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MultiTaskDeltaNet: change detection-based image
segmentation for operando ETEM with application
to carbon gasification kinetics
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Transforming in situ transmission electron microscopy (TEM) imaging into a tool for spatially-resolved
reactions requires automated, high-precision semantic

segmentation of dynamically evolving features. However, traditional deep learning methods for semantic

operando characterization of solid-state

segmentation often face limitations due to the scarcity of labeled data, visually ambiguous features of

interest, and scenarios involving small objects. To tackle these challenges, we introduce
MultiTaskDeltaNet (MTDN), a novel deep learning architecture that creatively reconceptualizes the
segmentation task as a change detection problem. By implementing a unique Siamese network with
a U-Net backbone and using paired images to capture feature changes, MTDN effectively leverages
minimal data to produce high-quality segmentations. Furthermore, MTDN utilizes a multi-task learning
strategy to exploit correlations between physical features of interest. In an evaluation using data from in
situ environmental TEM (ETEM) videos of filamentous carbon gasification, MTDN demonstrated
a significant advantage over conventional segmentation models, particularly in accurately delineating fine
structural features. Notably, MTDN achieved a 10.22% performance improvement over conventional
segmentation models in predicting small and visually ambiguous physical features. This work bridges key

gaps between deep learning and practical TEM image analysis, advancing automated characterization of

rsc.li/digitaldiscovery

1 Introduction

Operando transmission electron microscopy (TEM) has recently
emerged as a transformative technique in materials character-
ization by enabling in-depth investigations into the kinetics and
mechanisms of structural, morphological, and phase
transformations.’® Building on in situ TEM, operando TEM
simultaneously measures material functionality (e.g., phase
transformation reactivity) alongside in situ imaging, thereby
facilitating quantitative correlations between microstructural
evolution and reaction kinetics. Specifically, for gas-solid
reactions studied using operando environmental TEM (ETEM),*
in situ reactivity measurements are often performed by moni-
toring reactant and product gases or solid phases using auxil-
iary mass spectrometry (MS),*® electron energy loss
spectroscopy (EELS),”® or selected area electron diffraction
(SAED).>* One of the grand challenges in operando ETEM
studies is the difficulty in precisely correlating spatiotemporal
structural changes with their corresponding reaction kinetics.
While the current spatial and temporal resolutions of in situ
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nanomaterials in complex experimental settings.

imaging employed in conventional TEM are sufficient to
capture microstructural evolution at the nanoscale for a broad
range of solid-state reactions such as nanomaterials nucleation,
growth, oxidation and reduction, operando ETEM employing
conventional spectroscopic or diffraction techniques provides
only an averaged in situ reactivity measurement. Consequently,
these techniques lack the spatial resolution required to reliably
connect reaction kinetics with the microstructural evolution of
individual nanostructures, which often exhibit size or structural
heterogeneities.

Semantic segmentation—a pixel-level classification task in
computer vision''—is well-suited for quantifying temporal
changes in feature size from in situ ETEM videos. In our
previous studies of nanostructure phase transformations,
manual segmentation allowed us to obtain spatially-resolved
reaction kinetics, providing unprecedented insights into size-
dependent oxidation of Ni nanoparticles,'” quantitative
comparison of competing reaction pathways during filamen-
tous carbon gasification,"”"* and unexpected irradiation-
decelerated tungsten nanofuzz oxidation that challenges
conventional understanding.** However, manual segmentation
is labor-intensive and limits scalability, thereby calling for
automated approaches to enhance statistical power and
standardization.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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ETEM Video + Semantic Segmentation = Spatially-resolved Operando ETEM

a Operando ETEM (w. Averaged Reactivity Measurement)

|

E- beam

Base P
Ni spent catalyst
packed with

A/ Fllamentous Carbon (FC)

Locally Observed Catalytlc FC Gasification Pathway
I ¢ IS

T|me = 24‘s (t)

s

ﬁ) Semantic Segmentation Measures Local Reactivim

20

[ FC-specific gasification kinetics

Catalytic FC (d=14 nm)
« Catalytic FC (d=24 nm)
+ Catalytic FC (d=37 nm)

o}
-120 0 120 240 360 480 600 720 840 960
Gasification Time (s)

. . ”

Area to Volume Conversion

Normalized FC Volume (%)

Reactivity Descrlptors obtained
by Semantic Segmentation

C

Fig.1 Schematic overview of the spatially-resolved operando ETEM used to study filamentous carbon gasification. (a) Conventional ETEM setup
and an example of the catalytic carbon gasification mode. (b) Semantic segmentation enables spatially-resolved reactivity measurement. Using
filamentous carbon gasification as a model system, we segment two “reactivity descriptors”, A; (the entire filament projection area) and A; (the
hollow core area), to quantify changes in carbon volume for specific filament size and/or gasification mode.

Recent advances in deep learning, particularly convolutional
neural networks (CNNs) including U-Net and transformer-based
architectures such as Vision Transformer (ViT), have revolu-
tionized segmentation tasks in many fields."»**=* However,
segmentation of microscopy videos remains challenging due to
limited annotated datasets, complex image features that differ
significantly from natural images in texture and scale, and the
presence of small and/or ambiguous objects.*> Foundation
models such as the Segment Anything Model (SAM)* offer zero-
shot segmentation but struggle to generalize to scientific
domains without extensive domain-specific data for fine-tuning
or high-quality prompts.®>**” Self-supervised learning methods
such as SImCLR and Barlow Twins can help address labeled
data scarcity®** but also require large amounts of unlabeled
data to be effective, especially for segmenting complex
images.****

To develop automated and reliable segmentation models for
microscopy videos, we adopt operando ETEM gasification of
filamentous carbon as a model system to identify the specific
challenges and current domain needs. Understanding fila-
mentous carbon gasification is critical for gaining fundamental
insights into catalyst regeneration mechanisms, enabling the
development of more effective strategies to restore catalyst
activity from coking, which is the leading cause of deactivation
in thermal heterogeneous catalysis.** As shown in Fig. 1a,
microelectromechanical system (MEMS)-based ETEM experi-
ments were conducted to emulate high-temperature carbon
gasification under industrially relevant air-like conditions. An in
situ ETEM video captured the dynamic behavior and gradual
removal of over 100 filamentous carbon, revealing complex
gasification phenomena involving three competing reaction
pathways.” For example, the classic catalytic gasification

© 2026 The Author(s). Published by the Royal Society of Chemistry

pathway is presented in Fig. 1a. Although combining built-in
mass spectrometry (MS) with in situ ETEM observations
provides viable operando characterization, MS measures the
total gas products at the ETEM cell outlet, yielding only an
averaged gasification kinetic measurement across mixed fila-
mentous carbon sizes and reaction pathways. Therefore,
a spatially-resolved method is needed to measure individual
filament-level (i.e. filament-specific) gasification kinetics and
thus deconvolute the mixed contributions, enabling quantita-
tive comparison among the three gasification pathways.

Three main challenges hinder automated segmentation in
this domain. First, there is currently no open-source benchmark
database of professionally annotated in situ (E)TEM videos.
Often, only a limited set of ground-truth labeling data specific to
particular nanostructures and reactions is available for
machine learning model training. This creates a “small data”
problem for training deep learning-based models, which typi-
cally need large, pixel-level annotated datasets that are labor-
intensive and require domain expertise to obtain.*

Second, to facilitate spatially-resolved reaction kinetics
extraction from in situ ETEM videos, segmentation focuses on
‘reactivity descriptors’ of nanostructures rather than apparent
image features. In this case (Fig. 1b), following the convention
in dedicated ex situ gasification kinetic tests,*® filamentous
carbon volume should be quantified as a function of gasifica-
tion reaction time. This requires segmentation of two ‘reactivity
descriptors’: A, (the entire carbon projection area) and 4, (the
hollow core area) of the multiwall carbon nanotube (MWCNT)-
like filamentous carbon observed in this spent Ni catalyst,*
which are then used to quantify volume changes using an area-
to-volume conversion (Fig. 1b). The visual similarity of 4, to the

Digital Discovery, 2026, 5, 290-303 | 291


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00333d

Open Access Article. Published on 11 November 2025. Downloaded on 2/12/2026 2:08:39 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

background is challenging for general-purpose segmentation
models.

Third, segmentation tasks in this domain unavoidably
involve “small objects”*—whether emerging reaction products
that start small at early reaction stages (e.g., MWCNT growth) or
solid reactants such as filamentous carbon, which become
increasingly small towards the end of the reaction. This is
particularly challenging for our ‘reactivity descriptor’ A,, as it
begins as a small object.

Finally, additional complications, including overlapping
nanostructures and feature blur due to rapid motion, further
complicate segmentation. While physics-based machine
learning models have been proposed as an attractive approach,
they hinge on validated, known kinetic models that are
frequently unavailable or untested at the nanoscale.*®

To address these challenges in quantifying object evolution
in microscopy video data, especially object size, we introduce
MultiTaskDeltaNet (MTDN), a deep learning model tailored for
filamentous carbon segmentation in ETEM videos. The key
innovation of MTDN is to reframe the segmentation problem as
a change detection task, by leveraging a Siamese architecture
with pairwise data inputs to augment limited training data and
improve generalization. A lightweight backbone, combined
with pre-training and fine-tuning strategies, ensures efficiency
while maintaining high performance. The model also employs
a multi-task learning framework to simultaneously segment
both reactivity descriptors A; and A,, using their spatial and
structural correlation to boost accuracy, especially for the more
challenging A, region. This approach is the first, to our knowl-
edge, to robustly segment both filament areas in 1-bar ETEM
videos, enabling operando analysis of carbon gasification
kinetics.

2 Method

In the following sections, we will describe how the dataset is
processed to enable reframing of segmentation as a change
detection task, as well as the corresponding MultiTaskDeltaNet
model architecture.

2.1 Dataset

2.1.1 Ground-truth labeling. For this study, we applied the
following steps to produce time-dependent filament-specific
ground-truth labeling. First, an original 4096 x 4096 ETEM
video was cropped into seven 256 x 256 regions (Fig. 1a), with
each region centered on a primary carbon filament for
segmentation. The 256 x 256 input size is commonly adopted
in computer vision benchmarks and is compatible with stan-
dard deep learning architectures. Next, non-target filaments
and other objects within the cropped region were masked out as
background (shown in grey) to generate the “masked frames”
used as inputs to our model training (Fig. 2). Then, two
researchers with extensive experience in bright-field TEM (BF-
TEM) jointly annotated the reactivity descriptors A, and A, for
each of the seven target filaments. Depending on the filament's
gasification progress, cropped video frames were sampled every
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Fig. 2 Summary of annotated ETEM video frames and data parti-
tioning. Carbon filaments of 24 nm diameter (IDs 1-3) were selected
for training, representing the most common FC size. Filaments with
varying diameters (14-37 nm) were used for validation (IDs 4-5) and
testing (IDs 6-7) to evaluate model generalizability across filament
sizes. In total, 231 annotated frames were used.

20 to 60 seconds, yielding 14 to 51 frames per filament (Fig. 2)
from 1711 total video frames. Using the GNU Image Manipu-
lation Program (GIMP), a total of 231 video frames were anno-
tated by iteratively tracking each filament and cross-examining
the ground-truth labels over multiple passes.

While the annotation was performed jointly by two experi-
enced researchers to ensure consistency, we acknowledge that
this may introduce some annotation bias. The relatively small
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Fig. 3 Schematic of the pairwise data and change detection label
generation. The dataset originates from a segmentation task involving
a single frame with two segmentation labels: reactivity descriptors (A;)
and (A,). To adapt this for change detection, frame pairs are taken at
different time steps (t and t'), and the corresponding change detection
labels (AA;, AA,) are derived. For each pixel in A; (@and similarly for A,),
change detection labels are assigned based on comparisons between t
and t': appearing: pixel is present in Ay(t') but not in A4(t); disappearing:
pixel is present in A(t) but not in A4(t'); overlapping: pixel exists in both
As(t) and A4(t'); no change: none of the above conditions apply. This
process results in two change detection labels (AA; and AA;) per frame
pair to be used in the multi-task model.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table1 The training, validation, and test datasets contain 126, 64, and
41 frames, respectively, for a total of 231 frames. The frames in each
data partition were then used to generate pairs as described in Section
2.1.3, leading to 2986, 1188, and 442 paired data in each partition,
respectively

Dataset Original Pairwise
Training 126 2968
Validation 64 1188
Test 41 442

number of annotated frames and filaments could limit statis-
tical robustness. To mitigate these concerns, we performed
leave-one-filament-diameter-out cross-validation, confirming
consistent model performance across varying filament sizes
(see SI Table S2).

2.1.2 Data partitioning. As shown in Fig. 2, the full dataset
comprises 231 labeled ETEM frames for seven carbon filaments
with diameters ranging from 14 nm to 37 nm. Since the majority
of the filamentous carbon in our ETEM gasification study
measured around 24 nm in diameter," we selected filaments 1-
3 (each 24 nm) as the training set to represent the most
common object size, totaling 126 frames. To ensure spatial
separation and prevent data leakage, filaments 4 and 5 (37 nm
and 14 nm) were assigned to the validation set (64 frames), and
filaments 6 and 7 (14 nm and 34 nm) were reserved for testing
(41 frames). This data partitioning allows us to evaluate the
model's ability to generalize to new filament sizes, a key
consideration given the variability of filaments in real experi-
ments. A leave-one-filament-diameter-out (LOFDO) cross-
validation was also performed to verify robustness across
diameters (see SI Table S2).

2.1.3 Pairwise change detection dataset. Pairwise image
modeling has gained considerable attention in unsupervised
video object segmentation (VOS) to capture relationships
between frames, often with Siamese networks and attention
mechanisms.*>**>° It is also a popular approach for change
detection tasks.**> However, these existing methods are not

e
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designed for supervised semantic segmentation, particularly
when it comes to segmenting visually ambiguous features such
as the reactivity descriptor 4, in our problem setting.

Here, we use labeled ETEM video frames from our dataset to
create a change detection dataset, consisting of pairs of frames
and the corresponding pixel-wise segmentation label. We
consider all pairs of frames of the same filament at different
reaction time steps, ¢t and ¢. For each pair (Fig. 3), the
segmentation label categorizes pixels into one of four categories
for each of i € {1, 2} corresponding to the reactivity descriptors
A; and A,:

Category “appearing”, if a pixel is present in A,(¢') but not in
Aft).

Category “disappearing”, if a pixel is present in A,(¢) but not
in A(?).

Category “overlapping”, if a pixel is present in A,(¢) in both
frames.

Category “no change”, if none of the above conditions apply.
These correspond to background pixels that remain in the
background.

As each frame contains two segmentation labels for two
different areas, there are two change detection labels for each
frame pair, which we refer to as AA4; and AA,. These change
detection labels A4; can be computed directly from the original
frame labels A,(t) and A,(¢') without any further manual labeling.

Converting our original labeled frame dataset to a pairwise
change detection dataset naturally expands the effective size of
the dataset, as shown in Table 1. This is particularly valuable in
low-data environments where manual labeling is costly. Addi-
tionally, our pairwise method introduces an implicit regulari-
zation effect. The same piece of carbon filament captured at
different time steps may exhibit slight variations in size, shape,
and position. This variability helps prevent the model from
overfitting to specific time step conditions and improves its
generalization across various sequences of carbon filament
frames. Pairing frames from different time steps within the
same region instead of across regions is important, however, to

Disappearing (Green)

. A,) Aj(t)
Overlapping (Grey) __, N
I \
Appearing (Red) Aq(t) A(t))
+
Overlapping (Grey) i \
+

Segmentation Prediction

Fig. 4 The segmentation results for each frame are obtained by combining different classes of change detection predictions: for the first frame
img(t), segmentation of A4(t) is formed by merging disappearing (green) and overlapping (grey) pixels as the predicted label, with no change
(white) pixels as the background. Segmentation of A,(t) is obtained using the same method on AA,. For the second frame img(t'), segmentation of
A4(t') is created by merging appearing (red) and overlapping (grey) pixels as the predicted label, with no change (white) pixels as the background.
Segmentation of A,(t') is derived using the same approach on AA,. This method reconstructs segmentation results from change detection labels

(AA;, AA,) without requiring additional information.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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ensure that the model is focused on capturing subtle changes to
the object of interest rather than variations in filament diameter
and other environmental differences.

2.1.4 Recovering segmentation from change detection. Our
choice of four categories in the change detection labels is also
designed to enable the direct recovery of segmentation results
from the change detection results AA; and AA4,. Consider the
frame pair img(t) and img(¢') in Fig. 4, where the actual time
order of ¢ and ¢ does not need to be constrained. We can obtain
segmentation results for A,(t) by taking the union of the di-
sappearing and overlapping regions of AA,. Similarly, A,(¢') can
be recovered from the union of the appearing and overlapping
regions of AA4;.

During testing, various methods are possible for trans-
forming a change detection prediction to an image segmenta-
tion prediction for a particular time ¢. All methods require
inputting two frames from the same filament to the change
detection model. The first method is the forward trans-
formation, where each frame is paired with the first frame in
time for the same filament. The second method is the backward
transformation, which pairs each frame with the last frame in
time. The third method is consecutive transformation, where
each frame is paired with the next consecutive frame in time.

I
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Lastly, the ensemble transformation involves pairing each
frame with all other frames corresponding to the same filament,

N
and averaging over the predictions: T; = % Z Tin, Where Ty, is
n=1
the transformation based on the pair of frames img(7;) and
img(T,). Note that self-pairs are included in each of the methods
above, allowing the model to be trained with examples of no
change. We collectively call these methods prediction fusion
methods.

2.2 Siamese network architecture

As shown in Fig. 5, our MultiTaskDeltaNet model consists of
two main components: a Siamese architecture based on U-Net
branches (although this backbone can be varied), and a set of
fully convolutional layers (FCN) for the final change mask
generation for each task. The model takes as input a pair of
carbon gasification frames from the same region at times ¢ and
¢. The Siamese architecture features two U-Net branches that
share an identical architecture and weights, and first extracts
feature maps (fin(¢) and fin(t')) from each frame. These feature
maps are then concatenated, and each FCN then processes the
merged features to generate the final change detection output
AA; and AA,, respectively.

256*256*32

— | | | | [ | | >
< AAL
— = ——>|
| [
Feature Extrgction Blocks Reconstruc‘tion Blocks
: H
Shared Architecture and Weights  Shared Architecture and Weights 18
. .
: :
Feature Extraction Blocks Reconstruction Blocks
| |
AA2
T - —p|
— | || | | | | | - |‘ <} |' -> |‘ =>
256*256%32
Convolution Batch Relu 2D Deconvolution @ Concatenate Softmax
Layer Normalization  Activation = Maxpooling Layer Layer Activation

Fig. 5 Architecture of our MultiTaskDeltaNet model, which is trained to make change detection predictions. The Siamese branches each
incorporate a U-Net backbone, which includes a feature extraction (encoder) section and a reconstruction (decoder) section. Additionally, there
are skip connections between corresponding layers to enhance performance. The outputs of the Siamese branches are concatenated before
they are input into fully connected layers for each task (A; change detection and A, change detection). Different types of layers are color-coded

according to the legend.

294 | Digital Discovery, 2026, 5, 290-303

© 2026 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00333d

Open Access Article. Published on 11 November 2025. Downloaded on 2/12/2026 2:08:39 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

We employ pre-training to enhance model performance by
training a U-Net model with the same architecture as the
backbone of the MTDN branches. This U-Net takes one labeled
image frame of filament gasification as its input, and its output
is the corresponding segmentation label.

2.3 Training objective

Our model employs focal loss* as the loss function to deal with
the imbalance in change detection datasets between easy-to-
classify background pixels and the smaller number of fore-
ground pixels where changes may occur. The focal loss is
a modification of the standard cross-entropy loss designed to
address the class imbalance problem. It allows the model to
concentrate more on the hard-to-classify and underrepresented
classes while giving less attention to the majority of easily
classified classes. The equation for the focal loss is as follows:

FL(p) = => _ai(1 = p:)"log(p;) 1)
i=1
where p; is the predicted probability for the true class y;, for pixel
i, a; is a class weighting factor to ensure the loss is not domi-
nated by the majority class, and v is the focusing parameter,
which controls the rate at which easy examples are down-
weighted.

2.4 Implementation details

Model training was carried out on a Linux system, using Python
3.12, PyTorch 2.0, and CUDA 11.7. The hardware setup included
an Nvidia GeForce A5000 GPU. During training, the input image
size is set to 256 x 256. For data augmentation, we use vertical
and horizontal flips, rotations, image cropping, blurring, and
color jittering. The optimizer used is AdamW with $, at 0.9, 8, at
0.999, and a weight decay of 0.01. The learning rate scheduler
decreases the learning rate linearly throughout the training
epochs. The default number of epochs is 500, with an early
stopping mechanism in place. The learning rate and batch size
are determined through hyperparameter tuning using Ray
Tune,* with the chosen values being 0.00095 for the learning
rate and 16 for the batch size.

3 Results

We compare our results across four models: U-Net,'” which is
lightweight and the most commonly used segmentation model
in scientific applications such as biomedical image analysis;

View Article Online
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our MTDN model trained from scratch, with U-Net as the
backbone of its Siamese branches; and two variations of MTDN
that initialize training with different pre-trained U-Net weights.
All versions of MTDN are designed for change detection, and
the simple transformation described in Section 2.1.4 is applied
to convert the change detection results into corresponding
segmentation results. For comparison, the U-Net baseline
processes single frames to directly produce segmentation
masks and does not use paired-frame or change-detection
inputs. Consequently, all performance metrics are based on
the final segmentation results.

3.1 Evaluation metrics

We use several evaluation metrics to quantitatively assess our
model performance on the segmentation problem. For similarity
measures, we include the F1 (Dice) score and Intersection over
Union (IoU). These metrics are denoted with an upward arrow (1)
to indicate that higher values represent better performance. The
equations for the F1 Score and IoU are as follows:

2-TP ~ 2:|GTUPred|

Fl = _ )
2 TP+ FP+ FN _ |GT| + |Pred| @)

TP |GTUPred|
U= 5 FP PN~ |GTNPred| )

The final F1 score we report is the macro-averaged F1 score,
which computes the F1 score for each class individually and
then takes a simple average across classes. Note that since we
are only evaluating the final segmentation performance, there
are only two classes for each reactivity descriptor, where the
positive class corresponds to A; (or 4,), and the negative class
corresponds to background. We report the macro-F1 score for
A, and A, separately.

3.2 Quantitative results

Tables 2 and 3 compare the performance of our MTDN model
and U-Net in predicting the reactivity descriptors 4; and 4, for
the test set filaments 6 and 7 (recall Fig. 2). The best perfor-
mance in each metric is indicated in bold.

The reactivity descriptor 4, is significantly more challenging
than A, to segment due to its small size and visual similarity to
the background. Therefore, improving the prediction perfor-
mance of 4, is a key focus of our work. MTDN consistently and
significantly outperforms U-Net across both metrics (F1 score
and IoU), achieving a 10.22% improvement in F1 score and

Table 2 Performance comparison for A; in the test dataset (Filament IDs 6 and 7). Higher performance is highlighted in bold

A, prediction

F1 score (dice score) 1

IoU (intersection over union) 1

Model Filament ID 6 Filament ID 7 Test total Filament ID 6 Filament ID 7 Test total
U-Net 0.90293 0.97206 0.94102 0.83593 0.94673 0.89361
MTDN 0.91675 0.96746 0.94470 0.85614 0.93844 0.89964

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Performance comparison for A, in the test dataset (Filament IDs 6 and 7). Higher performance is highlighted in bold

A, prediction

F1 score (dice score) 1 IoU (intersection over union) 1
Model Filament ID 6 Filament ID 7 Test total Filament ID 6 Filament ID 7 Test total
U-Net 0.76477 0.7597 0.76276 0.67606 0.66955 0.67357
MTDN 0.85717 0.8211 0.84080 0.77654 0.73349 0.75665

a 12.34% improvement in IoU for total 4, prediction. The most
notable improvements are seen in IoU, which indicate that
MTDN captures object boundaries with greater precision and
achieves better overlap with ground truth labels. By contrast,
traditional methods such as U-Net perform similarly to our
MTDN model on the more straightforward A4; prediction,
although MTDN still achieves a slightly higher total test

Performance Graphs
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performance. Despite the complexity of reactivity descriptor 4,,
we show in SI Table S1 that it is possible to reduce the training
dataset by 40% (from 126 to approximately 76 images) while still
achieving a Dice score of around 0.8, and the training dataset
can be reduced by 50% while achieving the same performance
as a U-Net model trained on the full dataset. These results
suggest that our method might also potentially be applied

Segmentation Visualization

A1:0.9286 A1:0.9645 A1:0.9590 A1:0.8659 A1:0.9165 A1:0.8128 A1:0.5118
A2:0.8182 A2:0.9107 A2:0.8340 A2:0.7734 A2:0.7129 A2:0.6921 A2:0.5018

Fig. 6 F1 scores over time (in seconds) for each model for Filament ID 6. In the Performance Graphs (left), the green line represents the
performance of U-Net, while the pink line indicates the performance of MTDN. In the Segmentation Visualization (right), there are three rows for
each model. The first of these rows contains the model predictions for A; and A,, where A; includes both the dark and light orange regions, while
A, corresponds to only the light orange region. The second and third rows correspond to the confusion matrices for the A; and A, predictions,
respectively. In the confusion matrices, false positive (FP) regions are dark brown and false negative (FN) regions are light tan. The highlighted F1
scores demonstrate MTDN's consistently superior performance over time, particularly for A,.
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effectively in other imaging modalities, such as atomic force
microscopy or scanning tunneling microscopy, where acquiring
large labeled datasets is more difficult.

To place these quantitative results in context, we consider
the range of IoU values reported by other works attempting
similar segmentation tasks on related types of TEM data.
Recently, Yao et al.*® demonstrated that U-Net models trained
on simulated liquid-phase TEM data could effectively extract
dynamic nanoparticle features from noisy video sequences.
They report an optimal IoU of approximately 0.92 for high
signal-to-noise ratio (SNR) images (dose rate = 10 e -A™> s7*)
and 0.90 for low SNR images (dose rate = 1 e~ A2 s
However, their datasets consist of high-contrast and relatively
simple morphologies, even under low SNR conditions. Simi-
larly, Lu et al*® proposed a semi-supervised segmentation
framework for high-resolution TEM images of protein and
peptide nanowires. With only eight labeled images per class,
they achieved median Dice scores above 0.70 and IoU values
ranging from 0.55 to 0.65 across various nanowire morphol-
ogies (e.g., dispersed, percolated). Thus, the quantitative
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performance of our MTDN is well within the higher range of
performance on similar problems.

Our quantitative results highlight MTDN's advantage in
segmenting smaller, more complex reactivity descriptors such
as A,. To further validate the comparative performance of
MTDN and U-Net on the test set, we assessed their performance
on a frame-by-frame basis over time, confirming that MTDN
consistently slightly outperforms U-Net on A4, and significantly
outperforms U-Net on A4,. These results are illustrated in Fig. 6
and 7 for Filament IDs 6 and 7, respectively. We note that both
models initially achieve high F1 scores but experience a sharp
decline after approximately 550 seconds. This decline occurs
because A; and A, after 550 seconds are significantly smaller
(indicating the filamentous carbon has been almost fully gasi-
fied) or almost gone, as illustrated in the Segmentation Visu-
alization (right side of Fig. 6 and 7). Following convention, for
the fully gasified A, or 4,, the F1 score of the positive class is set
to 0, resulting in a much lower macro-averaged F1 score at the
end of the gasification reaction.

Segmentation Visualization
T=206s

A1:0.9907 A1:0.9666 A1:0.9830 A1:0.9615 A1:0.8387

436 A2:0.8369 A2:0.7691 A2:0.7573 A2:0.7966 A2:0.5835

A1

Fig. 7 F1scores over time (in seconds) for each model for Filament ID 7. In the Performance Graphs (left side), MTDN (pink) achieves a similar F1
score for A; when compared to U-Net (green). However, MTDN maintains consistently higher F1 scores for A,. In the Segmentation Visualization
(right side), we can see that MTDN shows better visual alignment with the ground truth.
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3.3 Qualitative Results

Fig. 6 and 7 also visualize the differences between U-Net and
MTDN predictions of A; and 4, over time for Filament IDs 6 and
7. The raw frames, masked frames, ground truth, segmentation
predictions, and confusion matrices are shown for timesteps
spanning early, middle and late times in the ETEM carbon
gasification videos. Note that in the visualized predictions, the
reactivity descriptor A, is highlighted in the lighter color, while
the reactivity descriptor A; corresponds to both the dark and
light colors combined. As the filamentous carbon gasifies,
segmentation becomes more challenging for all models, but
MTDN continues to perform consistently better. In particular,
MTDN tends to produce narrower, better predictions for 4,
compared to U-Net. This suggests that MTDN reduces false
positive predictions, resulting in segmentation results that are
more accurate and sharper, which is critically important for the
area-to-volume conversion to quantify carbon volume changes
for spatially-resolved operando ETEM characterization (Fig. 1).

For Filament ID 6 (Fig. 6), we observe from time step 306 s to
406 s that, compared to MTDN, U-Net is too sensitive to the
differences in pixel intensity. In particular, U-Net tends to
overpredict low-intensity areas as A;, whereas MTDN identifies
A; more accurately. Additionally, from time step 306 s to 506 s,
we encountered an overlap problem when an overlying carbon
filament moved into proximity with the target filament, pre-
venting us from fully excluding it by masking. U-Net incorrectly
identifies all the carbon filaments as part of A;. In contrast, our
model accurately distinguishes between the two separate
carbon filaments and to a good extent correctly predicts A; and
A, belonging to the target filament. Finally, at time step 606 s,
an additional lower carbon filament appears in the masked
region, while the target filament has been completely gasified so
that the ground truth label is empty. In this situation, both U-
Net and MTDN fail to track the correct filaments (although
visually we can see that MTDN better captures the new fila-
ment). This failure reflects not a flaw of the model, but
a necessary compromise to enable filament-specific gasification
kinetic measurements that deconvolute the effects of size vari-
ation and distinct reaction pathways.

In Fig. 7, we again see that MTDN consistently outperforms
U-Net across the entire gasification process for Filament ID 7,
both quantitatively and visually. Similarly to before, towards the
end of gasification at time step 606 s, a new lower carbon fila-
ment appears while only a tiny portion of the target filament
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remains. U-Net tends to over-segment high-contrast areas,
mistakenly identifying both carbon filaments. Meanwhile,
MTDN predicts the emerging filament but omits the target one,
resulting in MTDN having more false negatives than U-Net. In
this instance, U-Net inadvertently achieves better quantitative
results.

Overall, the analysis of filaments 6 and 7 confirms that
MTDN maintains strong and stable performance in complex
segmentation scenarios, especially for the challenging A, class.
Its ability to produce precise segmentations with fewer false
positives and better temporal consistency highlights its
robustness compared to U-Net.

While our model demonstrates robust generalization across
different filament morphologies and diameters, all training and
test data were acquired under consistent imaging conditions on
a single ETEM instrument. Future work will investigate model
robustness across varying camera settings, electron dose rates,
and TEM platforms, as well as pre-training strategies to improve
cross-instrument generalization.

3.4 Ablation study

In this section, we study the relative importance of various
components of our MTDN model: the performance gains from
our multi-task formulation, the efficacy of pre-training the U-
Net branches, and various fusion methods for transforming
the change detection prediction to image segmentation results.

3.4.1 Multi-task training. We leverage the relationship
between the A; and A, segmentation tasks to boost model
performance using multi-task learning. In Table 4, we present
comparative results between MTDN with multi-task training
against a MTDN model that only undergoes single-task training.
The single-task training includes one MTDN model focused
solely on predicting A; (left columns of table) and another
MTDN model focused solely on predicting A, (right columns of
table). The multi-task model clearly performs better than the
single-task models.

While multi-task learning is advantageous when segmenta-
tion targets share spatial and structural correlations (as with 4,
and 4,), the architecture may struggle with substantially
different features due to potential negative transfer. We note
from Table 4 that the single-task version still substantially
outperforms U-Net on the more challenging 4,, demonstrating
that the core benefit of MTDN derives from reframing
segmentation as change detection. For applications with

Table 4 Test performance of MTDN trained as a multi-task model versus MTDN trained as a single-task model on A; only or A, only and U-Net,

which is single-task

F1 score (dice score) 1

A, prediction

A, prediction

Model Filament ID 6 Filament ID 7 Test total Filament ID 6 Filament ID 7 Test total
U-Net (Single-task) 0.90293 0.97206 0.94102 0.76477 0.75970 0.76276
MTDN (Single—task) 0.88336 0.97039 0.93014 0.81126 0.81154 0.81152
MTDN (multi-task) 0.91678 0.96940 0.94588 0.83740 0.82362 0.83117
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Table 5 Performance comparison of MTDN without weight initialization versus MTDN with U-Net backbone trained using A; weight initiali-
zation, and MTDN with U-Net backbone trained using A, weight initialization

F1 score (dice score) 1

A, prediction

A, prediction

Model Filament ID 6 Filament ID 7 Test total Filament ID 6 Filament ID 7 Test total Overall
MTDN_no_init 0.91678 0.96940 0.94588 0.83800 0.82295 0.83117 0.88853
MTDN_init, 0.92036 0.96679 0.94601 0.84970 0.82484 0.83866 0.89234
MTDN_init, 0.91675 0.96746 0.94470 0.85717 0.82110 0.84080 0.89275

morphologically distinct features, we recommend using the
single-task version of MTDN, which retains the advantages of
change-detection-based segmentation while avoiding potential
negative transfer.

3.4.2 Pre-training of the U-Net backbone. We experimented
with weight initialization for the Siamese branches using pre-
trained U-Net models based on A; (MTDN_init,) and 4,
(MTDN_init,). Note that pre-training only utilized training
filaments, and no validation or test filaments were seen during
pre-training. After this step, we continued end-to-end training

Performance Graphs

0s T—1 06s

of the full MTDN model, resulting in fine-tuning of these U-Net
weights. Additionally, we conducted experiments without
weight initialization.

We present the numerical results in Table 5 and the corre-
sponding visualizations in Fig. 8. Our results indicate that pre-
training the UNet to initialize our Siamese branches slightly
enhances overall performance. Considering the overall F1 score,
MTDN_init, is the best model. This is the final MTDN model
that is reported in the Quantitative and Qualitative Results
sections above. It is important to note that although we have
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Fig. 8 F1 scores and visualization of segmentation predictions over time for each model on Filament ID 6. The F1 scores for the best model at
each timestep and each reactivity descriptor (A; or A,) are highlighted in bold. The various models achieve similar performance over time. We
select the MTDNL_init, model as the final MTDN model reported in the Results section, since higher performance on the challenging A, is more

critical in this application.
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Table 6 Performance comparison of different fusion methods for the change detection to image segmentation transformation for each model.
The results are largely similar, showing that MTDN is robust to the choice of fusion method

F1 score (dice score) 1

A, prediction

A, prediction

Model Fusion method Filament ID 6 Filament ID 7 Test total Filament ID 6 Filament ID 7 Test total Overall
MTDN_no_init Backward 0.91678 0.96940 0.94588 0.83800 0.82295 0.83117 0.88853
Consecutive 0.91801 0.96910 0.94638 0.83083 0.82597 0.82873 0.88756
Ensemble 0.91699 0.96894 0.94566 0.83812 0.82491 0.83216 0.88891
Forward 0.91798 0.96865 0.94604 0.83591 0.82599 0.83146 0.88875
MTDN_init, Backward 0.92036 0.96679 0.94601 0.84970 0.82484 0.83866 0.89234
Consecutive 0.92149 0.96622 0.94627 0.84588 0.82682 0.83744 0.89186
Ensemble 0.92042 0.96598 0.94554 0.84982 0.82704 0.83976 0.89265
Forward 0.92163 0.96562 0.94597 0.84781 0.82685 0.83852 0.89225
MTDN_init, Backward 0.91675 0.96746 0.94470 0.85717 0.82110 0.84080 0.89275
Consecutive 0.91840 0.96661 0.94512 0.85479 0.82291 0.84034 0.89273
Ensemble 0.91677 0.96734 0.94458 0.85722 0.82107 0.84085 0.89272
Forward 0.91738 0.96708 0.94481 0.85569 0.82105 0.83996 0.89239

employed a U-Net backbone for our Siamese branches, the
MTDN model is compatible with any state-of-the-art encoder-
decoder architecture. Given the limited amount of labeled
data, a lightweight backbone such as U-Net is preferred. We
acknowledge that alternative architectures such as DeepLabv3
may offer different trade-offs in accuracy and computational
cost. Exploring these alternatives is planned for future work.
3.4.3 Change detection to segmentation transformation
(prediction fusion). As discussed in Section 2.1.4, a variety of
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fusion methods are possible to transform the change detection
predictions to segmentation results. The quantitative performance
and qualitative visualization of the different fusion methods are
presented in Table 6 and Fig. 9. There is both high quantitative
and visual similarity in the segmentation predictions across
methods, suggesting that our MTDN framework is robust to the
choice of prediction fusion method. For computational efficiency,
we select MTDN_init, using backward fusion as our final MTDN
model for which the performance is reported in the Quantitative

Visualization Matrix
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ped
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Fig. 9 Visual comparison of different prediction fusion methods on Filament ID 6. Visually, the results are quite similar.
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and Qualitative Results sections. We note that the forward and
consecutive fusion methods operate causally and support real-time
inference, whereas backward and ensemble fusion require future
frames and is best used for offline analysis.

4 Conclusions

In this work, we introduce MTDN, a novel deep learning
framework that reframes semantic segmentation as a change
detection task, enabling spatially-resolved operando ETEM
characterization of filamentous carbon gasification, to accel-
erate the fundamental understanding of catalyst regeneration.
By leveraging a Siamese U-Net architecture that takes pairwise
data as input, MTDN efficiently utilizes limited training data,
achieving high segmentation performance on complex reac-
tivity descriptors. Critically, our prediction fusion methods
convert change detection results into image segmentations
quickly and efficiently, without suffering from error accumula-
tion and without requiring additional manual labeling. Our
model also benefits from a lightweight design, enabling flexible
backbone replacement and efficient training. We further
employ a multi-task learning strategy to enhance the model's
ability to segment the two reactivity descriptors - the outer and
inner regions of the carbon filament - simultaneously.

Extensive quantitative and qualitative analyses confirm that
MTDN consistently outperforms traditional segmentation
models such as U-Net, particularly in generalization and
robustness across temporal variations and structural complex-
ities. Ablation studies validate the impact of multi-task training,
weight initialization with fine-tuning, and segmentation
prediction fusion strategies, underscoring the effectiveness of
our architectural and methodological choices.

Overall, MTDN accelerates the transformation of conventional
in situ (E)TEM imaging into spatially-resolved operando (E)TEM
characterization, by offering an automated approach to track the
spatiotemporal evolution of (nano)materials with unprecedented
speed, precision, and statistical rigor. This advance opens
tremendous opportunities for mechanistic studies of solid-state
reactions, where feature-specific reaction kinetics resolved at the
nanometer scale can be directly correlated with their microstruc-
tural evolution. Looking ahead, this framework establishes
a strong foundation for future research in deep learning-driven
microscopy, particularly in domains where labeled data are
scarce and small objects are inherently present.
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