Open Access Article. Published on 03 December 2025. Downloaded on 1/13/2026 10:37:36 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital
Discovery

I ROYAL SOCIETY
P OF CHEMISTRY

View Article Online

View Journal

{ ") Check for updates ‘

Cite this: DOI: 10.1039/d5dd00331h

Received 28th July 2025
Accepted 1st December 2025

DOI: 10.1039/d5dd00331h

Evaluating the transfer learning from metals to
oxides with GAME-Net-Ox

t,2° ac Jordi Morales-Vidal, 2

*a

Thomas Van Hou
Santiago Morandi

Oliver Loveday,
@ and Nuria Lopez

The estimation of the strength of the bond of adsorbates on the surface is key to the design of novel
materials for heterogeneous catalysis. Machine learning (ML) methodologies have proven effective in
rapidly and accurately evaluating adsorption energies on transition metal surfaces. However, the
complexity of metal oxides and their diverse adsorbate—catalyst interactions hinder the sound transfer of
ML approaches to these catalytically relevant materials. To address this challenge, we have evaluated the
transferability of GAME-Net, a graph neural network developed for transition metals, by following an
approach of increasing complexity, leading to GAME-Net-Ox. A density functional theory dataset was
built with organic molecules on conductive (IrO, and RuO,) and semiconductive (TiO,) rutile oxides to
evaluate GAME-Net's transferability. While the original GAME-Net failed to directly generalize between
metals and metal oxides, GAME-Net-Ox trained exclusively on oxides achieved high accuracy (MAE =
0.16 eV) and both families of materials can be treated in GAME-Net-Ox with the same accuracy (MAE =
0.16 eV). This work demonstrates the adaptability of the GAME-Net architecture, enabling the screening
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1 Introduction

Understanding the adsorption of molecules on surfaces is key to
evaluate the catalytic properties of heterogeneous catalysts,"*
which is paramount to advance the development of green
processes aimed at tackling climate change.>* The integration
of machine learning (ML) predictive models into materials
science holds promise to accelerate the discovery, design, and
optimization of materials across a wide range of chemical
systems.>® Existing models consistently demonstrate high
accuracy and reliability when predicting physicochemical
properties of bulk materials. This success is largely attributed to
the well-defined, periodic crystal structures of bulk materials,
including features such as elemental composition, lattice
parameters, and electronic structure, and the availability of
large, consistent and open-access density functional theory
(DFT) datasets®** adhering to the FAIR principles.'* As a result,
ML models can effectively utilize simple yet robust descriptors
to achieve strong predictive performance.**™”

In contrast, the transferability to surface properties seems
more complex. For example, computational databases for the
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of adsorbates on metal oxides, materials with complex electronic properties.

adsorption energies of molecules on metal and alloy surfaces
have only been available recently.**>> Our understanding of the
interaction of adsorbates with metals is associated with a cova-
lent contribution described by the d-band model and a smaller
redox contribution.”**~*® Thus, by leveraging physically mean-
ingful descriptors and large high-quality available databases,
several ML models can now rapidly and accurately predict
adsorption energies.”»*” Moreover, these models can also be
used as pre-optimizers®® and the obtained structures can be
later refined with DFT methods. Such approaches greatly reduce
both computational time and cost associated with quantum
mechanical calculations. The success of these approaches is
underpinned by the relative simplicity of the metal electronic
structure, where catalytic activity trends follow the smooth
variation in electronic properties.*

However, extending ML-based methodologies to metal
oxides, active industrial catalytic materials in oxidation,
hydrotreating, and acid-base processes,* present substantial
challenges. Unlike metals, metal oxides display a much broader
spectrum of complexity.’**® Metal oxides (i) adopt different
crystal structures; (ii) exhibit a broad range of electronic prop-
erties (insulators, semiconductors, or conductors); (iii) contain
acid-base and redox sites; and (iv) exhibit metal-oxygen bonds
ranging from highly covalent to predominantly ionic. Therefore,
the adsorption of molecules on metal oxides spans a wide range
of interaction types and strengths, including electrostatics,
acid-base and redox chemistry, and both homolytic and
heterolytic dissociation pathways. Furthermore, the synthesis of
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metal oxides results in defective (oxygen depleted) and/or
hydroxylated surfaces in an uncontrolled manner that signifi-
cantly influences their properties.***”** Moreover, the study of
their catalytic properties by means of atomistic simulations is
highly sensitive to the level of theory employed, further
hampering a rational and systematic understanding.****

The largest open-access DFT database targeting adsorption
on metal oxide surfaces is the OC22 dataset.** OC22 includes
4728 unary (A,O,) and binary (A,B,O;) oxides with and without
the most typical defects, oxygen vacancies, and 9 small adsor-
bates (C*, H*, O*, N*, CO*, OH*, O;, H,0*, and OOH*). This
database has been employed to develop ML potentials reaching
a mean absolute error (MAE) of the total energy of 1.10 eV.”
However, there is a lack of comprehensive databases and
systematic studies on the adsorption of closed-shell small
organic molecules on metal oxides, which makes the use of
reliable ML models for adsorption on these materials
challenging.

In this paper, we aim at investigating the transferability of
the GAME-Net** architecture from metals to oxides. GAME-Net
is a very light (285761 parameters) graph neural network
(GNN) targeted to directly predict the adsorption energy of
molecules on transition metal surfaces of close-shell molecules.
GAME-Net is an initial structure to relaxed energy model
(IS2RE), that when provided a guess adsorption configuration
directly predicts its energy based on the graph representation.
We present GAME-Net-Ox as the corresponding model designed
to target the adsorption energy on both metals and metal oxide
surfaces (Fig. 1).

Because of the wide range of electronic and geometric
properties of metal oxides, the selection of the materials and
adsorbed molecules to explore is non-trivial. We selected three
isostructural rutile-type (r) metal oxides, two conductors (RuO,
and IrO,) and one semiconductor (TiO,). We initially select
RuO, and IrO, for their conductive nature similar to that of pure
metals. With this strategy we isolate the structural complexity
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Fig.1 Conceptual schematics of this work. Starting from a dataset of
DFT adsorption relaxations on transition metal catalysts, this work
presents GAME-Net-Ox, an extension of the GAME-Net graph neural
network that enables the prediction of the adsorption energy on
conductive and semiconductive rutile metal oxides.
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and acid-base properties of the metal oxides while keeping the
electronic properties relatively constant. Subsequently, we
incorporate r-TiO,, to address the role of a much richer elec-
tronic structure with a semiconductor nature. Regarding the
selection of adsorbed molecules, we exploited the chemistry of
our problem. Accordingly, we chose molecules that capture the
diversity of the most relevant functional groups in organic
chemistry. This approach differs from common models, which
are typically based solely on small molecules and fragments
(typically containing C, H, and O). We found that the new
model, GAME-Net-Ox, was able to predict the adsorption energy
of closed shell molecules (including some dissociative adsorp-
tions) with comparable accuracy to GAME-Net for transition
metal surfaces (MAEgameNet-ox = 0.16 €V and MAEGamE-Net =
0.18 eV). This paves the way to explore the robustness of GAME-
Net architecture to build very light alternative models to predict
adsorption energies of a wide set of molecules and materials.

2 Methods

2.1 Density functional theory settings

Density functional theory (DFT) simulations for developing
GAME-Net-Ox were carried out with the Vienna A4b initio Simu-
lation Package (VASP) 5.4.4.*%** We used the Perdew-Burke-
Ernzerhof (PBE)** density functional complemented by
Grimmes's D3 approach*” to account for van der Waals inter-
actions. Core electrons were represented by projector-
augmented wave pseudopotentials*®*® and valence electrons
were described with plane waves with a kinetic energy cutoff of
450 eV. Electronic convergence was set to 10~° eV and atomic
positions were converged until residual forces fell below
0.025 eV A~L. Bulk lattice parameters of rutile (P4,/pn, space
group) RuO,, IrO,, and TiO, were optimized with a kinetic
energy cut-off of 700 eV. Then, the MO,(110) termination, which
is the corresponding lowest surface energy orientation for
rutiles,*>** was used to build the slab model of the three metal
oxides with periodic boundary conditions. The surfaces were
represented with p(2 x 2) slabs with five tri-layers (O-M-0),
where the upper 2 tri-layers were fully relaxed and the bottom
ones were fixed to the bulk distances. The vacuum between the
slabs was set to 15 A and a dipole correction was applied in the z
direction.®® The Brillouin zone was sampled by a I'-centered 5 x
3 x 1 k-point mesh generated through the Monkhorst-Pack
method.*

The close-shell molecules selected follow our Functional
Groups (FG) dataset strategy, which is based on the principles of
organic chemistry.>® 38 gas-phase molecules comprising
alkanes, alkenes, alkynes, alcohols, aldehydes, ketones, ethers,
thiols, thials, thioketones, thioethers, amines, imines, carbon-
ates, carboxylic acids, esters, carbamate esters, amides, oximes,
and amidines up to C; (Table S1) were relaxed in a 20 A cubic
box. The molecules were then placed on the surfaces with
DockOnsurf* on five sites (Fig. S1) with up to three different
conformations. The adsorption center was placed between 1.5
and 3 A above the surface, depending on the adsorption site and
molecular size. To prevent unphysical configurations, atomic
clashes are detected using the collision of spheres method. In

© 2025 The Author(s). Published by the Royal Society of Chemistry
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this approach, the sphere radius is calculated by multiplying the
covalent radius of each atom by a collision threshold factor, set
to 1.3. A surface coverage of 0.01 molecules per A~ was defined
for all adsorption structures to neglect lateral interactions. The
number of sampling points per angle is set to three, except for
molecules with threefold rotational symmetry, where it is
reduced to two to prevent the generation of symmetry-
equivalent configurations degenerated in energy. To further
minimize the initial generation of equivalent adsorbed config-
urations, the root mean square deviation (RMSD) of atomic
positions was used as a similarity metric. Structures with an
RMSD below 0.15 A were considered duplicates and removed
from the dataset. This strategy reduced the pool of 10 initial
adsorption configurations generated with DockOnSurf for each
adsorbate-surface pair to 1-3 unique structures depending on
the molecule size. RMSD values were computed using the
StructureMatcher class from the pymatgen (2024.11.13)
library.>®

As for the adsorption on metal database, we retrieved from
the FG-dataset™ for Ag, Au, Cd, Co, Cu, Fe, Ir, Ni, Os, Pd, Pt, Rh,
Ru, and Zn. Moreover, adsorptions on the (0001) termination of
hexagonal close-packed Ti were generated retaining equivalent
DFT details. We used a p(2v/3 x 2v/3 —R30°) supercell
modeled by a four-layer slab, where the two bottom layers were
fixed to the bulk positions while the two uppermost ones were
allowed to relax. The vacuum between the slabs was set to more
than 13 A and a dipole correction was applied in the z direc-
tion.*” The Brillouin zone was sampled by a I'-centered 3 x 3 x
1 k-point mesh generated through the Monkhorst-Pack
method.*

Overall, in this work we have generated a new dataset of the
adsorption of different molecules on RuO,, IrO,, TiO,, and
metallic Ti, and we have merged it with an already existing
dataset of the adsorption of the same molecules on different
metal surfaces. Thus, we have employed analogs DFT setting,
such as the VASP version, the density functional of choice, the
van der Waals contributions, the pseudopotentials and the
energy cut-off of the plane waves used to represent the elec-
trons, and the k-point meshes (among other settings), to ensure
that the merging of the two data sets was completely accurate
and transparent.

2.2 Machine learning settings

GAME-Net-Ox has been developed with Pytorch Geometric 2.6.1
(ref. 57) and Pytorch 2.6.0,°® and its training has been performed
on a NVIDIA RTX A2000 12GB GPU with CUDA 12.4. The
adsorption graphs used as input to train the graph neural
network (GNN) are constructed starting from the relaxed three-
dimensional (3D) atomic coordinates obtained from DFT
relaxations. The graphs encode atoms as nodes represented by
its chemical identity (element) via one-hot encoding, while
chemical bonds between atoms are modeled as edges. Within
the graphs, there is no distinction between adsorbate-adsor-
bate (A-A), surface-surface (S-S), and adsorbate-surface (A-S)
bonds. Graph edges do not include any chemical feature,
providing information only on the atom connectivity. The xyz

© 2025 The Author(s). Published by the Royal Society of Chemistry
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— graph conversion algorithm is that of the original GAME-Net
model,* which employs a distance-based criterion to define the
bonds between atoms. Two atoms are considered connected if
(i) their distance in the DFT-relaxed structure is smaller than the
sum of their covalent radii from Cordero et al.*® plus a tolerance
of 0.3 A, and (ii) they are adjacent after applying the Voronoi
tessellation. In GAME-Net, the graph representing the metal
was limited only to the surface atoms directly interacting with
the adsorbate (1%-order neighbors). Here, the bi-elemental
nature of metal oxides requires extending the surface repre-
sentation to the 3™%-order neighbors to always capture the full
composition of the catalyst within the graph (Fig. S2). Each
adsorption graph is labeled with its DFT adsorption energy,
defined as:

Eags = Eiot — Eglab — Emol (1)

where E, is the energy of the relaxed adsorption structure, Egj,p
is the energy of the clean metal oxide slab and E,,, is the energy
of the gas-phase molecule. In GAME-Net-UQ,* an improved
version of the original GNN, the generalized coordination
number (gCN),** a descriptor for the local coordination
including the second nearest neighbors, was encoded in the
surface atom nodes. As this descriptor is suited for pure metal
surfaces, GAME-Net-Ox encodes the coordination number (CN),
which enables the effective capture of the local environment
(first nearest neighbors) of the surface atoms in a simpler yet
effective manner. The CN for a specific surface atom is obtained
by counting the number of edges connecting it to other atoms
belonging to the oxide surface, while for adsorbate atoms this
feature is set to zero.

After converting the DFT adsorption structures to the cor-
responding graph representations, the same systematic filtering
procedure employed for the FG-dataset used to train GAME-Net
has been applied. This involves discarding duplicate isomor-
phic graphs representing the same adsorbate/surface pair.>
Two graphs representing the same adsorbate/surface pair are
considered as different adsorption configurations if their DFT
adsorption energy differs by at least 0.01 eV. For instance, for
the adsorbate/surface pairs of the metal oxides, we retain
approximately 86% of the original DFT dataset (Table S2).

Once constructed, the graph representation of the adsorbed
molecule serves as input to the neural network. The input
graphs are represented by a set of node feature vectors, each of
them being a 21-dimensional array (15 metals + C, H, O, N, and
S + coordination number), and by the graph connectivity in
coordinate format (COO). GAME-Net-Ox architecture consists of
three main building blocks: fully connected layers, convolu-
tional layers, and a pooling layer.”* First, each node feature
vector is transformed by a dense layer that increases its size
from 21 to 160 dimensions without a bias term. Next, three
GraphSAGE®* and one TAG® convolutional layers process these
node embeddings, using the graph's connections to gather
information from neighboring nodes while retaining the same
size of 160. Finally, the Graph Multiset Transformer (GMT)**
pooling layer compresses the information embedded in the
nodes into a graph representation, which predicts the target
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energy of the whole adsorption structure.* The ReLU* activa-
tion function is used throughout all the node-level layers.
GAME-Net-Ox uses the same convolutional and pooling
methods as GAME-Net-UQ, but as the node feature vectors
include Ti as an additional one-hot encoded element and the
reduced layer width (from 192 to 160), the final model contains
387 840 trainable parameters. While the number of parameters
of GAME-Net-Ox is similar to that of GAME-Net (0.3 M) and
GAME-Net-UQ (0.5 M), it is 2-3 orders of magnitude more
lightweight than state-of-the-art ML interatomic potentials like
EquiformerV2 trained on OC22 (31 M-153 M) or MACE-MP-
0 (15 M).® Details on the internal architecture of the model
layers can be found in Tables S3-S5.

In the GNN learning processes, the graph dataset was
randomly split into 60% training, 20% validation, and 20%
testing sets. Since the dataset is balanced in terms of the cata-
lyst surface and adsorbate, random splitting was suitable. The
filtering strategies used to avoid equivalent adsorption struc-
tures in the dataset ensure the absence of data leakage. We
employed a five-fold nested cross-validation to get a robust
assessment of GAME-Net-Ox in-distribution performance,
following the same procedure employed for GAME-Net. Each of
the five splits is employed once as a test set, while the remaining
four are iteratively rotated between training and validation
roles. This results in 20 independent training runs, each using
a distinct combination of splits for the training, validation, and
test sets. The generalization performance of the model is finally
assessed by concatenating the test sets from the independent
trainings.

The ML trainings have been performed by minimizing the
mean absolute error (MAE) loss function with the AMSGrad
optimizer®. A target scaling (standardization) based on the
energy values in the training and validation sets has been per-
formed to improve numerical stability during trainings.
Training-related hyperparameters were selected in accordance
with the original GAME-Net's hyperparameter optimization.*
The initial learning rate was set to 10 * and is adjusted using
a ReduceLROnPlateau PyTorch scheduler,*” which lowers the
learning rate by a factor of 0.7 if there is no improvement after 5
epochs (patience) in the MAE of the validation set. The learning
rate was allowed to decrease down to a minimum of 10 %, In
each training, 250 epochs were performed. During each epoch,
the training data are fed to the GNN in batches of 16 samples,
performing a backward propagation and updating the model
parameters after each batch.

3 Results

We aim to transfer the architecture of GAME-Net** to predict the
adsorption energy (E.qs) on RuO,, Ir0,, and TiO, oxides (Fig. 1)
rendering GAME-Net-Ox. First, we built an analogue FG-dataset
to the one used in GAME-Net.>> We included 38 closed-shell
organic molecules up to C; with the most common functional
groups in organic chemistry adsorbed on the (110) surface of
three rutile metal oxides (Fig. 2a and b). Particularly, we used
DFT (PBE + D3) to relax the structure of the following molecules
on the metal oxide surfaces: (i) non-cyclic hydrocarbons; (ii) O-
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Fig.2 DFT adsorption dataset. (a) Closed-shell molecules included as

adsorbates, and (b) metal oxide surfaces included in this study. The

adsorption energy (EX) distribution grouped by (c) chemical family

and (d) metal oxide follows the same color code of the molecules/
materials depicted in the top part.

functionalized (alcohols, ketones, aldehydes, ethers, carboxylic
acids, and carbonates); (iii) N-functionalized (amines, imines,
and amidines); (iv) S-functionalized (thiols, thioaldehydes, and
thioketones); and (v) N- and O-functionalized combinations
(amides, oximes, and carbamate esters) (Table S1). For each
molecule, we assessed its adsorption on different sites of the
three metal oxide surfaces, following the procedure described in
detail in the Methods section. The distribution of adsorption
energies depicts two distinct peaks, corresponding to chemi-
sorption (strong adsorption, E.qs < —1.0 eV) and physisorption
(weak adsorption, E,4s between —0.1 and —1.0 eV) events on the
three metal oxides (Fig. 2¢).®® Moreover, adsorption energy span
is broader for IrO, compared to RuO, and TiO,. In some cases,
due to the acid-base properties of the metal oxides, the mole-
cules are dissociatively adsorbed (i.e., the adsorbates are
dissociated into two or more fragments, both or all of which are
bound to the surface of the adsorbent).®® The molecules
adsorbed on 14 transition metal surfaces were retrieved from
our previous work,”” and we have now included the Ti(0001)
surface. All the structures, inputs, and outputs of the DFT
simulations can be found in the ioChem-BD repository.””*
With the FG-dataset at hand and its graph-based represen-
tation, we performed different data splits to identify the data
required to build an accurate model for predicting adsorption
energies on metal oxides. First, we evaluated the predictive
performance of GAME-Net, trained on transition metals, on the
adsorption energy on the conductive metal oxides IrO, and
RuO, (Fig. S3). GAME-Net achieves on these materials an MAE
of 2.00 eV (n = 536), an expected result due to the fundamentally
different nature of adsorbate interactions on the two types of
surfaces. An additional aspect to consider is the minimal graph
representation employed by GAME-Net, which includes as
surface nodes only the atoms directly in contact with the
adsorbate, thus implying a loss of information about the metal
oxide composition (Fig. S2). This observation shows the need of
expanding the surface representation within the input graphs.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Then, we evaluated GAME-Net-UQ architecture to capture the
higher structural complexity of metal oxides compared to
transition metals. We trained a model exclusively on the
conductive metal oxides IrO, and RuO,. The resulting model
achieved an MAE of 0.34 eV (Fig. S4), which is higher than the
one obtained by GAME-Net for transition metal surfaces. Thus,
we modified the original graph representation of the metal
oxides (1°*-order neighbors) leading to GAME-Net-Ox including
further neighbors. Particularly, we extended the surface repre-
sentation to the 3™-order neighbors and incorporated the
coordination number (CN) when generating the graph repre-
sentation of the adsorbate-surface interaction (Fig. S2 and S4).

Upon this improvement, GAME-Net-Ox on the two conduc-
tive metal oxides achieves a global MAE of 0.22 eV, comparable
to the MAE obtained by GAME-Net (0.18 eV) for transition metal
surfaces (Fig. 3). Thus, the extended surface representation
captured by the graphs of GAME-Net-Ox enhances the material
representation and provides better insights into the structure
sensitivity of the surface. The in-distribution error is balanced
across the different chemical families represented by the
adsorbate, with S-containing molecules showing the highest
error since S is the least represented atom in the FG-dataset and
it is the only heteroatom included that contains d orbitals. The
results indicate that, despite the differences in structure,
adsorption sites, adsorbate nature, and interaction phenomena
between metal oxides and transition metal surfaces, GAME-Net-
Ox is sufficiently robust to accurately model the adsorption of
closed-shell molecules on the conductive metal oxides. Indeed,
it must be highlighted that because of the presence of acid-base
pairs in the metal oxides, some molecules with acid protons
(i.e., carboxylic and carbonic acids and thiols) evolved to
dissociated configurations during DFT structural relaxations

a b
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Fig. 3 GAME-Net-Ox performance on conductive oxides (IrO,,
RuO,). Plotted data come from the test sets of the trainings performed
for the 5-fold nested cross validation. (a) Parity plot of predicted vs.
DFT adsorption energies, and (b) corresponding error distribution. (c)
Boxplot of the GAME-Net-Ox error grouped by chemical family. The
number of top of each box represents the MAE of the specific family (n
= 2096).
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(Table S6). Particularly, 64 out of 524 adsorptions on the
conductive metal oxides exhibit a dissociated proton. This
subset presents an MAE of 0.23 eV (Fig. S5), showing that the
predictive accuracy of the model is robust with respect to this
feature (MAE of 0.22 eV). As dissociative adsorptions are key for
metal oxide catalytic properties, the predictive accuracy of
GAME-Net-Ox towards this type of adsorptions is crucial.

Then, we introduced an additional layer of complexity by
incorporating TiO, (Fig. 4), which despite being isostructural
with IrO, and RuO,, is a semiconductor. Training GAME-Net-Ox
on the three oxides leads to an MAE of 0.16 eV. Interestingly, the
different conductive properties of the metal oxides do not affect
the final predictive accuracy. These results demonstrate that the
GAME-Net architecture is robust enough to accurately model
the adsorption of closed-shell molecules on metal oxides, when
their electronic properties differ and dissociative adsorptions
are included.

Since the span of adsorption energies differs among the
three metal oxides (Fig. 2), we implemented a leave-one-out
strategy, using the data from two metal oxides as the training
set and the data from the third as the test set (Fig. S6). A higher
MAE was observed when adsorptions on IrO, were used as the
test set (MAE = 0.75 eV), consistent with the widest span of
adsorption energies for this material.

We then merged the data for the adsorption of the 38 closed-
shell organic molecules on the three metal oxides and 14
transition metal surfaces to evaluate the predictive ability of
GAME-Net-Ox when mixing the two types of surfaces. We per-
formed again fivefold nested cross-validations with data splits
60:20:20 and the results show that GAME-Net-Ox robustly
maintains the same predictive accuracy (MAE = 0.16 eV, Fig. 5).
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Fig. 4 GAME-Net-Ox performance on conductive (IrO, and RuO,)
and semiconductive (TiO,) oxides. Plotted data come from the test
sets of the trainings performed for the 5-fold nested cross validation.
(a) Parity plot of predicted vs. DFT adsorption energies, and (b) cor-
responding error distribution. (c) Boxplot of the GAME-Net-Ox error
grouped by chemical family. Number of top of each box represents the
MAE of the specific family (n = 3440).
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Fig. 5 GAME-Net-Ox performance on conductive (IrO, and RuO,)
and semiconductive (TiO;) oxides, including the adsorption on the 14
transition metal surfaces from the FG-dataset. Plotted data come from
the test sets of the trainings performed for the 5-fold nested cross
validation. (a) Parity plot of predicted vs. DFT adsorption energies, and
(b) corresponding error distribution. (c) Boxplot of the GAME-Net-Ox
error grouped by chemical family. Number of top of each box repre-
sents the MAE of the specific family (n = 2384).

Thus, GAME-Net-Ox is able to predict the adsorption of closed-
shell molecules with the same accuracy as GAME-Net, despite
the added complexity of metal oxides. However, to achieve these
excellent values both types of materials must be included in the
training set since the model trained solely on adsorption data
for transition metals cannot accurately predict adsorption on
metal oxides, and vice versa (Fig. S7).

Finally, we have performed a benchmark of GAME-Net-Ox
against two state-of-the-art ML interatomic potentials (MACE-
MP-0 large and EquiformerVv2-122M-OC22). The results in
Fig. S8 and Table S7 show similar accuracy between GAME-Net-
Ox and MACE-MP-0 (MAE = 0.25 eV), while EquiformerVv2-122M
leads to a one order of magnitude higher MAE (MAE = 2.80 eV).
Initially, we attributed this difference in performance to the lack
of S-containing adsorbates in the OC22 training dataset.
Filtering out these adsorbates, the MAE improved by 50% (MAE
= 1.39 eV). Regardless, the MAE is still 10x higher than that of
GAME-Net-Ox and MACE-MP-0. We point that the constrained
diversity of adsorbates in the training set (9 small molecules
and fragments: O, H, N, C, OH, OOH, H,0, CO, and O,) has
a significant impact on the performance of the model when
evaluating adsorbates with a high variability of functional
groups.

4 Conclusions

The present work demonstrates the transferability of GAME-
Net-like architectures to predict the adsorption energy of
closed-shell organic molecules on metal oxides with rutile
structures and diverse electronic properties. As expected,
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models trained on transition metal surfaces only fail to gener-
alize to metal oxides due to differences in their inherent prop-
erties as well as different adsorbate-surface interactions. In
contrast, GAME-Net-Ox (i.e., GAME-Net-UQ with an oxide-
specific graph representation) trained on conductive (IrO, and
RuO,) and semiconductive (TiO,) rutile-type metal oxides,
achieves an accuracy comparable to its original performance on
metals, even for dissociative acid-base adsorptions and semi-
conductors such as TiO,. Therefore, it is possible to build light
models directly targeting adsorption energies like GAME-Net-Ox
with a reasonable balance of accuracy across materials. Such
methodologies pave the way to a more efficient prediction of the
adsorption energy on metal oxides with different geometric
motifs and electronic structures, as well as on a broader range
of adsorbates relevant for catalysis.
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