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Transforming in situ transmission electron microscopy (TEM) imaging into a tool for spatially-resolved

operando characterization of solid-state reactions requires automated, high-precision semantic

segmentation of dynamically evolving features. However, traditional deep learning methods for semantic

segmentation often face limitations due to the scarcity of labeled data, visually ambiguous features of

interest, and scenarios involving small objects. To tackle these challenges, we introduce

MultiTaskDeltaNet (MTDN), a novel deep learning architecture that creatively reconceptualizes the

segmentation task as a change detection problem. By implementing a unique Siamese network with

a U-Net backbone and using paired images to capture feature changes, MTDN effectively leverages

minimal data to produce high-quality segmentations. Furthermore, MTDN utilizes a multi-task learning

strategy to exploit correlations between physical features of interest. In an evaluation using data from in

situ environmental TEM (ETEM) videos of filamentous carbon gasification, MTDN demonstrated

a significant advantage over conventional segmentation models, particularly in accurately delineating fine

structural features. Notably, MTDN achieved a 10.22% performance improvement over conventional

segmentation models in predicting small and visually ambiguous physical features. This work bridges key

gaps between deep learning and practical TEM image analysis, advancing automated characterization of

nanomaterials in complex experimental settings.
1 Introduction

Operando transmission electron microscopy (TEM) has recently
emerged as a transformative technique in materials character-
ization by enabling in-depth investigations into the kinetics and
mechanisms of structural, morphological, and phase
transformations.1–3 Building on in situ TEM, operando TEM
simultaneously measures material functionality (e.g., phase
transformation reactivity) alongside in situ imaging, thereby
facilitating quantitative correlations between microstructural
evolution and reaction kinetics. Specically, for gas–solid
reactions studied using operando environmental TEM (ETEM),4

in situ reactivity measurements are oen performed by moni-
toring reactant and product gases or solid phases using auxil-
iary mass spectrometry (MS),5,6 electron energy loss
spectroscopy (EELS),7,8 or selected area electron diffraction
(SAED).9,10 One of the grand challenges in operando ETEM
studies is the difficulty in precisely correlating spatiotemporal
structural changes with their corresponding reaction kinetics.1

While the current spatial and temporal resolutions of in situ
cticut, Storrs, CT, USA. E-mail: qyang@

eering, University of Connecticut, Storrs,

y the Royal Society of Chemistry
imaging employed in conventional TEM are sufficient to
capture microstructural evolution at the nanoscale for a broad
range of solid-state reactions such as nanomaterials nucleation,
growth, oxidation and reduction, operando ETEM employing
conventional spectroscopic or diffraction techniques provides
only an averaged in situ reactivity measurement. Consequently,
these techniques lack the spatial resolution required to reliably
connect reaction kinetics with the microstructural evolution of
individual nanostructures, which oen exhibit size or structural
heterogeneities.

Semantic segmentation—a pixel-level classication task in
computer vision11—is well-suited for quantifying temporal
changes in feature size from in situ ETEM videos. In our
previous studies of nanostructure phase transformations,
manual segmentation allowed us to obtain spatially-resolved
reaction kinetics, providing unprecedented insights into size-
dependent oxidation of Ni nanoparticles,10 quantitative
comparison of competing reaction pathways during lamen-
tous carbon gasication,12,13 and unexpected irradiation-
decelerated tungsten nanofuzz oxidation that challenges
conventional understanding.14 However, manual segmentation
is labor-intensive and limits scalability, thereby calling for
automated approaches to enhance statistical power and
standardization.
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Fig. 1 Schematic overview of the spatially-resolved operando ETEM used to study filamentous carbon gasification. (a) Conventional ETEM setup
and an example of the catalytic carbon gasification mode. (b) Semantic segmentation enables spatially-resolved reactivity measurement. Using
filamentous carbon gasification as a model system, we segment two “reactivity descriptors”, A1 (the entire filament projection area) and A2 (the
hollow core area), to quantify changes in carbon volume for specific filament size and/or gasification mode.
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Recent advances in deep learning, particularly convolutional
neural networks (CNNs) including U-Net and transformer-based
architectures such as Vision Transformer (ViT), have revolu-
tionized segmentation tasks in many elds.11,15–31 However,
segmentation of microscopy videos remains challenging due to
limited annotated datasets, complex image features that differ
signicantly from natural images in texture and scale, and the
presence of small and/or ambiguous objects.32 Foundation
models such as the Segment Anything Model (SAM)33 offer zero-
shot segmentation but struggle to generalize to scientic
domains without extensive domain-specic data for ne-tuning
or high-quality prompts.34–37 Self-supervised learning methods
such as SimCLR and Barlow Twins can help address labeled
data scarcity38–40 but also require large amounts of unlabeled
data to be effective, especially for segmenting complex
images.41–43

To develop automated and reliable segmentation models for
microscopy videos, we adopt operando ETEM gasication of
lamentous carbon as a model system to identify the specic
challenges and current domain needs. Understanding la-
mentous carbon gasication is critical for gaining fundamental
insights into catalyst regeneration mechanisms, enabling the
development of more effective strategies to restore catalyst
activity from coking, which is the leading cause of deactivation
in thermal heterogeneous catalysis.44 As shown in Fig. 1a,
microelectromechanical system (MEMS)-based ETEM experi-
ments were conducted to emulate high-temperature carbon
gasication under industrially relevant air-like conditions. An in
situ ETEM video captured the dynamic behavior and gradual
removal of over 100 lamentous carbon, revealing complex
gasication phenomena involving three competing reaction
pathways.13 For example, the classic catalytic gasication
Digital Discovery
pathway is presented in Fig. 1a. Although combining built-in
mass spectrometry (MS) with in situ ETEM observations
provides viable operando characterization, MS measures the
total gas products at the ETEM cell outlet, yielding only an
averaged gasication kinetic measurement across mixed la-
mentous carbon sizes and reaction pathways. Therefore,
a spatially-resolved method is needed to measure individual
lament-level (i.e. lament-specic) gasication kinetics and
thus deconvolute the mixed contributions, enabling quantita-
tive comparison among the three gasication pathways.

Three main challenges hinder automated segmentation in
this domain. First, there is currently no open-source benchmark
database of professionally annotated in situ (E)TEM videos.
Oen, only a limited set of ground-truth labeling data specic to
particular nanostructures and reactions is available for
machine learning model training. This creates a “small data”
problem for training deep learning-based models, which typi-
cally need large, pixel-level annotated datasets that are labor-
intensive and require domain expertise to obtain.45

Second, to facilitate spatially-resolved reaction kinetics
extraction from in situ ETEM videos, segmentation focuses on
‘reactivity descriptors’ of nanostructures rather than apparent
image features. In this case (Fig. 1b), following the convention
in dedicated ex situ gasication kinetic tests,46 lamentous
carbon volume should be quantied as a function of gasica-
tion reaction time. This requires segmentation of two ‘reactivity
descriptors’: A1 (the entire carbon projection area) and A2 (the
hollow core area) of the multiwall carbon nanotube (MWCNT)-
like lamentous carbon observed in this spent Ni catalyst,12

which are then used to quantify volume changes using an area-
to-volume conversion (Fig. 1b). The visual similarity of A2 to the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Summary of annotated ETEM video frames and data parti-
tioning. Carbon filaments of 24 nm diameter (IDs 1–3) were selected
for training, representing the most common FC size. Filaments with
varying diameters (14–37 nm) were used for validation (IDs 4–5) and
testing (IDs 6–7) to evaluate model generalizability across filament
sizes. In total, 231 annotated frames were used.
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background is challenging for general-purpose segmentation
models.

Third, segmentation tasks in this domain unavoidably
involve “small objects”47—whether emerging reaction products
that start small at early reaction stages (e.g., MWCNT growth) or
solid reactants such as lamentous carbon, which become
increasingly small towards the end of the reaction. This is
particularly challenging for our ‘reactivity descriptor’ A2, as it
begins as a small object.

Finally, additional complications, including overlapping
nanostructures and feature blur due to rapid motion, further
complicate segmentation. While physics-based machine
learning models have been proposed as an attractive approach,
they hinge on validated, known kinetic models that are
frequently unavailable or untested at the nanoscale.10

To address these challenges in quantifying object evolution
in microscopy video data, especially object size, we introduce
MultiTaskDeltaNet (MTDN), a deep learning model tailored for
lamentous carbon segmentation in ETEM videos. The key
innovation of MTDN is to reframe the segmentation problem as
a change detection task, by leveraging a Siamese architecture
with pairwise data inputs to augment limited training data and
improve generalization. A lightweight backbone, combined
with pre-training and ne-tuning strategies, ensures efficiency
while maintaining high performance. The model also employs
a multi-task learning framework to simultaneously segment
both reactivity descriptors A1 and A2, using their spatial and
structural correlation to boost accuracy, especially for the more
challenging A2 region. This approach is the rst, to our knowl-
edge, to robustly segment both lament areas in 1-bar ETEM
videos, enabling operando analysis of carbon gasication
kinetics.
2 Method

In the following sections, we will describe how the dataset is
processed to enable reframing of segmentation as a change
detection task, as well as the corresponding MultiTaskDeltaNet
model architecture.
Fig. 3 Schematic of the pairwise data and change detection label
generation. The dataset originates from a segmentation task involving
a single frame with two segmentation labels: reactivity descriptors (A1)
and (A2). To adapt this for change detection, frame pairs are taken at
different time steps (t and t0), and the corresponding change detection
labels (DA1, DA2) are derived. For each pixel in A1 (and similarly for A2),
change detection labels are assigned based on comparisons between t
and t0: appearing: pixel is present in A1(t0) but not in A1(t); disappearing:
pixel is present in A1(t) but not in A1(t0); overlapping: pixel exists in both
A1(t) and A1(t0); no change: none of the above conditions apply. This
process results in two change detection labels (DA1 and DA2) per frame
pair to be used in the multi-task model.
2.1 Dataset

2.1.1 Ground-truth labeling. For this study, we applied the
following steps to produce time-dependent lament-specic
ground-truth labeling. First, an original 4096 × 4096 ETEM
video was cropped into seven 256 × 256 regions (Fig. 1a), with
each region centered on a primary carbon lament for
segmentation. The 256 × 256 input size is commonly adopted
in computer vision benchmarks and is compatible with stan-
dard deep learning architectures. Next, non-target laments
and other objects within the cropped region were masked out as
background (shown in grey) to generate the “masked frames”
used as inputs to our model training (Fig. 2). Then, two
researchers with extensive experience in bright-eld TEM (BF-
TEM) jointly annotated the reactivity descriptors A1 and A2 for
each of the seven target laments. Depending on the lament's
gasication progress, cropped video frames were sampled every
© 2025 The Author(s). Published by the Royal Society of Chemistry
20 to 60 seconds, yielding 14 to 51 frames per lament (Fig. 2)
from 1711 total video frames. Using the GNU Image Manipu-
lation Program (GIMP), a total of 231 video frames were anno-
tated by iteratively tracking each lament and cross-examining
the ground-truth labels over multiple passes.

While the annotation was performed jointly by two experi-
enced researchers to ensure consistency, we acknowledge that
this may introduce some annotation bias. The relatively small
Digital Discovery
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Table 1 The training, validation, and test datasets contain 126, 64, and
41 frames, respectively, for a total of 231 frames. The frames in each
data partition were then used to generate pairs as described in Section
2.1.3, leading to 2986, 1188, and 442 paired data in each partition,
respectively

Dataset Original Pairwise

Training 126 2968
Validation 64 1188
Test 41 442
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number of annotated frames and laments could limit statis-
tical robustness. To mitigate these concerns, we performed
leave-one-lament-diameter-out cross-validation, conrming
consistent model performance across varying lament sizes
(see SI Table S2).

2.1.2 Data partitioning. As shown in Fig. 2, the full dataset
comprises 231 labeled ETEM frames for seven carbon laments
with diameters ranging from 14 nm to 37 nm. Since themajority
of the lamentous carbon in our ETEM gasication study
measured around 24 nm in diameter,13 we selected laments 1–
3 (each 24 nm) as the training set to represent the most
common object size, totaling 126 frames. To ensure spatial
separation and prevent data leakage, laments 4 and 5 (37 nm
and 14 nm) were assigned to the validation set (64 frames), and
laments 6 and 7 (14 nm and 34 nm) were reserved for testing
(41 frames). This data partitioning allows us to evaluate the
model's ability to generalize to new lament sizes, a key
consideration given the variability of laments in real experi-
ments. A leave-one-lament-diameter-out (LOFDO) cross-
validation was also performed to verify robustness across
diameters (see SI Table S2).

2.1.3 Pairwise change detection dataset. Pairwise image
modeling has gained considerable attention in unsupervised
video object segmentation (VOS) to capture relationships
between frames, oen with Siamese networks and attention
mechanisms.45,48–50 It is also a popular approach for change
detection tasks.51,52 However, these existing methods are not
Fig. 4 The segmentation results for each frame are obtained by combini
img(t), segmentation of A1(t) is formed by merging disappearing (green
(white) pixels as the background. Segmentation of A2(t) is obtained using t
A1(t0) is created by merging appearing (red) and overlapping (grey) pixels a
Segmentation of A2(t0) is derived using the same approach on DA2. This m
(DA1, DA2) without requiring additional information.

Digital Discovery
designed for supervised semantic segmentation, particularly
when it comes to segmenting visually ambiguous features such
as the reactivity descriptor A2 in our problem setting.

Here, we use labeled ETEM video frames from our dataset to
create a change detection dataset, consisting of pairs of frames
and the corresponding pixel-wise segmentation label. We
consider all pairs of frames of the same lament at different
reaction time steps, t and t0. For each pair (Fig. 3), the
segmentation label categorizes pixels into one of four categories
for each of i ˛ {1, 2} corresponding to the reactivity descriptors
A1 and A2:

Category “appearing”, if a pixel is present in Ai(t0) but not in
Ai(t).

Category “disappearing”, if a pixel is present in Ai(t) but not
in Ai(t0).

Category “overlapping”, if a pixel is present in Ai(t) in both
frames.

Category “no change”, if none of the above conditions apply.
These correspond to background pixels that remain in the
background.

As each frame contains two segmentation labels for two
different areas, there are two change detection labels for each
frame pair, which we refer to as DA1 and DA2. These change
detection labels DAi can be computed directly from the original
frame labels Ai(t) and Ai(t0) without any further manual labeling.

Converting our original labeled frame dataset to a pairwise
change detection dataset naturally expands the effective size of
the dataset, as shown in Table 1. This is particularly valuable in
low-data environments where manual labeling is costly. Addi-
tionally, our pairwise method introduces an implicit regulari-
zation effect. The same piece of carbon lament captured at
different time steps may exhibit slight variations in size, shape,
and position. This variability helps prevent the model from
overtting to specic time step conditions and improves its
generalization across various sequences of carbon lament
frames. Pairing frames from different time steps within the
same region instead of across regions is important, however, to
ng different classes of change detection predictions: for the first frame
) and overlapping (grey) pixels as the predicted label, with no change
he samemethod onDA2. For the second frame img(t0), segmentation of
s the predicted label, with no change (white) pixels as the background.
ethod reconstructs segmentation results from change detection labels

© 2025 The Author(s). Published by the Royal Society of Chemistry
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ensure that the model is focused on capturing subtle changes to
the object of interest rather than variations in lament diameter
and other environmental differences.

2.1.4 Recovering segmentation from change detection. Our
choice of four categories in the change detection labels is also
designed to enable the direct recovery of segmentation results
from the change detection results DA1 and DA2. Consider the
frame pair img(t) and img(t0) in Fig. 4, where the actual time
order of t and t0 does not need to be constrained. We can obtain
segmentation results for Ai(t) by taking the union of the di-
sappearing and overlapping regions of DAi. Similarly, Ai(t0) can
be recovered from the union of the appearing and overlapping
regions of DAi.

During testing, various methods are possible for trans-
forming a change detection prediction to an image segmenta-
tion prediction for a particular time t. All methods require
inputting two frames from the same lament to the change
detection model. The rst method is the forward trans-
formation, where each frame is paired with the rst frame in
time for the same lament. The second method is the backward
transformation, which pairs each frame with the last frame in
time. The third method is consecutive transformation, where
each frame is paired with the next consecutive frame in time.
Fig. 5 Architecture of our MultiTaskDeltaNet model, which is trained
incorporate a U-Net backbone, which includes a feature extraction (enco
are skip connections between corresponding layers to enhance perform
they are input into fully connected layers for each task (A1 change detect
according to the legend.

© 2025 The Author(s). Published by the Royal Society of Chemistry
Lastly, the ensemble transformation involves pairing each
frame with all other frames corresponding to the same lament,

and averaging over the predictions: Ti ¼ 1
n

XN

n¼1

Tin, where Tin is

the transformation based on the pair of frames img(Ti) and
img(Tn). Note that self-pairs are included in each of the methods
above, allowing the model to be trained with examples of no
change. We collectively call these methods prediction fusion
methods.
2.2 Siamese network architecture

As shown in Fig. 5, our MultiTaskDeltaNet model consists of
two main components: a Siamese architecture based on U-Net
branches (although this backbone can be varied), and a set of
fully convolutional layers (FCN) for the nal change mask
generation for each task. The model takes as input a pair of
carbon gasication frames from the same region at times t and
t0. The Siamese architecture features two U-Net branches that
share an identical architecture and weights, and rst extracts
feature maps (fm(t) and fm(t0)) from each frame. These feature
maps are then concatenated, and each FCN then processes the
merged features to generate the nal change detection output
DA1 and DA2, respectively.
to make change detection predictions. The Siamese branches each
der) section and a reconstruction (decoder) section. Additionally, there
ance. The outputs of the Siamese branches are concatenated before
ion and A2 change detection). Different types of layers are color-coded

Digital Discovery
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We employ pre-training to enhance model performance by
training a U-Net model with the same architecture as the
backbone of the MTDN branches. This U-Net takes one labeled
image frame of lament gasication as its input, and its output
is the corresponding segmentation label.
2.3 Training objective

Our model employs focal loss53 as the loss function to deal with
the imbalance in change detection datasets between easy-to-
classify background pixels and the smaller number of fore-
ground pixels where changes may occur. The focal loss is
a modication of the standard cross-entropy loss designed to
address the class imbalance problem. It allows the model to
concentrate more on the hard-to-classify and underrepresented
classes while giving less attention to the majority of easily
classied classes. The equation for the focal loss is as follows:

FLðpÞ ¼ �
XN

i¼1

aið1� piÞglogðpiÞ (1)

where pi is the predicted probability for the true class yi for pixel
i, ai is a class weighting factor to ensure the loss is not domi-
nated by the majority class, and g is the focusing parameter,
which controls the rate at which easy examples are down-
weighted.
2.4 Implementation details

Model training was carried out on a Linux system, using Python
3.12, PyTorch 2.0, and CUDA 11.7. The hardware setup included
an Nvidia GeForce A5000 GPU. During training, the input image
size is set to 256 × 256. For data augmentation, we use vertical
and horizontal ips, rotations, image cropping, blurring, and
color jittering. The optimizer used is AdamWwith b1 at 0.9, b2 at
0.999, and a weight decay of 0.01. The learning rate scheduler
decreases the learning rate linearly throughout the training
epochs. The default number of epochs is 500, with an early
stopping mechanism in place. The learning rate and batch size
are determined through hyperparameter tuning using Ray
Tune,54 with the chosen values being 0.00095 for the learning
rate and 16 for the batch size.
3 Results

We compare our results across four models: U-Net,17 which is
lightweight and the most commonly used segmentation model
in scientic applications such as biomedical image analysis;
Table 2 Performance comparison for A1 in the test dataset (Filament ID

Model

A1 prediction

F1 score (dice score) [

Filament ID 6 Filament ID 7 Test to

U-Net 0.90293 0.97206 0.94102
MTDN 0.91675 0.96746 0.94470

Digital Discovery
our MTDN model trained from scratch, with U-Net as the
backbone of its Siamese branches; and two variations of MTDN
that initialize training with different pre-trained U-Net weights.
All versions of MTDN are designed for change detection, and
the simple transformation described in Section 2.1.4 is applied
to convert the change detection results into corresponding
segmentation results. For comparison, the U-Net baseline
processes single frames to directly produce segmentation
masks and does not use paired-frame or change-detection
inputs. Consequently, all performance metrics are based on
the nal segmentation results.

3.1 Evaluation metrics

We use several evaluation metrics to quantitatively assess our
model performance on the segmentation problem. For similarity
measures, we include the F1 (Dice) score and Intersection over
Union (IoU). These metrics are denoted with an upward arrow ([)
to indicate that higher values represent better performance. The
equations for the F1 Score and IoU are as follows:

F1 ¼ 2$TP

2$TPþ FPþ FN
¼ 2$jGTWPredj

jGTj þ jPredj (2)

IoU ¼ TP

TPþ FPþ FN
¼ jGTWPredj

jGTXPredj (3)

The nal F1 score we report is the macro-averaged F1 score,
which computes the F1 score for each class individually and
then takes a simple average across classes. Note that since we
are only evaluating the nal segmentation performance, there
are only two classes for each reactivity descriptor, where the
positive class corresponds to A1 (or A2), and the negative class
corresponds to background. We report the macro-F1 score for
A1 and A2 separately.

3.2 Quantitative results

Tables 2 and 3 compare the performance of our MTDN model
and U-Net in predicting the reactivity descriptors A1 and A2 for
the test set laments 6 and 7 (recall Fig. 2). The best perfor-
mance in each metric is indicated in bold.

The reactivity descriptor A2 is signicantly more challenging
than A1 to segment due to its small size and visual similarity to
the background. Therefore, improving the prediction perfor-
mance of A2 is a key focus of our work. MTDN consistently and
signicantly outperforms U-Net across both metrics (F1 score
and IoU), achieving a 10.22% improvement in F1 score and
s 6 and 7). Higher performance is highlighted in bold

IoU (intersection over union) [

tal Filament ID 6 Filament ID 7 Test total

0.83593 0.94673 0.89361
0.85614 0.93844 0.89964

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Performance comparison for A2 in the test dataset (Filament IDs 6 and 7). Higher performance is highlighted in bold

Model

A2 prediction

F1 score (dice score) [ IoU (intersection over union) [

Filament ID 6 Filament ID 7 Test total Filament ID 6 Filament ID 7 Test total

U-Net 0.76477 0.7597 0.76276 0.67606 0.66955 0.67357
MTDN 0.85717 0.8211 0.84080 0.77654 0.73349 0.75665
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a 12.34% improvement in IoU for total A2 prediction. The most
notable improvements are seen in IoU, which indicate that
MTDN captures object boundaries with greater precision and
achieves better overlap with ground truth labels. By contrast,
traditional methods such as U-Net perform similarly to our
MTDN model on the more straightforward A1 prediction,
although MTDN still achieves a slightly higher total test
Fig. 6 F1 scores over time (in seconds) for each model for Filament I
performance of U-Net, while the pink line indicates the performance of M
eachmodel. The first of these rows contains the model predictions for A1

A2 corresponds to only the light orange region. The second and third row
respectively. In the confusion matrices, false positive (FP) regions are dark
scores demonstrate MTDN's consistently superior performance over tim

© 2025 The Author(s). Published by the Royal Society of Chemistry
performance. Despite the complexity of reactivity descriptor A2,
we show in SI Table S1 that it is possible to reduce the training
dataset by 40% (from 126 to approximately 76 images) while still
achieving a Dice score of around 0.8, and the training dataset
can be reduced by 50% while achieving the same performance
as a U-Net model trained on the full dataset. These results
suggest that our method might also potentially be applied
D 6. In the Performance Graphs (left), the green line represents the
TDN. In the Segmentation Visualization (right), there are three rows for
and A2, where A1 includes both the dark and light orange regions, while
s correspond to the confusion matrices for the A1 and A2 predictions,
brown and false negative (FN) regions are light tan. The highlighted F1
e, particularly for A2.
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effectively in other imaging modalities, such as atomic force
microscopy or scanning tunneling microscopy, where acquiring
large labeled datasets is more difficult.

To place these quantitative results in context, we consider
the range of IoU values reported by other works attempting
similar segmentation tasks on related types of TEM data.
Recently, Yao et al.55 demonstrated that U-Net models trained
on simulated liquid-phase TEM data could effectively extract
dynamic nanoparticle features from noisy video sequences.
They report an optimal IoU of approximately 0.92 for high
signal-to-noise ratio (SNR) images (dose rate = 10 e−$Å−2 s−1)
and 0.90 for low SNR images (dose rate = 1 e− Å−2 s−1).
However, their datasets consist of high-contrast and relatively
simple morphologies, even under low SNR conditions. Simi-
larly, Lu et al.45 proposed a semi-supervised segmentation
framework for high-resolution TEM images of protein and
peptide nanowires. With only eight labeled images per class,
they achieved median Dice scores above 0.70 and IoU values
ranging from 0.55 to 0.65 across various nanowire morphol-
ogies (e.g., dispersed, percolated). Thus, the quantitative
Fig. 7 F1 scores over time (in seconds) for each model for Filament ID 7.
score for A1 when compared to U-Net (green). However, MTDNmaintain
(right side), we can see that MTDN shows better visual alignment with th

Digital Discovery
performance of our MTDN is well within the higher range of
performance on similar problems.

Our quantitative results highlight MTDN's advantage in
segmenting smaller, more complex reactivity descriptors such
as A2. To further validate the comparative performance of
MTDN and U-Net on the test set, we assessed their performance
on a frame-by-frame basis over time, conrming that MTDN
consistently slightly outperforms U-Net on A1, and signicantly
outperforms U-Net on A2. These results are illustrated in Fig. 6
and 7 for Filament IDs 6 and 7, respectively. We note that both
models initially achieve high F1 scores but experience a sharp
decline aer approximately 550 seconds. This decline occurs
because A1 and A2 aer 550 seconds are signicantly smaller
(indicating the lamentous carbon has been almost fully gasi-
ed) or almost gone, as illustrated in the Segmentation Visu-
alization (right side of Fig. 6 and 7). Following convention, for
the fully gasied A1 or A2, the F1 score of the positive class is set
to 0, resulting in a much lower macro-averaged F1 score at the
end of the gasication reaction.
In the Performance Graphs (left side), MTDN (pink) achieves a similar F1
s consistently higher F1 scores for A2. In the Segmentation Visualization
e ground truth.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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3.3 Qualitative Results

Fig. 6 and 7 also visualize the differences between U-Net and
MTDN predictions of A1 and A2 over time for Filament IDs 6 and
7. The raw frames, masked frames, ground truth, segmentation
predictions, and confusion matrices are shown for timesteps
spanning early, middle and late times in the ETEM carbon
gasication videos. Note that in the visualized predictions, the
reactivity descriptor A2 is highlighted in the lighter color, while
the reactivity descriptor A1 corresponds to both the dark and
light colors combined. As the lamentous carbon gasies,
segmentation becomes more challenging for all models, but
MTDN continues to perform consistently better. In particular,
MTDN tends to produce narrower, better predictions for A2
compared to U-Net. This suggests that MTDN reduces false
positive predictions, resulting in segmentation results that are
more accurate and sharper, which is critically important for the
area-to-volume conversion to quantify carbon volume changes
for spatially-resolved operando ETEM characterization (Fig. 1).

For Filament ID 6 (Fig. 6), we observe from time step 306 s to
406 s that, compared to MTDN, U-Net is too sensitive to the
differences in pixel intensity. In particular, U-Net tends to
overpredict low-intensity areas as A1, whereas MTDN identies
A1 more accurately. Additionally, from time step 306 s to 506 s,
we encountered an overlap problem when an overlying carbon
lament moved into proximity with the target lament, pre-
venting us from fully excluding it by masking. U-Net incorrectly
identies all the carbon laments as part of A1. In contrast, our
model accurately distinguishes between the two separate
carbon laments and to a good extent correctly predicts A1 and
A2 belonging to the target lament. Finally, at time step 606 s,
an additional lower carbon lament appears in the masked
region, while the target lament has been completely gasied so
that the ground truth label is empty. In this situation, both U-
Net and MTDN fail to track the correct laments (although
visually we can see that MTDN better captures the new la-
ment). This failure reects not a aw of the model, but
a necessary compromise to enable lament-specic gasication
kinetic measurements that deconvolute the effects of size vari-
ation and distinct reaction pathways.

In Fig. 7, we again see that MTDN consistently outperforms
U-Net across the entire gasication process for Filament ID 7,
both quantitatively and visually. Similarly to before, towards the
end of gasication at time step 606 s, a new lower carbon la-
ment appears while only a tiny portion of the target lament
Table 4 Test performance of MTDN trained as a multi-task model versus
which is single-task

Model

F1 score (dice score) [

A1 prediction

Filament ID 6 Filament ID 7 T

U-Net (single-task) 0.90293 0.97206 0
MTDN (single-task) 0.88336 0.97039 0
MTDN (multi-task) 0.91678 0.96940 0

© 2025 The Author(s). Published by the Royal Society of Chemistry
remains. U-Net tends to over-segment high-contrast areas,
mistakenly identifying both carbon laments. Meanwhile,
MTDN predicts the emerging lament but omits the target one,
resulting in MTDN having more false negatives than U-Net. In
this instance, U-Net inadvertently achieves better quantitative
results.

Overall, the analysis of laments 6 and 7 conrms that
MTDN maintains strong and stable performance in complex
segmentation scenarios, especially for the challenging A2 class.
Its ability to produce precise segmentations with fewer false
positives and better temporal consistency highlights its
robustness compared to U-Net.

While our model demonstrates robust generalization across
different lament morphologies and diameters, all training and
test data were acquired under consistent imaging conditions on
a single ETEM instrument. Future work will investigate model
robustness across varying camera settings, electron dose rates,
and TEM platforms, as well as pre-training strategies to improve
cross-instrument generalization.
3.4 Ablation study

In this section, we study the relative importance of various
components of our MTDN model: the performance gains from
our multi-task formulation, the efficacy of pre-training the U-
Net branches, and various fusion methods for transforming
the change detection prediction to image segmentation results.

3.4.1 Multi-task training. We leverage the relationship
between the A1 and A2 segmentation tasks to boost model
performance using multi-task learning. In Table 4, we present
comparative results between MTDN with multi-task training
against a MTDNmodel that only undergoes single-task training.
The single-task training includes one MTDN model focused
solely on predicting A1 (le columns of table) and another
MTDN model focused solely on predicting A2 (right columns of
table). The multi-task model clearly performs better than the
single-task models.

While multi-task learning is advantageous when segmenta-
tion targets share spatial and structural correlations (as with A1
and A2), the architecture may struggle with substantially
different features due to potential negative transfer. We note
from Table 4 that the single-task version still substantially
outperforms U-Net on the more challenging A2, demonstrating
that the core benet of MTDN derives from reframing
segmentation as change detection. For applications with
MTDN trained as a single-task model on A1 only or A2 only and U-Net,

A2 prediction

est total Filament ID 6 Filament ID 7 Test total

.94102 0.76477 0.75970 0.76276

.93014 0.81126 0.81154 0.81152

.94588 0.83740 0.82362 0.83117
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Table 5 Performance comparison of MTDN without weight initialization versus MTDN with U-Net backbone trained using A1 weight initiali-
zation, and MTDN with U-Net backbone trained using A2 weight initialization

Model

F1 score (dice score) [

A1 prediction A2 prediction

OverallFilament ID 6 Filament ID 7 Test total Filament ID 6 Filament ID 7 Test total

MTDN_no_init 0.91678 0.96940 0.94588 0.83800 0.82295 0.83117 0.88853
MTDN_init1 0.92036 0.96679 0.94601 0.84970 0.82484 0.83866 0.89234
MTDN_init2 0.91675 0.96746 0.94470 0.85717 0.82110 0.84080 0.89275
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morphologically distinct features, we recommend using the
single-task version of MTDN, which retains the advantages of
change-detection-based segmentation while avoiding potential
negative transfer.

3.4.2 Pre-training of the U-Net backbone.We experimented
with weight initialization for the Siamese branches using pre-
trained U-Net models based on A1 (MTDN_init1) and A2
(MTDN_init2). Note that pre-training only utilized training
laments, and no validation or test laments were seen during
pre-training. Aer this step, we continued end-to-end training
Fig. 8 F1 scores and visualization of segmentation predictions over time
each timestep and each reactivity descriptor (A1 or A2) are highlighted in
select the MTDN_init2 model as the final MTDN model reported in the Re
critical in this application.

Digital Discovery
of the full MTDN model, resulting in ne-tuning of these U-Net
weights. Additionally, we conducted experiments without
weight initialization.

We present the numerical results in Table 5 and the corre-
sponding visualizations in Fig. 8. Our results indicate that pre-
training the UNet to initialize our Siamese branches slightly
enhances overall performance. Considering the overall F1 score,
MTDN_init2 is the best model. This is the nal MTDN model
that is reported in the Quantitative and Qualitative Results
sections above. It is important to note that although we have
for each model on Filament ID 6. The F1 scores for the best model at
bold. The various models achieve similar performance over time. We
sults section, since higher performance on the challenging A2 is more

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 6 Performance comparison of different fusion methods for the change detection to image segmentation transformation for each model.
The results are largely similar, showing that MTDN is robust to the choice of fusion method

Model Fusion method

F1 score (dice score) [

A1 prediction A2 prediction

OverallFilament ID 6 Filament ID 7 Test total Filament ID 6 Filament ID 7 Test total

MTDN_no_init Backward 0.91678 0.96940 0.94588 0.83800 0.82295 0.83117 0.88853
Consecutive 0.91801 0.96910 0.94638 0.83083 0.82597 0.82873 0.88756
Ensemble 0.91699 0.96894 0.94566 0.83812 0.82491 0.83216 0.88891
Forward 0.91798 0.96865 0.94604 0.83591 0.82599 0.83146 0.88875

MTDN_init1 Backward 0.92036 0.96679 0.94601 0.84970 0.82484 0.83866 0.89234
Consecutive 0.92149 0.96622 0.94627 0.84588 0.82682 0.83744 0.89186
Ensemble 0.92042 0.96598 0.94554 0.84982 0.82704 0.83976 0.89265
Forward 0.92163 0.96562 0.94597 0.84781 0.82685 0.83852 0.89225

MTDN_init2 Backward 0.91675 0.96746 0.94470 0.85717 0.82110 0.84080 0.89275
Consecutive 0.91840 0.96661 0.94512 0.85479 0.82291 0.84034 0.89273
Ensemble 0.91677 0.96734 0.94458 0.85722 0.82107 0.84085 0.89272
Forward 0.91738 0.96708 0.94481 0.85569 0.82105 0.83996 0.89239
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employed a U-Net backbone for our Siamese branches, the
MTDN model is compatible with any state-of-the-art encoder-
decoder architecture. Given the limited amount of labeled
data, a lightweight backbone such as U-Net is preferred. We
acknowledge that alternative architectures such as DeepLabv3
may offer different trade-offs in accuracy and computational
cost. Exploring these alternatives is planned for future work.

3.4.3 Change detection to segmentation transformation
(prediction fusion). As discussed in Section 2.1.4, a variety of
Fig. 9 Visual comparison of different prediction fusion methods on Fila

© 2025 The Author(s). Published by the Royal Society of Chemistry
fusion methods are possible to transform the change detection
predictions to segmentation results. The quantitative performance
and qualitative visualization of the different fusion methods are
presented in Table 6 and Fig. 9. There is both high quantitative
and visual similarity in the segmentation predictions across
methods, suggesting that our MTDN framework is robust to the
choice of prediction fusion method. For computational efficiency,
we select MTDN_init2 using backward fusion as our nal MTDN
model for which the performance is reported in the Quantitative
ment ID 6. Visually, the results are quite similar.
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and Qualitative Results sections. We note that the forward and
consecutive fusionmethods operate causally and support real-time
inference, whereas backward and ensemble fusion require future
frames and is best used for offline analysis.
4 Conclusions

In this work, we introduce MTDN, a novel deep learning
framework that reframes semantic segmentation as a change
detection task, enabling spatially-resolved operando ETEM
characterization of lamentous carbon gasication, to accel-
erate the fundamental understanding of catalyst regeneration.
By leveraging a Siamese U-Net architecture that takes pairwise
data as input, MTDN efficiently utilizes limited training data,
achieving high segmentation performance on complex reac-
tivity descriptors. Critically, our prediction fusion methods
convert change detection results into image segmentations
quickly and efficiently, without suffering from error accumula-
tion and without requiring additional manual labeling. Our
model also benets from a lightweight design, enabling exible
backbone replacement and efficient training. We further
employ a multi-task learning strategy to enhance the model's
ability to segment the two reactivity descriptors - the outer and
inner regions of the carbon lament - simultaneously.

Extensive quantitative and qualitative analyses conrm that
MTDN consistently outperforms traditional segmentation
models such as U-Net, particularly in generalization and
robustness across temporal variations and structural complex-
ities. Ablation studies validate the impact of multi-task training,
weight initialization with ne-tuning, and segmentation
prediction fusion strategies, underscoring the effectiveness of
our architectural and methodological choices.

Overall, MTDN accelerates the transformation of conventional
in situ (E)TEM imaging into spatially-resolved operando (E)TEM
characterization, by offering an automated approach to track the
spatiotemporal evolution of (nano)materials with unprecedented
speed, precision, and statistical rigor. This advance opens
tremendous opportunities for mechanistic studies of solid-state
reactions, where feature-specic reaction kinetics resolved at the
nanometer scale can be directly correlated with their microstruc-
tural evolution. Looking ahead, this framework establishes
a strong foundation for future research in deep learning-driven
microscopy, particularly in domains where labeled data are
scarce and small objects are inherently present.
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