the model archi-
tecture and the dataset. The Dataset Section outlines the chal-
lenges encountered in constructing the training dataset and
explains the selection and annotation of ve classes from visual
data obtained through various chemistry experimental tech-
niques. The Method Section presents the components proposed
and implemented within the model architecture.
Fig. 3 Some examples of images and their annotations from the
dataset. The background of each image was cropped during training.
2.1 Dataset

Data collection is conducted from real chemical experiments in
laboratory settings. The dataset includes experiments from
various chemical techniques to ensure the diversity of each
class. However, certain classes, such as solid and residue, are
inherently less common. To address the challenges of small and
imbalanced data, the dataset annotation is designed to use
© 2026 The Author(s). Published by the Royal Society of Chemistry
a minimal number of classes that can effectively represent the
material phases typically observed in experiments. Therefore,
the dataset is annotated using ve classes: empty layer, residue,
solid, homogeneous liquid, and heterogeneous liquid. The
denitions for each class are as follows:

� Empty: air layer in the vessel.
� Residue: solid particles sticking on the vessel window.
� Solid: big solid chunks suspended in liquid and/or solid

sediments.
�Homogeneous liquid: transparent and liquid with uniform

composition.
� Heterogeneous liquid: not uniformly distributed liquid.
To give an insight into the dataset, we show several images

from the dataset with their annotations in Fig. 3. It is important
to note that, in some cases, different classes can be inclusive.
For example, a homogeneous liquid may contain a solid,
leading to visual overlap between classes.

A total of 17 videos, along with the data used in HeinSight
3.0,7 were recorded from various experiments or different stages
of an extended reaction. The videos encompass four commonly
used techniques in chemistry experiments: liquid–liquid
extraction (LLE), solid–liquid mixing, crystallization, and
dissolution, as well as scenarios involving empty vessels with
a static or operating stirring bar. Specically, 828 images and 3
videos were derived from the LLE process, 6 videos were
recorded during the solid–liquid mixing process, 2 videos
captured the crystallization process, and 2 videos documented
the dissolution process. Fig. 4a illustrates the portion of classes
from the training set contributed by different chemistry
techniques.

Image data is extracted from recorded videos, where we rst
separate 10 videos into the training set and 7 videos into the
validation and test set, and then extract image data with
a certain frame rate. In the end, there are 2841 images in the
training set, and 280 images in the test set. Fig. 4b shows the
number of samples of each class in the training and test sets.

Fig. 2 is a glimpse of some difficult image examples in our data
set, where (a), (b), and (c) were directly collected from vials and (d)
was collected from EZ-Max experimental equipment. The data
shown in Fig. 2 were recorded from different experiments showing
varied chemical layers with similar visual cues. For example, (c)
and (d) are non-transparent liquids annotated as heterogeneous
and homogeneous liquids, respectively. The visual ambiguity
Digital Discovery
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Fig. 4 Two bar plots to illustrate the data distribution (a) is an illus-
tration of the portion of data in the training dataset coming from
different chemistry experiment processes. (b) shows data distribution
for each class in the training and test sets. In (b), light red bars refer to
the number of samples in the training set, while grey bars refer to the
samples in the test set. Overall, the data is split between the training
and test sets at a ratio of approximately 10 : 1

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/2

0/
20

26
 1

0:
45

:1
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
might confuse the model during training, and make it provide
inaccurate predictions under different experimental contexts.
2.2 Method

In this section, we present a chemical reaction monitoring model,
as illustrated in Fig. 5. A pretrained large language model (LLM) is
employed to process the ongoing experiment protocol and infer
the expected classes. The expected detections generated by the
LLM are then passed to YOLO-text, which subsequently predicts
states based on the fusion of visual and contextual information. To
mitigate the uncertainty in LLM reasoning, YOLO-text is trained to
adapt to varying levels of contextual input, including complete,
incomplete, and absent class information.

We will start by introducing the architecture of YOLO-text. As
shown in Fig. 6, the model takes images and offline words
Digital Discovery
(context) as input, making predictions based on vision features
and context. Then, a description of how we conduct prompt
tuning on the pretrained LLM to generate output that can be
taken as input by YOLO-text is provided.

2.2.1 Image features and word embeddings
2.2.1.1 Image feature extraction. The proposed model,

YOLO-text, is built upon YOLOv8. It retains the original vision
feature extraction process established by YOLO,29 utilizing
a Darknet backbone as the image encoder to extract multi-scale
features. These features are subsequently processed by the
Feature Pyramid Network (FPN)30 to enhance feature
representation.

2.2.1.2 Word embeddings. Each word input to the text
encoder is initially transformed into an embedding. At the start
of training, these word embeddings are initialized using pre-
trained global word vectors.31 The embeddings are stored in the
PyTorch Embedding layer and updated throughout the training
process. To handle varying input word counts, we dene a xed
maximum number m of acceptable inputs as the dimension of
the text embedding matrix. The input word indices W =

{w1,w2,.,wn} must satisfy n < m. Each input word wi is mapped
to an embedding vector ei and stored in the embedding matrix
E˛ℝjV j�d, where jVj is the vocabulary size and d is the embed-
ding dimension:

ei = E[wi], ci˛{1,2,.,n}

The extracted embeddings are arranged into a xed-
dimension tensor T˛ℝm�d, with padding as needed:

T ¼

2
6666666666666664

e1
e2
«
en

eno-prompt

«
eno-prompt

3
7777777777777775

2.2.2 Context-aware learning block. The context-aware
learning block is positioned before the detection heads, where
it integrates textual and multi-scale image features, enabling
the fusion of these two modalities before passing them to the
detection heads. Within this module, the text features are
initially projected into the same latent space as the image
features and then concatenated with the image features to
incorporate visual information. Both types of features are
subsequently processed through a self-attention module to
enhance their individual representations. The context-aware
learning block employs two types of fusion processes:
weighted embedding fusion and joint embedding fusion. The
weighted embedding fusion process aligns the two feature types
by calculating their similarity using scaled dot-product cross-
attention. The resulting weighted embeddings are then
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Diagram illustrating the proposed framework for chemical reaction detection. The figure on the left shows two examples of failed
detection results from a vision-only detection model. There is no Non-Maximum Suppression (NMS) used in detection, as it can mistakenly
remove the overlapped objects, such as a solid in a homogeneous liquid. The right of the figure shows the working procedure of our proposed
method. According to our method, a pre-trained LLM is used to reason the reaction phases from the provided experiment protocols. The LLM
reasoning result is used to set the context for YOLO-text, which outputs the final detection results on visual frames. Image and context are fused
in YOLO-text, where the predictions are adjusted based on the set context. Notably, while the input context aids the detection process, it does
not solely determine the final predictions. This ensures that the model can still generate predictions even in cases where context input is
unavailable or incomplete from the LLM.
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merged through summation. Empirical analysis indicates that
this approach improves sensitivity to detailed pixel variations
but may lead to an increase in false positives. The joint
embedding fusion process, in contrast, applies a concatenation
operation to combine the features globally, providing a more
holistic fusion strategy.

2.2.2.1 Decision making. The decision-making function is
inserted in the context-aware learning block to weigh the
embeddings passing to the detection heads. It will determine
Fig. 6 Architecture of the proposed context-aware learning block. The o
aware learning block takes multi-scale image features and context inform
and joint embeddings, and then sent to the decision-making block. Lastl
features to detection heads.

© 2026 The Author(s). Published by the Royal Society of Chemistry
the portions of the features from the two fusions and forward
them to the detection heads for nal predictions. Two decision-
making approaches have been implemented: a decision-making
function and a concatenation operation. The following sections
provide a detailed explanation of each method.

F1 and F2 are given as the two fused embeddings from the
previous calculations, where F1 refers to the weighted embed-
ding fusion and F2 refers to the joint embedding fusion.
riginal YOLO backbone is used to extract vision features. The context-
ation as input. The two modalities are fused as weighted embeddings

y, the decision-making block selects the fused features and passes the

Digital Discovery
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Table 1 Mixup augmentation setting

Images Labels Text Loss

Mixed High l High l Original
Mixed Union Union Original
Mixed Union Union Eqn (6)
Mixed Union Union, l Eqn (6)
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The rst method, the decision-making function, comes from
the fusionmechanism proposed in,20where we combine the two
features by eqn (1).

F = w5F1 + (1 − w)5F2, (1)

w is the weight of different features, which is calculated by the
eqn (2). 5 represents the element-wise product.w = s(W1X1 +

W2X2) (2)

X1 and X2, respectively, represent the pure image features and
word embeddings output from the self-attention modules; W1

and W2 are two linear projection layers; s is the sigmoid func-
tion to project the coefficients to the range between 0 and 1.

The second decision-making approach is to employ a con-
volutional layer to learn how to select the features from two
fusions.

Fc = C(F1, F2), F = Conv(Fc) (3)

As shown in eqn (3), the two features are initially combined
in the concatenation layer C to form the unied feature repre-
sentation Fc. The resulting Fc is then passed through a con-
volutional layer to be projected into the appropriate
dimensional space.

2.2.3 LLM prompting. Prompt engineering is employed to
guide and rene the outputs of the LLM. The prompting process
begins by assigning the LLM a specic role and task: to perform
general predictions by reasoning about the expected classes that
may emerge during the experimental stage, based on the
provided experimental protocol. To ensure the LLM's outputs
are compatible with the proposed model, the prompts also
include explicit prediction rules that constrain and structure
the responses.

2.2.4 Mixup. The limited size of the training set increases
the risk of overtting during model training. To ensure that the
input context effectively guides the prediction, we introduce
visual ambiguity into the dataset. Specically, the mixup data
augmentation technique32 is employed to achieve this goal. This
technique combines two batches of images at the pixel level,
with a randomly generated value l determining the mixing
intensity for each operation. The data �x aer mixing can be
represented by the eqn (4), where xi and xj are two image
batches.

�x = lxi + (1 − l)xj (4)

�y = lyi + (1 − l)yj (5)

L = lL (P, TA) + (1 − l)L (P, TB) (6)

In addition, the labels �y will be mixed by the same mecha-
nism as eqn (5).

Table 1 includes several extensions of the mixed methods.
The image data are mixed by l, but the labels are selected as
either the batch with higher l or the union of two batches. Text
sent to context-aware uses the same strategy as the label. Loss
function uses either the original formula or is weighted by l as
Digital Discovery
eqn (6), where P represents prediction result and T is the ground
truth, L (P, TA) is the original loss of batch A and L (P, TB) is loss
for batch B. Additionally, other data augmentation techniques
are applied during training to further diversify the dataset;
these will be discussed in detail in the next section.
3 Results and discussion
3.1 Experiments and results

3.1.1 Training steps. A two-step training strategy is
employed to train YOLO-text. Before training, YOLO-text loads
the pre-trained YOLO weights into the vision backbone.

3.1.1.1 Context-aware training. In the rst step, the entire
model is trained on the custom dataset, with all ground truth
class names provided as prompts during training. During
evaluation, the class names are also input as prompts for the
test data. The expected output is the class names and locations
of the bounding boxes. This step teaches the model the
semantic meanings of each class name and enables the model
to provide predictions with hints from the prompted class.

3.1.1.2 Vision-aware training. In the second step, the model
is ne-tuned either without class prompts or with a random
subset of class prompts. This step trains the model to adapt to
varying prompting scenarios, ensuring it can produce robust
predictions even when prompts are incomplete or absent.

3.1.2 Evaluation metrics. We adopt Precision (P), mean
Average Precision (mAP) and recall (R) as the metrics to evaluate
the model performance in the object detection task for each
class. Especially when the class area is difficult to detect, for
example, the solid class is always shown in various shapes and
colors, the recall rate is an essential factor in measuring the
model's reliability on those objects.

3.1.3 Implementation details. We train models using
a linearly decreasing learning rate, with an initial value of 0.05
for text encoder and visual encoder training and an initial value
of 0.005 for decision-making layers training. The decreasing
rate is set as 0.001. Stochastic gradient descent (SGD) optimizer
with a momentum of 0.9 and a weight decay of 0.005 is imple-
mented. In the context-aware learning block, we add dropout
layers with a ratio of 0.5 to prevent overtting. The rest of the
hyperparameters are set as the system default, tunable for
potentially better results. As our training dataset is small, we
load the pretrained weights on the COCO dataset to the visual
backbone and the detection heads. Data augmentation is also
implemented by the Albumentations library.33 Specically, we
use data affine, ipping, data blur, noise, and color jitter
augmentation with a probability of 0.5. In the rst training step,
we introduce data mixup to increase the ambiguity in the
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Experimental results on our dataset. All grounded labels are prompted during our model training. The best performances are marked
with bold text. In the table, P refers to Precision, R refers to Recall, and mAP refers to mean average precision. Faster R–CNN uses ResNet50 as
backbone. D1 refers to theweighted function for decision-making. YOLO-text-wAdd uses output fromweighted embedding fusion. YOLO-text-
joint uses the output from joint embedding fusion. YOLO-text-D1 takes both weighted and joint fused embeddings and uses a decision-making
approach described in the eqn (1).YOLO-text uses the decision-making approach described in the eqn (3)

Methods

Overall Hetero Empty Residue Solid Homo

mAP 50 : 95 mAP50 P R mAP 50 : 95 R mAP 50 : 95 R mAP 50 : 95 R mAP 50 : 95 R mAP 50 : 95 R

Faster R–CNN 37.4 60.1 66.8 51.5 59.0 63.9 67.2 82.3 29.1 57.0 10.4 17.0 12.6 16.8
YOLOv8 75.9 84.3 88.8 81.7 96.1 96.4 90.8 94.6 83.8 94.1 27.3 37.0 76.6 86.4
YOLO-world 81.2 86.8 94.9 80.0 94.3 89.0 90.0 95.0 92.7 95.0 39.8 34.0 89.1 88.6
YOLO-text-wAdd 75.7 87.0 97.1 84.9 92.9 99.9 93.7 99.2 84.3 99.9 28.7 33.1 78.9 92.0
YOLO-text-joint 79.1 88.7 98.0 85.3 93.2 99.9 95.5 99.9 89.4 99.9 32.6 36.4 84.9 90.0
YOLO-text-D1 84.0 91.2 98.0 85.1 97.2 99.3 95.1 98.4 90.7 99.9 45.5 35.2 91.7 92.7
YOLO-text 85.0 97.6 96.9 96.7 97.8 99.9 93.3 99.9 89.4 99.9 54.9 93.8 89.9 89.8
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training data. Note that we disable the mosaic augmentation
during training, which is set to true by default in the YOLO
trainer. This is because we would like to keep the relative
positions between areas. Additionally, agnostic max non-
suppression is also disabled, as there are existing situations
where one class is visually overlapping.

3.1.4 Model performance in image detection
3.1.4.1 Evaluation result aer context-aware training step.

Model performance is rst evaluated with images in the test set.
Since YOLO-text is developed on the YOLOv8 backbone, and
YOLO-world is regarded as a state-of-the-art YOLO-based VLM,
our model is compared against YOLOv8 and YOLO-world as
baselines. The two baselines were trained with the same
hyperparameter settings as YOLO-text but with the learning rate
adjusted to prevent undertting and overtting. Additionally,
the input text prompt is sent to YOLO-world by default. Table 2
shows the models' performance in each class. YOLO-text-wAdd
only uses output from weighted embedding fusion and directly
passes the output to the detection head, while YOLO-text-joint
uses the output from joint embedding fusion. YOLO-text-D1
takes both weighted and joint fused embeddings and uses
a decision-making approach described in the eqn (1). YOLO-
text, which uses the decision-making approach dened in eqn
(3), is the selected model.
Table 3 Experimental results of the model training and testing with differ
text. D1 refers to the weighted function for decision-making, and D2 refe

Prompt strategies

Prompting during evaluation

All labels R

mAP50 : 95 mAP50 P R m

All labels (D1) 84.0 92.1 98.0 85.1 7
All labels (D2) 85.0 97.6 96.9 96.7 7
Random labels (D1) 81.7 90.3 95.1 82.6 8
Random labels (D2) 68.2 80.1 93.4 80.9 7
Finetune w/o prompting (D1) 81.1 87.4 95.2 84.2 8
Finetune w/o prompting (D2) 82.9 95.6 92.2 91.3 8
Finetune with single labels (D1) 80.9 91.7 92.2 86.7 7
Finetune with single labels (D2) 75.3 88.5 88.3 84.0 7
Fintune with random labels (D1) 83.3 94.1 91.7 91.3 8
Fintune with random labels (D2) 79.5 90.2 92.2 84.9 8

© 2026 The Author(s). Published by the Royal Society of Chemistry
We notice that for the classes heterogeneous liquid, empty
and residue, all architectures perform well in terms of mAP and
recall. In contrast, YOLOv8 shows relatively low mAP and recall
in the solid and homogeneous liquid classes. This is because
the number of solid samples in the training set is relatively
small compared to others (only about 700 samples), and both
solid and homogeneous liquids in the test set contain different
visual features compared to the training set. We can see that
using prompted context in YOLO-text can help the model locate
the corresponding features. As a result, the proposed model can
maintain or slightly improve detection performance for the
heterogeneous liquid, empty, and residue classes (ranging from
1% to 6%) while achieving signicant improvements in
detecting solids and homogeneous liquids, with increases of
approximately 10% to 25%.

Additionally, the performance of YOLO-world on the test set
is evaluated. Overall, YOLO-world demonstrates strong perfor-
mance, achieving an mAP of 81.2. Notably, the mAPs for the
solid and homogeneous liquid classes are higher compared to
YOLO; however, the recall rates for these two classes are
signicantly lower than those of other classes. This discrepancy
is likely due to YOLO-world's training objective as a VLM, which
focuses on contrastively matching distinct pairs of text and
images rather than using text as contextual hints to enhance
ent prompting strategies. The best performances are marked with bold
rs to the concatenation with a convolutional layer for decision-making

andom labels No prompts

AP50 : 95 mAP50 P R mAP50 : 95 mAP50 P R

5.0 86.1 81.1 83.2 28.5 34.1 38.0 27.6
4.5 89.9 87.4 80.8 24.7 42.9 29.1 50.8
1.3 89.7 89.0 79.7 77.7 85.4 68.7 72.3
0.1 81.4 92.9 80.8 68.2 81.1 71.8 79.0
0.6 87.9 94.2 83.6 77.5 84.3 85.7 73.9
2.3 92.5 90.0 87.5 80.7 89.8 85.9 85.8
9.3 88.8 90.9 82.1 73.9 80.2 51.0 85.9
1.7 83.5 84.1 75.0 65.1 71.3 41.8 82.6
2.1 91.2 93.5 84.3 68.6 76.1 43.4 86.3
0.3 90.8 87.6 86.9 70.3 77.5 44.6 86.0
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classication and localization tasks. However, further research
and verication are required to conrm this hypothesis.
Although YOLO-World achieves a high mean Average Precision
(mAP) in the chemical detection task, it does not meet our
requirements. Specically, our approach aims to use text
prompts to (i) correct incorrect detections, (ii) recover missed
detections, and (iii) preserve accurate detections. As YOLO-
World aims to support open-vocabulary detection, it performs
detection based on a specic text prompt, limiting its exibility
in addressing these objectives.

3.1.4.2 Evaluation result aer vision-aware training step.
While providing all ground-truth labels as prompts can validate
the model's capabilities, this approach alone does not fully
leverage its potential. The model is expected to generate accu-
rate predictions without prompts and dynamically adjust its
outputs based on input prompts, all while preserving correct
detections. Table 3 demonstrates the robustness of YOLO-text
under various prompting strategies, including no prompts,
randomly selected labels, and all labels. It highlights how
different prompting strategies used during training inuence
the model's performance under corresponding inference
conditions. Following the context-aware training, the model
achieves the highest mAP when provided with all category
names, with performance declining under random or absent
prompts. To address this, vision-aware training is introduced,
where the model is ne-tuned using diverse prompting condi-
tions to better align with the task requirements. Compared to
all results, the D2 method, which ne-tunes all model layers
Fig. 7 Visualization examples illustrate how the proposedmodel correct
wrong predictions from YOLO-v8. The images in the second rowmarked
the images without red edges are from the proposed model but without
based on annotations, while the red triangle indicates the wrong predictio
separate liquid layers at the bottomof the vial; however, the proposedmo
the second image to the right is taken from.35

Digital Discovery
when no valid prompt is available, is selected as the most
effective. It achieves the highest mAP of 80.7 in the no-prompts
scenario and maintains strong performance with an mAP of
82.3 under random prompts.

Fig. 7 provides examples illustrating the performance of
YOLO and YOLO-text on the test set. The gure consists of two
rows of images. The rst row provides the prediction results
from YOLO that are wrongly detected and misdetected. The rst
two images from the le show that the YOLO detects the stirring
bar at the bottom as the solid class, which has been removed
from our model's prediction. The remaining images in the rst
row show the wrong detections on ambiguous areas, which are
corrected by our model with the contexts provided during
training. The second row of images includes examples marked
with red rectangles, indicating cases where category names were
prompted during inference to rene classication and detec-
tion. We notice that even though our model has removed the
wrong predictions in the last image, it still fails to detect the
individual liquid layers. This limitation highlights an area for
further improvement in future research.

3.1.5 Model performance in video detection. In this
section, we present two case studies to demonstrate how the
model monitors the experimental process using video data and
to compare its performance under different contextual settings.

3.1.5.1 Sedimentation process. This case demonstrates
a sedimentation process captured from a chemical lab instru-
ment called EasyMax. The experiment begins with a homoge-
neous solvent with solid setteled at the bottom of the vessel.
s its predictions on ambiguous areas. The images in the first row are the
with red rectangles show the result when the context is provided, while
the context provided. The green star represents the correct prediction
n. In the red-triangle-marked figure, the first image to the right has two
del can only detect one. The first image to the right is taken from ,34 and

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Agglomeration process: a demonstration of the reaction
process described in case B. The images match the detection plot
from YOLO-text. The X-axis shows the time in seconds, while the Y-
axis is the normalized height of the bounding boxes. The colors
represent different detected classes.
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When the stirring bar is activated, the clear homogeneous liquid
and solid are mixed together to form a heterogeneous liquid.
When the stirring bar stops, solid particles within the heteroge-
neous solvent gradually settle at the bottom of the vessel. Fig. 8
illustrates the progression of case A, aligning visual scenes with
a corresponding plot at the bottom that shows the model's
detection results over time. The y-axis of the plot represents the
height of the predicted bounding boxes, with different colors
indicating different predicted classes. At the start of the experi-
ment (0–4 seconds), the prompt “homo, residue” is provided to
guide the model's predictions. However, the model mistakenly
classies the stirring bar as solid during this stage. In the middle
of the experiment, the prompt is updated to “hetero, residue,”
and from 10 seconds onward, “solid” is added to enhance the
model's prediction accuracy. Fig. 10 compares the results from
YOLO and our proposed model under different prompt settings.
In Fig. 10a, YOLO's output shows that the solvent is correctly
identied in some frames during the initial stage. However, in
subsequent stages, while the model predicts the appropriate
classes, the bounding box locations remain unstable. Fig. 10b
displays the predictions from our proposed model without any
prompts. In this case, the model tends to predict all potential
classes in ambiguous regions and incorrectly classies residue as
empty during the latter half of the experiment. This issue is
resolved in Fig. 10c, where the prompt “residue” is provided,
leading to corrected predictions. Finally, Fig. 10d evaluates the
model's behavior when the prompt “hetero” is consistently
applied throughout the experiment. This setting tests themodel's
Fig. 8 Sedimentation case: a demonstration of the reaction process
described in case A. The images match the detection plot from YOLO-
text. The X-axis shows the time in seconds, while the Y-axis is the
normalized height of the bounding boxes. The colors represent
different detected classes.

© 2026 The Author(s). Published by the Royal Society of Chemistry
ability to adapt its predictions based on context and resolve
overlapping detections effectively.

3.1.5.2 Agglomeration process. During the process, the
system begins with a heterogeneous mixture of small solid
particles suspended in a liquid. The particles begin to agglom-
erate and form a layer at the top of the solution with stirring,
leaving behind a clear homogeneous liquid. Fig. 9 illustrates the
process. Through the monitoring, “residue, hetero, solid” are
prompted to the model. The model is able to detect the
agglomerate when it starts to form. However, aer the liquid
turns transparent, the model again detects the stirring bar as
another solid object. Fig. 11 compares the prediction results from
YOLO and our model. YOLO provides two predictions on the
liquid area in the rst 300 seconds and gives wrong predictions
on the solid and semi-transparent solutions. In our model, the
overlapping prediction can be xed by context setting, which also
leads the model to detect the generated solid.
3.2 Discussion

3.2.1 Data imbalance. Data quality is important in every
computer vision task, especially when custom datasets need to
be developed. The number and diversity of the training data, as
well as the relations between the training and the test set, will
signicantly inuence the model's performance on specic
tasks. However, the research eld of computer vision for
chemical lab automation lacks large-scale public datasets
capturing visual changes during real chemistry experiments.
The lack of sufficient data is our biggest challenge. In Section
Digital Discovery
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Fig. 10 Comparison of sedimentation process detection results using YOLO and YOLO-text under different prompting conditions. (a) presents
the detection results from YOLO, which exhibits incomplete predictions at both the beginning and end of the experiment. (b) shows the output
from YOLO-text without prompts, demonstrating high sensitivity to scene changes. In (c) and (d), YOLO-text is prompted with contextual cues,
leading to altered predictions based on the provided input. When given the prompt “residue,” the model shows increased confidence in clas-
sifying the upper area as residue. Similarly, when prompted with “hetero,” it removes the “homo” class; however, this results in an incorrect
prediction relative to the annotation. The actual experiment process is shown in Fig. 8.
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2.1, we describe how to efficiently separate data into training
and test sets. We rst extract frames from all experiment videos
that we have and then randomly separate frames into training
and test sets. The vanilla YOLO model can provide very high
mAP in each class under this data structure due to the high
similarity of the two sets. However, the model performance will
sharply decrease when testing on new experiments. Therefore,
we rst separate the videos into training and test sets, and then
extract image frames to ensure the model's reliability when
encountering previously unseen experimental scenarios during
inference. However, it is undeniable that the similarity between
the frames from the same video still exists in each set, which
could cause a dramatic drop in precision if the model fails to
detect in one specic case; this is what happened to the “solid”
detection in YOLO. The solid substance is naturally less
common in chemical experiments than the other categories,
and when we organize the dataset, the aim is to separate
different experiments, which also causes a decrease in the
diversity of the solid.

The data imbalance came from the inherent characteristics
of chemical experiments, which can lead to biased prediction
Digital Discovery
performance. To address this issue, we adopted a combination
of data augmentation and bias-reducing loss functions in
model training. Despite the application of various data
augmentation techniques, their effectiveness in enhancing the
diversity of solid appearances remains limited. This limitation
motivates the incorporation of contextual information into the
model to better support the detection of previously unseen
visual features. In addition, the dataset includes experiments
captured under different experimental setups, which naturally
contributes to increased training diversity and further aids
generalization.

3.2.2 Leveraging text prompts to rene visual detection.
VLMs are typically designed to perform open-vocabulary
detection by using textual descriptions to localize prompt-
relevant regions in an image. In our case, the text helps to x
the prediction result in the related area. The model keeps its
ability to make predictions based on visual cues when no
contextual information is provided. The LLM introduces
contextual reasoning capabilities that allow it to interpret
experimental descriptions more exibly and handle complex
procedures that may not be captured by direct keyword
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Comparison of agglomeration detection results using YOLO and YOLO-text under different prompting strategies. (a) shows the
detection results from YOLO, which exhibits unstable predictions throughout the experiment. (b) presents the YOLO-text output without
prompts, showing improved performance by reducing incorrect detections of homo classes. In (c) and (d), prompting with “residue” and “hetero”
stabilizes the boundary between the upper and lower regions. Additionally, when prompted with “solid,” the model begins to interpret the
agglomerates as solid materials over the course of the experiment. The actual experiment process is shown in Fig. 9.
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matching. In addition, integrating an LLM makes the frame-
work more user-friendly. It shows great potential of integrating
LLM to assist visual detection, especially in ambiguous cases.

3.2.3 Model robustness in video detection. From the
detection result provided by case A in Section 5.3, Fig. 10a and
b, we can see that though the YOLO-text without prompts gives
higher mAP on images, it shows an unstable detection result
compared to YOLO in the video detection, which is worth
studying in the future work. Additionally, one experiment could
have various reaction stages that require different prompts.
Fig. 8 demonstrates the detection results from YOLO-text with
varying prompts provided at different experimental stages,
representing a dynamic prompting scenario. This implies the
importance of acquiring on-line reasoning results from the
LLM, especially when the transition between different reaction
stages is fast, and the fact that YOLO-text is sensitive to prompts
when facing ambiguous scenarios.
4 Conclusions

We presented YOLO-text, a model that supports context-aware
learning for domain-specic detection tasks with scarce data.
The proposed model integrates with a pretrained LLM, which
© 2026 The Author(s). Published by the Royal Society of Chemistry
processes experiment protocols as input and outputs the ex-
pected chemical forms generated during the experiment. This
LLM-generated output provides contextual information to the
detection model, enhancing its predictions during inference.
The contextual information aims to assist model understand
ambiguous visual cues. Experimental results demonstrate that
incorporating context during training improves the model's
performance, particularly in detecting ambiguous areas and
addressing imbalanced classes.

Future work will focus on two main areas. The rst is to
diversify data collection to improve data quality. We believe
a larger and diverse dataset can generalize model performance
on different experience setups and chemical forms. The second
area is to improve the robustness of the model in real-time
detection. Insights from the experimental results presented in
Fig. 8–10 highlight the crucial role of providing appropriate and
dynamic prompts in guiding the model's visual understanding
during stage transitions. We plan to explore adaptive prompt
generation mechanisms that can adjust to the experimental
context in real time. One possible way to improve real-time
prediction is to send video frames as feedback before the LLM
and automatically detect phase changes, then force the LLM to
update the reasoning result. Additionally, we plan to integrate
Digital Discovery
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a knowledge reasoning module in YOLO-text to simplify the
whole detection into one step, enabling YOLO-text to directly
react to experiment descriptions. By achieving these goals, we
aim to advance the application of computer vision technologies
in monitoring chemical experiments for laboratory automation.
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